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EXISTENCE THEOREMS FOR HEREDITARY LAGRANGE AND
MAYER PROBLEMS OF OPTIMAL CONTROL*

THOMAS S. ANGELLfY

Abstract. In this paper, we prove existence theorems for optimal solutions in control systems
governed by functional differential equations. We use a model for abstract hereditary systems, formu-
lated by Hale and Cruz, which subsumes functional differential equations of finitely retarded type,
equations of neutral type which are linear in X,, as well as a large class of Volterra integral equations.
Using this model, we define an abstract hereditary control system, and then prove several existence
theorems for optimal control problems of the types of Lagrange and Mayer in the line of previous work
by Cesari.

1. Introduction. In a previous paper [2], we proved existence theorems for
optimal control problems for systems whose dynamics are described by functional
differential equations of finitely retarded type. Here, we present existence theorems
for a much broader class of systems, namely the hereditary structures discussed
by Hale and Cruz[16]. In this latter paper, the authors prove theorems of existence,
uniqueness and continuous dependence of solutions for this general class of
equations which includes, as special cases, functional differential equations of
finitely retarded type, Volterra integral equations, difference equations, as well as
those functional differential equations of neutral type in which the derivative x,
appears linearly. The control systems which we discuss here, will include, as
special cases, those of [2] as well as a large class of neutral functional differential
equations and a class of Volterra integral equations with kernels of the form
[K(t, s, x(s)) + F(s, u(s))].

Our specific goal is to extend the results of [2], in the line of previous work
by Cesari, to this new and more general class of hereditary systems and to present
new theorems for a class of hereditary Mayer problems. The principal results
are the existence theorems, Theorem 6.2 relating to Lagrange problems of optimal
control and Theorem 7.1 applying to problems in the form of Mayer.

We should also point out the relationship between the present results and
the work of Warga [22, Chap. VII] pertaining to functional-integral equations.
On the one hand, the theorems of [22] give existence results for optimal control
including, as do the present results, the case of ordinary and retarded functional
differential equations. In addition, [22] covers a much broader class of integral
equations than do our results. On the other hand, there seems to be no natural
way to include the class of neutral functional differential equations discussed here
in the class of functional integral equations discussed in [22] without making
additional differentiability assumptions which the approach of [16] is designed
to avoid. Moreover, the approach used here utilizing closure and lower closure
theorems differs from the approach in [22] which uses the concept of relaxed
solutions.

The primary difficulty encountered in applying the techniques of [2] to the
present class of hereditary systems is that the usual boundedness assumptions
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or growth conditions imposed on the right member of the differential equation
do not alone yield equicontinuity of the minimizing sequence. As the reader
will see in the sequel, this phenomenon is due to the appearance of terms involving
the past history of the process in the left member of the equation.

Finally, we point out that since we are dealing with a functional differential
system whose state space is a function space, the usual condition || < M is not
enough to guarantee the various compactness conditions needed for the proof of
the existence theorems.

2. Description of hereditary control systems and examples. Let r be a positive
real number and consider the set C([—r, 0], E"), the class of all n-vector-valued
continuous functions with domain [ —r, 0], equipped with the topology of uniform
convergence. When there is no chance of confusion, we will write simply C([ —r, 0])
for C([—r,0], E"). Let A be a closed bounded subset of E' x C([—r,0]), let
U(t, ¢) be a closed subset of E™, and let g: A — E" be continuous. We will be
concerned here with a differential equation of the form

(2.1) djdi[x(t) — gt, x)] = F(t, x,, u(t)),

where the function u, with values in E™, is the control function x with values in E"
and defined on an interval of the form [t, — r, t,], is the trajectory, and for any
tefty,t,],x0) = x(t + 0), —r £ 60 £ 0. We shall refer to (2.1) as an hereditary
control system with control function u.

Since the set A4 is assumed bounded, its projection onto the z-axis is contained
in some compact interval [t¥, t¥], and the initial value problem

djdi[x(t) — glt, x)] = h(t, x,),  te[tf, 5],
X:’;(e) = d)

is equivalent to the initial value problem posed by Hale and Cruz in [16] as can
be verified easily by the reader. In particular, let M = {(t, ¢, u):(t, )€ A and
ueU(t,®)} and let F;,, i =1, .-, n, be given real-valued functions, defined and
continuouson theset M. Wewrite F = (F,, -- -, F,).Ifthefunctionu:[¢t,, t,] > E™,
t¥ <t =t, =< t¥,ischosento be measurable, then (2.1) is an hereditary differential
system of the type considered in [16, § 7]. The results of [16] show that under
hypotheses, among which is that the function g is nonatomic at zero, the initial
value problem will have a solution provided one specifies, at time ¢, , a continuous
function ¢ € C([—r, 0]). Essentially, the property of being nonatomic at zero
insures that the function g does not depend very strongly on the value ¢(0).
The reader is referred to [16] for the precise definition as well as for examples of
this behavior.

We now consider pairs of functions {x, u}, each pair consisting of a measurable
function u:[t,, t,] - E™ and a corresponding continuous function x:[t, — r, t,]
— E", which satisfies, almost everywhere, the hereditary differential equation

(2.2a) djdi[x(t) — g(t, x)] = F(t, x,, u(t)), t; =t=t,,
subject to boundary conditions

(22b) (tlaxplat29xpz)EB’
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where B is a given closed subset of E! x C([—r,0]) x E' x C([—r,0]), as well as
constraints

(2.2¢) (t,x)eA foralltelt,,t,],
(2.2d) u(t)e U(t, x,) for almost all t e[¢,, t,].

Such pairs of functions are called admissible, and for such a pair, the function x
is called a trajectory of the control system while the function u is called the control
generating the trajectory x. Note that, implicit in the definition of a trajectory is
the condition that the function x(¢) — g(t, x,),t; <t < t,, is absolutely continuous
so that d/dt[x(t) — g(t, x,)] exists almost everywhere in [t, ,].

A control system which admits at least one admissible pair is called a control-
lable system. In what follows, we will always assume that the system is controllable.
Some remarks on the question of sufficient conditions for the controllability of
systems of retarded type have been made elsewhere by the author [1].

Our purpose in this paper is to discuss existence theorems for optimization
problems of the types of Mayer and Lagrange. In the first case, we assume as given
a continuous function h:B — E', and we seek the minimum of the functional
Ilx, u] = h(t,, x,,, t,, X,,) over some nonempty class Q of admissible pairs {x, u};
that is, we seek a pair {x,, uo} € Q such that I[x,, u,] < I[x, u] for all {x, u} € Q.

In the case of Lagrange problems, we wish to minimize an integral of the form

I[x,u] = ftz Fy(t, x,, u(t)) dt

under the side conditions (2.2abcd). Here F,, is a real-valued function defined on M
and we shall denote by Q any class of pairs {x, u] admissible in the sense stated
above and for which Fy(t, x,, u(t)) is L-integrable in (¢, t,]. Briefly, we shall say
that Q is a class of admissible pairs for the Lagrange problem under consideration.

We shall refer to this latter problem as a Lagrange problem with unilateral
constraints. If we take the sets U(t, ¢) to be compact, the resulting problem may be
referred to as a Pontryagin problem, and if F, is taken as F, = 1, the resulting
problem is one of time-optimal control.

We now present three examples, similar to those given in [16], to show that
the control systems described here include a number of control systems which
have been studied previously.

Example 1. Setting the function g(t, ¢) = 0, equation (2.1) becomes

(2.3) d/dt x(t) = F(t, x,, u).

This is the type of equation we discussed in detail in our previous paper [2],
a functional differential equation of finitely retarded type.

Example 2. Let the function g have sufficiently smooth derivatives. Then
equation (2.1) becomes

(24 x(t) - g;&(ts xt)xt - g;(t’ x,) = F(z, Xt u),

where x/(0) = x(t + ), 6 e [—r,0]. This equation includes equations of neutral
type in which the derivative %, occurs linearly. Such equations are discussed by
Driver [14] and by Hale and Meyer [17].
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Example 3. Let K:[0,T] x [0, T] x E*" —» E", f:[0, T] - E", 0 < T < o0, be
given functions. Assume that F is independent of ¢ and that the function g has
the form

g(t, ¢) = ﬁ K(t,t+ 0, x(t + 0))d6 + (), te[0,T], ¢eC(—r,0]).

Then, (2.1) becomes

d 0
T [x(t) - f K(t,t + 0, x(t + 0))do —f(t):l = F(t, u)

or

0 t
x(t) — f K(t,t+ 0,x(t + 0)d6 — f(t) = f F(s, u(s)) ds.
~t 0

Makingthe change of variabless = ¢ + 0, thefirstintegral becomes (% K(z, s, x(s)) ds
and so, equation (2.1) becomes

(2.5) x(t) = f(t) + f' [K(t, s, x(s)) + F(s, u(s))] ds,
0

which is a Volterra equation for x once a control function u has been specified.
The initial value problem for (2.1) and the solution of (2.5) are equivalent problems
provided that the initial functions of (2.1) satisfy the condition ¢(0) = f(0).
We refer the reader to [3] and [4] where, in the same spirit as the present paper,
we treat directly systems governed by Volterra integral equations. In addition,
the book of Warga [22] treats such models in a very general context.

Remark. We also wish to point out that certain problems involving hyperbolic
partial differential equations have been shown to be equivalent to problems
involving neutral functional differential equations of the form (2.4). The interested
reader is referred to [5] for details.

3. The orientor field problem and property (Q). Control systems of the type
described in the previous section can be written in terms of orientor field (or
contingent) equations. In other words, we consider the orientor field problem

(3.1) djdi[x(t) — g(t, x)] € Qt, x,),  (t,x)eA,
where Q: A4 — 2" is given by

0@, ¢) = {z = F(t, ¢, u):ue U, ¢)}.

A solution x(t) of (3.1) is a continuous function x, defined on an interval of the
form [t, — r,t,] such that (a) x(t) — g(t, x,) is absolutely continuous on [, t,];
(b) (t,x,) e A for all te[t,,t,]; and (c) d/dt[x(t) — g(t, x,)] € Q(t, x,) almost every-
where in [¢,, t,]. In what follows, we will assume that the set Q(t, ¢) is convex for
each (t, ¢) e A.

Clearly, any solution of the original control problem gives rise to a solution
of this orientor field problem. The question of whether every solution of (3.1)
which, in addition, satisfies the boundary condition (2.2b) can be viewed as a
trajectory of the control system (2.2abcd) is answered by a standard argument
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involving the McShane—-Warfield extension of Filippov’s implicit function
lemma [19].

Remark. One remark needs to be made concerning the use of this result in
the present context of hereditary systems. For control systems involving ordinary
differential equations, the set M is a subset of a Euclidean space and is the union
of countably many compact metrizable subsets. In our problem, the set M does not
have this property, but it is a separable space. McShane and Warfield have shown
that their theorem remains true in the separable case provided one is willing to
invoke the continuum hypothesis. The reader is referred to [19] for details.

In what follows, it will be convenient to consider the space X of all continuous
vector functions x defined on arbitrary intervals of the projection I, of the set 4
onto the t-axis, x:[a, b] > E". We now introduce the structure of a metric space
on X by introducing, as usual, a metric function p:X x X — E'*. For this
purpose, let x, y € X with x defined on an interval [a, b] and y defined on [c, d].
We may extend x and y to all of I, by taking x(¢) = x(a) for all t < a, and x(¢)
= x(b) for all t > b, and similarly for y. We then define the distance function
p(x, y) by

plx,y) =la —c + b+ d| + sup|x(t) — y()l,

where the supremum is taken over all ¢ € I ,. With this metric structure, the space
{X, p} is complete. When all functions x, of a sequence {x,} are defined on a
fixed interval, the convergence of the sequence to an element x in the metric
topology is just the uniform convergence on that interval.

We now introduce the concept of a closed class of admissible pairs for the
problems under consideration. Before doing so, we remind the reader that a
trajectory x of the control system is a continuous vector function x(t) = (x*, - - -,
x"), t; =t £ t,, such that x is generated by some measurable control function u,
satisfying the constraints u(t) € U(t, x,) almost everywhere, and such that the func-
tion x(t) — g(t, x,) is absolutely continuous in [z, t,].

For Mayer problems, we may introduce the following.

DEFINITION 3.1. A class Q of admissible pairs is said to be closed provided,
for every sequence {x,,u}, k = 1,2, ---, of pairs in Q such that x, — x in the
p-metric, where x is a trajectory of the control system, among all measurable
functions u which make the pair {x, u} admissible, there exists one u such that
{x,u} e Q.

For Lagrange problems with functional I[x, u] = [ Fy(t, x,, u(t)) dt, we have
a corresponding notion, differing slightly from the above as is to be expected
since the notion of admissible pair is slightly different.

DEFINITION 3.2. A class Q of admissible pairs for the Lagrange problem is
said to be closed provided, for every sequence {x;, u;},k = 1,2, -- -, of pairs in Q
such that x, — x in the p-metric where x is a trajectory of the control system and for
which j = lim I[x,,u,] < + oo, among all measurable functions u which make
{x,u} admissible and for which I[x, u] < j, there exists one u such that {x, u} e Q.

Clearly, the class of all admissible pairs is closed.

Given any point (£, ) € 4 and number § > 0, we denote by N(i, §) the set
ofall(t, ) e Asuchthat|t — f| £ 6, ||¢ — ¢|| < 5. Thus Ny(i, ¢)is a neighborhood,
in the relative topology on A, of the element (z, ¢).
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Since the sets Q(t, ¢) with which we will be dealing will be closed but not
necessarily compact, we will need a concept of metric upper semicontinuity for
set-valued mappings. To this end, we introduce the following definition which is a
restatement of a definition introduced by Cesari [10].

DEFINITION 3.3. A set-valued function Q:4 — 2F" is said to have property
(Q) at a point (i, ) € 4 if

o, ¢ = Ncl co[ u Q(t,d))}

>0 (t.) € Ns(i,)
>0

where we denote by Q(t, ¢ ; ) the subset of E" defined by

Q(t,¢;5)=clco[ u Q(t,qﬁ)].
(t.6) € N5s(t.6)
The function Q is said to have the property (Q) with respect to (¢, ¢) in A if it has
property (Q) with respect to (t, ¢) at each point of A.

Property (Q) is a generalization of the more familiar concept of metric upper
semicontinuity for closed and convex sets (see [10, p. 377]).

4. A closure theorem and conditions for lower closure. In this section, we
formulate both a closure theorem and a theorem giving sufficient conditions for
lower closure of functionals in integral form. As we shall see, the concept of
lower closure is an extension of the concept of lower semicontinuity for free
problems of the calculus of variations. The first theorem of this section is useful
when we must deal with singular components and have no information concerning
the convergence of the derivatives d/dt[x®(t) — g(t, x¥))] along a minimizing
sequence {x®}. For the Lagrange problem, however, the presence of a growth
condition involving F and F, will be enough to guarantee the weak convergence
of this sequence of derivatives and it will be possible to establish the needed
closure theorem assuming only a weakened form of property (Q), namely prop-
erty (Q) with respect to ¢ only. This form of property (Q) has been used by Cesari
[13], Olech [20], M. F. Bidaut [8] and Berkovitz [6] to establish existence theorems
for Lagrange problems involving ordinary differential equations.

Let I be any interval of the real line and let C(I, E¥) denote the set of all
continuous functions mapping I into E*. As in the previous sections, we will
continue to write simply C(I) for C(I, E").

Denote by y = (x, - -+, x*) the s-vector made up of components x', ---, x*,
1 < s £ n, of the vector x = (x*, - - -, x"), and let z be the complementary (n — s)-
vector z = (x**!, ..., x"). Thus, we may write x = (y, z). Assume that the domain
of F is contained in E' x C({—r, 0], E*) x E™ rather than in E' x C([—r, 0))
x E™ and let A, be a subset of E! x C([—r,0],E®). Set A = A, x C([—r,0],
E"™*%). We will assume that the orientor field in 4 depends only on t and y, and not
on z,, and that g(t, ¢) = (g4, -, g,) has the form g,,;, = g4, = - =g, =0.
Then a solution to the orientor field problem

4.1) djdi[x(r) — g(t, x)] € Q(t,y), (L, x)€A,
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is an element x € C([t, — r, t,]) such that x(¢) — g(z, x,) is absolutely continuous on
[ty,t,], x(2) = (¥(1), z(t)) with (¢, y,) € Ay (and hence (¢, x,) € A) for every te[t,,t,],
and d/dt[x(t) — g(t, x,)] € Q(t, y,) almost everywhere in [z, t,].

THEOREM 4.1 (Closure Theorem). Denote by A, a closed subset of E* x C([—r,
0],E%) and let A = Ay x C([(—r,0], E""%). Let Q:Ay, — 2", and assume that the
map Q satisfies the property (Q) with respect to (t, ¢).

Suppose that {x®} is a sequence of solutions to the orientor field problem (4.1),
x® = (y®, z®) defined on [t,, — r, t,,], and such that (i) the y¥ converge in the
p-metric to a continuous function y defined on [t, — r,t,] with the property that
xi{t) — git, x,),i = 1, - -+, a, is absolutely continuous; (ii) the z¥ converge pointwise
to a function z almost everywhere on [t; — r,t,] and z admits a decomposition z =
Z + S where Z is absolutely continuous on [t,, t,] and S' = 0 almost everywhere on
(ty,t,]; and (iii) the function g(t,$) = (g, -, g, has the form g, = ;11
= ... =g,=0. Then the continuous vector function X = (y,Z), defined on
[ty — r, t,] is a solution of (4.1).

The proof of Theorem 4.1 follows closely the proof of Theorem 3.1 in [2]
which treats the retarded case. We refer the reader to that paper for details and
mention here only that the proof involves the use of the Ascoli theorem on com-
ponents governed by a growth condition and Helly’s selection process on the other
“singular components”. The appearance of such singular components is typical
in Mayer problems (see § 7). References [6] and [13] show that, under hypotheses,
the use of this closure theorem can be avoided, and the weakened form of property
(Q) used.

Specifically, in the case that some condition guarantees the weak convergence
of the derivatives of a minimizing sequence, e.g., in the case that the functions F
and F, are related by the growth condition to be described later (see Def. 6.1),
it is possible to establish a lower closure theorem under the following weakened
version of property (Q) (see Cesari [13]).

DEFINITION 4.1. A set-valued function Q: A — 2F" is said to have property (Q)
with respect to ¢ at a point (i, §) € A provided

Q@E,¢)= Ncl co[ U o, d)):l,

>0 (7,¢) € No,8($)

where N, () = {(E, ¢)€ 4: ¢ — G| < 3}. .

Note that this definition differs from Definition 3.3 only in that N, (¢)
replaces N,(i, §).

We now introduce the concept of lower closure (see [9], [12]) for functionals
in integral form. This concept reduces to the familiar concept of lower semi-
continuity for free problems.

DEFINITION 4.2. Let x € C([t, — r,t,]) be such that the function [x(t) — g(t, x,)]
is absolutely continuous on [¢,,t,] and (t, x,) € A for all t € [t,,t,]. A functional I
has the property of lower closure at x if, for any sequence {x®, u®} k= 1,2, ---,
of admissible pairs such that x* converges pointwise almost everywhere in I,
to x, such that the derivatives d/dt[x®(t) — g(t, x¥)] converge weakly in L, to
d/dt[x(t) — g(t, x,)], and such that lim I[x®, u¥] < 4 o0 as k — oo, there is some
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measurable function u:[t,, t,] - E™ for which {x, u} is admissible and
(4.2) I[x, u] < lim I{x®, u®].

We remark that, if M is closed and if the sets Q(t, ¢) are closed and convex,
then the closure theorem and the McShane-Warfield lemma guarantee the existence
of some measurable function u such that the pair {x, u} is admissible. However, it is
possible that (4.2) does not hold for the pair {x, u} (see [9, p. 90)).

In order to give sufficient condition for lower closure, we must introduce a
new map 0:A — 25" given by

é(t,d)) ={= (22 €eE""":2° 2 Fy(t,p,u),z = F(t,p,u),uc U, ¢)}.

We may now state the following theorem on lower closure which is the analogue
for Lagrange problems of the preceding closure theorem for Mayer problems.
It is a corollary of the more general lower closure theorem, Theorem 5.1, of
Cesari [13].

THEOREM 4.2. Let A be a closed subset of E' x C([—r,0)), and for every
(t, §) € A, suppose that U(t, §) = E™. Assume that the set M = {(t, ¢, u):(t, §) € A4,
ue U(t, ¢); is closed and let F(t, ,u) = (Fy, Fy, -+, F,) = (Fo F) be continuous
on M. Assume that the sets é(t, @) are closed and convex and that Q satisfies property
(Q) with respect to ¢ in A. Also, suppose that the set B < E' x C([—r,0]) x E*
x C([—r,0]) is closed and that, for some locally integrable function , we have
Fo(t, ¢, u) = Y(t) for all (t, ¢, u) € M. Then the integral

I[x, u] = fz Folt, x,. u(t)) dt

has the property of lower closure at every x € C([t, — r,t,]) such that the function
x(t) — glt, x,) is absolutely continuous on [t,t,] and (t,x,)€ Afor all te[t,¢,].

We will not repeat the proof here but refer the reader to [13]. The proof
proceeds by applying the Banach—Saks—Mazur theorem to the weakly convergent
sequence of derivatives to obtain a new sequence of convex combinations which
converges strongly to d/dt[x(t) — g(t, x,)]. Property (Q) is then invoked to prove
that this latter derivative satisfies the orientor field relation (4.1). This technique
was used by Cesari in [13], by Berkovitz in [6] and more recently in [7] which
treats multidimensional problems. We emphasize that, for the present theorem,
we need only property (Q) with respect to ¢ and not with respect to (t, ¢). This
weakening is not in general possible under the sole assumption that the sequence
{x® converges to x uniformly. Indeed, uniform convergence of the x* to x does
not imply weak convergence of the derivatives x* to x’ in L,, and there are
examples (see [13]) which show that property (Q) with respect to both variables
is essential in this case.

5. General remarks. Concerning the proof of existence theorems for optimal
control, we wish to make the following preliminary remarks.

As was shown in our previous paper [2], it is convenient to require the
compactness of the initial data, and this restriction will be in force throughout
this paper also. Indeed, the growth condition is enough to insure that the functions
/. generated by a minimizing sequence, are equiabsolutely continuous on the
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intervals [, ,t, ], but gives no information on the behavior of the functions on
sets [t,, — r,t;,]. Even for the retarded case, it is possible to give examples of
equations for which a sequence of solutions may converge on the intervals [t , ¢, ]
but which diverge on the intervals [t; — r,t; ]. We recall here an example of
[15, p.41] of a functional differential equation of finitely retarded type whose

trajectories after a suitable time are zero regardless of the initial function in the
unit ball of C([—1, 0]).

Example. Consider the equation
X(1) = —y@x(t - 1), 20,
where
2sin’at, te(2n,2n+ 1], n=1,2,---,
0, te(2n—1,2n), n=1,2,---.
We show that for t = 3, x(¢) = 0. In fact, for t € [1, 2], x(t) = x(1), and
x(t) = —y(t)x(1), te2,3].

o =

Thus
3
x(3) = x(l)[l - 2f sin? 7s ds] =0
2

andso, x(t) = Ofor t € [3,4]and indeed, x(t) = Ofor¢ = 3.Fort e [l, 2] the equation
isjust x(t) = Oand the solution corresponding to the initial function ¢ is x(t) = ¢(1),
te[1,2]. Since the initial functions are taken to lie in the unit ball of C([—1,0]),
the trajectories on [1, 2] form an equicontinuous equibounded family. Moreover,
since on [2,3] we have |x(f)] < 2, the trajectories on [I, 3] are equicontinuous
and equibounded.

Hence, the trajectories restricted to [1, + o) are compact while the initial
conditions are not.

It may, however, be the case that for some classes of equations, the com-
pactness of the initial data guarantee the compactness of the trajectories. We
discuss this possibility at the end of this section.

Moreover, as usual in direct methods of the calculus of variations, we shall
need conditions guranteeing that, from a minimizing sequence {x"} of admissible
trajectories, we can extract a subsequence {x"'} which converges, in some suitable
topology, to an element which actually gives the minimum of the functional I.
For example, in Lagrange problems, it will be natural to assume first a growth
condition involving F and F,. This will immediately guarantee that the sequence
of absolutely continuous functions f,(t) = x™(t) — g(z, x{”) is equiabsolutely
continuous and thus that we can extract from it a subsequence { f,, } whose elements
converge uniformly (that is, converge in the p-metric) to an absolutely continuous
function f as k — oo (see the proof of Theorem 6.2 below). This will, of course,
affect the behavior of the corresponding sequence {x™}.

In particular, we need to show that this latter sequence, or at least a sub-
sequence, will converge in the p-metric to a trajectory of the system. Since we have
assumed that the set of initial conditions is compact and (§ 2) that the function g
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is nonatomic at zero, any condition guaranteeing the convergence of the f,, e.g.,
the growth conditions mentioned above, is sufficient to guarantee the convergence
of a minimizing sequence. The requirement that g be nonatomic at zero implies
that the nonlinear operator defined by g is a contraction on a suitably chosen
closed set of continuous functions. Convergence of the trajectories in the p-metric
to a trajectory of the system is established by straightforward modification of
the arguments establishing continuous dependence in [16, § 6] (see in particular
Theorem 6.4 of [16]).

Finally, as mentioned earlier (Introduction), the usual condition |u(t)] < M
is not by itself enough to guarantee the compactness of the minimizing sequence.
We point out that in some specific cases this condition may suffice. For systems
described by integral equations of the form (2.5) we can see that the set of trajec-
tories is, in fact, a relatively compact set under suitable conditions on the functions
K and f. To be more precise, suppose f is continuous on the interval [0, T],
0 < T < + o0, and suppose that, for fixed (t,z) € [0, T] x E", K(t, s, z) is measur-
able in 0 < s < t, and that, for fixed S€[0, T], K is continuous for (t,z)€[s, T]
x E". Suppose further, that there exists a function ¢, L-integrable in [0, T], such
that |K(t, s, z| < ¢(s),0 = s =t = T. These conditions are sufficient to guarantee
the existence of a continuous solution on [0, T'] of the Volterra integral equation

x(t) = f(t) + f; K(t, s, x(s)) ds, 0t T,

(see [21, pp. 23-24]).
If, in addition to the above hypotheses, the function K satisfies a condition
of the form

|K(I,S,X) - K([*,S,X)I é l//(S)lt - t*lv

where Y(s) is L-integrable on [0, T], then the set of trajectories of (2.5) form a
relatively compact set. To see this, note that the integral equation (2.5) may be
rewritten in the form

(5.1) x(t) = Hyt) + f ' K(t, s, x(s)) ds,
0

(5.2) H(t) = f(t) + jt F(s, u(s)) ds,
0

where u is an admissible control. In fact, the set of functions {H,} defined by (5.2)
is a relatively compact set of functions ; both equiboundedness and equicontinuity
follow from the boundedness of the functions F and f as may be checked easily.
As previously remarked, the conditions imposed on fand K are sufficient to insure
the existence of a solution (5.1) for each given admissible control u. We denote
the generated trajectory by x,. The equiboundedness and equicontinuity of the
set {x,} now follow easily using standard arguments and the properties of K and
equicontinuity of the H,,.

Moreover, it is possible that, for some classes of equations, the compactness
of the initial data guarantees the compactness of the trajectories. For example,
Banks and Kent [5] show that, when the function g has the form {13, d.u(t, s)x(s),
then suitable conditions on p and the assumption that F is linear in ¢ are sufficient
to guarantee compactness of the set of trajectories given that the set of initial
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conditions is compact. For precise statements, the interested reader may refer to

(3]

6. Growth conditions and existence theorems for Lagrange problems. For the
proof of the existence theorems for Lagrange problems, we will need, as mentioned
previously (§5), conditions which will insure that a minimizing sequence of
trajectories will contain a convergent subsequence. For this purpose, we will use
a growth condition described in [12]. We remark that this condition will only
insure the equiabsolute continuity of the functions f,(t) = x®(t) — g(t, x{")
generated by a minimizing sequence {x™, u™}.

DEerINITION 6.1. The function F = (F,, Fy, - - -, F,) is said to satisfy the growth
condition (y) if, for any ¢ > 0, there exists a nonnegative L-integrable function

¥, such that
(‘Y) 'F(ta 4), u)' é we(t) + 8FO(I’ d)’ u)

for all (t, ¢, u) e M.

THEOREM 6.1. Assume that the set A is closed and bounded in E' x C([—r, 0]).
Let Q be the class of all admissible pairs {x, u}, x defined on [t, — r,t,], u defined
on [t,,t,], with I[x,u] < K, K >0 a fixed constant. Assume that F = (F,,
F,, -, F,) satisfies (y). Then the set

H = {f:f(1) = x(t) — g(t,x,), {x,u} € Q}

is an equiabsolutely continuous set of functions.

Proof. Note that, for ¢ = 1 we have 0 < (1) + Fy(t, ¢, u) for all (¢, ¢, u) e M.
Now the set 4 is bounded so that its projection into E', I 4, is contained in some
finite interval [t¥, t3]. Thus

t2 131
fw,mdtéj yi0di =K, 0SK, < +oo.
ty tt

Let ¢ > 0 be given and choose o = 1&(K + K,)™'. Then for every measur-
able subset E of [t¥, t3] we have

J Jarole=],

= J |F(t, x,, u(t)] dt = J[l//a(t) + oFo(t, x,, u(r))] dt
E E

d

= [

dt
dt

d
S0 = (6. x)]

< f Y0 dt + o j [Pt u0) + Y3(0)] di

E E
< d ? Folt. x,. u(t) d 0 d
_Lllf,,(t) t+6£, olt, x,, u(?)) t+oLz//,(z) t

= J Y ()dt + o(K + K,) = J Yl (t)dt + ¢/2.
E E
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By integrability of the y,, we conclude that there is a § > 0 such that, if meas (E)
< 4, then [z ¥,(t) dt < &/2. For this choice of E, we then have
[12s0|as [ woasms,
Eldt E

and hence the functions d/dt f(t), for f € H, are equiabsolutely integrable from
which it follows that H is an equiabsolutely continuous set of functions.

We may now present the following existence theorem for Lagrange problems.

THEOREM 6.2. Let A = E' x C([—r, 0]) be closed and bounded, and let B be a
closed subset of E* x C([—r,0]) x E* x C([—r,0]). Let U:A — 25" be given, and
define a set M = E' x C([—r,0]) x E" by M = {(t, p, u):(t, p) € A, ue U(t, P)}.
Let us assume that () F = (F,, F,, - - -, F,) is continuous on M and satisfies condition
(y); (1) the set é(t, @) is closed, convex and é satisfies property (Q) with respect to
¢ in A; (iii) the set M is closed; (iv) the projection of the set B into its second co-
ordinate space is contained in a compact subset of C([ —r,0]); (v) the map g is non-
atomic at zero and g[A] is bounded.

Then the cost functional

t2
IMx.a = | Folt.xu0) de
ty
has an absolute minimum in any nonempty closed class Q of admissible pairs.

Proof. For ¢ = 1, we have that 0 < /(t) + Fo(t, ¢, u) or —y,(t) = Fo(t, ¢, u)
for all (t, ¢, u) € M. Now the set A4 is bounded so that I , is contained in some finite
interval [t¥, t¥] and [t,, t,] < [t¥,t%]. Thus

_ fi(pl(t) itz — J:%(t) di

and so, for every pair {x, u} € Q,

t2 1’5
v = [ Rtz — [ wi@de = —K, > —c.
ty t
So, if i = inf I[x, u], then i > — oo and there exists a sequence {x®, u®} in Q such
that I[x®, u®] — ias k —» oo, each x® being defined on [t,, — r, t,,] and such that
the functions x®(t) — g(t, x(*) are absolutely continuous on [t,,, t,,]. Furthermore,
we may assume that

t2)

i < Ix®,u®] = J Fo(t, x®, u®@t)dt <i+ 1/k<i+ 1.

tig

By Theorem 6.1, the set H = { fi: fil(t) = x®(t) — g(t, x*¥)} is an equicon-
tinuous family, and, since 4 is bounded and g[ 4] is bounded, it is easy to see that the
set H is equibounded. Hence, we may use Ascoli’s selection theorem to extract a
subsequence, which we again call {f,} and which converges in the p-metric to a
function f € C([t,,t,]), which is absolutely continuous on [t;,t,]. Moreover,
since the set of initial conditions is assumed to be compact, we may assume that
the extraction has been performed in such a way that the initial functions
X,,, converge uniformly to some function ¢, € C[—r, 0]. Thus, as indicated above
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(§ 5), there is some function x, € C([t, — r, t,]) such that at least a subsequence
x"™) — x, in the p-metric.

As may be seen immediately from the proof of Theorem 6.1, the growth
condition (y) insures that the derivatives d/dt[x®(t) — g(t, x*')] are equiabsolutely
integrable. Since A4 is bounded, the set I, is bounded and hence, by a theorem of
Dunford and Pettis, the set of derivatives is weakly compact in L,(I,). Hence,
at least a subsequence of derivatives converges weakly in L;(I,) to a function
Y(t)e L(I ). Since the functions f; converge uniformly on I 4 to f, certainly they
converge pointwise almost everywhere to f and hence, by the absolute continuity
of these functions, we have f'(t) = ¥(t) almost everywhere.

The class Q being closed, the lower closure theorem guarantees the existence
of a measurable function u,, defined on [t,,,], such that {x,,u,} € Q, and

I[xo, uo] < lim I[x®, u®] = i.

Since {xo, uo} € Q, we must also have I[x,, uo] = i and so I[x,, up] = i and the
proof is complete.

We remark that, as is well-known in nonhereditary problems, if we assume
that the class Q of admissible trajectories satisfies an L, boundedness condition
of the form

(6.1) j:

for ] <p< 4+00,0=< N < +00, we may replace the growth condition (y) with
a weaker condition involving the function F, only. More precisely, we may assume
that there is an L-integrable function ¥ such that Fy(t, ¢, u) = y(t) for all (¢, ¢, u)
€ M. In this case, the condition (y) insures the equiabsolute continuity of the set
of functions H (see Theorem 6.1). Infact, a simple application of Hélder’s inequality
shows that the derivatives are equiabsolutely integrable which implies, as before,
the equiabsolute continuity of the set H.

The more familiar L? boundedness condition, that is a condition on the
trajectories themselves, rather than on the functions [x(t) — g(t, x,)], of the form

d 14
a;[x(t) —gt,x)]| dt =N

p

dt £ N

dx

(6.2) f o

for some constant N > 0 and integer p > 1, can be utilized only when we have
additional information concerning the smoothness of trajectories of the hereditary
system and on the function g. Specifically, we have the following.

THEOREM 6.3. Let A be a closed bounded subset of E* x C[—r, 0] and assume (i)
F= (Fy, Fy,- -+, F,) is continuous on M and that there is an L-integrable function
Y such that Fo(t, ¢, u) = (1) for all (t,$,u)e M; (ii) for each (t,¢)e A, é(l, P)
is closed and convex and é satisfies property (Q) with respect to ¢ in A; (iii) the set M
is closed and the projection of the set B into its second coordinate space is a set of
absolutely continuous functions which is compact in C([—r, 0]); (iv) the function g is
Lipschitzian in both arguments.

Let Q be a nonempty closed class of admissible pairs for the Lagrange problem
such that condition (6.2) holds.
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Then there exists a pair {x,, u,} € Q such that

t2

I[x,u] = j Fo(t, x,, u(t)) dt

1

takes on its minimum in Q at {x,, to} .

Proof. From condition (i), it follows, as in the proof of Theorem 6.2, that
i = infI[x, u] is finite. Let {x*, u®} be a minimizing sequence, each u® being
defined on an interval [t,,,t,] and the corresponding x* being defined on
(t,, — r.ty,]. We may assume that i < I[x®,u®] < i+ 1/k <i+ 1, and that

J\‘Zk
t

1k

p

dt £ N.

dx®

By the weak compactness of the unit ballin L,, 1 < p < oo, we may conclude that
there exists a subsequence of the minimizing sequence and some continuous
function x, defined on [¢,,t,], such that dx,/dt — dx/dt weakly and x, — x uni-
formly, ie., in the p-metric. Condition (iv) is enough to insure that the function
g(t,x,) is absolutely continuous and, consequently, that the derivative d/dt[x()
— g(t, x,)] exists almost everywhere in [¢,, ¢,].

This shows that the functions x,(t) — g(t, x,,) converge pointwise almost
everywhere to the absolutely continuous function x(tf) — g(t, x,). The remainder
of the proof proceeds exactly as that of Theorem 6.2.

The restriction on the set of initial conditions, namely that all the initial
functions be absolutely continuous, is necessary in the sense that, even if the map g
satisfies the required Lipschitz conditions, the functions x(t) — g(t, x,) need not be
absolutely continuous. In particular, note that if g(¢, x,) = x(t — 1), (x,)(0)
= x(t + 0), 0e[—1,0], and we have fixed initial data ¢(t), —1 < t < 0, which is
continuous but nowhere differentiable, then the absolute continuity of x(t)-on
[ty,t,] does not insure the differentiability of x(t) — x(t — 1) on the same interval.
Indeed, it is examples of this sort which served Hale and co-workers as motivation
for introducing the present hereditary model and thus avoiding the necessity of
discussing the smoothness of the trajectories x.

7. An existence theorem for hereditary Mayer problems. We now present an
existence theorem for Mayer type problems which is an extension of theorems of
McShane [18] and Cesari [11] involving comparison functions. We point out that
the restriction on the components of the function g, necessitated by the use of
Theorem 4.1, has the effect of requiring all components not governed by a growth
condition to satisfy a retarded equation. This condition is, as we have seen in § 6,
automatic in the situation of the Mayer problem which arises from reformulation
of a problem of Lagrange. Moreover, it does not seem possible to avoid the use of
Theorem 4.1 and the assumption that the sets Q(t, x) satisfy property (Q) due to the
presence of the singular components. (See also the remarks after Theorem 4.1.)

THEOREM 7.1. Let a, n, 0 < o < n, be given integers and for x = (x*, ---, x"),
let y=(x -, x%, z=(x*"",---,x") so that x = (y,z). Let A, be a closed
bounded subset of E' x C([—r,0], E*) and let S be a closed bounded sphere in
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C([—r,0], E"™®) so that A = Ay x S is closed and bounded in C([—r,0], E").
Let (t,y) € Ay, let U(t, ) be a closed subset of E™, let My = {(t, ¥, u)|(t, ) € Ay,
ueU(t, ), and let M =My xS=/{toultdeA uelUl), d®O)
= (Y(0), x(0)}. Let F =(F,, ---, F,) and H be functions defined and continuous
on Mo withF,,,---, F, and H nonnegative.

Assume for every i =1,2,---, a, that the following growth conditions holds:

(y)) given &€ > 0 there is a locally integrable function &,(t) = O such that
IFi(t’ '//’ u)l é fiz(t) + EH(I’ l//’ u) fOV all (t’ l//’ u) € MO'

For every (t,W) € Ay, let Qu(t, ) = E"*! be defined by

QH(t, d)) = {2: (ZO’Zl’ ) Zn)|ZO = H(i’l//’u)’zi = Fi(t’ lﬁ,u),
i= 1,"',0C,Zi->_—Fi(t’l//au)’
i=a+1,--,n,uelt,y)}

and assume that Qu(t,¥) is convex for each (t, W)€ A, and satisfies property (Q)
in A, . Since the functions F and H do not depend on the components ¢**', .- ¢",
we will continue to write simply F(t, , u) instead of F(t, ¢, u) (and similarly for the
function H), where ¢ = (¥, x).

Moreover, assume that (i) the set B is a closed subset of E' x C([—r,0])
x E' x C([—r, 0]) which is independent of the functions xi ,i =o + 1,---, n,and
whose projection into its second coordinate space is compact ; and (ii) the map g is
bounded and has the form g8 =0, i=o+ 1,---,n. Let h(t,,¢,,t,, d,) be a
bounded real-valued continuous function defined on B, which is monotone nondecreas-
ing with respect to each variable ¢3**', - - -, ¢%. Let Q be the class of all admissible
pairs (in the sense of Definition 3.1) for which H(t, y,, u(t)) is L-integrable in [t,, t,]
and

t
j H(t, y, ut))dt < K,
t

Jor some constant K, = 0, and assume Q # . Then the functional I[x, u] = h[n(x)]
has an absolute minimum in Q.

Proof. By hypothesis, the cost functional 4 is bounded and hence i = infg, I[x, u]
= h(n(x)) is finite. Let {x®,u®}, each defined for t,, <t < t,,, be a minimizing
sequence for I in Q. Then (¢, xP) e 4 for t € [t,,, t,,] and, writing x* = (y®, z¥),
we have (t, y¥) e 4y, z¥ e S for te[t,,, t,,]. Also, u®(t) e U(z, y*') almost every-
where in [t,,, 5],

12
f H(t, X%, u®(0) di < K,

k=1,2,---, and h(n(x*)) - i as k — co. Since 4 is bounded, the projection
of A onto the t-axis is contained in some interval of the form [t¥, ¢¥] and, since
S is bounded, we have ||x*|| < g, k=1,---,nji=oa+1,--,n
Let x° denote a new variable satisfying
dx°/dt = H(t, y,,u), x2 =0.

1
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Let
t
xM0(t) = f H(S, x¥, uP(s)ds, t, St=<t,, k=1,2,--,
tig

and note that d/dt(x®°(t)) = 0, ||x*°| < K,. Let S° be the sphere of radius K,
in C(—r,0],E") and let A’ = S° x A.

Since the functions x® i=1,2,---,a k=12, -+, satisfy the growth
condition (y,), we have as in Theorem 6.1 that the functions g, = x*(r) — g(z, xV)
are equiabsolutely continuous and since, by hypothesis, 4 and g[4] are bounded,
we may extract a convergent subsequence which we again call {h,}. As before,
we may extract a further subsequence with the property that the corresponding
functions x¥¥ converge in the p-metric to a continuous function x’. Writing
y = (x!, x% ---, x%), we have y¥ — y in the p-metric and so, in view of the
compactness assumption on the set of initial conditions, in particular,

(k) k
yt,k_’yzl and y;zl_’y,z as k - oo.

We now consider the sequences {x*} i =0andi=a + I, -, n, of scalar
functions defined, for ¢, <t <1, , by

t
x®0() = f H(s, y®, u(s)) ds,
t‘k

t
xWi(t) = f F(s, y, u®(s)) ds, i=o+1,--,n,
t

Tk

where H = 0 and F; = 0. It follows that the functions x*, i = 0 and i = « + 1,
-+, n, are monotone nondecreasing and we may use Helly’s theorem to extract
a further subsequence, say again {x"} such that xV(r) > x'(t) as k —» oo for
all ¢ and such that the limits x!, = lim x* and x!, = lim x*(z,,) exist as k - oo,

t

i=0,andi=a + 1, ---, n. Note, in par{'i‘cular, that x?I =

Since A, is closed, we have that (¢, y¥) € 4, implies that (¢, y,) € A, for all t,
t, <t=<t,, and thus (t,),,z)€ A4 = A, x S. Furthermore, (t,x?,y,,z,)€e A4’
=8 x Aforallt,t, <t <t,.

Making the usual decomposition, we write, fori =0 andi=a + 1, ---, n,
x'(t) = X(t) + Si(t), te[t, — r,t,], where Xi(t) is absolutely continuous on
(t,, t,] and $"() = 0 almost everywhere on [t,, t,], and with X{ = xi , Si =0,
X', §' nondecreasing with S(t) 2 0 and X} (0) < ¢ (0), 0e[—r,0], i =0 and
i=a+1,---,n

Let & = (0% ul, -, u™, ¥ ..., 0" = (v°,u,v) be an auxiliary control vector,
deE" et and let U(t,y) = {d:u= @', ---, u™e Ut y),v° = H(t, ¥, u),
v' 2 F(t,Y,u)i=a+1,---,n}. Let ﬁ(t, Y,u) and F(t,,u) be the vector
functions

~ ~ ~ ~
F(t"//’u)=(FOaF17"',FaaFa+1""’Fn)’
F(t"//’u):(Fl"”’Fa’Fa+1a""Fn)



EXISTENCE THEOREMS 17

with Fy = v° F; = v',i = « + 1, - - -, n. Finally, consider the auxiliary differential
system
dx°/dt = 1°,
dfde[x'(e) — g'(t, x)] = F{t, y,, ), i=1,-, 0
dxi/dt = o', i=a4+1, -, n,

with constraints
vo(t) 2 H(t, y,, u(t),

ut) e U(t, y,).

vi(t) = Fft, y,, u(t)), i=a+1, -, n.
Note that F(t, ¢, U(t, ¥)) = Qu(t, ¥), (¢, , T) = Q(, ), and Qy, satisfies property
(Q) in A,. Since H, F,,,, -, F, are continuous, the set M, = {(t, ¥, v°, u, v):

(t,Y)e Ay, ueUt, ), * 2 H, vV 2 F, i=o+1,---,n} is closed. Thus, by
Theorem 4.1, there is a measurable function u(t) = (v°, u,v), t, <t < t,, with
u(t) e U(t, y,), such that

dX°/dt = v° = H(t, y,, u(t)) = 0,
d/dt[x'(t) — g'(¢t, y)] = F{t, y,, u(t), i=1, -, a,
dX'/dt = v' z F(t, yu(t)) 2 0, i=a+1,-,n,

almost everywhere in [¢,, t,]. Taking

t
2°(t) = f H(s, y, u(s)) ds, 2 =0,
ty

t
Zi(t) = xi(t,) + J F(s, y,, u(s)) ds, zi = xi,
t

i=a+1,---,n,

it may be easily checked that the pair {X,u] where X(t) = (z°(), y(t), Z(1)),
t, £t =t,, is an admissible pair for the auxiliary problem. Hence {X,u} e Q,
and h(n(X)] = i. On the other hand, h is monotone nondecreasingin ¢3™*, - - - , ¢4
and hence

ht’l(X)] = h(tl’ xtl‘9 R} x;l‘s t29 lezs R xzzs X?;—ls Tt X:lz)

g h(tl ’ xt| ’ t25 xtz) = kllm h[r](x"")] = l

Thus h[n(X)] = i and this completes the proof.

Remark (added in proof). Recent improvements on the results of the final
section could not be incorporated here for technical reasons. The results will be
presented elsewhere.
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simplify the presentation.
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CONTROLLABILITY OF THE NONLINEAR WAVE EQUATION IN
SEVERAL SPACE VARIABLES*

WILLIAM C. CHEWNINGTY

Abstract. On a rectangular parallelopiped in RY, N = 2, we consider the equation u, = Au
+ f(u,u,), where f is a nonlinear perturbation meeting certain conditions. We prove that the above
system is locally controllable at u = 0, 4, = 0; i.e., the set of states in a certain function space which can
be reached from (0, 0) in a finite time T < oo using boundary controls is an open neighborhood of (0, 0)
in that function space. These results generalize to the nonlinear case conclusions obtained by Russell
for the linear wave equation, in which global controllability was established.

1. Introduction. Cirina has studied controllability for a nonlinear wave
equation in one space variable in [1]. Recently, Russell has announced in [7]
results which include the following.

PROPOSITION. Let Q be a bounded domain in R¥, N = 2, with boundary T, a
piecewise (N — 1)-manifold of class C*. Consider the problem

(1) Uy = Du, u(0) = u(0) =0, ur=g.

Then there is a time T < oo, such that for any (u,, vo) in HX(Q) x HY(Q), a control
ge HYX I x [0, T]) exists for which (1) has a unique solution with w(T) = u,,
u(T) = vy. Moreover,

|&lms2r <o,y = K(Uoluz) + [Volui)-

Thus Russell has established the global controllability of the wave equation
in space, by controls which depend continuously on the states one intends to reach.

In Theorem 1 of {6, pp. 366-367], the authors use the inverse function theorem
in R" to prove that a nonlinear control system (governed by ordinary differential
equations) is locally controllable if its linear approximation is controllable. In a
similar way we shall prove that a class of nonlinear wave equations is locally
controllable using the inverse function theoremin the Banach space H*(Q) x H'(}),
together with Russell’s result on controllability for the linear wave equation. In
order to keep the ideas clear and the results easily stated, we do not consider the
most general possible choices for the domain Q, the elliptic operator (A), the method
of exercising boundary control, or the function space in which the problem is
solved. Finally, one could consider more general nonlinear perturbations as well.

Details of the problem. Let X be a rectangular parallelopiped in RY with
boundary Y. For any space V = RX, we denote by H'(V) the Sobolev space of order
ron V. The space HX(X) x H'(X)we denote as H, and elements in H will be written
as (u,v), (;), or w depending on the situation.

Writing the nonlinear wave equation as a system, we have

©) 6= Av + F(v), v0)=0, v, =h,

* Received by the editors April 19, 1974, and in revised form November 24, 1974. We regret to
report the death of Professor Chewning on March 23, 1975.

T Department of Mathematics and Computer Science, University of South Carolina, Columbia,
South Carolina 29208.
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where v = () € H, A is the linear operator

A=(0 1) D, = H3X) x H*X)
“\Aa o 4T ’

he H¥*(Y x [0, T]) x H'*(Y x [0, T}),
and
F:H - H'(X) by F(%) = Cpuu)-

The assumptions on f are:
(a) f is continuous and is continuously Fréchet differentiable in a neighbor-
hood of (0, 0).
(b) f(0,0) = 0.

© |f (u,0) — f@, D),
= (u =2l + v =0 Cluly + [olys 1A, + 191,),

where C:R* x R™ — R™ is continuous and |w|, = [Wlg -
(d) The Fréchet derivative of f is locally Lipschitz in a neighborhood of 0 € H.
Comment. It is not necessary that f be given by a function, i.e.,

S, u)(x) = glu(x, 1), u(x, 1))

for some g:R* — R'. If this is the case, however, then f will satisfy the above
assumptions if g has Lipschitz continuous mixed partial derivatives up through
order three.

2. Existence and uniqueness of a solution to (2). Our planis to obtaina boundary
control h, for any given u € H, such that the problem

(3) w=Aw, w0)=0, w,=h,

has a unique solution w e C([0, T], H) with w(T) = u. If w is small, we can then
solve

) = Az +Fz+w), 20)=0, zly=0.

Then defining v = w + z, we obtain a unique solution to (2) with o(T) = u.

3. The linear problem (3). Our first task is to sharpen statements made in
Theorem 2.1 of [7] about solutions to (3).

LEMMA 1. For 6 > 0 and r a positive integer, there is a bounded linear operator
E,:H'(X) - H'(R")such that E,(f) is an extension of f to R and supp (E,(f)) = X,
the d-neighborhood of X.

Proof. No confusion will result from speaking of equivalence classes in
H’(X) as though they were functions. Since X is a box, we can construct X, a box
composed of 3" copies of X having the original X as the center box. Let the boxes
in X be numbered so that X = U3¥, X,. Let the faces of X be numbered in any
order, and then number the faces of each X ; in exactly the same way. X is construc-
ted, starting with the center box, such that if X; and X; have a common face, in
each box the face has the same number. If we start in one dimension, we can clearly
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reflect a closed interval through its left- and right-hand endpoints in turn, to
form three intervals that are matched as described above. One can then fit a
rectangle as the middle block in a 3 x 3 group of nine identical rectangles with
appropriate sides in contact. Inductively, one extends thistoa 3 x 3 x 3 packing
of rectangular solids with appropriate faces in contact, etc. If f: X — R, we define
fi:X;— R as follows. Let {;: X; > X be the linear homeomorphism which maps
X, = X onto X with corresponding faces identified. Then fi(x) = fo ¢(x). Thus
if fe H'(X), then f = U3, f,is in H'(X). Now let p:RY — R be a C* function
such that p|, = 1 and supp (p) = X; < X.

We now define E,: H'(X) — H'(R") by

p(x)- f(x), xef(}
0. x¢ X}

It is clear that E, is a bounded linear operator.
LEMMA 2. Let B be a rectangular parallelopiped in R, and for (f, g) € H*(B)
x H'(B),(f, g)lss = (0,0) consider the problem

E(f) = {

(5) 0= Ail, =0, u0)= (f)
g

For any fixed T < oo, the solution u(f, g) is in C([0, T], H*(B) x H'(B)) and the
correspondence (f,g) — u(f, g) is a bounded linear operator from H*(B) x H'(B)
to C([0, T}, H(B) x H'(B)).

0 I
Proof. We recall that A = (A 0) . By direct separation of variables tech-

niques, one can find a complete orthonormal basis for L?(B) consisting of eigen-
vectors of A. We term these as {¢,} with corresponding eigenvalues { — 47} . Using
direct elementary calculations and Green’s identity, one can verify that {@,} is
also a complete orthogonal basis for H!(B) and H*(B). By normalization, we
obtain {p,} and {i,}, complete orthonormal bases for H'(B) and H?(B), respec-
tively. Moreover, Ap; = —A2p;and Ay, = —AX;;i= 1,2, .

Using these eigenfunctions we construct the strongly continuous semigroup
{R(t)}, 50 of operators on H*(B) x H'(B) whose infinitesimal generator is 4. If
such a semigroup exists, then standard results in operator semigroups imply that

the mapping M (f) = R(t) (f

g g
to C([0, T]; HX(B) x H'(B)).(See[5]).Let (-, - >,,{-, - >, denote inner products
in H%(B), H'(B) respectively. Then the definition of R(t), for t = 0, is

) is a bounded linear mapping from H*(B) x H'(B)

f) S (S ¥22 08 dnt + (/1) <. py>1 sin Al

Y =4S s sin At + <g, p,>, cos A,t]p,
n=1

It is not hard to verify that R(0) = I, {R(¢)] is strongly continuous, R(t + s)
= R(t)R(s) and (d/dt)R(t)x = AR(t)x.
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THEOREM 1. For ue H, there is a T < oo and an h,e H¥*(Y x [0, T))
x HY2(Y x [0, T)) such that (3) has a unique solution w,e C([0, T], H) with
w(T) = u.

Proof. We supply a proof for N = 3, N odd. The case N = 2, N even can be
argued in a similar way after the proof of Theorem 2.1 of [7] is understood. We do
not repeat the (fairly lengthy) details here.

Givenu = (f) e H*(X) x H'(X),extend thistou; = (fé) € H¥R"™) x H'(RY)
4 8s
by the operator E, x E as defined in Lemma 1. Then solve the Cauchy problem:

(6) 6= Av, v(0)=u, veH*RM x H'RY).

There is a time T < oo such that v(T)|y = 0. We take h, = v(t)|y for 0 <t S T.
Standard theorems imply that h, e H¥*(Y x [0, T]) x HY*(Y x [0, T)), and that,
by uniqueness, the problem

w=Aw, w0) =0, wly="h(T—-1)

has a unique solution w,e H with w,(T) = u. Actually, w(t) = (T — t)|x. This
is a sketch of Russell’s proof; details appear in [7].

We observe that since T < oo and supp f;, supp g; < X, there is a large
rectangular parallelopiped B o X such that the solution to (6) is identically zero
on 0B and outside of B for 0 < ¢t £ T. (The details are supplied by considering
cones of influence for the wave equation in R".) Thus (6), for 0 < t < T, is equi-
valent to

s

7 2= Az, z(0)= ( ), Z|,5 = 0.

gs

From Lemma 2, (7) has the solution z(t) = R(t)us;, and clearly z(t)x = v(t)|x for
0<t=T

The following notation will be needed in the proof of Lemma4.IfRY > V > W
and (f, g)e HAV) x H(V), define

WV, W):H¥V) x H'(V) - H¥W) x H'(W) by (¥, W)(g) = (flw> glw)-

We define the extension operator
E:H - H*B) x H'(B) by E(f,g) = (R",B)o E, x E(f, ).
Notice that v(t)|y = (B, X)° R(t)  E(f, g) on [0, T]. It follows that on [0, T],

®) w,(t) = ©(B, X) o R(T — t)o E(u).

We have proved that w, e C([0, T], H) because 1(B, X) and E are bounded
linear operators and R(T — t) is a uniformly (in t) bounded linear operator. We
also have the useful formula (8).
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4. The nonlinear problem (4). From Lemma 2, we know that the operator 4
with trivial boundary conditions on X, is the infinitesimal generator of a strongly
continuous semigroup {S(t)},, and standard results imply that ||S(z)| £ Me™.
In the proof of Theorem 2, we need these notations:

(a) The norm of ve C([0, T], H) is ||v|.

(b) The function C (defined in connection with the Lipschitz condition on the
nonlinear function f) has property r if there isanr > Oand a p < 1 such
that C(x, y) < p/TMeT for all (x, y))eR* x R*:x <r,y <.

THEOREM 2. Suppose for some p < 1 and some r > 0, that the function C has
property r. Then if |w|| < (1 — p)r, (4) has a unique continuously differentiable
solution z € C([0, T], H). Moreover, ||z|| = Q|w].

Proof. We represent a solution to (4) as

) z(t) = jt S(t — v)F[z(v) + w(v)] dv.
0

Solving for z by Picard iteration, one has

zo(t) = f t St — v)F[w(v)] dv
0

and

Z,44(0) = ft S(t — v)F(w(v) + z,(v)] dv.
0

Justifying the assumption later, we assume that |w| < r and |w + z,)| < r for
n=0,1,2 . Then |z < [wlp and |lz,+, — z, = pliz, — z,-,|. It follows
that
“ ¢ Iwlp
lzal < lzoll + 2 2 = 2zl S plwll Y p* < 1=
k=1 L=0 - p

Therefore
[z, + wil < llz,ll + [Iwl] = [Iwl(1 + p/1 — p)) = |w[(AAL — p)).

For the above estimates to be valid, then, we must require |w| < (1 — p)r.

If |w| < (1 — p)r,theiteration procedure clearly produces a Cauchy sequence
in C([0, T, H) and thus (4) has a solution z(t) = lim,_, ., z,(t). The differentiability
of z follows from p. 6 of [5]. Easy calculations show that the right-hand derivatives
of z satisfy (4) and, as z is differentiable, it must satisfy (4). The uniqueness of z is
a standard consequence of the local Lipschitz condition on f.

5. Local controllability of the nonlinear equation. With p fixed <1, we assume
that the function C has property r.
LemMA 3. If ye H is small, then the problem

(10) i = Au+ Fu), u0)=0, uy=nh,

has a unique continuous solution u( -, y)e C([0, T], H). (h, is the boundary control
computed in Theorem 1 which steers (3) from O to y in time T.)
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Proof. Given ye H, we first obtain w,, the solution to (3) with final state y.
Asisargued in Theorem 1, the correspondence y — w, is a bounded linear operator
from H to C([0, T], H). Therefore, if y is sufficiently small, w, will be small enough
for Theorem 2 to apply and we extract a solution z, to (4) with w = w,. The
function u, = w, + z, is clearly a solution to (10); its uniqueness follows from the
local Lipschitz assumption on F. The proof is completed.

We therefore have the nonlinear map G defined on a ball B about 0e H:

G(y) = u(T,y) = wy(T) + z(T).

LEMMA 4. G is continuously Fréchet differentiable on a neighborhood of 0 € H.
Proof. G(y) = y + [§ S(T — v)F[z,(v) + w,(v)] dv.

Proceeding formally, we compute

T

(11 Gy)=1+ J

0

From (8) of Theorem 1, we have
w,(v) = (B, X) o R(T — v) E(y),
o)

ow(v)

=1(B,X)o R(T —v)- E
ay

since the operator is linear. From (9), we have

az (t) f S(t — V)F[z,(0) + w,0)] [‘%”) + a’gy)f”)] dv

z,(v)
ay

(12)

J‘S(t—vF/[z(v)+w(v)]|i )e R(t-—v)oE] dv.

We note that (12) is a linear integral equation for dz/dy with bounded kernel for
y small, since z,, w, are known and | z,||, [|lw,|| < K]y|. Therefore (12) can be solved
by an iterative procedure to yield a unique, bounded, continuous solution. Be-
cause F" is locally Lipschitz, the solution dz,/dy will vary contmuously with y.

Returning to (11), we see that if y is small enough for w,, z,, and 0dz,/dy to
exist on [0, T], then the integrand in (11) is bounded on [0, T] and contmuous iny.
It follows that G'(y) is continuous in a neighborhood of 0 € H.

LemMaA 5. Suppose that

f S(T — )F[O][ 20 )+ (B, X)o R(T-—v)oE] dv
has norm in L(H, H) less than one for y = 0. Then G'(0) is a linear homeomorphism
in L(H, H).

Proof. Consider the expression (11) for G’(y) when y = 0. Because w, = 0
and z, = 0 when y = 0, it follows that

G'(0) —1~f S(T — )F’[O]l:azo)(})+ (B, X)o R(T — v) o E]du.
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If the integral has norm less than one in L(H, H), then G’(0) clearly has a bounded
inverse.

THEOREM 3. Under the assumption of Lemma 5, there is a ball B about 0e H
such that if x € B, there is a unique control g, for which

(13) v=Av+ F(@v), v(0) =0, vy=g,

has a unique solution v e C([0, T], H) with v(T) = x. Moreover g, € H>*(Y x [0, T])
x HY2(Y x [0, T]) and g, depends continuously on x.

Proof. The mapping G:B — H is continuously differentiable on some ball B
about 0 e H, and G(0) = 0. We also have demonstrated that G'(0) is a linear
homeomorphism. By the inverse function theorem [2, p. 268] there is a ball B
containing 0 on which G is a homeomorphism. Let B = G(B).

If xeB, let y = G™'(x). The element y is small enough for u(t, y) to exist.
But «(T, y) = G(y) = x; one can steer 0 to x in time T under the nonlinear system
(13). To identify g, with y = G™'(x), take h, as it is defined in Theorem 1, i.e.,
h, = ©(B, X)o R(T — t)o E(y)ly. Let g, = h,; g, steers 0 to w(T) + z(T) = x, g,
depends continuously on x and belongs to the function space named.

We note that for small x, G~ !(x) can be approximated by (G'(0))” 'x in the
calculation of g, for practical problems.

6. Summary. We have shown that if x is small in H, there is a boundary
control g, such that (13) has a continuous solution with v(T) = x. (If there were
two solutions to (13), then the problem v = Av + F(v), v(0) = 0, v, = 0 would
have a nonzero solution. This is not possible in view of the fact that F is locally
Lipschitz.) Therefore we have a meaningful solution to the problem of local
controllability, using boundary controls, of a certain class of nonlinear wave
equations defined on a box in R".
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GENERALIZED HILBERT NETWORKS*

VACLAV DOLEZALY

Abstract. In the paper a general model of a nonlinear network is constructed. The model
considered is a generalization of the Hilbert network introduced in [1]. It is assumed that the
generalized Hilbert network consists of at most countably many lumped elements described by
nonlinear multivalued operators from a subset of a Hilbert space # into . Several theorems are
proved on the existence and uniqueness of the solution of the network. Also, conditions are established
under which the admittance operator of a generalized Hilbert network is causal.

Introduction. The model of a Hilbert network which we construct in this
paper has two ingredients: 1. an oriented locally finite graph G having at most
countably many branches, which describes the interconnections of lumped ele-
ments of the network; 2. a multivalued operator Z defined on a subset of the
underlying Hilbert space #, which describes the behavior of network elements.
We assume that the regime in the network is governed by Kirchhoff’s laws.

As shown in [1], the oriented graph G of a network can be completely
described by a linear bounded operator @ on %. Also, it was assumed there that Z
is a single-valued operator defined on the entire space #, and possibly satisfying
the Lipschitz condition. However, these assumptions severely restrict the applica-
bility of the model. For example, if a network is considered in the time-domain
[0, 7], the model in [1] excludes the presence of differentiators. Similarly, if we
consider the time-domain [0, 00), presence of integrators leads to difficulties.

On the other hand, in the present paper no such assumptions are made; in
addition to that we allow that, in general, values of Z are subsets of %, i.e., Z may
be multivalued.

Due to this fact, our model encompasses networks containing differentiators
as well as integrators, independently of whether the time-domain is a finite
interval or not. Of course, since the analysis takes place in a Hilbert space, all
energies associated with the network are finite, which, we believe, is a quite
natural assumption.

Naturally, for this degree of generality we have to pay a price: our theorems
giving necessary and sufficient conditions for existence of a solution are concep-
tual rather than practical in nature. On the other hand, it turns out that a quite
elementary yet powerful concept of a monotonicity of Z guarantees the unique-
ness of the network solution.

Basically, the ideas developed in this paper are similar to those given in the
pioneering paper [3]by Minty; the approach to the problem, however, is different.

In the first part of the paper we consider the abstract network defined as a pair
N =(Z, a), where Z, a are certain operators, and derive necessary and sufficient
conditions for the existence and uniqueness of a solution. In the second part, the
results on abstract networks are applled to a Hilbert network &' =(Z, G) and
theorems on uniqueness of the regime in A" are obtained. Moreover, using the

* Received by the editors February 12, 1974.
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concept of causality introduced by Saeks [2], we prove two theorems giving
conditions under which the admittance operator of & (expressing currents in
terms of voltages) is causal.

As an example, we discuss a specific R, L, C-network in the time-domain,
provided that the inductors and capacitors are linear and time-varying, and the
resistors are nonlinear and multivalued.

Finally, using a theorem by Rockafellar [5], we give sufficient conditions for a
network to have a solution for any vector of voltages.

1. Abstract networks. Let X, Y be nonempty sets, and let S(Y) be the
collection of all nonempty subsets of Y; a mapping A : X > &S(Y') will be called a
set mapping.

If 9c X, @ # O, we denote

(L1 (49)°= U Ax.
xeD
If, in particular, A is a set mapping such that Ax is a singleton for each x € X,
then A will be called an operator. Since in this case A is in fact a mapping from X
into Y, we have (A9)’= A%.
Let A beaset mapping, andlet 9 < X, & # J; A will be called simple on & if

(1.2) X1, X2€ D, x1# x> (Ax)) N (Ax,) =

Clearly, if A is simple, then A is 1-1.

Let A be simple on 9; then we define the operator A~ : (A9)° > @, called the
quasi-inverse of A, by the relations: if y € (A9)’, then A"y =x, where x€ 9 is
such that y € Ax.

Since {Ax : x € @} is a partitioning of (A%)° due to (1.2), our definition of A~
is meaningful and A~ maps (A%)° onto 9.

It is easy to see that A is simple if and only if for each y € (A%)" there is a
unique x € & such that y € Ax. In this case, x = A7y.

Also, it is clear that if A is an operator and is simple on 9, then A~ coincides
with the ordinary inverse A™': A9 - 9.

If A: X< &(Y) is a set mapping and B : Y- Z is an operator, we define
the set mapping BA : X »S(Z) by (BA)x = B(Ax) < Z for each x € X. Then,
for any @ X, @# I, (BA)D)°=B(AD)°, since U,cu(BA)x = U ,cuB(Ax)
= B( Uy eaAX).

If C: U- Xisanoperator, the set mapping ACis defined in a similar way.

Let % and 9 be fixed Hilbert spaces. Let @< H, D # <, and let Z :
9 ->S(¥) be a set mapping; furthermore, let a €[, #'] (a linear bounded
operator), a #(. Then the ordered pair & =(Z, a) will be called an abstract
network over #.

DEFINITION. Let N =(Z, a), and let e € #; an element i € & will be called a
solution of N corresponding to e if

(i) there exists v € Zi such that

(1.3) (c,v—e)=0

for all ¢ € ¢ with ac =0,
(i1) ai =0.
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Denote N, ={x : x € ¥, ax = 0}. Then the solution i can clearly be defined in
the following equivalent way:

K*¥: there exists a v € Zi such that v —e € N:,
K¥ ieN,N9.

In the sequel we will assume that N, N9 # . Futhermore, let P be the
orthogonal projection from  onto N,. Then we have the following.

THEOREM 1.1. Let N'=(Z, a) be an abstract network over ¥, and let e € ¥.
Then N possesses a solution i corresponding to e if and only if

(1.4) e N;+(Z(N,N D))

Proof. (a) Let (1.4) hold. Then there exists x € N; and y € (Z(N, N %))° such
thate = x +y. Consequently, by (1.1), there exists i € N, N 9 such that y € Zi; thus
y—e=—xeNg,i.e., iisasolution of & corresponding to e.

(b) Conversely, let i be a solution of & corresponding to e. Then there exists
veZisuchthatv—eeN;,ie.,e—veN,. Thusecv+ N, N:+(Z(N. N D))°.
Hence the proof.

Note that if M < 3 is nonempty, then N;+M = P~'{PM}. Hence we have
the relation

(1.5) Nz +(Z(N.N92))°=P {P(Z(N, N 9D))%.

Let us now consider the uniqueness problem, i.e., to find subdomains of &, on
which the solution of a network is determined uniquely.
If <% and N,N 9 # <, we denote

(1.6) Q(@)= P {P(Z(N.N D))’}

THEOREM 1.2. Let N'=(Z, a) and let DD, NNND # . Then for each
e € Q(D) there exists a unique solution i in 9 of N corresponding to e if and only if

the set mapping PZ is simple on N, N 9. In this case, i = Ae, where the operator
A Q(9)~> N,ND is defined by

(1.7) A=(PZ)P.

Proof.(a) Assume that PZ issimple on N, N P andlete e Q(D). By (1.5)and
Theorem 1.1, there exists at least one solution of & corresponding to e. Suppose
that iy, i€ N,N 9 are solutions corresponding to e. Then, by K¥, there exist
vi€ Zi, and v,€ Zi, such that v,—e, v,—e e Ny, so that v, —v,€ N;. Conse-
quently, P(v,—v,)=0, ie., Pv,=Pv,. This, however, means that
(PZi,) N (PZi,) # J; hence by definition of a simple mapping, i, = i, i.e., the
solution of A is determined uniquely.

(b) Assume now that for each e € Q(9) the network N possesses a unique
solution. Suppose that for some i;, i€ N, N 9 we have (PZi,) N (PZi,) # &. This
means that there exist v, € Zi; and v, € Zi, such that Pv, = Pv, = y. It is clear that
Py =y, and also y € P(Z(N, N %))’ < P"{P(Z(N. N %))° = Q(D). Thus, we have
P(v,—y)=0and P(v,~y)=0,i.e., vi—y, v,—y € Ni. Hence, by K¥, K¥, both i,
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and i, are solutions of N corresponding to_yeQ(QZ); consequently, by our
hypothesis, i; = i, i.e., PZ is simple on N, N . B

To conclude the proof, assume that PZ is simple on N, %. Observe that
((PZ)(N.N @)) =P(Z(N,N%))’. Construct the quasi-inverse (PZ) : P(Z(N,
NP)°->N,ND as it is defined above. Choosing ee€ O(@) we have Pe
€ P(Z(N.N %))°; consequently, i=Ae=(PZ) Pe is well-defined and is in
N, N %. Thus, i satisfies K5. By definition of (PZ)~ we have Pe € PZi; thus, there
exists v € Zi such that Pe = Py, i.e., v—e € N,. Hence, i is the solution of &
corresponding to e which concludes the proof.

Let 9 < @; motivated by Theorem 1.1 and 1.2, we will say that A is regular
on @ if for each e Q(P) the network N possesses in 9 a unique solution i
corresponding to e. Then we have the following.

THEOREM 1.3. Lete € Q(2D) and leti € P be a solution of N corresponding to e.
Then there exists a 9, = 9 such that

(i) ieD,

(ii) N is regular on 9, B
(i) %, is maximal, i.e., N is not regular on any other % which properly contains
P..

Proof. Let &, ={9" : 9 = 9, i € 9°, PZ is simple on N, N %°}. The collec-
tion ¥; is nonempty, since 9°={i}€ &. Moreover, ¥, is partially ordered by set
inclusion; also, if 7 ={%* : a e I} = %, is a chain, then clearly U,.,; 9% € &, and is
an upper bound for 7. Hence, by Zorn’s lemma, there exists a maximal element 9,
in &. Then Theorem 1.2 concludes the proof.

Note that, even in the case that i€ & is unique for some e € Q(9), the
maximal subdomain %, need not be determined uniquely. This is demonstrated by
the example N, N % = R"' and (PZ)x =

Let us now establish some suﬂicnent condltlons for regularity. Without loss of
generality we may assume that 9 = 9.

THEOREM 1.4. Let N' = (Z, a) be an abstract network over .

(i) If for all x\, x,€ N, D, x,# x, and all y, € Zx,, y, € Zx, we have

(1.8) ()’1")’2, xl‘x2>¢0,
then N is regular on 9. If, in addition, Z is an operator, then
(1.9) (AeI—Aez, eI_ez>'7éO

for all e\, e, Q(D) such that Pe, # Pe,, where A is the admittance operator of N'
defined in Theorem 1.2 by (1.7).

(ii) If there exist constants c >0 and p > 1 such that for any x,, x,€ N, @ and
any y, € Zxi, y, € Zx, we have

(1.10) [(y1= Y2, X1 = x2) | Z c[x1 — x|,
then N is regular on %; moreover,

(1.11) Ae,— Aes]|= ¢/ V||P(e, — &)V
and

(Ae,— Aes, e1—ex)| = ¢/ ||P(e, — e,/
for all e;, e,€ Q(D).
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(iii) If there exist constants ¢ >0 and p >1 such that for any x, x,e N, D
and any y, € Zx,, y, € Zx, we have

(1.12) Re (yi =y, x1—x2) Z clxi — x|l
then N is regular on 9, (1.11) hold and
(113) Re(Ae1_Aez, 61—62)20

for all e, e,€ Q(D).
Proof. (i) Since Px; = x; for x,e N.N %, j=1, 2, (1.8) yields

(1.14) (Pyi— Py, x1—x2) #0

whenever x;# x, and y;€ Zx;. Let x;, x,e N,N 9D, x; #x,, and suppose that

(PZx:) N (PZx,) # &. Then there exist elements y, € Zx, and y, € Zx, such that

Py, = Py,. This, however, contradicts (1.14); hence, (PZx,) N (PZx.)= J,i.e., PZ

is simple on N, N %, and consequently, A is regular on & by Theorem 1.2.
Next, if Z is an operator, then (1.8) means that

(1.15) (Zxy—Zx3, x1—X2) #0

whenever x;, x,€ N, N 9D, x, # x,. Thus, we have as before for such x., x,
(1.16) (PZx,— PZx,, x1—x,) #0.

Also, PZ:N.NP - (PZ)(N,NP) is a 1-1 onto operator. Choose yi, y,
€ (PZ)(N.ND), y,#y, and put x, =(PZ) 'y, x,=(PZ)'y,. Since x, # x,, we
have by (1.16),

(1.17) (y1=y2, (PZ) 'yi = (PZ)'y:) #0.

Next, let e;€ Q(9), j =1, 2, be such that Pe, # Pe,; since Pe; € (PZ)(N,N %),
we can set y; = Pe; into (1.17) and get

O #(Pel _Pez, (PZ)—IPyl —(PZ)—le2>
= <Pel _Pez, Ae1 —Aez).

Noting the fact that PAe = Ae for any e € Q(9), we conclude from (1.18) that
(1.9) holds.

(i) Since (1.10) implies (1.8), & is regular on @ by (i). If x;€ N,N P and
yi€Zx;, j=1,2, then Px;=x; and we obtain from (1.10) by the Schwarz
inequality,

(1.18)

cllxy = xo|lP = [{y1 = y2, P(x1—x2))| = [{Py1 — Pys, X1 — X2)|
=[Py, = Py, -[lx: = x|l
Hence
(1.19) lx, = xa| = ¢~/ | Py, — Py, '@

forx;e N.ND, y,e Zx;, j=1, 2.
Now, choose ¢,€ Q(2), j=1,2, and put ;= Ae¢;=(PZ) Pe;e N,N%. By
definition of (PZ)", Pe; € (PZ)i;; hence, there exists y; € Zi; such that Py; = Pe; for



GENERALIZED HILBERT NETWORKS 31
j=1,2. Putting x; = j; into (1.19), we obtain
|Ae,— Aer|=c ™% "||Pe, — Peo|| /",

the second inequality (1.11) follows from the first one by the Schwarz inequality.
(iii) Since (1.2) implies (1.10), & is regular on & and (1.11) hold by
proposition (ii). As before, (1.12) implies that

(1.20) Re (Py:— Py,, x1—x2) =0

for x;e N.N9D, y,eZx;, j=1,2. Choose ¢;€ Q(¥), j=1,2, and put i, = Ag¢;
=(PZ) Pe;e N, Y. Then Pe; e (PZ)i, i.e., there exists y; € Zi; such that Py,
= Pe,. Putting x; = j; into (1.20), we get

0=Re(Pe;,— Pe,, Ae,— Ae,) =Re(e, —e,, Ae; — Aey),

which concludes the proof.
Remark 1. It is easy to see that inequality (1.9) need not hold if Z is not an
operator.

2. Hilbert networks. Let H be a fixed Hilbert space. If G is an oriented graph
having the set of branches B with cardinal ¢, =¥, let d € (H, H*') be defined as
in[1]. Furthermore, it 9 = H?, 9 # &, let Z : 9 > S(H®) be a set mapping. Then
the ordered pair ¥ =(Z, G) is called a Hilbert network.

DEFINITION. Let N'=(Z, G) be a Hilbert network, and let e H*; an
element i € H* is called a solution of N corresponding to e if i is a solution of the
associated abstract network N = (Z, @) over H* corresponding to e, i.e., if

K': there exists a v € Zi such that v —e € N,
K;: i€ N& ﬂ 9.
The network A will be called regular on % if N is regular on 9.

Asin[1], we can easily show that i is a solution of &' corresponding to e € H
if and only if

Ki: there exists a ve Zi such that " - (v—e)=0

for every y € [ satisfying the equation a - y =0,
K;: ie@Panda-i=0.
Since N, =XH® and X is 1-1 (see Lemma 2.2 in [1]), let < H® be a
(uniquely determined) set such that

(2.1) XF=N,N%.

Then we have by (1.5), (1.6),
(2.2) Q(9) = (XH®)* +(ZXF)".
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A theorem corresponding to Theorem 1.1 which deals with the existence of a
solution of a Hilbert network is merely a paraphrase of the latter and is omitted.
We will need the following.
LEMMA 2.1. Let X, Y, Z, U be nonempty, and let A : X>G(Y) be a set
mapping.
(i) If B: Y>Zis 1-1, then
BA is simple & A is simple.
(it) If C: U~ X is 1-1 and onto, then
AC is simple © A is simple.
The proof is an obvious consequence of the definition of a simple operator.
THEOREM 2.1. Let N' = (Z G) be a Hilbert network. Then N is regular on &
if and only if the set mapping X*ZX is simple on %. In this case, the admittance
operator A : Q(D) > XF of N is given by

(2.3) A =X(X*ZX) X*,

where (X*ZX) signifies the quasi-inverse of X*ZX : > (X*ZX)F.

Proof. Denote Y : N; N % - 9, the inverse of X : ¥~ N, N 9; also, note the
fact that P = XX* (see [1]). Then we have by Lemma 2.1, X*ZX is simple on
FoX*Z=(X*ZX)Y is simple on N, D& PZ=XX*Z is simple on N; N .
This and Theorem 1.2 conclude the proof.

To prove formula (2.3), choose e € Q(%) and show first that the element
i=X(X*ZX) X*e = Ae is well-defined. If e € Q(P), then by (2.2) there exist
m e (XH®)s = N+ = Ng- (nullspace of X*, see [1]) and ne(ZX%)° such that
e =m+n. Since X*m =0, we have X*e = X*n, and consequently,

(2.4) X*e e X¥(ZXF) = (WF)",
where W = X*ZX. Hence

(2.5) g=W (X*e)e

so that

(2.6) i=Xq=AecN,ND

by (2.1); thus, i satisfies K,.

Next, from (2.6) it follows that X*Zi = X*ZXq = Wq; also, (2.5) implies that
X*e e Wq, and consequently, X*e € X*Zi. This, however, means that there exists
an element v € Zi such that X*e = X*v. Hence, X*(v—e)=0, i.e., v —e € Nx
= N;. Thus, i satisfies K| too; consequently, i is the solution ofﬁcorresponding to
e and our theorem is proved.

THEOREM 2.2. Let JV=(Z, G) be a Hilbert network and let W=X*ZX:
F-> WF.

(i) If for all y,, y,€ &, y: # y, and all w; € Wy,, w,€ Wy,, we have

(2.7) (W1 = W2, y1=Y2)e 20,
then A is regular on 9. If, in addition, Z is an operator, then
(2.8) <A61—Aez, el*ez)cz¢0

foralle,, e;€ Q(D) such that X* e, # X*e,, where A is the admittance operator of N.
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(ii) If there exist constants ¢ >0 and p > 1 such that for any y., y, € ¥ and any
wi € Wy,, woe Wy, we have

(2.9) [(W1=Wa, y1= y2)eo| Z cllyr = yallo,
then N is regular on 9; moreover,

(2.10) [[Ae,— Aeyl, = ¢V X* (e — en)|[11¢7"
and

[(Ae;— Aey, e1— €)= ¢ VPV X*(ey— e,)|2L" 0

for all e, e;€ Q(D).
(iii) If there exist constants ¢ >0 and p > 1 such that for any y,, y, € ¥ and any
w, € Wy, w,€ Wy, we have

(2.11) Re (w1 = w2, y1= y2)e Zcllyi = yallos
then N is regular on %, (2.10) hold and
(212) Re <A61_Aez, el_ez>¢2;o

for all e, e;€ Q(9D).

Proof. Choose x;, x,e N;N9 and z;€ Zx,, z,€ Zx,. Since X is a 1-1
correspondence between % and N, N %, there exist uniquely determined ele-
ments y;, y, € ¥ such that x, = Xyl, X2 = Xyz. Thus, we have

<21 — 22, X1 —x2>c2 = <21 — 22, X(YI - )’Z»Q

(2.13) . .
=(X*z1=X*22, Y1~ Y2)eo»

and

Xtz e X*2x=X*ZRy =Wy, j=1,2.

Hence, if x; # x,, then y, # y,, and consequently by (2.13), (z, — z2, X1 — X2)., #0.
Thus, by Theorem 1.4, /" and N, too, is regular. As for (2.8), it suffices to note that
Pe, = XX*e, # XX*e, = Pe, & X*e, # X*e,; this completes the proof of (i).

The proof of (ii) and (iii) follows immediately from (ii), (iii) in Theorem 1.4 by
using the equality (2.13) and the fact (see Lemma 2.2 in[1]) that Xisan isometry
between % and N, N D, i.e., [|[x1 — xa||., = |ly: — yall., whenever x; = Xy,, j=1, 2.

Let us now consider causality in Hilbert networks. For every Te€ R, let %1 be
an orthogonal projection of H* into itself, and let the collection{¥r: Te R'}be a
resolution of identity on H* (see [2]), i.e.,

(i) Sr,=Fr, foreach T\=T,,
(i1) for every Toe R' and x € H®, $1x > Fr,x as T-> T,, T> T,

(iii) for every xe H®?, x>0 as T— —00 and ¥rx > x as T~ 0.

DEFINITION. Let @ < H, 9 # J, let A : 9 > S(H®) be a set mapping, and
let M=, M#T; A will be called causal on I if

(2.14) xl,x2€§m, .Sprx1=5frx2$yTAx1=9)-rAx2.

LEMMA 2.2. Let It < 9 be a nonempty set such that I <N forany Te R".
Then A is causal on M FrA = FrAPr on I for every Te R'.
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The proof is the same as in the case of an operator and is omitted.
THEOREM 2.3. Let N =(Z, G) be a Hilbert network and let W=X*ZX :
F > WF. Forall y,, y,€F, y # y, and all w, € Wy, woe Wy,, let

(2.15) <W1—W2, )’1‘Y2>co7£0-

Moreover, assume that i
(i) for each T < R', the projection ¥r commutes with P = XX*,

(ii) for each Te R1 Fr(N; N D)= NN D,

(iii) the set mapping PZ = XX*Z is causal on N, \ 9 = X%. Then the admit-
tance operator A of N is causal on Q(D).

Proof. Theorem 2.2 shows that, due to (2.15), N is regular on 9. Also, from
the proof of the same theorem it follows that (2.15) is equivalent to the following
condition: for any x;e N;N % and z;€ Zx;, j=1, 2,

(2.16) (21— 22, X1 = X2), 20

whenever x, # x,.

First, we are going to show that the quasi-inverse (PZ) :[PZ(N,N%)]°
>N;N% is causal on [PZ(N;N%)]’. By Lemma 2.2 and (i), ¥+(PZ)=
Fr(PZ)%ron N,ND for every TeR'.

Next, choose Te R' and u,, u,€ N;N % such that Lru, # Fru,. Then Fru;
eN:ND, j=1,2, due to (ii), and by (2.16),

(2.17) (21— 22, Sty — Frltz), 70
for any z; € ZA:'fTu,». Since $ru; = P¥r(Fru;), (2.17) yields
(FrPzy— FrPzy, Frtty — Frir)e, # 0.
Hence, for any ;€ N; N D, Fru, # Sru, and any p; € SrPZFru, = $:PZu;,
(2.18) (p1— P2, Prity — Fritz)., #0.

Now, choose v; € [PZ(N; N 92)]° such that Fr(PZ) v, # QT(PZ):UZ and let
= (PZ) v;; note that u; € N, N Y. Then v; € PZu;, so that $yv; € $rPZu;. Conse-
quently, we can put p; = $rv; into (2.18) and get

(2.19) (Frv1— Frvy, Pr(PZ) vy~ Fr(PZ) 02)., # 0.

However, (2.19) shows that %, —%rv, cannot be zero; hence we have the
implication v;€[PZ(N;ND), j=1,2, PHPZ) v, # Fr(PZ) 0,=> Frv) # Fr0s,
i.e., the operator (PZ)" is causal on [PZ(N, N %)]".

To conclude the proof, let e,, e;€ Q(PD) be such that Fre, = re,. Then
P%re, = P%¥re,, so that by (i), $rPe, = $rPe,; thus, by causality of (PZ)", $rAe;
=% (PZ) Pe, = yT(PZ)‘PeZ FrAe,, 1.e., A is causal on Q(9), which is what we
wanted to show.

THEOREM 2.4. In Theorem 2.3,

(a) assumption (ii) can be replaced by the stronger condition

(2.20) S DD  foreach Te R,

(b) assumption (iii) can be replaced by the stronger condition “Z is causal on
7.
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Proof. (a) We have
Fr(NaN D)< (PrN) N(FrD) < (FPrPH2) N D
=(P¥rH*)N D < (PH*) NP =N,N %,

Le., (ii) is satlsﬁed

(b) If Z is causal on @, it is causal on N, N %, too; thus, by Lemma 2.2,
Pl = H’TZQ’T on N;,N% for each TeR' Hence, by (i), $PZ=P%Z
= PS1Z2Fr = SrPZSr i.c., (iii) holds; hence the proof.

A quite natural resolution of identity on H®, and consequently, a natural
concept of causality, can be obtained as follows.

Let{E;: Te R'} be aresolution of identity on H, and let ¢ =N, be fixed. For
any Te R', define #r: H° > H° by

(2.21) Frlx]=[Em.],

x =[x, ]€ H°. Then we have the following,.

PROPOSITION 1. The collection {%r : T € R'} is aresolution of identity on H°.

Proof. Clearly, %r is a bounded linear operator from H°® into itself, since for
any integer N>0 and x € H° we have Y0, |[Erx|F = Yr-i |EAlP - |xelP = 1x]12.

Moreover, ¥r is a projection. Indeed, for any Te R' and xe H®, $7x
=[Ex]=[Emx]= %rx so that o= Pr.

Also, if x, y € H®, (¥rx, y)e =i (ErXi, i) = 2k {Xis Exyic) ={x, Fry).; thus,
SFr=S%.

Next, let T; = T>. Then, for any x € H",

<(‘9)T2 - yﬂ)x’ x>c = Z <ET2xk - ETlxlu xk) =0.
k

Hence, ¥r, = %r, and condition (i) in the definition of a resolution of identity is
satisfied.

If ¢ <N, (ii) is trivially satisfied. Thus, let ¢ =¥, and choose T,€ R’ and
x€ H¢. If £ >0, find N >0 so large that Y- n.1 [|x|’ < &/8; by our hypothesis on
Er, there exist intervals I, =[T,, T;), i=1,2,---, N, such that |[Emx; — Eqnx|]
<&’/(2N) for each Tel; and i=1,2,---, N. Putting I = NN, I, we have for
Tel,

0 N ©0
[Frx — Frxl|fs = ‘gl |Erx; — Erox:|* = ; [ (Y Y

i=N+1

NIt T QEAHIEN T <e

Hence, $mx > $px as T-> T, T> T,.
The verification of (iii) is similar.
Moreover, we have the following.

PROPOSITION 2. The collection {¥r : T € R} satisfies condition (i) in Theorem
2.3.
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Proof. Let projections $r : H?-> H® and ¥7: H*-> H* be defined by (2.21).
Then

(2.22) XP=FX, X = X* Py

forevery Te R !. Indeed, let X =[£&x ] be the ¢, X ¢, matrix generating the operator
X (see[1]),and let u =[u,] € H®; then we have by linearity and continuity of Er,

XS =[€x]- [Evtt] = [; &0 (Enty )] - [ET(g g,-kuk>] - P Xu.

Hence, the first equation (2.22) holds; the second one follows by taking the
adjoints.

Now, we have P¥r = XX*%r = XS X* = $:XX* = P, what we intended
to show.

Summarizing our results, we see that, when dealing with causality defined via
projections (2.21), conditions (i)-(iii) in Theorem 2.3 can be replaced by the
simple assumption that Z is causal on @ and %:% < @ for every T€ R".

On the other hand, condition (2.20) may sometimes be inconvenient when
dealing with specific cases of networks. We will show that this condition can be
traded for a different assumption; indeed, we have the following theorem.

THEOREM 2.5. Let N = (Z, G) be a Hilbert network. Assume that

(i) there exist constants ¢ > 0 and p>1 such that, for every Te R', all
xeN:ND = X% and z;€Zx;, j=1,2, we have

(223) |<Z1 — 22, yT(xl "x2)>02| = C“3)7‘()61 _‘X2)|Ifz,
(i) for each Te R', the projection %r commutes with P = XX*. Then N is
regular on 9 and the admittance operator A of N is causal on Q(2).
Proof. First, choose x;e N;N9 and z;€ Zx;, j=1,2. Since Fr(x,—x2)
—xz as T—00, (2.23) yields by continuity,
[(z1= 22, X1 = X)) = |1 — x2]5,.

Thus, by Theorem 1.4, ' is regular on 9@ and, in particular, the set mapping
PZ is simple on N, N 9.

Next, choose a Te R' and x;e NsND, j=1, 2; since by (ii), Fr(xi—x2)
= %rP(x,— x2) = P¥r{Fr(x, — x2)}, (2.23) implies that

(2.24) w1 — Wz, Prxi — Prxa)e| Z c||Frxy — Frxa|l,

whenever w; € $+PZx;, =12

Now, let yi, yze[PZ(N N2)J, and put x; =(PZ)y;e NsN%,j=1,2. Then
y; € PZx;, and consequently, Fry; € $rPZx;. Thus, we can put w; =%y, j=1,2,
into (2.24) and get
KFrys = Fryz, Fr(PZ) ys = Fr(PZ) ya)e,|

= c|Sr(PZ) y1~ S (PZ) yilP.
Hence, if ?T(PZ) Vi #QT(PZ) y2, (2.25) shows that Zry, # %ry,, ie., the
operator (PZ)” is causal on [PZ(N.ND)].

(2.25)
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Finally, let e, e.€ Q(%) and let Fre;=Fre,. Then, by (ii), FrPe,
= P%re, = P¥re, = $rPe,, and consequently, by causality of (PZ)",

FrAe, = Fr(PZ) Pe, = $r(PZ) Pes= FrAes,

which concludes the proof.

Remark 2. If inequality (2.23) is satisfied even for all x; € 9, z; € Zx; and all
Te R', then assumption (i) in Theorem 2.5 is trivially satisfied, too.

From Theorem 2.5 we easily get the following result.

COROLLARY. Let the resolution of identity {¥r : T € R'} be defined by (2.21).
Furthermore, let N'=(Z, G) be a Hilbert network and let W = X*ZX : ¥ > W%.
Assume that there exist constants ¢ >0 and p > 1 such that

(2.26) |<W1—W2, y’,(yl—yz))mlgcﬂ,?’,(yl—y2)||’c’(,

forall TeR', yie F and w;e Wy,, j=1,2, where ¥7: H*H® is defined by (2.21).
Then N is regular on % and the admittance operator A of N is causal on Q(D).

Proof. By Proposition 2, %P = P¥y for every Te R', i.e., condition (ii) in
Theorem 2.5 is satisfied. Also, by (2.22),

(2.27) XPr= L X.

Choose Te R', x;e NsN D = XF and z; € Zx;, j =1, 2. Then there exists uniquely
determined y; € & such that x; = Xy, and we have by (2.27),

V= KZl — 22, yT(xl _x2))czl = |<21 — 22, Xg”’r()’l - y2)>c2|
= I(X*Zl —X*Zz, Ly — )’2))m|'

However, since X%z e X*Zx;=X*ZXy,=Wy, we have by (2.26), v
= cl|F(y: =yl .

On the other hand, since X is an isometry between N, and H®, it follows by
(2.27) that

||S/’T(x, - x2)”¢z = Hg’rf((y, - y2)“¢z = ”Xffr()’l - )’2)”::; = |]§f’1(y1 - )’2)”co-

Hence, inequality (2.23) is satisfied and Theorem 2.5 concludes the proof.

Let us now consider an example of a specific network.

Example. Let G be an oriented graph having the set of branches # with
cardinal ¢, =X, and assume that H is the real space L,[0, 7], 7> 0. Furthermore,
let us make the following assumptions:

(a) Foreveryindex j, let r; be a set mapping from R' into ©(R'); assume that
there exists a constant « >0 such that for any oy, 0,€ R' and any w, € r;(0),
, € r;(0,) we have

(2.28) a(o‘1—O‘z)zé(wl—wz)(oq—(rz), j=1,2,' .

Moreover, let there exist an integer N >0 and a constant 8 > 0 such that, for
all j>N, o€ R' and w € r;,(0) we have
(2.29) |w| = Blo]|.

(b) For every pair of indices i, k, let Ly(t) be a real function having a
derivative everywhere on [0, 7]. Assume that there exists y >0 such that

(2.30) [La(D)|=y,  |Li=y
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for all t€[0, 7]. Moreover, let [L,(t)] and [L}(t)] be ribbon, symmetric and
positive semidefinite ¢, X ¢, matrices on [0, 7] (see [1]).

(c) Forevery pair of indices i, k, let S, (¢) be a real function having a bounded
derivative on [0, 7] and let a § >0 exist such that

(2.31) Su(n)|=8

for all t€[0, 7]. Assume that [Si(¢)] and —[S}(t)] are ribbon, symmetric and
positive semidefinite matrices on [0, 7].

Finally, let i€ [ be a vector satisfying the equation d” - i, =0, where d is
the structural matrix of G.

Let 9 < L$[0, 7] be the set of all c,-vectors x =[x, (¢)] such that each x, (¢) is
absolutely continuous on [0, 7], x' =[xi(t)]€ L${0, 7] and x(0) = i,.

Let the set mapping Z be defined on 9 by

(2.32) Zy =[Zu]- [y,
where each set mapping Z; is defined by

(2.33) (ZuB)0) = (Lal08) + 1+ 5.0 | (o) do

Here ny € ru(é(t)), ri =0fori#k andry,=r,i=1,2,---.

Let us consider the network A = (Z, G). We are going to show that, under the
assumptions made, Nis regular on 9. Thus, we consider an L, R, C-network with
time-varying inductors and capacitors, and with time-invariant nonlinear mul-
tivalued resistors, whose initial current regime is described by the vector i,. Note
that, due to condition (2.28), the characteristic r; of a resistor may look as
indicated in Fig. 1.

Yo

FIG. 1.
To prove our claim, define operators Vi, Ui and the set mappings Ri by

(Vad) (D) = (La(08)s  (Un)(0) = S (1) j £(0) dor,

(2.34)
(Ruf)(1)=ru(£(1)), €[00, 7];
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also, let the operators V, U and the set mapping R be defined on 9 by

(2.39) Vy = [Va]- [)’k], Uy =[Ux]- [Ykl RA)’ Z[Rik] : [)’k]~
Then, clearly Z=V+R+U.
Since

Vy ={[Lu(O] [yl =[Li()] - [yl +[La()] - [yi],
it follows from (2.30) and the fact that [L,(f)] is a ribbon matrix that Vy
€ L$[0, 7] for each ye 9.
Furthermore, in [1] we have shown that, for any x, y € L#[0, 7], x =[x.],
y =[yi], we have (x, y)e, = |5 x"(0) - y(o) do. Thus, if x;, x,€ 9, we can write

T

]=<VX| - sz, X1 _x2>02 = J (xl _xZ)T . {L : (xl -xz)}’ do

0

=[(x;—x,)"-L - (xl—xz)]é—J (x1—x5)"- L - (x;—x,) do.
Also,
J=J (x1—=x2)" - L' (x1—x3) do-+J (x1—x2)" - L - (x1—x3) do.
0 0

Since x,(0) = x,(0) = io, we get due to the symmetry of L,

]Z% 1 2T -L X1 T X2
(2.36) (1 =x2)"(7) - L(7) - (x1—X2)(7)

+3 j (x1=x2)(0) - L'(0) - (x1 = x2)(0) do.

Hence, due to positive semidefiniteness of L and L', J =0.
Similarly, (2.29) shows that Rx = L$[0, 7] whenever x € 9. Also, routine
calculations confirm that (2.28) implies that

(2.37) (W1 —ws, xl_x2>Cz§a”xl—x2”§2

whenever xi, x,€ @ and w, € Rx,, w, € Rx,.
Finally, in[1] we have shown that Ux € L$?[0, 7] whenever x € & and also that

(Ux, x), =3y (7) - S(7) - y(7)

(2.38) T
-3 L vy (o) S'(w)- y(w)do =0,

where y(1) =, x(o) do. )
Thus, by (2.36),(2.37) and (2.38), the set mapping Z satisfies the condition

(2.39) (Wi—w,, xl_x2>cz§a”xl_x2”«2=z

whenever x,, x,€ @ and w, € Zx,, w, € Zx. Since N; N D < 9, (2.39) holds for all
X1, X2 € N, N 9, too. Hence by Theorem 1.4 (iii), Nis regular on &, what we wished
to show.

Also, by (1.11), the admittance operator A of N satisfies the Lipschitz

condition with constant a~".



40 VACLAV DOLEZAL

Itis easy to show that the operator A is causal on Q(%) provided the causality
is defined via truncations on L,[0, 7].

Indeed, let ) be a continuous increasing function on R which maps R onto
(0, 7). For every Te R' and u € L,[0, 7], let

{u(t) for te[0, n(T)],

(Eru )(t) fOl'te(n(T)’ T].

Then{Er: T € R'}isaresolution of identity on L,[0, 7]and {¥r : T € R'}, defined
by (2.21), is a resolution of identity on L0, 7] by Proposition 1.

Note that, in this context, causality of an operator M clearly means that
x1()=x(t) on [0, T'], T' < 7= (Mx,)(t) = (Mx,)(¢t) on [0, T'].

Next, by Proposition 2, each projection & commutes with P, i.e., condition
(ii) in Theorem 2.5 is satisfied.

Furthermore, it is clear that, for every Toe R' and x, z € H®,

7(Tp)

(2.40) (z, PrX)e, = J z2"(o) - x(o) do.

0

However, this together with (2.36), (2.37) and (2.38) shows immediately that our
set mapping Z satisfies the condition (2.23) for all x,, x,€ 9; hence, by Remark 2
and Theorem 2.5, A is causal on Q(9), what we wanted to prove.

Concluding the paper, let us make a few comments on our results. As it is
apparent from Theorem 2.2, quite simple conditions guarantee the uniqueness of
a network solution. On the other hand, condition (1.4) giving the existence,
involves the set Q(%) which is hard to describe. In particular, it would be useful to
find conditions under which Q(9) = H%, i.e., when a Hilbert network possesses a
solution for any vector of voltages in H®.

From (1.6) it follows that Q(%)= H* if and only if

(2.41) [PZ(N.ND)]°=

It is clear that (2 41) does not hold in general, unless we make additional
assumptions on Z and 9. Fortunately, it turns out that (2.41) is satisfied, if % > N;
and PZ is a maximal monotone and coercive mapping.

Indeed, let 5 be a real Hilbert spaceandlet M : ¥ - ©(%) be a set-mapping;
as known, M is called monotone on # if for all x,, x, € % and z, € Mx,, z, € Mx,,

(2.42) <Z] - 22, X1 _‘x2> 2 0
Moreover, M is called maximal monotone on % if M': %~ S(%) monotone,

M'x > Mx for all x € % implies that M’ =
We say that M is coercive if

(2.43) lim a™"inf {(z, x): ze Mx, x € %, ||x|| = a} = 0.

Then, as proved by Rockafellar (see [5, Thm. 9] and [6, Thm. 3]), we have the
following assertion: if M is maximal monotone and coercive, then (M#%)° =
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Now, since N is closed in H*, and thus a Hilbert space of its own right, and X
is a norm preserving isomorphism between H* and N;, we immediately get the
following result on Hilbert networks.

THEOREM 2.6. Let H be a real Hilbert space and let N'=(Z, G) be a Hilbert
network. Assume. that

(i) D2>oN,,

(ii) the set mapping W =X*ZX : H°-> WH*® is maximal, monotone and
coercive on H*. Then for any e € H®, the network N possesses a solution.

COROLLARY. Let N =(Z, G) be such that

(i) D= N,

(i)’ W satisfies the inequality (2.11) for all y,, y, € H* and is maximal on H®.
Then for any e € H, N possesses a unique solution i.

(The proof is obvious).

Another theorem on existence can be derived from a theorem by Minty (see
Theorem 2 in [4]), but we omit the details.

REFERENCES

[1] V. DOLEZAL, Hilbert networks I, this Journal, 12 (1974), pp. 755-778.

[2] R. SAEKS, Causality in Hilbert space, SIAM Rev., 12 (1970), pp. 357-383.

[3] G. J. MINTY, Monotone networks, Proc. Royal Soc. London Ser. A, 257 (1960), pp. 194-212.

[4] , On the solvability of nonlinear functional equations of ‘‘monotonic” type, Pacific J. Math.,
14 (1964), pp. 249-255.

[5] R. T. ROCKAFELLAR, Convex functions, monotone operators and variational inequalities, Theory
and Applications of Monotone Operators, A. Ghizzetti, ed., Proc. NATO Adv. Study Inst.,
Venice, Italy, Edizioni Orderisi, Gubbio, 1969, pp. 35-65.

[6] ———, On the maximality of sums of nonlinear monotone operators, Trans. Amer. Math. Soc.,
149 (1970), pp. 75-88.




SIAM J. CONTROL AND OPTIMIZATION
Vol. 14, No. 1, January 1976

EFFICIENTLY CONVERGING MINIMIZATION
METHODS BASED ON THE REDUCED GRADIENT*

DANIEL GABAY AND DAVID G. LUENBERGERTY

Abstract. This paper presents three computational methods which extend to nonlinearly con-
strained minimization problems the efficient convergence properties of, respectively, the method of
steepest descent, the variable metric method, and Newton’s method for unconstrained minimization.
Development of the algorithms is based on use of the implicit function theorem to essentially convert
the original constrained problem to an unconstrained one. This approach leads to practical and
efficient algorithms in the framework of Abadie’s generalized reduced gradient method. To achieve
efficiency, it is shown that it is necessary to construct a sequence of approximations to the Lagrange
multipliers of the problem simultaneously with the approximations to the solution itself. In particular,
the step size of each iteration must be determined by a linesearch for a minimum of an approximate
Lagrangian function.

1. Introduction. Many computational methods have been proposed to find
the minimum of a real-valued function f(x) over the n-dimensional real space R".
When both the values of the function f and its derivatives of/dx; fori=1,---,n
are available at every point x, gradient-related techniques are generally favored.
These schemes iteratively construct, from an initial point x°, a monotonically
improving sequence of approximate solutions x* according to a recurrence
formula of the form

() x'=x* —aupt, k=0,1,---,

where p* is a direction determined on the basis of the gradient Vf(x*), and ax is a
positive scalar chosen to achieve a descent in the value of the objective:

fOHT) =)

The parameter «, controls the size of the step k and influences the convergence
properties of the algorithm ().

The speed of convergence is strongly dependent on the step size choice. This
dependence is well understood in the case of the method of steepest descent,
which takes for p* the direction of the gradient Vf(x*) itself, as originally proposed
by Cauchy [6]. The best performance is obtained for the optimal steepest descent
method in which a, is chosen to achieve a local minimum of f along Vf(x*). As first
exhibited by Kantorovitch [17], the sequence {x*} converges to x* linearly, i.e., at
least as fast as a geometric progression. The sharpest possible estimate for the
ratio of this progression is asymptotically given by (M —m/M + m)?, where M and
m are, respectively, the largest and smallest eigenvalues of F*, the matrix of
second order partial derivatives of f at x*. We refer to this as the natural rate of
convergence of the problem. It represents the fastest possible speed for a steepest
descent algorithm. It provides, therefore, a standard by which the performance of
other schemes can be evaluated through comparison with this efficient natural
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rate. And, indeed, the rate of convergence of other gradient-related algorithms
can be expressed relative to this ratio [21].

In practice, many problems either arise or can be formulated as constrained
optimization problems. In this case, the minimum of the function f is sought
among the values it takes while the variable point x is restricted to a given subset
. This subset is called the feasible region and is assumed to be described by a
finite number of constraint equalities and inequalities. Without lack of generality,
we can formally write

F={xeR"h(x)=0,i=1,2,--- ,m;aq;=x;=b, j=1,2,---,n} withm=n,

where a; and b; are real numbers and can take the values —o0 and +00.

One of the most successful gradient-related methods to solve this nonlinearly
constrained problem is Abadie’s generalized reduced gradient algorithm (GRG)
[1]. As an extension to the nonlinear case of the upper bounding simplex method
for linear programming[8], this method introduces a partition of the variables into

m basic variables, denoted by the vector x5 = (xs,, * * * , Xs,,), and n — m remaining
independent variables forming the vector xg =(Xg,, * * * , X&,_,.), such that
ag, < xg, < bg, i=1,--+,m,
ar, = Xg, = bg,, =1, n—m.

The independent variables are changed on the basis of the reduced gradient [28],
[11], obtained by “pricing-out” the nonbasic components of the gradient Vf(x), as
the reduced costs are obtained in the simplex method. When the constraints h; are
nonlinear, Abadie’s proposal consists in decomposing each iteration in two
phases. Starting from a feasible point, a move is performed along a direction
tangent to & based on the reduced gradient. It is followed by a restoration move,
achieved by adjusting the m basic variables in order to satisfy the constraint
equations. The resulting algorithm [2] is ranked first in efficiency among all
available techniques in the comparison studies conducted by Colville on a series of
test problems[7],[3). The selection of the size of the tangent move is, in large part,
responsible for the current complexity of the code, since, if this parameter is too
large, the restoration may be impossible or may lead to a feasible point which does
not constitute an improvement of the objective function. Therefore, following this
approach, one is often forced to try several step lengths for the first phase in order
to obtain a satisfactory point at the end of the second phase. Such repeated trials
significantly increase the computation time and, even though a procedure is
developed so as to insure convergence, the rate of convergence may be far from
optimal.

The object of this work is to propose generalized gradient related methods
for nonlinearly constrained problems which properly extend the efficient con-
vergence of the optimal methods of the unconstrained case. We restrict our
analysis to problems without bound constraints on the variables and refer to [15]
for the alterations necessary to treat the general case. The implicit function
theorem [10] provides a natural and convenient framework to study the appro-
priate restrictions of the original methods of unconstrained minimization to the
constraint set & itself (rather than to the subspace tangent to ¥). The theorem
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conceptually aliows one to express the basic variables as functions of the indepen-
dent variables, thus converting the original problem to an unconstrained one:

Minimize ¢(xx) = f(xz(xzr), X&).

Solving this reduced problem by the gradient-related methods of unconstrained
minimization leads, in the original space, to schemes in which the independent
variables are moved on the basis of the gradient of the reduced function, which
turns out to be Wolfe’s reduced gradient. The basic variables are altered corre-
spondingly to maintain feasibility. We thus extend the efficient convergence
properties of the method of steepest descent, the variable metric method, and
Newton’s method to nonlinearly constrained minimization.

These ideal extended gradient-related methods cannot be implemented
exactly, since it is not possible in practice to generate arcs along &. We are led to
consider more practical schemes which accurately approximate the arcs of the
ideal methods.

In §3 we define an implementable generalized reduced steepest descent
algorithm, combining at each iteration a tangent phase and a restoration phase. To
achieve efficiency, it is shown that it is necessary to construct a sequence of
approximations to the Lagrange multipliers of the problem simultaneously with
the approximations to the solution itself. Each combined step then accurately
approximates the arc of the ideal scheme, provided that the step size is determined
by a linesearch for a minimum of the approximate Lagrangian, a procedure which
has been tentatively proposed on other occasions [19], [23].

In §§ 4 and 5, we show how the framework of the reduced unconstrained
problem can establish guidelines to define practical and efficient algorithms
extending, respectively, the variable metric method [14] and Newton’s method
[18] to nonlinearly constrained minimization and inheriting their superlinear and
second order rates of convergence.

2. Notation. We denote n-dimensional vectors by notation such as x
=(x1," "+, x.). Unless otherwise specified, they are regarded as column vectors.
For apy matrix A, ‘A denotes its transpose.

Given a function f: R"—> R, its gradient at x is the n-row vector Vf(x)
=((af/ax1)(x), - - -, (3f/9x,)(x)). For any subset K<{1,-- -, n}, we denote by
V«f(x) the vector of components (df/dx;)(x) with i € K. We denote the matrix of
the second order partial derivatives, the Hessian, by F(x).

For a mapping & : R" > R™ with components h;, Vh(x) represents the m X n
Jacobian matrix with element (i, j) given by (3h;/dx;)(x). The second derivative of
h is best regarded as the m-tuple H = (H,, H,, - - - , H,.), where H, is the Hessian
of h. We denote the m-tuple of the associated quadratic forms by ‘x - H - x
= ("xH,x, 'xHx, - - - , 'xH,.x) for any x € R". We define the operator X , associat-
ing anelement A of R™ and an m-tuple H of R™ """ into an element of R"*", by

AXH=MAH+" " +A.Hy;
for any x € R", we have

YAXH)x=A(x - H - x).
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We denote by (P) the problem
Minimize f(x)

Subject to h(x) =0.

(P)

3. The generalized reduced steepest descent method for nonlinearly con-
strained minimization.

3.1. The idealized reduced gradient method. The implicit function theorem
has historically played a fundamental role in the theory of constrained minimiza-
tion problems, since it provides the tool required to establish the existence of
Lagrange multipliers. Basically it reduces problem (P) to an unconstrained
minimization (at least locally) by solving the implicit constraint equations. We
assume in all the following that f and h; are twice continuously differentiable and
possess bounded third order derivatives.

Assuming that the constraints are regular, i.e., that the gradient vectors
Vhi(x), -, Vh,(x) are linearly independent for all x, then the implicit function
theorem guarantees the local existence of a mapping ¢ : R"™™ - R™ such that
xp = ¥(xg). It is well known that

(1) Vi(x) = =Vgh(x) 'Vrh(x),

where the argument x stands indifferently for the independent variables xx € R* ™™
and for the n-tuple (¢(xz), xz); and it can be shown that the second derivative of
is given by

(2) W(x) =—=Vsh(x) ' X['T(x) - H(x) - T(x)],

where T(x) is the n X (n —m) matrix

(3) —Vah(x)’lVRh(x)]

Lo

This matrix represents the mapping of R" onto 9 (x), the tangent subspace to & at
x. We can view (P) in terms of the reduced problem (R) in R"™™:

(R) Minimize ¢(xz) = f{[¥(xr), Xr ],

defined at least in a neighborhood of a solution point x* of (P). The gradient of ¢ is
called the reduced gradient and its transpose is an (n —m)-dimensional column
vector denoted by r(x). The chain rule for derivatives leads to

T(x)=[

Vb (x) = Vef(x)Vip(x)+Vef(x).
Using (1), we get
(4) 'r(x) = Vrf(x) = Vsf(x)[Vsh (x)]'Vrh(x).

Among the methods of steepest descent for solving (R), the optimal steepest
descent algorithm provides the best performing algorithm. It consists of a series of
moves in R"™™ along the reduced gradients at the successive iterates x . The size
of each step is determined by a linesearch along r* = r(x) for a local minimum
point of ¢.
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In practice, it is usually not possible to achieve explicitly the elimination of
the dependent variables x; and it is therefore necessary to solve problem (P) in the
original space R". However, the above study of the reduced problem (R) shows
that the most natural algorithm consists, for its kth iteration, starting from the
feasible point x* = (x}, x&), in moving the independent variables x; along the
reduced gradient r*, while maintaining feasibility by an alteration of the basic
variables x;. This defines an arc x“(8) on & emanating from x*. The projection of
this arc on the subspace R of the independent variables, parallel to the basic
subspace B, is the straight line in the (negative) direction of r*; hence

(5) xXk(B) = xk—Br*.
To satisfy the constraint equations, the basic variables must satisfy
x5(B) = (xk—Br).
Assuming that the constraints are uniformly regular (i.e., that there exists a scalar
v >0 such that |[Vzh(x)||= vy for all x), we can write

X5(B)=(xr)— BV r* +(B*/2)r" - W - r* + O(|r*[).
Using (1) and (2) we obtain

(6) x5(B) = x5 = B(—=(Vsh") 'Veh“)r* = B*(Vsh*)'q"“ + O(|r*[}),
where g“ is the m-dimensional column vector of components
(7) qi=5r"T*H,(x*)T*r".

This reduced gradient method, illustrated in Fig. 1, belongs to a class of
techniques for nonlinearly constrained problems proposed by Altman [4]and was

te
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presented first in [21] in this specific set-up. To efficiently extend the optimal
steepest descent method, the step size parameier 8, must be chosen to achieve a
local minimum of f along the curve x*(B):

(8) Bi = Argmin {f[x"(B)]|B = 0}.

The speed of convergence of the sequence {x*} to x* is then asymptotically given
by the Kantorovitch-ratio (M —m/M +m)*, where M and m are the extreme
eigenvalues of ®*, the Hessian of ¢ at x*. This defines the natural rate of
convergence for reduced gradient methods, since this algorithm ideally extends
the efficient performance of steepest descent methods for the unconstrained case.
Our motivation is to find an efficient way to at least approximately find the
parameter 3, of the ideal method, without actually searching the ideal curve. This,
in turn, will lead to an algorithm achieving the natural rate.

A familiar formulation of this result is obtained through the introduction of
the Lagrangian function for (P), [ : R" X R™ - R defined by

I(x, )= f(x)+Ah(x).

Atevery regular point x and for the partition of R” = B@® R, we define the reduced
Lagrange multiplier as the m-dimensional row vector

9) A(x)=—=Veflx)Vsh(x)™".
We can thus interpret the reduced gradient in terms of the gradient of the
Lagrangian, since
V. d[x, A\(x)]=[Vsl, VeI]=10, ‘r(x)].
We can also evaluate the Hessian ®(x) of the function ¢(x):
D(x) ="Vih(x) Fpp (x) Vi (x) + Fr (x)V(x) + Vi (x) Frn (x)
+ Frr(x)+Vf(x)¥(x)
="T(x)F(x) T(x)+A(x)x (T(x) - H(x) - T(x))
(using (1), (2), (3), (9)
="T(x)L[x, A(x)]T(x),

where L(x,A) is the Hessian, with respect to x, of the Lagrangian L ‘TLT
represents a restriction to J(x) of the Hessian of the Lagrangian.

3.2. The step size selection. The reduced gradient method presented above is
idealized from a computational viewpoint, since it is in practice impossible to
generate the arcs x“(8). We can devise an implementable version of the reduced
gradient algorithm, which is really an approximation, using first order informa-
tion, of the idealized scheme. Calculation of the step along the curve from x* to
x*(Byx) is replaced by a combination of two phases, as depicted in Fig. 2. In the first
phase, a move is made along the tangent to the ideal curve x“(8). (It has already
been established that this tangent direction is given by —T*r*.) This step, charac-
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terized by the step length parameter 6, leads to the point
£“(0)=x*—-0T"r",

which generally does not satisfy the constraint equations. A restoration phase
back to a feasible point x*(0) of & is needed and is performed by adjusting the
basic variables.

The efficiency of this algorithm depends, to a large extent, upon the selection
of the step length 6. The study of the idealized reduced gradient method shows
that, in order to achieve convergence at the natural rate, our practical algorithm
must use a step size parameter which asymptotically satisfies

0 = B+ O(|r ).
We can compute an estimate of the value of the objective along the arc {x*(8)}:
fIX“(B)]=f(x*) = BVFET r* +(B2/2) r T*F*T*r*
—B*Vaf*(Vsh*)'q" + O(|r|P).

Introducing A* = A(x*) as defined by (9) and using the definition (7) of g, this can
be written

(10)  fIx*(B)]=f(x*) = BlIr P+ (B/2) T (F* +A* x H)T*r* + O(lr*[[").

Consider now the value of the Lagrangian function I( -, A*) along the direction
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tangent at x* to the arc {x*(B)} : £“(B) = x" —BT*r":
2
[£4(B), A*]=1(x*, A*) = BVI(x*, A*) T r* +E2—‘r'"T"L"T"r" +O(|IrP)

2
= 164 = Bl + EreT LA Ot

Therefore the function [( -, A*) takes along the tangent direction —T*r* up to
second order the value of the objective f at the feasible point with the same
independent coordinate.

Hence a simple and efficient procedure to find an approximation of the order
of ||r*|| to the ideal step size B« consists in selecting the step length parameter of the
tangent phase in order to minimize I(x, A*) along the direction —T*r*. This rule
defines the parameter a,:

a, = Argmin {{(x* —aT*r*, A*)|a =0},

which we refer to as the Lagrangian step size. This selection rule can be easily
incorporated in our algorithm. We describe below the detailed procedures to
handle the possible computational difficulties associated with the restoration
phase and to insure the convergence of the sequence of iterates.

3.3. The generalized reduced steepest descent algorithm. We must first notice
that the choice of the Lagrangian step size does not represent any additional
computational work since the evaluation of A* is a necessary step in the calcula-
tion of the reduced gradient r*.

Under the assumption of uniform regularity of the constraints, the restora-
tion phase from a point £* =[5, ] can always be performed, at least conceptu-
ally. A computationally efficient procedure consists of solving the system of
equations

hi(xa.,"',Xsm,f'fz.,“‘,f’;z,ﬁm):(), i=1,---,m,

for the unknown variables xg,, - - -, x5, using a modified Newton’s method.
Starting from y®= %}, such a method constructs successive approximations y'
€ R™, according to the recurrence

y =y —[Vsh(x*)] 'h(y', £%), i=1,2,---.

(The inverse of the basic Jacobian at x* has already been computed to evaluate A*
and r*)

The convergence of this method for obtaining a feasible point has been
established by Kantorovitch [18], provided that the starting point is sufficiently
close to x* and that the matrices H; and Vizh(x)™' are bounded in this
neighborhood. It may be necessary to decrease the step length 6, of the tangent
phase, initially defined by the Lagrangian step size ax, by scaling down 6, by a
factor p; € (0, 1), possibly several times, until the restoration phase is successful.

Assuming that the level sets of the Lagrangian function

LLFx)]={x e R"I(x, A"*) = f(x")}

are compact, the Lagrangian step sizes «, are bounded. There exists, therefore, a
neighborhood of a solution x* of (P) and a corresponding integer N such that, for
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all k> N, the iterates x* are in this neighborhood and ||r*|| is small enough to
guarantee the convergence of the modified Newton’s method from the starting
point y° = X5(a).

It is important to provide a rule for the step size which insures that the
sequence {x*}is convergent. Each iteration must result in a descent in the value of
the objective, and convergence can be established if this improvement is sufficient
enough. Sufficient descent is achieved in our algorithm by enforcing the test for
the step length 6, first proposed by Armijo [S]in the framework of unconstrained
optimization; namely, 6, is scaled down by a factor p, € (0, 1) until

(11) fIx“(6)1< f(x*) = obil|r|?,

where o is a positive parameter chosen in (0,3). The Taylor expansion of f,
considered as a function of 0, leads to

fIx (81— f(x*) = —6u]|r*|? + O(6%).

Hence, after at most a finite number of scalings by the factor p, € (0, 1) from the
initial determination 6, = «a, the test (11) will be satisfied.

We can give now a detailed description of the algorithm in a pseudo-ALGoL
format. The method depends on the parameters ¢, o, p:, and p, which must be
specified in advance, with € >0, o€(0,3), p,€(0, 1), p.€(0, 1). The tolerance
parameter ¢ expresses the accuracy required in the satisfaction of the constraints.
The damping factors p,, p, are selected according to the nonlinearity of the
problem. (They are taken as ; or 1; in the GRG method of Abadie [2]).

GRSD ALcorIiTHM (Generalized reduced steepest descent method).

Step 0. Select a feasible x°e R'; set k =0.

Step 1. Procedure “check regularity assumption”:

if x* is not regular, then stop; else partition

x*=(x§ xk) and Vh(x*)=[B*, D*].
Step 2. Compute the reduced Lagrange multiplier:
A= =Vaf (")(BY)
compute the reduced gradient:
‘r* = Vef(x*)+A*D*.
Step 3. Procedure “‘stopping rule’’:
if r* =0, then stop; comment: x* is a solution candidate.
Step 4. Procedure “move in the tangent plane’:
compute the direction p* = T*r*;
Step 5. Compute the Lagrangian stepsize o, such that
a, = Argmin {{(x* — ap*, A*)|a =0};

set =, and ¥*(0) =x*—op*~.

Step 6. Procedure “restoration of the constraints”:
set i =0; set y°=X5(0);
while (|h[y’, £%(8)]|> €) and i < itermax do:
set y*'=y' —(B*)'h(y', Xk) and set i =1+1.



MINIMIZATION METHODS 51

Step 7.1 [|h[y’, X(8)]|> ¢, then
set 6 =p,0, go to Step 6;
else set x*(0) = (y’, £x(0)).
Step 8.1f f[x“(6)]> f(x*) — 6o |r*[’,
then set 6 = p,6, go to Step 6.
Step 9. Set 6, =0 and x*"' =x"(6,).
Step 10. Set k =k +1, and go to Step 1.

3.4. Convergence properties. We prove first that the rule given by (11),
adopted to determine the step length, guarantees the convergence of the
algorithm.

THEOREM 1 (Global convergence). Assume that f is bounded from below, and
that the level set £[f(x°)] is compact. Let {x*} be the sequence of regular feasible
points constructed by the GRSD algorithm. Then every cluster point of {x*} is a
critical point.

Proof. 1t follows from the assumptions that the sequence {f(x*)} is monotoni-
cally decreasing and that 6, is positively bounded from below. []

The above theorem, as well as establishing global convergence, also guaran-
tees that, after a finite number of iterations, ||r*| is small enough so that the
restoration phase does not offer any computational difficulties. We can now prove
also that the Lagrangian step size a, satisfies the test (11) for k large enough.

PROPOSITION 1. Let {x*} be a sequence, constructed by the GRSD algorithm,
converging to x*, a critical point of (P) which satisfies the sufficient second order
optimality conditions. There exists an integer N, such that, for all k> N, the step
lengths 6, are determined directly by the values of the Lagrangian step sizes a.

Proof. The definition of the Lagrangian step size leads to

I
ak—trktTkLkark (”r "),

which yields

(12 Fie @l = = e

+O(rP).
Assuming that x* fulfills the sufficient second order optimality conditions [13], the
matrix ‘T*L*T* is positive definite (at x* and therefore in a domain around x*);
hence, for k large enough the first term of the right-hand side of (12) is negative
and dominates the second term which is only of the order O(||r*|]*). Thus, for k
large enough, the point x“(a) satisfies the test of Step 8, and we can make the
choice 6 = a,; then x**' = x*(a;). O

The introduction of the Lagrangian step size is a very powerful device. We
have just established that, once the algorithm has approached close enough to a
solution, this parameter defines a tangent move from which the restoration phase
can be performed successfully without using complex scaling down procedures.
This choice leads therefore to a computationally simple and convergent
algorithm. We can further prove that the convergence itself is efficient by showing
that the algorithm converges at the natural rate.
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THeOREM 2 (Local rate of convergence). Assume that the sequence {x"}
constructed by the GRSD algorithm converges to x*, an isolated local minimizer of
f, subject to the constraints h(x)=0. Let M and m be, respectively, the largest and
smallest eigenvalues of the matrix ’T*L*T*, the restriction of the Hessian of the
Lagrangian to the tangent subspace to & at x*. Then the sequence {x*} converges
linearly to x* with asymptotic ratio (M —m/ M +m)’.

Proof. The proof is a generalization of a similar estimate for the rate of
convergence of the optimal steepest descent method.

For small r*, equation (12) gives an estimate of the decrease of the objective
function during the kth iteration:

e
L e+ o).

1
(13) f(xk“)—f(x")=—§W

Introducing the error vector y* = x* —x*, we have
f(x*) = f(x*)=1(x*, A*)—1(x*, %)
=Vl(x",)tk)yk—%' kkak+O("yk"3)

Let z* be the vector of independent components of y*. Using a first order Taylor
expansion of the implicit function y* = (z*), we obtain

y* = T*2* + O(lz*IP) = O(lz).

Using a first order Taylor expansion of VI, we derive an estimate for r*:
7 =[Y*L+ Oy PIT = 2T L T + 0|
Hence
f) = f(x*)=5ZTL*T*z* + O(||z*|),
or, in terms of r*,
F() = ) =3 CTLAT) r* + Oy ).
Denoting by F* the matrix ‘T*L*T*, we have, for the ratio of the successive errors,
O —fG*) (1_ (rrty?

F(x*)=f(x*) TFE e (F*) T
Let us introduce the normalized vectors u* = r*/||r*||, which converge to u*; the
Kantorovitch inequality [17] gives for the positive definite matrix F*,

(‘u*u*)? __4mM
I T T T (M+m)*

Hence we obtain the desired result:

f&) = f(x*) _ (M —m)?
im = —foh = (M+m)' 0

Ja+ody .

We have thus been able to establish that the convergence characteristics of
the GRSD algorithm are simple and complete extensions of the corresponding
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properties of the unconstrained steepest descent method. The algorithm has been
run satisfactorily on several examples, derived from Colville’s tests [7] (where
only the constraints active at the optimum were considered and treated as equality
constraints), and its computational performance has been consistently compara-
ble with the results obtained with a GRG algorithm of similar sophistication. We
describe in the next subsection certain situations where the new method performs
even better than the original scheme.

3.5. Comparison with the generalized gradient method. Since the GRSD
method and Abadie’s GRG algorithm [2] use the same procedures to determine
the direction of the tangent phase and to perform the restoration, the step length
determination is the key difference between the two methods. In the latter, the
point in the tangent direction is initially chosen to achieve a local minimum of the
objective function. Although the resulting performance of the GRG algorithm is
often satisfactory [3], this selection rule does not constitute the proper extension
of the optimal steepest descent method and does not exhibit the efficient proper-
ties achieved by the Lagrangian step size in the GRSD algorithm.

For example, if the initial choice of the step length is systematically small
compared to the ideal step size, the convergence of the GRG algorithm may be
slowed. Such a situation arises when the restricted Hessian ‘TFT of the objective is
ill-conditioned compared to the corresponding Hessian ‘TLT of the Lagrangian.
This phenomenon is illustrated by the following problem:

Minimize 5x3+3x3+5x3+x3—9x,+7x,— x;—6x,
Subjectto hy(x)=xi+x3+x3+xi+x,—Tx,+3x;—5x,+4=0,
ha(x)=2xi+x3+2x3+3x,+5x;—4x,—9=0.

The objective achieves its minimum value 5 at the solution point x* = (1,1, 1, 1);
the corresponding Lagrange multiplier vector is A* = (1, —2). The Hessians at x*
of the objective and of the Lagrangian are respectively

10 4
F*= and L*=
10 4
2 4

The starting point is taken as the feasible point x°=(3,2,—1,4). The
partition chosen treats x, and x; as the basic variables and x; and x, as the
independent ones. While it takes 19 iterations of the GRG algorithm to reach an
approximate solution where the reduced gradient is in norm less than 107, the
GRSD algorithm reaches the same precision in only 6 iterations. Since each step
of both methods consists of the same operations and necessitates about the same
amount of computational work, the GRSD method is about three times faster.

4. A generalized reduced variable metric method for nonlinearly con-
strained minimization. For unconstrained minimization, the conjugate gradient
method [14] or the variable metric algorithm [13], which exhibit superlinear rates
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of convergence, are sometimes preferred to the method of steepest descent. It is,
therefore, natural to seek a way of combining these efficient schemes with the
reduced gradient technique in order to solve constrained problems. But the
appealing properties of these methods rely, to a substantial degree, on the fact
that, at each step, the objective function is accurately minimized along the
direction of search. This is not an obstacle when the constraints are linear, and
simple as well as efficient combination schemes have been proposed in this
framework [25].

The only available extension of the Fletcher-Powell method to nonlinearly
constrained minimization has been proposed by Davies [9] in the context of
Rosen’s gradient projection [27]. The restoration phase is, however, a source of
difficulty, ignored by Davies but acknowledged by Murtagh and Sargent [24],
since the new feasible iterate is not likely to exactly achieve a local minimum of f.
This leads to a possible deterioration of the convergence properties of the
algorithm.

4.1. The idealized reduced variable metric method. A natural and efficient
generalization to the constrained case can be provided within the implicit function
framework we have already adopted to extend the method of steepest descent.
The key idea consists again in viewing problem (P) in terms of the reduced
unconstrained problem (R). The minimization of ¢(xg) is then, at least ideally,
performed by the variable metric method in the subspace R of the independent
variables. The kth iteration of this scheme proceeds from x by searching for the
minimum of ¢(xx) along a direction s*, defined by

sk — Gkrk,
where G* is an (n —m) X (n —m) matrix updated according to the formula

Gk(rk+1_rk)t(rk+1_rk)Gk (x,;:l_x’;z),(x;‘;l_xl;z)
t(rk+1__rk)Gk(rk+1__rk) '(x'f;“—x'f;)(rk“—rk)’

Gk+1 — Gk _

which approximates the inverse @, the Hessian of ¢.

In practice it is necessary to solve the problem in the original space R", since
the reduction to the form (R) can generally be achieved only conceptually. The
ideal scheme consists, therefore, in defining a curve {x“(8)} on & emanating from
x* =(x%, xk), its projection on R, parallel to the basic subspace B, being the
straight line in the negative direction of s*. To extend the Fletcher-Powell
method, the next point x“*' must be chosen to achieve a local minimum of f along
the arc {x*(8)|8 =0}.

By construction, this method exhibits the convergence properties of the
variable metric method in the (n —m)-dimensional subspace R. In particular, the
rate of convergence of this variable metric method is actually superlinear.
Moreover, the conceptual framework adopted shows that we have only to
construct a sequence of (n —m) X (n —m) matrices G* instead of n X n matrices as
proposed in [9].

4.2. A generalized variable reduced metric method. The method developed
in the previous paragraph is an idealized version, since it is computationally
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impossible to generate the curves {x*“(B)}. But we can derive from it a practically
implementable algorithm which asymptotically generates the same points. Again,
this is achieved by a move along the direction p*“ = T*s* of the tangent subspace
T*, followed by a restoration.

To obtain the best possible approximation of the arc of the idealized scheme,
we are led, as in § 3.2, to define the step length parameter in terms of the
Lagrangian step size, achieving a local minimum of the updated Lagrangian
I(x, A*) along p*. We have established in § 3.3 that this provides a first order
approximation to the step size of the ideal search for the point achieving a local
minimum of f along the arc x*(B).

An even better method would be to adapt this generalization technique in
conjunction with the version of the variable metric method proposed recently for
the unconstrained situation by Oren and Luenberger [26], the self-scaling vari-
able metric algorithm. It exhibits rapid convergence even when the minimization
step is performed only approximately, while the Fletcher—Powell algorithm is
adversely affected by even a small error in the step size.

5. A generalized Newton’s method for nonlinearly constrained minimiza-
tion. In spite of the very appealing fast convergence of Newton’s method for the
minimization of unconstrained convex functions (when second order information
is available and when the dimension n of the problem is not too large to prohibit
storage and inversion of an n X n matrix), very little effort has been devoted to
extend the method to constrained situations. Levitin and Polyak [20] were the first
to study a Newton’s scheme for such cases. They proposed an implementable
algorithm which considers only a linearized version of the constraints and which
uses the inverse of the n X n Hessian F of the objective function to compute each
iteration. This does not seem to be the most suitable approach, since it ignores the
nonlinearity of & and therefore does not fully capture the essence of the problem
to second order. It is preferable to explicitly incorporate the second order
information available.

5.1. The idealized reduced Newton’s method. An ideal method can again be
conceived by viewing problem (P) in terms of the reduced problem (R) and by
adopting Newton’s method in the subspace R to find the unconstrained minimum
of ¢(xr). The derivatives of ¢ have already been computed in § 3.1:

Ve (x)="r(x),
®O(x)="T(x)L[x, A(x)]T(x).
Hence the kth iteration consists of a move from x% along the (negative of the)
direction
(14) p=(TL*T*) 'r".
To guarantee a descent in the value of the objective, we must assume that “TLT is

positive definite and we must sometimes use a damping parameter 6 € (0, 1] to
reduce the size of the step along —p*, until the point
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satisfies a descent condition; a test like Armijo’s rule, for example [S]. There is no
need, however, to determine the step length by an accurate minimization proce-
dure, as in the previous gradient-related methods, to obtain efficient convergence,
since asymptotically 6, = 1 will yield convergence of order 2. If the matrix ‘T*L*T*
is not positive definite, p“ must be modified to preserve the descent character of
the algorithm. Computationally efficient schemes [12], [ 16] for the unconstrained
case can be applied in this case as well.

In the original space R", a step of this ideal scheme consists in moving along
anarc{x*(B)|0=B =1} of &, the projection on R of which is the straight line in the
negative direction of p“. By introducing this ideal scheme, we conclude that it is
necessary to invert only (n—m) X (n—m) matrix. We can also derive from it a
practical algorithm, by approximating the search along the arc to second order.

5.2. The generalized reduced Newton’s algorithm. Let us consider the move
of the independent variables

xk(0)=xk—0p*, with 6€(0,1].
To satisfy the constraint equations, the basic variables must be altered to
02
x5(0) = Y(xk—0p") = (xi) —OVY'p* +=p* - W p*+ O(Ip*P),
x(0)=x5—0(—B'D)p*—0>B'q* + O(Ip“|),

where g* is now the m-dimensional column vector with components

(15) q:cz%t kITkI'I,'(xk)Tkpk.
We thus obtain a second order approximation of the form
, Xs(0)
16 #(0 =[’f’3 =x*—0T'p* - 0°V*q",
(16) (6) %(6) p

where

SRR I

From a geometric viewpoint, we can interpret this approximation as a move
along the osculating parabola ¢ to the ideal curve {x*(8)|8>0}, i.e., the
parabola of origin x“ parameterized by 6 as

x“(0) = 6t* + 6°v*

in the 2-dimensional variety containing x* and spanned by the vectors ¢* and v*,
where

tk="'Tk k, Ukz_vqu.

This curve is the natural extension, for second order approximation, to the tangent
t*. (See Fig. 3.)

In general, however, the points £*(8) are not feasible, and a move back to ¥ is
again performed by altering the basic variables through a modified Newton’s



MINIMIZATION METHODS 57

Ty

FiG. 3

method to solve the system
hly, £%(8)]1=0.

As mentioned in § 3.3, the restoration move can be a source of difficulty, since the
modified Newton’s method may fail to converge or may lead to a new feasible
point which does not represent an improvement over x* in the objective function.
We handle these difficulties by successive halving of 6, from the initial value 6, =1
eventually finding a new feasible iterate x“*' such that, given a scalar o € (0, 3),
k+1y < £ kY _ a k(2

(17) )2 0e) = O T
We emphasize, however, that these difficulties are less frequent than with first
order methods, since the approximations of the constraints used in the present
scheme are valid to within second order.

We now present our algorithm. It is of the same form as the GRSD algorithm
in § 3.3 except for Steps 3, 4 and 5.

GRN ALGorITHM (Generalized reduced Newton’s method).

Step 0. Select a feasible x°c R"; set k =0.

Step 1. Check regularity assumption.

Step 2. Compute A, r*.

Step 3. Stopping rule: if r* =0, then stop.

Step 4. Procedure ‘“‘move along the osculating parabola’:

compute p* = (‘T*L*T*)'r*;
compute g =3'p“THT*p" fori=1,---,m.
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Step 5. Set =1 and () =x* — 6T p* — 0> V*q*;

Steps 6, 7. Restoration of the constraints.

Step 8. 1f fx*(6)]> f(x*) = 6(a/|I T*L*T*|lIr“ |,

then set 6 =346, go to Step 6.

Step 9. Set 6, =0 and x**' = x*(6,).

Step 10. Set k =k +1 and go to Step 1.

Since —p* is a direction of descent, the test (17) is satisfied after at most a
finite number of halvings of the original step size 6, =1. This selection rule
guarantees the convergence of a subsequence of {x*} to a critical point, as
established in § 3.4.

We can also show that, after a finite number of iterations, no halving of the
step length is necessary.

PROPOSITION 2. Let {x*} be a sequence, constructed by the GRN algorithm,
converging to x*, an isolated local minimizer of (P). Assume that "T*L*T* is
positive definite. Then there exists an integer N, such that, for all k > N, we may take
0, =1.

Proof. An expansion of f[x*(1)] to second order gives

flE“ (D] = f) =V (T*p* + V*q*)
+3(T'p* + V'q")FX(T*p* + V*q*) + O(lp*[[)-
Using (15), we obtain
A= f(x*) = r'p* HPHTLATp* + O(p* ).
By definition (16), we have
InL* (D = Oir*P).

Therefore, if ||r*|| is not too large, which occurs for k large enough since r* - 0, the
modified Newton’s method converges to a feasible point x*(1). We derive, using
the definition (14) of p*,

(18) fLx*(D]= ) =3r*(TLT)'r + O(|r*[P).
For any o € (0, 3), there exists an N large enough such that

flx*(DI<f(x*)— “IF forall k>N;

el
”ITkLka“ r
therefore the test of Step 8 is satisfied for the step length 6, = 1 and the new iterate
x“=x*(1). [ ;

The estimate (18) shows that the choice 6, = 1 achieves, at least asymptoti-
cally, the best possible decrease in the objective along the parabola c*.

THEOREM 3. Assume that f and h; are three times continuously differentiable.
Assume that {x*} converges to x*, an isolated local minimizer of (P). Then this
convergence is of order at least 2.

Proof. Let us introduce the error vector y*=x*—x* and partition it as
y* =(w*, z*). Since x**" and x* are feasible, we have

h(x*"Y—=h(x*)=0=Vh(x®)y*"'+O(|ly*""|")
= Vl;l’l(x*)wk+l '*'VRh(x*)Zk+l + O(”)’kﬂllz)‘
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Since h is uniformly regular, we get
lw*"ll = Ollz* ).
According to Proposition 2, we have, for k large enough,
xi = xp=(TL*T*)'rk.

The study of this iterative process shows that its convergence is of second order.
Hence

2= Odlz*|P)-
Since
Iy =z +llw*"l= Odly“I),

we dbtain the rate of convergence of order 2:
[l = x*=cll —x*P. 0

Recently Mangasarian [22] has proposed a Newton’s method for nonlinearly
constrained minimization which exhibits quadratic convergence. The role of the
Lagrange multipliers is also central to his approach, although he uses more
general Lagrangian functions than in this paper. Feasibility is not required at each
iteration, but it is necessary to compute the inverse of an n X n matrix.

6. Numerical experience. The GRN algorithm has been tested on the
quadratic problem described in § 3.5. Convergence was quite rapid. From the
same starting point as used before, the problem was solved in 3 iterations, yielding
a value for the solution with 7 exact digits.

A nonquadratic test problem in 5 variables and 3 constraints was also run.
From an initial approximation defined as the solution rounded to one decimal
place, full precision was achieved after a single iteration.

7. Conclusion. The algorithms presented in this paper are of both practical
and theoretical interest for nonlinearity constrained minimization. On the prac-
tical side, our methods efficiently generalize to this class of problems the appealing
convergence properties of the optimum steepest descent method, the variable
metric method, and Newton’s method for unconstrained minimization. Computa-
tional results indicate that they can provide significant savings in computer time as
compared to the existing schemes, particularly when the constraints are highly
nonlinear. There is, of course, room for further improvement. The requirement of
maintaining feasibility may cause excessive time expenditure in the restoration
phase of each iteration if a high degree of accuracy is demanded in the satisfaction
of the constraints. It is, however, possible to adaptively improve the accuracy
requirements of the restoration phase as the minimization procedure progresses.
Further investigation of such restoration schemes might, therefore, lead to faster
computational performance. Other areas for further research include the exten-
sion of our methods to problems with inequality constraints and the development
of effective rules for updating the partition between basic and independent
variables.
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On the theoretical side, our study has shown how to fully exploit the
viewpoint associated with the implicit function theorem in order to define
computational algorithms for the solution of nonlinear programming problems.
One of the key observations in this perspective is the necessity of constructing a
sequence of approximate Lagrange multipliers {A*} simultaneously with the
sequence of approximate solutions {x*}. The resulting interplay of Lagrangian
methods in a primal framework should lead to useful new results.
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FULL “BANG” TO REDUCE PREDICTED MISS IS OPTIMAL*
V. E. BENES*t

Abstract. Consider the stochastic control problem of minimizing the final value expectation
El(k'z,) by choosing a measurable control law u(-,-), subject to the stochastic differential equation
dz, = A(t)z, dt + B(t)u(t, z,) dt + C(t)dw,, 0 < t < 1, for the process z , and to the boundedness con-
dition u:[0,1] x R? — [—1, 17, with w a Wiener process, k # 0a given vector, and I( - ) an even positive
function increasing in x > 0. C. G. Hilborn, Jr. and others have conjectured that one optimal law takes
the form of full “‘bang” in the direction of reducing the “predicted miss”, defined as the expected value
of k'z, with control identically zero. Using the maximum principle for parabolic operators, we prove
this conjecture in the setting of the exponential functionals which express the derivatives of measures
induced by translations in Wiener space.

1. Introduction. We consider the stochastic control problem of minimizing
the final value expectation El(k'z;) by choosing a control law u(-,-), subject to
the boundedness condition u: [0,1] x R? — [—1, 1]" on the measurable function
u(-,-), and subject to the stochastic DE (differential equation)

(1) dz, = A(t)z, dt + B(tu(t, z,) + C(t) dw,, 0t

lIA

19

for the process z , with w a Wiener process, k a given vector, and I( - ) an even posi-
tive function, increasing in x > 0. Our interest in this problem arose from reading
an unpublished work of C. G. Hilborn, Jr., who conjectured that one optimal
control law took the form of full ““bang” in the direction of reducing the “‘predicted
miss”, defined as the expected value of k'z; with control identically zero. This
conjecture is proved here in the setting of Girsanov’s theorem for the exponential
functionals which express the derivatives of measures induced by translations in
Wiener space.

Girsanov’s theorem [1] serves to connect these functionals with stochastic
control theory [2]. It states that for ¢ a nonanticipative Brownian functional with
[lpl*dt < o0 as., and dP = exp{(p)dP with {(¢) =[@dw — 5[ |p|*dt and
Eexp{ = 1, the translated functions w, — [, ¢ ds are a Wiener process under P.
This result is used [2] in stochastic control theory as follows: it is assumed that
the controlled system satisfies a functional DE dx, = f(t, x, u(t, x)) dt + dw,; here
f represents system dynamics and u is a particular control law; a ‘“‘solution” is
provided by the Wiener functions w, under P with ¢ = f(¢, w, u(t, w)), in the sense
that there is a Wiener process W, such that

w, = J f(s,w,u(s,w))ds + W,.
0

This idea has been exploited, in stochastic control for existence proofs [2] for
optimal laws, for Hamilton—Jacobi conditions [3] for optimality, and for direct
proofs of optimality [4]. Actually we shall use a slightly more involved version [1]
of Girsanov’s theorem than that quoted above, in order to take account of the
matrix C(-) that modifies the noise in equation (1).

* Received by the editors September 14, 1973, and in revised form November 25, 1974.
1 Bell Laboratories, Murray Hill, New Jersey 07974.
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The notion of “‘predicted miss”, as it is to be used here, is introduced in § 2.
Our basic assumptions and formulation of the problem, and the resulting repre-
sentation for the cost of a control law, are in §§ 3 and 4, respectively. Section 5 gives
an informal outline of the basic comparison arguments that prove optimality.
The next five sections, 6 through 10, are mostly heuristic, and aim to exhibit the
analytical and probabilistic reasons for the relevance of predicted miss. The
optimality proof begins in earnest in § 11 with a study of the sgn of the gradient
of the value function. After a brief but necessary digression on smoothing control
laws (§ 12), the comparison of control laws is carried out in § 13. There follow
three appendices that are of technical nature.

Appendix A establishes various requisite properties of the functionals used in
representing the cost of using a control law. Appendix B is concerned with the
validity of the hypothesis E exp {(¢) = | in Girsanov’s theorem, and more par-
ticularly with that of Girsanov’s Lemma 7 [1]. This lemma has been used by several
authors to prove the above hypothesis; its meaning and validity have also been
questioned. We give a reconstruction of Girsanov’s argument for Lemma 7. For the
case of principal physical interest, viz., linear growth of ¢, we give a new short
proof of E exp {(¢) = 1, not depending on Lemma 7 at all. Appendix C, finally,
answers a question of Balakrishnan about the measure of the set of points at
which switching occurs in the optimal regime.

2. Predicted miss. If a process z_satisfying (1) starts from the point z at the
time ¢, and no, i.e., zero, control is exerted, then the expected value of k'z; is given
by s(t)'z, where s( - ) satisfies the “adjoint’ equation

3(t) = — A(t)'s(1), s(1) = k.

This function s(¢)'z is called the predicted miss. It has previously appeared in the
stochastic control literature [5], [6] as the basis of conjectured optimal or near-
optimal laws for problems with boundedness and/or ““finite fuel”’ constraints, but
nowhere has it been proved to give an optimal policy. It has been guessed that if
s(t)'z, is positive, then maximum control effort should go to reducing s(t)'z,, and
inversely if it is negative. For the finite fuel case, it is likely that there is a central
region of space-time in which no effort should be made ; determining this region is
a problem orders of magnitude harder than the one we are solving, and it is not
considered here. But with simple boundedness constraints on the control, it was
conjectured that for the purposes of final value control in which one seeks to
minimize say the distance of the final point from a subspace k'z = 0, the informa-
tion comprised in the state could be compressed into the one-dimensional statistic
s(t)'z, without loss, and that in fact one optimal law had the form

2) u(t,z) = —sgn B(t)'s()s(t) z,

where the sgn of a vector is the vector of sgna of the components.

We shall show that this is right, in the sense that the u(-,-) as defined in (2)
achieves the infimum of El(k'z,) over all measurable control laws restricted in
value to [—1, 1], when the “solution” z, corresponding to a given control law is
constructed by use of Girsanov’s theorem, as will be done in § 3. Notice that this
optimal control in no way depends on the noise modifying function C(-), whose
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role, under the positivity condition C(f)C(f)’ > 0, will become purely that of
changing the time scale in a suitable representation of the (optimal) value function.

3. Assumptions and formulation. We assume that k£ # 0, and that A(-), B(-)
and C(-) are (respectively d x d, r x d, and d x d matrix-valued continuous
functions, with C(-) meeting the uniform elliptic condition that C(t)C(t) — cI be
positive definite for some ¢ > 0; C(-)is then also nonsingular. For the convergence
of integrals it will be convenient to assume that I[(x) = O(exp «|x|) for some x > 0,
in addition to being even, and increasing in x > 0.

Let the class o/ of admissible control laws consist of all measurable functions
u:[0,1] x RY - [—1, 17". Since the It6 theory of stochastic differential equations
is not available for (1) because u is not Lip, we shall construct solutions, or rather
solution measures, by using Girsanov’s theorem. We define, for each ue .o/,
ze R% and s € [0, 1] a solution of (1) that starts at z at time s and corresponds to
use of control law u. Let w, be a d-dimensional Wiener process defined on a proba-
bility space (Q, 4, P); to solve (1) take the functions

t
z, =z + J C(u) dw,
under the measure P defined by dP = exp { dP with

1 1
[ = f Clw)~glu,2) dw, — 3 f 1)~ g, zo)? du,

g(t, z) = A(t)z + B(t)u(t, z).
Under P, the functions z, form an It6 process with respect to w corresponding to
drift zero and diffusion C(u); assuming the linear growth condition |g(u, z)?
< k(1 + |2|?), it can be shown that Eexp{ = 1; it then follows from Girsanov’s
theorem that under P, the translated functions

t
W,=w,—ws—f C(w)~ 'g(u, z,) du, s<t£1,

form a Wiener process W, and the original functions z, form an It6 process with
respect to W corresponding to drift g(u, z,) and diffusion C(u). Thus

dz, = g(t, z,)dt + C(t) dW,
in the sense that z, = z + [% C(u) dw, and

z+ Jd Cu)dw, = z + J:g(u,z + J:‘ C(v) dw,) du + J: C(u) dW,.

4. Representation of the cost. If the system is run from time s to time 1 using
control law u and starting in state z, the expected cost incurred is

O gl = Bz e [ CO gtz dw — 1 [ 100 ete, 2

where g(, y) = A(1)y + B(u(t,y) and z, = z + [; C(v) dw,. This is an explicit
representation, peculiar to u. By setting T = 1 — s = “‘time to go” and changing
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variables a bit we can write this cost or value for the control law u as v(z, z)
= El(k'[z + [5 C(1 — © + t)dw,] exp {, with { given by

t t
f Cl -1+ t)“lg(l -1+ t,z+j c(1 —‘r+s)dws) dw,
0 0

T t
—%flC(l —t+ 07 gl =1+ t,z+f C(1 — 7 + s)dwy)|*dt.
0 0

The eventual cost is then J[u] = (1, 2).

5. Outline of the argument. A standard way of approaching a Markov control
problem like the one we have posed is to look for a sufficiently smooth solution
V(z, z) of the Bellman—Hamilton-Jacobi equation

4) V0, 2) = l(k'z),
V.= min trC(1 —1)D,VC(l — 1) + VV'[A(l — 1)z + Bl — 7)u],

ue[—1,1]"
where D, is the matrix (9/0z; 0z;). This equation is difficult to attack, even numeri-
cally. It does suggest again, though, that there may be an optimal bang-bang
control law.

We prefer to work with specific control laws, for which the corresponding cost
functions satisfy PDE’s similar to (4), but without the min. When u( - , - ) is smooth,
say Lip, the solution z_of the stochastic DE (1) can be constructed in the usual
It6’s way, and the corresponding value functions v(t, z) = E{l(k'zy)|z, -, = z} will
satisfy the backward PDE

) v(0, z) = I(k'z),
v, =1tr C(1 — tYDuC(1 — 1) + WA — 7)z + B(l — tu(l — 1, 2)].

Our method will be as follows: (i) to show that any admissible control law
can be approximated by a smooth one in such a way that nearly the same cost is
incurred ; (i) to single out a special class of control laws, viz., the smooth laws
depending oddly on predicted miss; (iii) to show that for these laws the cost
v(t, z) and its gradient Vv can be calculated from a one-dimensional problem;
(iv) to use the maximum principle for (5) to compare these laws to other, arbitrary
ones. In the course of these comparisons it will turn out that given any law what-
ever there is a law in the class that is (i) at least as good as the given one and
(ii) arbitrarily close to the law o(t,z) = —sgn B(t)'s(t)s(t)z. From these facts it
readily follows that ¢ is optimal in the sense that it achieves inf J[u]: ue .o.

6. Reduction to one dimension for laws depending on predicted miss. The next
four sections are heuristic in presentation. While only a few of the results are
actually needed for the optimality argument, we feel that together they shed so
much light on the structure of the problem that we eagerly include them here.
They dispel much of the ad hoc character of the basic proof.

The class 2 of admissible control laws depending only on predicted miss
consists of u € o/ of the form

u(t, z) = y(t, s(t) z)
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for some measurable y: [0,1] x R — [—1, 1]". We shall exhibit precise analytical
and probabilistic senses in which calculating the cost or value function for laws
in 2 reduces to a one-dimensional problem.

7. Stochastic equation for predicted miss. For u € 2 smooth, let us take the
stochastic DE z, = z, u(t, z,) = y(t,5(t)'z,), dz, = A(t)z,dt + B(t)u(t, z,) dt + C(t)dw,,
s £t < 1, seriously and define, with Hilborn, a one-dimensional process x, as
x, = s(t)'z,, s £ t £ 1. This is the expected value of k'z,, given z,, if control were
zero henceforth. Clearly x, = s(1)z, = k'z,, and with s=1—1, x,_,=s(1 — 1)z.
Taking the 1t6 differential, we find

dx, = $(1)'z, dt + s(1) dz,
= s(t) B(t)y(t, x,) dt + s'(t)C(t) dw,, 1—-1t5t£1,

and the expected cost is
ut,z) = E{i(x))|x, -, = s(1 — 1)z},

where x solves (6). Thus we can expect the cost for ue £ to have the form u(z, z)
= &(1,s(1 — 1)'z), where &(t, x) solves a one-dimensional parabolic PDE associ-
ated with (6); this is shown in the next section.

(6)

8. Composition with predicted miss. Following the hint of the previous para-
graphs we now note that if u is smooth and belongs to 2, with u(t, z) = y(t, s()'z),
and if ¢ is a solution of &(0, x) = l(x),

(7 & =s(1 — Bl — )yl — 1, x)¢, + 30(1 — 1),
with a(f) = |s(t) C(1)|%, then the composition
v(t,z) = &r,s(1 — 1)'2)

satisfies the expected cost equation (5) associated with the law u, for we have

v, = &1, 5(1 —1)2) — &y, s(1 — 1)2)8(1 — 1)z
s(I —7)yB(1 — t)y(1 — 7,s(1 — 1)2)&,(, s(1 — 1)'2)
+ 30(1 — 1)é,5(t, s(1 — 1)'2) + &y(t, (1 — 1)z)[A(1 — 7)s(1 — 1)]'z.
Since Vv = &,(7, s(1 — t)'z)s(1 — 1) and
S'CC'sly_. 6551, 8(1 — 1)2) = tr C(1 — 1)D,wC(1 — 1),

the PDE (5) for expected cost using u follows. This composition result represents
an analytical sense in which a “‘predicted miss” law u € 2 reduces the problem to
one dimension. Of course, this reduction does not show that in solving the control
problem only laws u € 2 need be considered ; this must be done separately (§ 13).
What the reduction does do is enable us to calculate sgn Vv for u € 2 with y odd
in x.

9. A time substitution. The next task is to “get rid”’ of the noise modifying
function s’CC’s which appears in the equation for &; this will be done by using
another composition, this time a time substitution, to represent the solution &
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of (7). We solve for & as &(t, x) = W(T — t(1 — 1), x), where T = K1),

®) @ = [ onar, o) = swrcwi > o,
0
and  satisfies (0, x) = l(x),
1 'B
U = W+ 2 Vs
O |-YT-r)x
For then
ét = l//1(7-'_ t(l - T),X)O'(] - T)
= la’(l — W o(T — (1 — 1), x) + S/ﬂ YT — t(1 — 1), x)0(1 — 1)
2 G |- 111 ~1)x

1
= E0(1 —1)&,, + s’By' ¢,

1—17,x

10. Reduction to one dimension: Probability version. Let us now see the same
facts probabilistically from the integral for v(z, z). Indeed, all the parts of the
preceding ‘‘analytical” reduction can be found “inside” the integral. We shall
find, among the constituents for v itself, a Wiener process w* in R such that

u(t,z) = E{I(Ytu))l)’;ku—r) =s(l — T)/Z}’

where y* solves the stochastic DE

Viii-n = sl = 1)z,
s'By
dyf = — dt + dw*, (1l —1)<r 21,
LR IEETORT)
#(-) being the time substitution defined in (8). It is easy to see that x, = y*(1(v)),
that the stochastic DE for y* corresponds to the PDE for ¥ in § 9, and that the
time substitution relating x, and y}* mirrors that defining ¢ from . Note that the
PDE’s are formulated for “time to go’ while the processes and (- ) itself are
defined for elapsed time; this circumstance explains the use of T = #(1) in §9,
the ranges of validity of the DE for y* and x., etc.
Let s = 1 — 7 be fixed and consider the functions on s <t < 1,

m=m—m—fawmmm+mwmmwmm

where z, = z + [J C(r) dw, as in § 3. According to Girsanov’s theorem these form
a Wiener process under the measure exp { dP where, as in § 3,

{=GGAC) -+ By, sC) )z

We can now express k'z; as the value x; at 1 of a process x. defined as x, = s(t)'z,,
s <t £ 1; this is obvious, because s(1) = k by construction. But we can get still
another expression for k'z; by examining the stochastic equation satisfied by x .
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Exploiting the relationship between w_and W, we find in analogy with § 7,

dx, = $(t)z, dt + s(t) dz,

—s(ty A(t)z, dt + s(t) C(t) dw,
—s() A(D)z, + s()[C(1) AW, + [A(t)z, + B(n)ylt, x,)]] dt,
dx, = s(t)B(t)y(t, x,) dt + s(t)C(t) dW,, s<t<£1.

It follows, noting that x, _, = s(1 — 1)z, that

9)

1 1

sty B(t)y(t, x,) dt + J s(t) C(t) dW,.

1-1t

kzy =x,=s(1 —-1)z + f

1-1
Thus v(t, z) = E{l(x,)|x; -, = s(1 — 1)'z} with x a solution of (9). Introduce again,
finally, the time substitution v — #(v) such that

Hv) = J s'CC'sdr,
0

which is strictly monotone because CC’ > 0, and k, and hence s(-), does not
vanish. According to a known result of McKean [7, p. 46],

t~1(v)

wi= [ swcwaw, -0 =S,
1-1

under the same exp { dP that makes W Wiener, is a one-dimensional Wiener pro-

cess w* to which the transformed process y¥ = x;-1,), 1 — 1) S v < (1), is

related by the equation

t~ 1(v) t~ 1(v)

s(u) B(u)y(u, x,) du + f sSCdw

1-1

yE = s(1 —‘c)’z+f

1-1

v

=s(1 — 1)z + f s'By

t(1—1)

du + wk.

*
U Yu

11. The sgn of the gradient Av. We now turn to the proof of optimality. The
first task is to show that for smooth ue .o/ with u(t, z) = y(1, s(t)'z) and y(-, x)
odd in x we have sgn Vv = sgn s(1 — 1)'zs(1 — 1). Knowing sgn Vv will enable us
to use the maximum principle to compare control laws ; this use [4] of the maxi-
mum principle is similar to that in Wonham’s optimality lemma [8, p. 321], and
is not unrelated to Pontryagin’s maximum principle in deterministic optimal
control. Lemmas A.1-A.9 are in the Appendix.

As is customary we use C™" to mean the class of functions f: R x R? — R?
(or R, etc.) which are m (resp. n) times continuously differentiable in the first
(resp. second) variable, and C}*" to mean the subclass for which all these deriva-
tives are bounded.

LEMMA 1. If ue 2 N C;3, and u is of the form u(t, z) = y(t, s(t) z) with y(t, x)
= —y(t, —x) (i.e.,, y is odd in its second argument), then

sgn Vo = sgn s(1 — 1)'zs(1 — 7).
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Proof. There is a unique solution v(z,z) to the problem (0, z) = I(k'z),
v, = 3tr C(1 — 1YD,wC(1 — 1) + [A(1 — 1)z + B(1 — t)u(l — 1,2z)]'Vv, with v
= O(exp x|z|?) expressible as v(t, z) = &(t, s(1 — 7)'z), with &(z, x) the unique solu-
tion of &0, x) = l(x), &, = s'CC's|, _.£,. + $'Byl;_, &, that is of exponential type.
In turn, ¢ is expressible as &(t, x) = Y(T — «(1 — 1), x), where #(v) = [§ s'CC's dr
and y is the unique solution of Y(v, x) = I(x), ¥, = 3. + SBy/S'CC's|;- 11—y WV
that is of exponential type. These facts follow from the existence and uniqueness
theorems for Cauchy problems [9, p. 25, Thm. 12 and p. 44, Thm. 10], and from
the elementary calculus with compositions presented in §§ 8 and 9. From Lemma
A .8 it is seen that the integral

El(K'z) exp (H(G0) g0, 2), 2=z + j ") dw,

with g(v, z) = A(v)z + B(v)u(v, z) satisfies the same equation as (t,z) = A(v)z
+ B(v)u(v, z) satisfies the same equation as v(t, z) and so is equal to it, being of
exponential type. Simile £ and s are expressible as expectations, and in particular,
using the even and odd characters of I( - ) and y(¢, - ), we deduce by the first passage
time argument of [4] that sgn y/,(t, x) = sgn x. Since

v(t,z) = Y(T — (1 — 1),s(1 — 1)2)
we find at once that

sgn Vo = sgn (T — t(1 — 1), s(1 — t)z)s(1 — 1) = sgns(l — t)'zs(1 — 7).

12. Smoothing of control laws. To smooth control laws u(t, z) from =, which
are defined only on [0, 1] x R?, we shall extend them to R**! by equating them to
O when t ¢ [0, 1]. For measurable functions f: R4*! — [—1, 1]" we use the smooth-
ings f — S, f defined by

S{S)(y) = (20)74 jcf(y + v)dv,

where C = cube of side 26 centered on the origin in R?*!. The restriction to
[0,1] x R?of a smoothed extension of a member of .« is again in .2, by convexity.
(Ss)"u approaches u in L, as 6 — 0 and has bounded mth partials. In particular
(S5)%u(t, z) e C33.

13. Comparison of control laws. We next show that given any control law
ge s/ and any ¢ > 0, there is another law ue & depending only on predicted
miss, which is as good as g to within ¢, and which is within ¢ in norm of our natural
guess candidate a(t,z) = —sgn B(z)'s(t)s(t) z.

LEMMA 2. ge o/, e > 0= Jue s 3|u—o| <e&and

Ju] £ J[g] + s.
Proof. Choose d by Lemma A.9 so that ||(S;)3g — g|| is so small that

JI(S5)g] < J(g] + ¢/2.
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Let ¢:R — [—1,1] be a C3-function such that
¢(x) = —sgn x outside |x| < 9,
d(x) = —¢(—x),
P(x) £0 forx=0
and define u and h both in £ by
ult, z) = G(B(t)'s(t);s(t) z), i=1,---,d,
hit,z) = (S;)%g(t, 2)ui(t, z), i=1,---,d.
Let B; be the (1, z)-set on which B(t)'s(t);s(t)z = 0. Then on B; we have u; < 0,
so that if (S5)%g(t, z); = 0, then h; = u;, because h; = u;; in the opposite case that
(S5)%g(t, z); < Oitisapparent that u?(S;)3g(t, z); = u;. Dually, h; < u; on the comple-
ment of B;. Thus componentwise, h = u on szB's 2 0 and h £ u on §'zB's < 0.
It is clear that J can be further reduced, if necessary, so that both ||u — o] < ¢
and (by Lemma A.9)
JH] < JU(S,)°g] + ¢/2.
Now define the operator L[g] by

0
Lig] = 3tr C(1 — ©yD,C(1 — 1) + g(l — 7,2)'V = —.

~

CT

L is parabolic because of the uniform ellipticity assumption CC' — ¢l > 0. Set
&, 2) = J, Jful, n(t, z) = J, [h] to obtain, by Lemma A.8,

L{ul¢é =0, L[h]n = 0.

By construction u is an odd function of B(t)'s(t)s(t)'z so that sgn u(t, z) = —sgn B(t)’
- s(t)s(t)'z. It follows from Lemma 1 that sgn V& = sgn s(1 — 1)s(1 — 1)z, and the
inequalities between u and h imply that

[B(1 — t)u(l — 7,2)]'VE=u(l — 1,2z)B(1 — 1)V&
< h(l —1,z)B(1 —t)VE&.

Therefore L{u = h]é £ 0, and so L[h](n — &) = —L[h]¢ £ —L[u]¢ < 0. Since
n — & is of exponential type, the maximum principle for parabolic operators
[9, p. 43, e.g.] implies that n — £ = 0, that is, J_,[h] = J_[u]. It follows that
Ju] £ J[h] £ J[f] + & Lemma 2 is proved.

The following basic justification of the full “bang’ to reduce predicted miss
policy now follows at once from this last lemma.

THEOREM 1. For k # 0, for 1, VI, and D,l of exponential type, for A(-). B(-),
and C(-) continuous with CC' — cI > 0 for some ¢ > 0, the control law o(t, z)
= —sgn B(t)'s(t)s(t) z achieves

inf Ju].
ued
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This result readily extends to the more general criterion El(k'z,)
+ E ¢ L(t, k'z,) dt containing an averaged time-integral of a suitable function of
trajectory, and to the case of noisy observations of z,, in which case s(t)'z, is re-
placed by s(f)'Z,, with Z, the Kalman filter estimate of z,, and C(-) is replaced by a
more involved matrix depending on C(-) itself, on the observation equation, and
on the covariance matrix arising from the filtering problem.

Appendix A. Some analytical properties of such functionals as J{u] in (3)
are established here as prerequisite to the optimality proof in §§ 11-13. Although
these prerequisites are few in number, some of their proofs have many steps that
areancillary to the main arguments, so it was natural to put them all in an appendix.
What we need are the following: (a) conditions implying that exp { belongs to
L, for some o > 1; (b) order estimates for v(t, z); (c) continuous differentiability
of v and Vv in z; (d) order estimates for Vv and D,v; (e) the natural PDE for
(1, z); (f) continuity of v in the L, topology of control laws. For (c) and (e) we
shall assume suitable smoothness of the drift coefficient.

Since the above results do not depend on having a linear system with linearly
entering control, and since they are basic also to further studies, we shall establish
them for a general drift coefficient g(t, z) in place of the function

A(t)z + B(t)u(t, z)

that appears in (a) or (c). Growth or smoothness of g( -, - ) will be postulated as it
is needed. Also, we use a general cost function k(-) in place of the I(k'-) in the
original problem, with |Vk| = O(exp xlz|), |(D;k);;| = O(exp k|z|). In the next 8
lemmas,

D(T7 Z) = Ek(zl) eXp Ci —t(g( i) Z.)),

t
2, =z + J‘ C(U) dwya
1-1
1 1 1
(@ = stwzrdw =3[ Itz
1-1 1-¢t

Arguments of { are often omitted, and convenient changes of variable are used
without too much explanation.
LemMA A.l. If g:[0,1] x R* = R? with |g(t, y)*> £ k(1 + |y|?), then given
& > 0 there exist o« > 1 and K depending only on ¢, k, and C(-), such that
sup Exexp (h(g) < Kexpelz|?,
0=ts1

where

T 1 T
wm=jgu—r+uawm—5jmu—r+uan,
0

0

t
z,=z+IC(1——r+u)dwu.
0
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Proof. Girsanov’s Lemma 7 [1] implies that E exp {§(ag) = 1. By his Theorem
1, then, for each o > 1, under exp {;(ag) dP the functions

t
Z,=z,—ocJ~ Cl—-t+uwg(l —1t+ u,z,)du, 0tgr,
0

form a Gaussian process of the same kind as z,. By the ¢, and Gronwall inequalities,
for0<t<1t<1and

B=x ,Sup [C(s)||> (operator norm),
t
20 S AZP + 208 [ (14 127 ds
0
< 2(a?B + ,sup |Z|?) exp 202B.
Ss=st
Now write

E exp alj(g) = E exp {{5(0g) + »2,)|? du}

< exp ju(0® — 0)E exp {{5(2g) + k(0 — o) [e2f + ,sup |Z?] e274}.

Since for each o > 1, {Z,,0 < 1 < t} under exp {}(xg) dP has the same distribu-
tions as z,, the last expectation simplifies to give

E exp ali(g) < exp x(a® — a)[$ + a?B e*™ + 2|27
-Eexp2x(0? — o) sup |z, — 2|?.
O0=<s=t

Recalling that

sup |z, — z|? = sup
0=s=st 0<s=rt

1-t+s 1-1
f de—f G dw

0 0

2 S 2
<4 sup Jde
0

0=ss=s1

2
JGdW

with h(e, z) = O(exp 2x(o* — @)|z|*) uniformly in o > 1. Doob’s submartingale
inequality implies that the sup in the exponent is finite a.s., so a result of Landau
and Shepp [10, p. 377, Thm. 5] or [11] assures us that the last expectation above is
finite for o > 1 small enough, and depends only on «, k, and G(-).

LEMMA A.2. If I(x) = O(e*™)), then for every ¢ > 0,

we find

E exp ali(g) < h(a, 2)E exp 8x(a? — ) sup

0<s=<1

v(t, z) = O(exp &z|?)

uniformly in0 <t < 1.

Proof. v(r, z) < const. E e¥#1l ¢, "®  where g satisfies the conditions of
Lemma 1; since z, is a Gaussian process, supg<.<; E exp flk'z| < co; now use
Holder’s inequality and Lemma A.1.
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LEMMA A 3. If g e C'2, then with probability 1, V{ exists and equals
f JA — 1t +s,z)dwg — f Jg)(1 — 1 + s,z ds,
0 0
where J is the Jacobian matrix function

og; . .
Jij:aixj-’ ie,J =Vg =(Vgy, -, Vgy.

Proof. Set for he R%, |h| = 1,

gl —t4+s,eh+2z)— gl —1+5,2)
&

o) - hVg(l —1+s,2)

so that Taylor’s formula gives, since g € Cp2,

1
e = af (WV)’gi1 — © + s,teh + z)(1 — 1) dt,
0

2

E J @e)dw,| = O(e*) uniformlyinz,z.

0

Evidently |p{e + £) — ¢;(e)] < const. || if h is a unit vector, so

2

E = 0(1¢?).

Jﬁ%@+@—¢ﬁﬂwk

Thus the argument for Kolmogorov’s sample continuity theorem shows that an
e-separable version of [§ ¢ (g) dw, is as. a continuous function of ¢ vanishing at
e=0,1ie,

VJ gl — 1+ s,z dwg = f J1 — 1 + s, z) dwy.
0 0

Similarly, setting

1—t+s,eh+z)* — gl =1 +s,2)?
3

o) = 54 - 2Avg)|

1
= 3J (WVYgil —t +s,teh + z)*(1 — t)dt
0

we can show, from the linear growth of g and from ge C3, that E| [§ Y/ (e) ds|?
= 0O(¢?) and that

2

E = 0(¢?).

[[wse+oas— [ woas

By the sample continuity argument just used, [ ¥ (€) ds is continuous and vanishes
at ¢ = 0, so that a.s.

VJ lgl —t + s,z)|*ds = J‘ o)1 — 1+ s,2z))ds.
0 0
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LEMMA A 4. If ge CJ3, then with probability 1, D,{ exists and equals

ds.

1—-t+s
z

J D,g(1 — 1 + s,z)dwg — f JJ' + g'D,g)
0 0

s

Proof of this result is exactly analogous to that of the previous lemma using
the linear growth of g, and the boundedness of J and D,g.
LEMMA A.5. If g€ C23, then ve C! as a function of z, with

Vu(t, z) = E &®[Vk(z,) + k(z)V{(2)],
|Vu| = O(exp &|z|?) uniformly in t for every ¢ > 0.

Proof. One could appeal to the absolute convergence of the differentiated
integrand under E. Instead, note that

ut,z + h) — vl(t,z) = EPLk(h + z,) — k(z,)] + Ek(h + z) [P — &P,

Since ke C? and {(z) e C? a.s. we can expand by Taylor:

k(h + z,) — k(z,) = h'Vk(z,) + f 1 (WV)*k(th + z,)(1 — 1) dt,
0

1
FEHN _ @) = V() &P + j (W'V)? eaz“h)(l — t)dt,
0

whence

u(t,z + h) — v(t,z) — E D[WVk(z,) + k(z)h'{(2)]

1
= f (1 — DE[EPWV)k(th + z,) + k(h + z)(W'V)? &™) dt.

0

The first term is easily seen to be O(|h|?), by Lemma 1 and the order assumption
on D,k. Then

(WV)? & = JLEEMORVL(z + th)? + WD,z + th)h},

so the second term in the last integral above gives at most
1

Ihlzf (1 —1E e“”""[lVC(z + th)* + Y |IDy{(z + th)|,-j] dt = O(h)?)
0 ij

by Lemma 1 and the fact that V{(z) and D,{(z) are in L, uniformly on compact
z-sets. This justifies the formula for Vv ; continuity is shown by applying an ana-
logous argument to the integral formula for V.

LEMMA A.6. If ge C23, then ve C? as a function of z, with

D,u(t,2) = E eD,k(z,) + 2Vk(z)V{(z) + k(z)D,{(2)),
(Dyv);; = O(expe |2I12)  uniformly in t for any ¢ > 0.

Proof. The proof is very similar to that of Lemma A.5, using the orders of
Vk and D,k, the L,-integrability of V{ and D,{, and of course Lemma A.1I.
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LEMMA A.7. Let g and h be nonanticipating Brownian functionals such that
E(§lgl*dt < o, E[§|h*dt < oo, and E exp alg(h) < oo for some o > 1. Then

1
Ef gdwexp (§(h) EJ g'h e gs.
0

Proof. Set y\(s) = indicator of the event

sup exp (4(h) < M,
O=sucss

and recall that E{exp {!(h)|w,,0 < u < s} = 1 as. Then

1 1 1
Ef gdw(l - j Kol h(s) &5 dws) ~E j ¢ g &0 ds.
0 0 0

The function g'h ¢¥™ is ds dP integrable and dominates y,g'h ¢®. Similarly,

1 1
f gdw(l + f Aa(S)h(s) €55 dw)
0 0

is dominated by [ g dwsup,,<, ¢, also integrable because exp (g(h) is an
L,-martingale, so that

E| sup exp (h(h)1* < < 1E &m

The lemma follows by dominated convergence.
LEMMA A8. If ge CL-3, then u(t, z) defined as

v, 2) = Ek(z)exp {1 -{C(-) " 'g(-, 2))
belongs to C*** and satisfies the PDE
v(0, z) = k(z),
v, = 3tr C1 — 1YD,wC(1 — 1) + g(1 — 7,2)'Vv.
Proof. It is easy to see that we have the “semigroup’ property
(10) ol + 0,2) = Ev(t,z + nd)exp {121 5(C(-) " 'g(-,z + 1)),

where
=f C(l —1— 0+ udw,
0
Our method will be to exploit the C2-property of v in z (Lemma A.6), to expand

the right-hand side of (10) into terms that will yield v(z, z) plus an elliptic operator
acting on v. It8’s lemma gives

s
v(t + d0,2) = v(t,2) + Ef Vo(t,z + 1YY C(1 — t — & + s)dw, é*
0

1 S
+:2—Df trC(1 —t— 0 + s)D,v Cl —1 -5+ s)dsé,

0 ,z+nd
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where ( is short for the exponent in (10). By Lemma A.7 we can evaluate the first
expectation on the right as

0
EJ Vo(t,z + n%Yg(l — 1 =8 + s,z +nd)expl 121284 (C()g( -,z + ) ds
0

)
= oVulr, gl —7,2) + Ef Vo(t,z + gl =1~ & + 5,z + n)) ds(e — 1)
(11) °
1
+Ej Yool V0T, 2 + 70)g(1 =T =0 + 5,2 + 1y
0

— Vo(t,z)gl —1— 6 + s5,2)]ds
1
+ f Xs<sVo(T,2)[gl — T — 0 + 5,2) — g(1 — 7,2)]ds.
0

The first expectation on the right of (11) is at most
0
const. E f P (] 4 |z + p2) 2 ds | — 1
0

with { again the exponent in (10). There exist, by Lemma A.1, constants a, § with

o” ! + 7! =1and o > 1 such that Holder’s inequality implies that this bound
is at most

o
const.f EVP oPelF (1 4|z 4 21D GSEV |eF — 1]7.
0

Ford <1 —tand Y=[3[C(-) 'g(-,z + m) o 50l du,
Ed < YV2 + 1Y = o(1) asd — 0,

so that ¢ — 1 — 0 in measure as é — 0. Since ¢** for various é are by Lemma 1
uniformly integrable, they approach 1 in L,. Hence the first expectation on the

right of (11) is 0(9).
The second expectation on the right of (11) equals, by Taylor,
Er ngbjl MYV(Vo(t,z + tnd)g(l —t — & + s,z + tl))dtds.
The first oroouter g:adient in the integrand is
Dtz + td)g(l —t— & + s,z + )
+J1 —t =0+ s,z+ m)Vu(r,z + ).

Applying the growth bound on g, the boundedness of J, and the orders of D,v
and Vv we can bound the second expectation by a constant times

(12) E j Yool + 12 + )2 f expelz + ) di ds.

Hoélder’s inequality and the fact that for ¢ small enough

1
sup sup f Elnd? expelz + nd* dt < o0
0

0561 0=s5é
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show that (12) = o(d). The third term on the right of (11) is clearly o(d), since the
difference in the integrand is O(s) uniformly. Similar procedures for the trace term
give the PDE.

In the next and final lemma of this Appendix we shall suppose that g,(t, z)
are functions of the form

glt,z) =glt,z,u,t,z), wu,esld, n=0,1,2,.---,
with g Lip in its 3rd argument, and satisfying the growth condition
lg(t, z, w)l> < k(1 + |2]?).

The lemma establishes continuity of the functional
Ju,] = Ek(z,) exp {1 {gul -, 2)) (k=2 0)

in the L,-topology of /.
LEMMA A9. u, e A, |u, — upll = 0= Ju,] = Juy].
Proof. Clearly ugy € o/. We give the argument for © = 1; for other values it is
exactly analogous. Fix z and set
A7 = exp {o(go( -, z.) — exp {o(ga( > 2),

@x(t) = indicator of os;‘%t |z <k 'logN,
¥u(?) = indicator of ,3up exp {o(go(-,2)) < M,
xun(t) = oNOY (7).
Then from k(z) = O(exp k|z|) we find
|J{uo] — Junll = Ek(zy)|Af]
< NE@y(1)A}| + const. E e AT[1 ~ yprn(1)]
= NExun(DIAT] + NEJAT|[T — yp(1)]

+ const. E 2| A|[1 — yan(D)].

The second and third terms go to zero uniformly in n as first N T oo and then
M 1 o0, by Holder’s inequality because Lemma A.l1 implies sup, E exp ad
(g« -, 2)) < oo. Using, for simplicity,

C?)(gn) = f)(gn( i) Z-))’ &n = gn(u’ Zu)’

it can be seen that the inequality

[xmn()AY] <

S
f 0 (e5lgo — e )y nn(u) dw,

is valid; for if ypn(s) = O, the left side is 0, and if y,n(s) = 1 the equality holds.
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Whence for C = k(1 + x~?log? N),

f Joun() E55go — g.) dw,

0

lxmn(s)AY] +

l

J AmnALE, dW,
0

Exmn()AY? < 2ME f g0 — g7 du + 2C f Exn(IAL2 du.
0 v O

By Gronwall’s inequality it is enough to show that the first expectation on the

right goes to 0 for s = 1 as n | o0. Since g is uniformly Lip in its 3rd argument, we
have, with

o) = fo Clu)C(uy du,

1 1
E f g0 — g2 du < const. E f lgls, 23) — s, 0] ds
0 0

n 1 eXp - ly/Q(S)y
< const. — s ; '
< const. | L o = ey iz o7 g5y T

Choose first n so that the first integral is less than ¢; then pick m so that
n > m implies

const.
(2m)¥? inf det '/2Q(
’1<

ss=1

2
Ug — U <eé.
o = wl

Appendix B. Let (¢, %) be a Wiener process, and ¢(t, w) an %,-adapted
measurable process, with [ |@|*> df < oo as. The next portion of this appendix
is devoted to this apparently knotty question: When does the (Wald? Girsanov?)
identity

(13) Eexpli(p) = 1

actually hold? E. J. McShane [12] has stressed that the answer to this question is
very relevant to applications of Girsanov’s theorem to estimation and control,
especially to the approach we use here. Several methods for establishing (13) are
known ; however, several are of limited usefulness, and others have been called
in question in point of clarity and rigor [12].

Girsanov [1] proved (13) for bounded ¢, attributing the result to Maruyama.
For a few simple ¢, direct integration over Wiener space by Kac’s method will
prove (13). Lipster and Shiryaev [13] have considered the problem with the
upper limit 1 in {§ replaced by a Markov time 7 of {#,}, or by + c0, and they quote
arguments of Novikov [14] suggesting that the sufficient condition he proves,

l T
(14) Eexpzj~ lp|2dt < oo,
0

is, in the absence of other properties, close to being necessary. Condition (14) will
not cover the physically interesting case of linear growth of |o(t, )| with |£|* or
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sup <5< &%, unless this growth is sufficiently slow. So although it is interesting
and nearly necessary in general, (14) is to this extent unsatisfactory.

Girsanov himself [1], in his currently unsettled Lemma 7, tried to give suffi-
cient conditions for (13) based on what are essentially growth and weak unique-
ness hypotheses. His Lemma 7 was used by the author [2], and elegantly by
Duncan and Varaiya [15], to prove (13) for applications to control theory. It has
been suggested, by the referee, by E. J. McShane, and others, that Girsanov’s
proof of Lemma 7 is at best sloppy. We therefore include a version of this lemma,
using (insofar as possible or necessary) the notation, hypotheses, and concepts of
Girsanov’s paper in its translated form [1]. Page and equation references are to
this work.

On page 297 Girsanov introduced a certain weak sense of uniqueness for
solutions of stochastic equations such as his (3.1): he called the solution unique if
all processes related to some Wiener process by the equation’ induce the same
measure on C,. One can also formulate a pointwise almost sure, or strong unique-
ness, such as would be assured by Lipschitz conditions on 4 and B, but such a
sense is not explicitly used by Girsanov, nor is it needed. Indeed, much of the
difficulty people have had with Lemma 7 arises from what seems to be Girsanov’s
own subsequent imprecise use of his seminal concepts. These have since been
developed and expounded, best perhaps in Lipster’s and Shiryaev’s book [13],
into the two notions of strong and weak solutions, each with its own sense of
uniqueness. Nor does Girsanov indicate how one might prove weak uniqueness
without actually proving the strong form; his remarks about finding solutions of
(3.1) refer one to standard works where Lipschitz conditions are used. We shall
examine carefully how and where weak uniqueness notions can be used in proving
forms of Lemma 7.

Some discussion will precede the statement and proof of the lemma. We shall
use the notion of an Itd process, and that of a process of diffusion type, exactly
as does Girsanov, and shall take it for granted that such processes induce measures
on the space C, of continuous R"-valued functions over [0, 1]. With a process
x(t, w) of diffusion type there can be associated a diffusion matrix B(-,-): [0, {]
x C, — R", R" and a drift (or as Girsanov’s translator calls it, a vector of transfer)
A(-,-):[0,1] x C, — R", each “causal” in that their values for (¢, x)e[0,1] x C,
do not depend on values of x after ¢, and a Wiener process &(t, w) in R", such
that if x(-), is the function {x(t,w):0 < t < 1}, then almost surely for ¢ € [0, 1],

(15) x(t, w) = f Als, x(-),,) dt + f B(s, x(-),,) d&(s, w).
0

0

Here we of course assume that the entries of B(-, x(-),,) are of integrable square
over [0, 1] almost surely, so that the indicated stochastic integral is defined, and
that the components of A(-, x(+),,) are integrable almost surely. In this situation
we say with Girsanov that x(¢, w) is a process of diffusion type with drift A( -, x(-),,)

! There is virtually no loss of generality, and some gain in simplicity, in assuming all initial con-
ditions to be 0; extension to the usual assumption of independent initial conditions is immediate.
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and diffusion B( -, x(-),,), with respect to &(¢, w), started at x(0, w). We also define
U,=o{x:x(s)e A, ABorel in R",0 < s < t}.

This is the g-algebra of C, generated by the past up to .

The role of uniqueness in proving Lemma 7 is elucidated by the following
concepts. Let x(t, w) be a stochastic process with continuous sample paths, and
let T be a Markov time of x(-,-), i.e., a nonnegative random variable such that
any event {t = t} is measurable on the c-algebra generated by {x(s),,s < t}.
Then there is a causal functional T:[0,1] x C, — {0, 1}, which we call the kernel
of 7, such that T(t,-) is U,-measurable and

Xiezg = T(t, x(+)o)-

Alternatively, there is a nonincreasing system of Borel sets B,e U, with {t = ¢}
={w:x(-),€B,;} and B, = {feC,:T(t,f) = 1}. By extension, any such func-
tional defines a Markov time and is called a kernel.

We say that x(t, w) is a solution stopped at 7 if and only if (15), or equation
(3.1) of Girsanov, perhaps holds only up to 7, i.e., almost surely ¢t < t implies

x(t, w) = J: A(s, x(+),)ds + J: B(s, x(-),) d&;.

A solution stopped at 7 is weakly unique if and only if for any process y( -, - ) with
continuous sample paths, not necessarily defined on the same probability space,
and any Markov time « of y(-,-) such that x and 7 have the same kernel T, the
measures induced by (x, ) and (y, k) are the same, i.e., if 4 is Boreland 4 N {T(z, y)
=1}eU,, then P{x(-),e 4,7 2 1} = P{y(-),€ 4,k = t}.

We now offer the following modified version of Girsanov’s lemma.

LemMMA 7 (after Girsanov). Let x(t, w) be a process of diffusion type with drift
A(+,x(+),) and diffusion B(-,x(-),) with respect to the Wiener process (¢, F),
constituting a solution of equation (3.1). Let ¢(t, w) be adapted to %, and of integrable
square almost surely, and let y(t, w) be an Itd process with drift

and diffusion B( -, y(-),,) with respect to ({,, &). Suppose that for each ¢ > O there
exists N = N(g) < oo, and a nonincreasing system (of Borel sets of C,) Cy(t),
te[0, 1], such that Cy(t)e U, and s < t => Cy(t) = Cy(s), and
(@) Dy(t) = {¥(- ) € CN(1)} € £,
(b) P{x(-),eCx(1)} > 1 — ¢,
(©) lo(t, o)l < N if y(-), € Cx(1),
(d) feCn(s), fECNI), s<t=>ts <71 <If¢Cy(T) and yet fe Cyv) for
v<T,
(e) with Ty the kernel defined by the system Cy(-), the solution x(t, w) stopped
at Ty(-, x(+),) is weakly unique.
Then E exp {(p) = 1.
Proof. Define, with Girsanov, @,(t, ®) = ¢(t, ®)xp,, and

(16) W(t, ) = ¥t ) — f B(s., 1+ )o)on(s. @) ds.
0
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We first prove the set identity stated at the bottom of page 297:

{w:yn(+), € Cxlt)} = Dy(1).
To see this note that w e Dy(t) implies @ (s, w) = ¢(s, w) for 0 < s < t, whence by
(16) and monotonicity of Dy(-),
IS, w) = y(s,w) for0=s=t.
Since Cy(t) € U,, we find yy(-), € Cy(t), because by definition Dy(t) = {w:)(-, ®)
€ Cy(t)} . Conversely if yy( - ), € Cx(t), then (monotonicity)
yN(')weCN(S)a 0§S§[.

Now suppose that y(-,w)¢ Cy(t). There are two cases according as or not
y(-,w)e Cy(0). Since y(0,w) = yy(0,w), and y(-,w)e Cy(0) is a condition on
y(0, w) only, it is clear that y(-, w) e Cy(0) if and only if y(-),€ Cpy(0). Soifr = 0
there is nothing to prove. If t > 0, in the former case y( -, @) € C5(0), and by pro-
perty (d) there is a t with 0 < 7 < ¢ such that

y(',CO)GCN(S), 0§S<T,

¥+, w) ¢ Cpx).
This implies that w e Dy(s) for 0 < s < 7 so that also
(pN(sow):(p(Sow)o O§S<T7
ya(s, w) = y(s, w), 0s<rm,
and by continuity, yy(t,w) = y(t, w), and thus yu(-), € Cy(1), contradicting the
hypothesis. In the latter case y(-, w)¢ Cy(0), whence yy(-), ¢ Cy(s) for all s = 0,
again contradicting yu( ), € Clt).

Returning now to the main line of proof, we see that since ¢ is bounded,
Eexp {§(py) = 1. Hence by Girsanov’s Theorem 1 the functions

&tw) — Lms,w) ds = &yt )

under the measure dPy = exp {}(¢y) dP form a Wiener process. Under the same
measure, the pair {yn(-, -), Ty(-,¥(*),)} form a solution of (3.1) stopped at
Ty(-, ¥(+),)- Hence by the uniqueness of these stopped solutions,

P{x(-), € Cy(1)} = Py{yn(-), € Ca(D)}
= FN{)’( )€ CN(I)}
= ﬁN{DN(l)}

= [ exotlopo)
Dn(1)

The probability on the left above can be made arbitrarily close to one by a
sufficiently large choice of N, so that P(Q) = 1.

We believe that the above arguments show that Girsanov’s proof, although
untidy and, in its translated form, beset by typos, was basically correct except for
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the portioninlines 13—-16 on page 298 using uniqueness, which seems to be confused
and incomplete. The point, which I owe to the referee, is that y(t, w) under Py is
known to satisfy the desired equation with respect to the Wiener process &, only
while y( - ), € Cy(t). It is perhaps plausible, but nevertheless as we see it not obvious
nor an immediate sequitur from Girsanov’s assumptions, that

Py{y()oe CN(1)} = P{x(-), € Cp(1)}.

This equality is assured by formulating the uniqueness hypothesis in terms of the
kernels Ty associated with Cy(-).

Remark 1. In many applications, including that of this paper, the conditions
A =0, B(t, f) = B(t), det B(t) # 0 obtain; these obviate the uniqueness assump-
tion (e) on the stopped processes.

Remark 2. Varaiya and Duncan [15] have given a proof of (13) from the at
most linear growth of |¢(t, w)|? with |&|?, using Girsanov’s Lemma 7. It is also
possible to extend the random time change argument of Kailath and Zakai [16]
to the vector case ; when ¢ is of linear growth their uniform boundedness assump-
tion is gratuitous. It has seemed to us that in this physically motivated special
case there should be a simple proof. Such a proof is now sketched.

With T(t) = [|¢|* ds and new Markov times

ty = inf {t:4 V T(t) > N} A 1

set aft) = exp Lo(@), o = a(l), ay = afty). It can be seen that ay — o in probability,
and Eay = 1. By a modification of the argument of Lemma A1 herein, we can show
that if there is a constant f such that a.s. for every t € [0, 1],

o @) = B+ sup [E)°),

then there exists 4 > 1 such that

sup Eajy < 0.
N

It follows that ay are uniformly integrable functions tending to « in measure,
whence also in the mean, i.e., Ela — ay| — 0, s0 Eax = 1.

Appendix C. Finally, in conversation, A. V. Balakrishnan has asked on how
large a set of time points the process {s(t)'z,, P} can vanish (notation as in § 3). This
question is very natural, in view of the optimal law (2). The answer is the expected
one, namely, that these zeros are with probability one a set of Lebesgue measure
zero. This result can be proved in several ways, the easiest of which just reduces it
to the same property (well known) for one-dimensional Brownian motion. For
simplicity we assume that the diffusion matrix C(-)is C!.

Leth:[s, 1] - R%and f:[s, 1] » R be C' curves, with h( - ) not passing through
the origin, and consider, in thg notation of § 3, a process z, = z + % C(u) dw,,
1 = t = s, under the measure dP = exp { dP with

{= f C(u)™ 'glu, z,) dw, — %f |C(u)™ 'g(u, 2,)|* du.



FULL ‘““BANG’’ TO REDUCE PREDICTED MISS 83

We show that
P{meas (ue[s, 1]:h(u)z, = f(u)3 = 0} = 1.

By Ito’s lemma,
t
z, =z + C(t)w, — C(s)w, + f Cuw, du,

so the zeros in question are the same as those of
h(t) C(t)w, j’ ww, du + h(t)[z — C(s)w, — f(1)]
|h(ey C( )I [h(t) C(2)
since we are assuming as before that CC’ > 0. This is of the form b, — B(t, w) with

B(-, w)a w-nonanticipating C; function, and b a Wiener process in one dimension
under P. Now let for ¢ > 0,

.

= {w:meas (uels, 1]:h(u)z, = f(u) > ¢}.

By Girsanov’s theorem [1] {b. — B(-,w), P} is equivalent to Wiener’s process,
so P(A,) = 0 for ¢ =2 0. However, by Lemma A.l and Hélder’s inequality, for some

o > 1 and constant K,
p(a) < ( |
A

KexpI 7* PHe=1)(4).

1/a
e dP) P 1(4,)

&

Thus P(4,) = 0
To apply this result to s(t)z, we have only to take f = 0, and to note that
k # 0 implies that s(t) # 0.
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THE EXISTENCE OF VALUE IN STOCHASTIC
DIFFERENTIAL GAMES*

ROBERT ELLIOTTt

Abstract. Using the techniques of Davis and Varaiya [3], [4] a two-person zero sum differential
game is considered, whose dynamics are interpreted using the Girsanov measure transformation
method. If the Isaacs condition holds it is shown that the upper and lower values of the game are equal
and there is a saddle point in feedback strategies. The central point of the mathematics is that
analogues of the time derivative and gradient of the upper value function are constructed using
martingale methods; because the Hamiltonian satisfies a saddle condition at each point these then also
give the lower value.

1. Introduction. The following is an extension to differential games of the
work of Davis and Varaiya [3],[4]. In particular upper and lower values for
two-person zero sum games are introduced and it is shown that if the Isaacs
condition holds then the upper and lower values are equal and there is a saddle
point in feedback strategies. This result is stronger than the saddle-point result
established in[5] and is probably the best possible, because Lemma 4.4 shows that
the Isaacs condition must be satisfied at all relevant points. Solutions of the
stochastic dynamical equations are defined using the Girsanov measure transfor-
mation method, and martingale decomposition results are quoted from [8]and [4]
to obtain the analogue of the Hamiltonian.

We suppose the evolution of the system is described by a stochastic functional
differential equation of the form

(1.1) dx,=f(t,x,y,z) dt+o(x, t) dB.

Here t €[0, 1]and B is an m-dimensional Brownian motion. Write € for the space
of continuous functions from [0, 1]to R™. x denotes a member of € and x, denotes
the value of x at t. We wish to consider a solution of (1.1) which at time O has an
initial value xo,€ R™. The drift term f depends at time ¢ on the past{x, : s =t} of the
process. The payoft is of the form

(1.2) P(y,z)=E{g(x(1))+L h(t, x,y,z) dt},

where
(i) g and h are real-valued,
(i) 0=g=k and 0= h =k for some constant k,

(iii) g and h satisfy the measurability properties described below.

A player J, chooses a feedback control y(¢, x) with values in a compact metric
space Y with the object of maximizing the payoff and a player J, chooses a
feedback control z(t, x) with values in a compact metric space Z with the object of
minimizing the payoff. At time ¢ the controls are allowed to depend on the past of
the process.

* Received by the editors September 24, 1974, and in revised form December 9, 1974.
+ Department of Pure Mathematics, University of Hull, Hull, England.
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2. Notation. The situation treated below is similar to that of Davis and
Varaiya[3], [4]so we continue a description of their notation, slightly modified.

Write &, for the o-field of € generated by {x, : x € €, s =t}. We suppose the
m-dimensional Brownian motion B, is separable and defined on an underlying
measure space (2, &, u). Write 9 for the o-field of [0, 1] X € consisting of subsets
D which have the property that DN{t}x 6€}e &, for each t€[0,1] and
D N{[0, 1]x{x}} is Lebesgue measurable. Benes§ [1] proves that a function is &
measurable if and only if f(t, -) is % measurable for each ¢ and f(-,x) is
Lebesgue measurable for each x.

The m X m matrix o = (o) satisfies

(i) for 1=i,j=m, o, : [0, 1]X €~ R is measurable with respect to &,

(ii) o (¢, x) is nonsingular,

(iii) each oy satisfies a uniform Lipschitz condition in x.

The equation

dx,=o(t, x) dB,, x(0)=x,e R™

then has a unique solution x, and it induces a measure P, on its sample space
(6, #,) according to the formula

PyA =plow: x(w)e A}, Ac%,.
Write @ for the set of functions ¢ : [0, 1]X € - R™ which are measurable with
respect to & and which satisfy
(£, x)| = M(1+|x[).

Write a, for the matrix o (¢, x)o'(t, x) and for ¢ € ® write

1

g(d’):J’O b, - a’’ dx‘—%J’o b, - ax_ld’x dt,
where

¢ = d(1, x).

Define the measure P, on (6, %,) by: P,A =IA exp ({(d)) dPy, A € F,.
Then we can quote the following results from Girsanov [7] and Benes§ [2].
LEMMA 2.1.

(i) P, is a probability measure,

(i1) P, is mutually absolutely continuous with respect to Py,
(iii) {w, t€[0, 11} is a Brownian motion under P, where

do,=dB,— o '(t, x)$(t, x) dt

=07 '(t, x)(dx,— ¢(t, x)) dt.
W (resp. 3) is the o-field of Borel sets of Y (resp. Z).
An admissible feedback control for J; is a measurable function

y ([0, 11X 6, D)>(Y, »)
and an admissible feedback control for J, is a measurable function

z:(0,1]1x%6, D)~ (Z, 3).
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Write M, (resp. ) for the admissible controls for J; (resp. J;). R™ is always
supposed given the Borel o-field 2™ and the drift function f is supposed to satisfy:
(i) f:[0,1]x€XYXZ->R"™ is measurable with respect to the o-field
(ii) for each (¢, x)€[0, 11X %, f(t, x, - - -) is continuous on Y X Z.
(iii) there exists a constant K such thatforall (¢, x, y, z)€[0, 1]X € X Y X Z,

|£(t,x, y, 2)| = K(1+x]),

where || - || is the uniform norm in €.
For y e M, and z € M, and (¢, x) €[0, 1] x € write

£ x)=f(t, x, y(t, x), z(t, x)),
h>*(t, x) = h(t, x, y(t, x), z(t, x)).

We see f** € @, so writing Pp- as P,,, Lemma 2.1 can be used to say that under
measure P,,,

dx, = f(t, x, y(t, x), z(t, x)) dt + o (t, z) dB,

where {B.} is a Brownian motion. Lemma 2.1, therefore, enables a solution of the
dynamical equations (1.1) to be interpreted under very general hypotheses on f
and o.

Suppose E,. denotes the expectation with respect to P,,. Then the payoff
corresponding to y € ., and z € M, is

P(y, z)= Eyz(g(x(l))+f h(t, x, y(t, x), z(t, x) dt)>.

3. Upper and lower values. Suppose J, has chosen z € /(,. Then for any y € 4,
the expected remaining payoff from time ¢ [0, 1] is

W, (1) = Eyz<g(x(1))+ j h¥ (s, x) ds}?i,).

Now {¢,. : y € M} is a subset of L*(€6, %, P,) bounded above by 2k. By Theorem
1V.8.23 of [6], L™(%€, %, P,) is a complete lattice so the supremum

Wi=V ,.(t)

yeMy

exists in L. Note that

Wi=g(x(1)) a.s.
Define

P¥=Wi=supP(y, z).

yeMy

The results of [4] can be adapted (we are now working with a supremum
instead of an infimum) to deduce the following.
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LemMA 3.1. For each z € M,:
(i) there exist processes { AW 7}, {VW i} with values in R and R™ such that

1
J VWi dt<oo a.s. (P),
0

1
EJ | A Wi dt<oo
(1]
and

wW:= p¥ +j /\Wids+[ VW2dx, a.s.(P,),
0 0

(ii) for any y e M,,
AWi+VW: - f(t, x, y, z)+h(t, X, y, 2) =0

for almost all (t, x), and y* € M, is the optimal reply to z € M, if and only if equality
holds almost everywhere in the above when y = y¥.
As in [3] the optimal reply to z € #, can then be shown to be

yi(t, x) = y¥(t, x, VWi(t, x)),
where y¥(1, x, p) is the measurable function from ([0, 1]X € XR™, & * R™) to
(Y, ) maximizing
p-flt, x,y, z(t, x))+ h(t, x, y, z(t, x)).

Consequently, we can conclude as follows.
LEMMA 3.2. For each z € M,, J, has an optimal reply y¥ € M, such that

P(y¥, z)=sup P(y, z).

yeMy

Now consider J, who in the “upper game” that we are considering must
choose his control z € A, first. The problem is: can J, choose z € /, to attain

inf sup P(y, z) = inf P(y%, z)?

zeMy yeMy zeMy

For any z € M, and t€[0, 1], if we assume J; plays his optimal reply, the
remaining payoff from time ¢ onwards is

1
b= Bz g+ | wie(s ) sl ).
Again, because L*(%6, &, P,) is a complete lattice, the infimum

Wi= A ¢.(1)

zeMy

exists in L*(%€, %, P,).



STOCHASTIC DIFFERENTIAL GAMES 89

DEFINITION 3.3. W/ is the upper value function of the differential game.
Notice that Wi = g(x(1)) a.s. (Po) and define P* = W{ =inf,_4, P(y%, z).
LeEMMA 3.4. For each z € M,, >0 and t€[0, 1],

t+38
W= Ey;,lU ho+* ds|?7ﬂ] +E,;: [WilZ] a.s(P).

This result is proved by modifying the method of Theorem 3.1 of [4].

LeMMA 3.5. W{ can be expressed as the difference of a martingale and an
absolutely continuous increasing process.

Proof. The proof is adapted from Lemma 5.1 and Theorem 5.2 of [4].

Choose a sequence {z,}< ., such that P(y¥,z,)=4, (0) is monotonic
decreasing to Wy = P*. Then f”=»= € ® for each n. As in Theorem 2.2 of [4], the set
{exp &(¢) : ¢ € D} is weakly compact in L'(€, &, Po) so there is a subsequence,
again denoted by {z,}, and a € ® such that exp &(f**») converges to p*
=exp £(¢) weakly in L'(€, &, P,).

Define P* by putting dP* = p* dP.

The proofs of Lemma 5.1 and Theorem 5.2 of [4] then go through to show
W has a right continuous modification, which we suppose is the version taken.
Also {W,— E¥[W,| %], %, P*} is a potential and so, from Theorem VII T 29 of
Meyer [8], W — E*[ W,|%,] can be expressed as

E*[A||F]- A,

where A, = j:) a, ds for a process a, € L'(P*).
Further, it is known that the martingale E*[ W, + A,|%,] can be expressed as a
stochastic integral of the Brownian motion

do =p~'(dx — ¢, dr),

and so, as in [4] we have the following representation.
LEMMA 3.6.

(i) There are processes {\ W/}, {VW;} taking values in R and R™ respec-
tively, adapted to %, such that

1
J VWi di<oo as. (Po),
0
1
EJ | A\ Wil dt<o,
0

and W =P*+[, \ Wi ds+J VW dx, a.s. (P).
4]
(i1) For any z € M.,
AN Wi+VW; - f(t, x, y¥(t, x), z(4, x))+ h(t, x, yE(t, x), (4, x)) =0
for almost all (t, x). z* € M, is optimal if and only if equality holds in the above with
z=2z%
For (¢, x, p)€[0, 11X € X R™ we introduce the Hamiltonian:

H(t,x,p;y,z)=p - f(t,x,y,z)+h(t, x, y, 2).
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Then for fixed (¢, x, p), H is continuous on Y X Z. Suppose S (resp. T) is a
countable dense subset of Y (resp. Z). Then for z € Z,

H(t, x, p; y¥, z)=max H(t, x, p; y, z) =sup H(t, x, p; y, z)
yeyY YeS
is continuous in z.

Further, for fixed (¢, x, p) and z € Z,
{(t,x,p) :max H(t, x, p; y, z2)<a}= U {(t, x, p); H(t, x, p; y, 2)}<a

yeY yeS

and so, max,.y H(t, x, p; y, z) is measurable with respect to @ * R™ in (t, x, p).
Now for fixed (¢, x, p)

min max H(t, x, p; y, z) =inf sup H(t, x, p; y, 2),

zeZ yeY 2€T yeg

SO
{(t, x, p) : mzin max H(t,x,p;y,z)<a}= ZLEJT{(t, X, p): max H(t, x, p; y,z)<a},
and so by Lemma 1 of Benes [1] there is a measurable function
¥ ([0, 1]X EXR™, D* R")~>(Y, »)
such that
H(t, x, p; y%(t, x, p), 2*(, x, p)) = min max H(t, x, p; y, )

for all (¢, x, p).

If J, is to choose his feedback control first, therefore, the best he can do is to
play z*(¢, x) =)z*(t, x, VW™(¢, x)) because then, as in Theorem 1 of Davis [3] it
can be shown that

A Wi+ W £t x, y5(t, x), 2%t x)) + h(t, x, y5(t, x), 2%(1, x)) =0

and

P(y%, z*)= inf supP(y, z).

zeMy ye My

Therefore, we can summarize the above by stating the following result.

THEOREM 3.7. Consider a two-person zero sum stochastic differential game
whose dynamics are described by (1.1) and whose payoff is given by (1.2). If the
minimizing player J, must choose a feedback control first, then the players can
choose controls z* € M, y¥-€ M, which attain the “upper value”

inf sup P(y, z) = P(y%, z*).

zeMy zeM,



STOCHASTIC DIFFERENTIAL GAMES 91

Remarks 3.8. If the maximizing player J;, must choose his feedback control
first, then there are controls y*e.,, z} e .M, which attain the lower value

sup inf P(Y, Z)=P(Y*, ZT")-

yeMy zeM,

4. The Isaacs condition. H[¢, x, p; y, z] is the Hamiltonian defined in § 3.
DerINITION 4.1. We say the Isaacs condition holds if for (i, x, p)
€[0, 1]x€xR™,

max min H(t, x, p; y, z) =min max H(t, x, p; y, z).
zeZ yeY

yeY zeZ

For a fixed (¢, x, p) let y* be such that max, H[t, x, p; z]= H[¢, x, p; y¥, z]and
let z* be such that

min H(t, x, p; y¥, z) = H(t, x, p; y&, z¥) =min max H(t, x, p; y, z).
z z y
Similarly z% and y* are such that

max H(t, x, p; y, z¥) = H(t, x, p; y*, z%)
y
=max min H(t, x, p; y, z).
y z
Consequently

H(t, x,p; y*, z*)=minmax H(t, x, p; y, z)
z y

and H(t, x, p; y*, z*) Zmax, min, H(t, x, p; y, z), so if the Isaacs condition holds,
(y*, z*) is a saddle point for the function H(t, x, p; y, z).

Now in the discussion of the upper value in § 3, the control z € /(, was optimal
for J, playing first if and only if

A WEHVW! - f(t, x, yE(t, x), 2%t x)) + h(t, x, yE(1, x), 2%(t, x))

=min (A Wi +VW/ - f(1, x, y¥(t, x), z(t, x)) + h(t, x, y¥(t, x), z(t, x)))

zeMy

=min max (\ W/ +VW/ - f(t, x, y(t, x), z(t, x)) + h(t, x, y (¢, x), (¢, x)))

zeMy yeM,

=0.
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We recall that z* had the form z*(s, x, VW), where z*(t,x, p) is the
measurable function that attained the minimum of

max (p - f(t, x, y, ) + h(t, x, y, 2)).

Suppose now that y*eJ#l, is the feedback control y*(t, x)=y*(t, x, VW),
where y*(1, x, p) is the measurable function that attains the maximum of

mig (p-ft,x,y, z)+h(t, x,y, 2)).

From the remarks above we see that if the Isaacs condition holds the pair of
feedback controls (y*, z*)e M, x M, is a saddle point for the Hamiltonian
H(t, x, VW/; y, z) for almost all (¢, x).

Consequently for any other (y, z) € #, X #, we have,

A W+HH(t,x, VW5 y(t, x), 2 x) S A\ W+ H(t, x, VW5 yE(L x), 2%(1, x))
=AW+ H(t,x, VW75 y*(1, x), 2*(t, x))
=0
=AW/ +H(t,x, VW/; y*(1, x), z(t, x)).

We now quote Theorem 5.1 of [4]in a form adapted to our differential game.

THEOREM 4.2. The admissible control z* € M, is optimal for J, in reply to
y* € M, if there is a constant J* and processes {n,} < R and {£}< R™ adapted to F,
and satisfying:

() J,1& dt<co a.s. (Py),

(i) E |, &dx, =0,

(iii) x(1)=g(x(1) a.s. where x(t) = J*+[, n,ds+], & dx,

(V) me+& - fI R 20=n,+& - 77 +h!™, for almost all (t,x) and
each z € M,. Then inf, ., ¥, (t) = x(t) and P(y*, z*) is the minimum payoff in
reply to y* € M.

We can now state our main result.

THEOREM 4.3. If the Isaacs condition holds, then there is a pair of admissible
feedback controls (y*, z*) € M, X M, which give a saddle point for the payoff

P(y, z*)= P(y*, z*) = P(y*, z).

Consequently, the upper value function of the differential game is almost surely
equal to the lower value function.

Proof. We observe that, taking J* = P* the processes {/\ W/}, {VW;} satisfy
the hypotheses of Theorem 4.2 and so P(y*, z*) =inf,. 4, P(y*, z).

We already know that

P(y*, z*)=sup P(y, z*)
yeMy

and so the result is proved.
Finally we prove what is almost the converse to the above theorem.
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LEMMA 4.4. Suppose the upper value function equals the lower value function
for almost all (t, x), that is,

W. = inf sup ¢,.(t)=sup inf ,.(1)=W,.

zeMy yeMy yEM| zEM)
Then for almost all (1, x)€[0, 1]1X €,
min max H(t, x, VW/; y, z) =max min H(t, x, VW y, z).
yeY zeZ

zeZ yeY

Proof. The constructive method of obtaining the optimal controls described in
§ 3 implies that the respective infima and suprema are attained, so the
hypothesis implies there are admissible controls (y*, z*) € #, X M, such that

‘!fy*,z*(t)z W1+= Wz_
Now as in Lemma 3.6,

W,*=P++J' A Wfds+J' VW, - dx,
0 ()

and

(4.1) AWi+VYW, - Ik =0= A Wi +VW, - 7+ b

for almost all (¢, x) and each z € A(,.
Now for any y € #, and 6 >0,

t+8
Wi =B, W ONFIZ B, | i sl
with equality if and only if y is optimal. Because W, = W,

+8
W/ —E,.«(WTt+68]|F)= —Ey,z*U [AW!+VW! - 2] ds|9‘q]
and so
+&
E”*U (AW +VW? ~f§'2*+h§'z*) dslg'«’,] =0.

Taking the product of this expression with any 6 € L*(€, %, P,), dividing by &
and letting 6 » 0 we can conclude as in [4, p. 246] that

AWI+VW!- 7+ h2> =0, tel0, 1]
Combining this inequality with (4.1) above we see that if W, = W, then

min max H(t, x, VW;; y, z) =max min H(t, x, W/, y, z)
z y y z
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for almost all (¢, x). That is, the Isaacs condition holds at almost all “‘relevant”
points.

5. Final remarks. By multiplying h by the characteristic function I, of time
up to some stopping time 7=1, nonfixed time games are included in our
treatment. If the Isaacs condition does not hold, relaxed controls can be intro-
duced.

Acknowledgment. The author is indebted to Professor Varaiya for stimula-
ting discussions.
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UNIFORM CONVERGENCE OF THE
POTENTIAL FUNCTION ALGORITHM*

LLOYD FISHERt anD S. J. YAKOWITZ#

Abstract. The identification problem of concern here is the estimation of a real function f(x) by
means of noisy observations {(X,, f(X;)+n:(X;))} of its pairs, the X;’s being chosen independently
according to some fixed law P. The approach taken for estimation is the ‘‘potential function” method
(its sources are referenced herein), to wit: Choose f, arbitrarily and define the sequence {f,} by the
recursive relation f,.(x) = f,(x) + ¥ (f(Xo11) + 1(Xo11) = fu(X,+1)) K(X,14, X), K being a positive sym-
metric kernel. From earlier publications it is known that under certain mild restrictions E[| f, — f|[*]1-> 0
in the L,(p)-norm. Rates of convergence have been obtained in the restrictive case that K(x, y)
=37 A2p.(x)pi(y) and f(x)espan {¢,. 1 =i=N}. The contribution of this paper is to prove that
while no uniform bounds exist in the L,(p)-norm (we prove this) if {¢,} is an infinite set, we do have
E[|f - f.JE1< C.(If) for the norm ||g|k=[f g(x)g(y)K(x, y)p(x)p(y) dx dy and {C,(r)} a sequence
converging to 0 for each positive r. A final result concerns the rate at which increasing finite-
dimensional projections of f, — f converge to 0 in the L,(p)-norm. From our methods it is seen that if
f& V =span ({¢:}), then f, converges in the mean to the projection of f on V.

1. Introduction. Let {X;} denote an independent sequence of observations of
the probability experiment (&, &, P) and f a real-valued function defined on &.
Sequentially the pairs (X, f(X.)+7.(X,)) are made known, 7,(X,) being a
random variable independent of (X, X5, -, X,-;) and having a variance
uniformly (in n and X,) bounded by the positive number V. The problem
confronted here is how to approximate f by f,, f. being determined by the pairs
{(X, f(Xi) +m:(X))), i = n}insuchaway that f, - f at some rate depending only on
a norm of f.

The only approach to the above identification problem in this generality
which the authors have found in their survey of the literature is the ‘“‘potential
function method” which is reviewed in Aizerman et al. [1]. The research results
reported here concern the following version of the potential function method.
Assume P in the probability experiment has density p with respect to some
measure u, and let {¢:} denote some orthonormal sequence in L,(p) (the space
of functions with inner product (f, g) =ff(x)g(x)p(x)u(dx)). Let K(x,y)
=Y Al¢i(x)di(y), where the A;’s are chosen so as to assume that K (called the
“potential function”) is the kernel of a positive Hermitian operator on L,(p). With
K so defined, the potential function method is to form a sequence {f,} of functions
by the iterative formula

farr(x) = fu (%) + ¥u (F(Xoi1) + Nt (Xosr) = fu(Xoi 1)) K (X1, ),
{v:} being a sequence of positive numbers which sum to infinity, but such that
Y yi <. f, is selected arbitrarily. From Aizerman et al. [2], it is known that if
fe€ La(p) is in the span of the ¢;’s, then E[|f, —f|']- 0 in P-probability. There are
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no bounds supplied concerning the rate of this convergence, and, in fact, it is
proven here that regardless of fo,

(1.1) sup E[||f.—fIF1=r* forevery n.
Ifl=r
Braverman and Pjatnichii [4] have supplied a rate of convergence under the very
restrictive assumption that the set {¢;} be finite.
The main result of this study is to show that although (1.1) is true, if we define
the slightly different norm ||g|x to be

lelk= | | K(x.y)@epCop(yImldnuiay)

then for every positive number r, one may compute a sequence {c,(r)} converging
to 0 such that

(1.2) E[|f.— flk1< Cu(r)

whenever [|f[|<r and f, is taken to be the 0 function. Let us compare the two
norms: If g=Y ¢, then ||g|F =Y c¢7 and ||g|k=Y Aict.

It appears that the potential function method may be useful, for example, in
finding the shape of ore bodies, aquifers and, as described in [1], [3] and [6],
performing supervised learning in pattern recognition problems.

Although we have not seen mention of it in the literature, the potential
function method appears to be particularly suited to identifying a line or surface u
which is known to be a solution of a differential equation

(1.3) Lu=f,

where L is a given self-adjoint operator on L,(p), but the forcing function f in
L,(p) is not known. (Such a situation arises in studying the aquifer in the Tucson
basin, for example. Hydrologists believe they know the equation for the pressure
head, but the aquifer recharge from rain and underground sources cannot be
measured.) Under these circumstances, one may conclude (from (4.29) in [5], for
example) that the Greens function G(x, y) for L has the representation

G(x,y) =L B du(x)i(y),

where the ¢:’s are eigenfunctions which are orthogonal with respect to the L,(p)
inner product and the B;’s are the associated eigenvalues. If the 8;’s are positive,
then G itself is a positive symmetric kernel and therefore suitable as a potential
function. Otherwise, one may be assured that the function

K y)= [ G Gl yp(In(d) =5 B (04()

is positive symmetric and that u is in the span of the ¢:’s. As explained and
demonstrated in [5] and elsewhere, it is often relatively easy to find G(x, y).

If the operator L in (1.4) is an integral operator with positive symmetric L,(p)
kernel of the form

1) = [ wtoK s yp(om(dx)
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whose spectrum is discrete, then K itself is a suitable potential function for the
potential function algorithm. For we may represent K as K(x, y) =Y Bipi(x)di(y),
where the ¢;’s are orthonormal eigenfunctions for the integral operator and B;’s
the associated eigenvalues.

While we have not found reports on numerical experiments using the
potential function method, our own studies (which we are preparing to submit for
publication) indicate that the method works well in comparison to alternative
heuristic schemes. We report a typical experiment. Define Z to be the finite set
{0.00,0.01,0.02, - - -, 0.99, 1.00}. We take the target function f(x) to be sin (4x),
xe€ . The noise {7,} is a sequence of independent observations uniformly distri-
buted on[—1/2, 1/2]. The X;’s are chosen uniformly on &. The potential function
is K(x,y) =exp(—10(x — y)*). From Theorem 14 of [1], this is a potential function,
and its orthonormal functions ¢, are complete in L,([0, 1]). The weights {v,} are
determined by v, =(20+n'"?)~". For purposes of comparison, we chose as a
benchmark a heuristic nonparametric interpolation function which averages when
it can and otherwise interpolates linearly. Specifically, this interpolation function
fn is defined on & by the rule: (i) f.(x)' = average {f(x;) +m;(x;) : x; =x, j=n}. If
the set in (i) is empty, (ii) f.(x) is gatten by linearly interpolating between average
values at x; and x;, where x; and x; are the nearest points on each side of x which
have been sampled by the nth iteration. (iii) If one side of x hasn’t been sampled,
f.(x)" is simply the average value at the point closest to x which has been sampled.
We have found that this “averaging function’ works relatively well in the noisy
observation case. In Table 1, we have also given the error associated with
Lagrange and cubic spline interpolation. In the table, we have given the rms error,
where

rms error = [Z (f(x) —f,.(x))’] " +100.

TABLE 1

A comparison of interpolation methods for noisy sine samples

Number of Samples 100 200 300 400
Potential function 0.217 0.157 0.116 —
Averaging function 0.259 0.231 0.209 —
Lagrange interpolation* 0.292  32x10° — 0.173
Cubic spline interpolation* 3418.000 0.284 — 0.164

* with averaging at multiply-sampled points

2. Principal results. Let (%, o, u) be a sigma-finite measure space. Let p(x)
be a probability density with respect to u. Let X;, X, - -, be a sequence of
independent, p-distributed random elements of & and %, (conditionally on X;) a
sequence of independent mean-zero random variables with variance bounded by
a constant V<00, Let ¢y, ¢, - - -, ¥, ¥, - + -, be an orthonormal basis for L,(p),
that is, with the inner product (g, h) = | g(x)h(x)p(x)u(dx); g’ = (g )

Let K(x, y)=Y,A7¢:(x)d:(y), where |[K|=R and Y, A7 < 0. Let

f=h+o+¢,
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where

(i) JR*(x)p(x)u(dx)=0,
(i) ¢+ isin Ly(p),
b= Y. cip; and g= ) d;.
Let v, >0,Y, v, =400, ), yi<ooand Y, =f(X))+.
The sequence (Y, X1), (Y2, X5), -+, is observed, and f is estimated as
follows. Let f, be a fixed element of L,({¢1, ¢», - - *}). Recursively define f, by

(2.1) far1(x) = fu(X) = Yu (fo(Xos1) = Yor ) K( X1, X).
For f, g€ L,(p), let
(f, 8)x = ” f)K(x, y)g(y)p(x)p(y)p(dx)u(dx)
and
Iflfe= (£, Px.

THEOREM 1. Under the above assumptions:

(i) E[(f.—¢, fa=d)x]= 0,

(i) E[(f.—, f—d)x]=C(IfID,

where lim, C,(||fl) =0 and C.(r) may be chosen to be nondecreasing in r and
nonincreasing in n.

Proof. (i) follows from (ii) so that it is sufficient to prove (ii). The proof follows
the lines of Lemma 1 of Aizerman, Braverman and Rozonoer [2] and is similar to
many of the proofs in the area of stochastic approximation.

Let

a=[f.~fI" and B =|f—fl

Let F,={(Y1, X1), - - -, (Y., X,)}. We first show that E(«;) is bounded.

Elay ol 1= B [ ()~ 0+ 00~ 0 p(0m(do|
22 a2 [ ()~ RO - (PRI
# B | G0 =0 PR 0IE]

The middle term of (2.2) is equal to

2 J J J (R(X) + & (X) +§(X) +12(X) = £u(X)) ¥ AT (X)bi(x)
(£ () = (h(x) + b (x) + ¥ (x))p(x)p(X) dF (0| X) s (dX)pa(dx).

Using

(a) For each X, | ndF(n|X)=0,
(b) h(X)=0a.e. (p(x)u(dx)),
© [¢(x)¢:(x)p(x)u(dx)=0for all i,
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we see that the middle term reduces to
27,8, = -2y, | [ (6(X) = LODKX, 1)(6(0)~ (NP (Ip (X)) s (dX)
=23, L AHACH,

where f, =Y ci'di, ¢ =Y, cip; and Ac} = ¢; —c; (the difference in the ith Fourier
coeflicients).
Here and hereafter, sometimes n;(X;) is simply denoted by n;.
We turn our attention to the third term of (2.2). This is equal to
YiB s ([ 60X+ 00X+ 100~ RCOK X, 0oyl )
= ¥uR’Ex., [[(6(X) — £ (X)) + ¢(n)* + n7ss + 2(6(X) — fu (X)) (X)
+2(¢(X)__fn(X))nn+1 +2(//(X)nn+l]
=vy:R*(a,+D+ V),

where in the last inequality, we set D=} d: and used the fact that f,
€ Ly({¢1, ¢, - - -}), and thus all cross-product terms have expected value zero.
Combining all this and letting &, = E[a. ], 8. = E[B.], we have

E(y|F,) = @ —2v,B. +viR* (@, + D+ V),
and taking the expectation over F,,
E(ps1) = &, — 27,8, + y:R¥ @, + D+ V)

(23) ~ 2p2 2
=d.(1+v.R*)+y(D+V),

since v, >0 and B, =0.
From (2.3), a recursive argument shows that for all n,

(2.4) E(an) =[] (1+3(R*+D + V) max (aa, 1),

where ao=||f — folf". Clearly this holds for n = 0. Then inductively,
E(a..1)=(1+vR)a, +yi(D+ V)

n—1
=(1+92R*» [1 1 +y4R*+ D+ V)) max (e, 1)
i=1

n—1
+y2AD+ V) [] 1+y}(R*+ D+ V)) max (ao, 1)
i=1

=11 A +v}(R*+ D + V)) max (ay, 1).
i=1

=

\

Since ) ; yi <00, the infinite product converges to a finite limit. Thus let
B=[] 1+v(R*+D+ V)) max (ao, 1).
i=1

For all n,
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(2.5) E(a,)=B <00,
We now turn to consideration of the 8,’s.

EBualE) = Bryr| [ | (a0~ f0)K )

i) = FOIPIP I (ay)IF |
Replacing f...—f by f... —f. + f. — f and expanding (2.6), it is found that

(2.6)

E(Bn+1|Fn) = ﬁn +2EX..+|.nn+|((fn+1 _fm fn _f)K|F")

2.7)
( + Exmolfoes— FiBIE).

It is now shown that the second term is nonpositive. It is equal to
23, [ [ | @00+ 000+ murs = LK X DK ) (60)+50) =1 3)

- p(X)p(x)p(y) dF(n| X)w(dX)u(dx)p(dy).

The conditional 7 integration eliminates the 7,., term, and the x integration
changes the kernel to Y, A{¢:(X)b:(y). When the integration is completed, the
term becomes

2y, L AH(Ac?)*=0.
The last term on the right-hand side of (2.7) is given by
Y J'“J' (d(X) +(X) + Mo — [ (X)K(X, x)K(x, y)K(y, X)
(@) +Y(X) + N~ fu(X))P(X)p(x)p(y) dF (11| X) s (dX) . (dx) . (dly)

=222 [ [ )+ 90+ 11— LX)V BHX) dF G X)p(X)pa(dX)
=y R YA [ @00+ 000+ 10~ LX) dF (| X)p(X)pu(dX)

= ViR A | (600~ L0 PX)m(@x)+ | W X0pLRAX)
+[ [ mi dFal0pCOREN))

=7.R[(ZA) B+ +V)]=v.0.
Thus, E(Bna|F.) =B.—27Y. Z Af(Act)*+v2Q, and taking expectations,

(2.8) E(Bu)=E(B.) ~2v. L AIE(Ac))* + 0.
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Now it is shown that (2.8) implies condition (iii) of the theorem. Without loss
of generality, assume A, Z A, Z A= A= - - - \O.

E(B) = E( | (1,00 = 6()KCx y)(u )~ ()PP s(d)n(dy) )

=Y ME[(Ac))’]=MB=S

for all n.

To show (ii), it is enough to show that for each £ >0, an N(¢) can be found
such that for n = N(g), E(B.) <&, whenever ||f|= H (a constant). Note that the
bound (2.5) is uniform over {f : || f| = H}. Choose N; such that Y2, y2Q <¢g/2.
Then as the middle term in (2.8) is nonpositive if E(B,)<&/2 and m=N, (m
fixed), (2.8) implies E(B,) <e for all n =m. Choose N, such that A%,.,B <g/4.
Choose Nj; such that 3) /2y, yAk,e >S+Y,v:Q+1. By contradiction it will be

shown that E(B,) < &/2 for some n with N; =n = N, implying that E(B,) <& for
all n'>n=N;=N(¢).

L ME(Ac) 2 Y AE(Ac)
= ()" X AB(AC)

— (AW EB)— Y AE(Ac))

i=Ny+1
; (AN2)2(E(BH) - ANz'HB)'
Thus (2.8) yields

(2.9 E(B.1) = E(B.)—2v. max (A,(E(B.) = ARy1B), 0)+ vz Q.
If E(B.)=¢/2,(2.9) gives

(2.9) E(B.) SEB) -2 1 :0

If B. = ¢/2 for N; = n = N, repeated application of (2.9) gives

E(Brn) SEBn)—2 Y ke + Y 20

n=Npy n=Njy

§S~(S+Zi y?Q+1)+Zi yiQ=-1.

But Bn,+1 =0, giving the desired contradiction.

COROLLARY 1. Let F< L,(p) and let there exist a constant H such that
fe F>|/fl|l=H. Then if the orthogonal projection of f onto {¢1, b2, ds, - = -} with
respect to || - || is denoted by Pf, then ||Pf —f.|[x > O uniformly for f € F.

On the other hand, it is easy to see that one cannot hope for uniform
convergence in the | - [|-norm.
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THEOREM 2. Let {¢1, o, - -} be an infinite set. Then F={f:|fl=1,
f=YND ¢} is such that E[||f —f.[[]-> 0 but supser E[||f—f.1=1 for each n. (In
other words, there is no uniform bound on the rate of convergence.)

Proof. Convergence is proved in [2].

It is easy to see that

(2'10) Cx"ﬁ-l = C:'+ Ynsz[f(Xn+l) + nn+1 _fn(Xn+1)]¢i(Xn)

or

E(ci™ = ¢1) = ¥k i Exo o (f(Xs1) = fu (Xn11)) i(X0)).-

Thus
|E(ci* — | = ¥uh L Ex, o (f(Xoi1) = fu(Xoi1))*Ex, . (d7(X)))]?
=v.Ala, = v.ATB.
Now
|E(c?™ = c)|Z|E(c!—c)| - 5 |E(ci—ci™)].
j=1
Thus

|E(ci"' —c)|Z|E(c!—c)|—AT ¥ vB.
j=1
Fix n and £>0. Since fo€ L,(p), choose i, such that |c,|<e/2 for i =i, As
Y AZ< 00, choose i’ > i, such that A2 Y], v,B <g/2. Let f = ¢. Then

If—full=vEi(ci—c)z|ci—c|z1—¢/2—¢/2=1—¢.

The following presents two approaches to the problem of getting uniform
convergence in the ||-||-norm. The first is to look at the convergence in the finite
subspace {¢, * * *, ¢} which will be uniform and then to let m(n)—> 0 as the
sample size n approaches c0. The second approach is to require f, to be close
enough to f so that all the coefficients converge at an appropriate rate.

THEOREM 3. Under the above assumptions,

(i) Let P, be the || projection onto {¢,, - - -, d.} and |-|. be the norm on
{1, - -, ba}, that is, |P.f|=|fll.. Let |¢:|=8;<o0 for each i. Suppose F
={f:|flI= H}, where H< is fixed. There exists a sequence m(n) such that
lim,, supyer E(|f = fullruem) = 0.

(i) Let |¢:|=T <o for all i. Given H>0, let

(c!—c)

A2

F={f:f=zci¢i+¢,.+h,; éH},

where fo=Y. c¢:.. Then

li'r‘n sup E(If-f.[/)=0.

feF
Proof. (i) Standard stochastic approximation techniques (for example,
see Schmetterer [7]) or arguments similar to those of the proof of Theorem 1,
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show that for each fixed m, ||f—f.||» > O uniformly over F. The selection of the
sequence m(n) then presents no problems.

(ii) Using the fact that (¢! —¢;)>= HA?, (2.10) and an argument analogous to
that used in proving (2.5), one can show that

E((AcH)) =AW

for all i (where W is constant depending on T, H, and V). As E|¢—f.|}
=E (Ac?)?), choose i, such that Y.<, A7 W <g/2. Then

E(l¢ = ful) = E(IPudb — fullo) + ¥ AIW=E (| —fulls) + /2.

i>ig
Uniform convergence with respect to - [|,, (as in (i)) allows the choice of no such that
for n = no, E(|¢ — f.lls) < €/2, so that for n = no, supscr E(|¢p — f.|) <e.
In summary, in this paper it is seen (under suitable regularity conditions) that:
1. f converges to the projection on the subspace spanned by the eigenfunc-
tions of K.

2. The convergence is uniform in the |:||x-norm for bounded sets in the
| |l-norm.

3. To get uniform convergence in the ||-|-norm of a set F of functions, all the
functions must be close to the starting function in the sequential approximation
process.
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CONTROLS AND GOALS IN ECONOMIC EQUILIBRIUM*
RODRIGO A. RESTREPOfY

Abstract. This paper generalizes some results of Gale and Debreu related to results of Bohnen-
blust and Karlin, commonly used to prove the existence of equilibrium in competitive economies.
Applied to economics, these results allow further latitude in the choice of admissible price vectors, and
in the conditions defining equilibrium. These results are also applicable in more general contexts
where, instead of prices, one considers a set of controls or instruments of policy and where, instead of
equilibrium, another goal is sought. These goals are related to the appropriate instruments through the
concept of dual convex cones. Some examples are provided.

Introduction and results. In their study of economic equilibrium, Arrow and
Debreu[1], Arrow and Hahn [2], Debreu[4],[6], Nikaido [10] and other authors,
observing that each price vector p in some set P determines a set Z(p) of excess
demands for goods, have determined conditions for the existence of pe€ P and
Z e Z(p) with Z =0. Thus at price p, demand can be satisfied.

The proofs of the existence of such p and Z are usually based on properties of
convex cones established by Bohnenblust and Karlin [3], Gale [8] and Debreu
[5]. This paper provides a further generalization of these results using, as does
Debreu, the concept of dual convex cones. Though the motivation comes from
economic theory, the results are applicable to situations where instead of a price
simplex P one considers more general sets C of controls or instruments of policy
which, through an appropriate point-to-set mapping, determine a set of out-
comes Z(c) for each c € C. The condition z =0 can then be replaced by other
conditions in the manner indicated below.

In what follows, the inner product of two vectors z and ¢ will be denoted by
z'c, and the Cartesian product of two sets C; and C, will be denoted by C, X C,.
With each nonempty convex set C will be associated a set C*, called the dual
convex cone, defined by

C*={z|z'c¢ =0, forall ce C}.

Using these concepts, the following theorem will be established.

THEOREM. Let C=C,X -+ XCeand Z=2Z,X - - - X Z, where, for each i, C,
and Z; are nonempty, convex, compact subset of the Euclidean space R™. If to each
ce Cis associated a set Z(c) such that

(a) for each c € C, Z(c) is a nonempty, closed convex subset of Z,

®) if c=(c1, " ,a)eC and z=(z\," " ,z9€ Z(c), then zic;=0 for

i=1,---,k,
(c) the mapping c - Z(c) is upper-semicontinuous.
then there exist € Cand 2 = (24, - - -, 2,) € Z(¢) such that, for each i, z,€ C¥.

The following examples motivate the theorem. In economic equilibrium
theory, [1], [2], [5], C is the standard price simplex P, and then C*= P*
={z|z =0}. The more general case considered by Debreu [5] corresponds to k = 1

* Received by the editors March 7, 1974, and in revised form December 9, 1974.
t Department of Economics, Harvard University, Cambridge, Massachusetts. Now at Depart-
ment of Mathematics, University of British Columbia, Vancouver 8, British Columbia, Canada.
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in the preceding theorem. This case is applicable to markets with commodities
possessing multiple exhaustive uses (e.g., electricity for lighting, for heating, for
cooking and for communications) required to have the same prices. Then C is a
proper subset of P, and C* stipulates only that the total joint excess demand for
these multiple uses be nonpositive, in agreement with intuition. The general case,
with k =1 in the theorem, can be applied to models involving several epochs, with
the a priori requirement that not all goods be free on each epoch. For such models,
C=PXPx --+ XP. The arguments used in the proof of the theorem may be
applied also to multinational markets. Then one obtains equilibria with sufficient
quantities of goods to satisfy demand, and enough foreign exchange to finance
required imports in each country.

Proof of the Theorem. Consider first the case where each set G is a convex
polytope with vertices v;1, - - -, Uim. For each ¢;€ G, z; € Z, let

¢+ Y max {0, Zivg oy

1 i iy 4i = =
(1) hi(c, z:) 1+Y max {0, zjv;}

Clearly, hi(c, z:) is a vector in C, and the mapping (c;, z;) > h:(c,, z;) is continuous
on C; X Z,. This continuity, together with assumption (c), implies that the mapping
(¢, z)» W(c, z), defined by

W(c, z) ={(y, {) € Cx Z|y, = hi(cs, z)), all i; { € Z(c)},

is a point-to-set, upper-semicontinuous map of C X Z into its subsets. Further-
more, each image set W(c, z) is nonempty, closed and convex. Thus, the Kakutani
fixed pomt theorem [9] is applicable, showing that there exists (¢, Z2) € C X Z, such
that (¢, )€ W(é, 2). Then, in particular,

(2) Z2eZ(¢),

and also, hi(c, zA,») = ¢; for each i; that is,
é+) [max (0, Zivy)]v; = c‘i[l +Y max (0, z”,«v,«,»)].
i i

Simplifying and multiplying both sides of the preceding equation by z;, one obtains
that

3) Y [max (0, 2iv;)]2iv,; = 2i¢ Y, max (0, Zjv;).

j i

In (3), the left-hand side is the sum of nonnegative terms, while the right-hand side
is nonpositive by assumption (b), since Z € Z(¢). Thus, both sides must be zero,
and so must be each term on the left; that is,

[max (0, 2iv;)]2ov, =0, all i, j.

This implies that Zjv; =0, all i, j, and therefore Zic; =0 for ¢; € C;. Thatis, Z,€ Cf,
as desired, under the assumption that each G, is a polytope.
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To extend the result to general nonempty, convex, compact sets C,, observe
that for each such C there exists an increasing sequence {C7lm=1,2, - - -} of
convex polytopes such that C"< C, for all m, i and relint C; < U ,.C". Applying
the result already established to C"= C{"X - - - X C{" and Z with the mapping
¢ > Z(c) restricted to ¢ € C™, one obtains ¢™ and 2™ such that

4) émeCm, 2eZ(c™), zMe(CH*, alli

By compactness, there exists some subsequence of {¢™, 2™} converging to some
(¢,2)eCx Z, and ze Z(¢) by (4) and the upper-semicontinuity of the map
¢ - Z(c); and also by (4) and the construction of {C"}, one must have Z/c, =0 for
all ¢; e rel int C, and therefore, 2/ ¢; =0 for all ¢; € C, as desired.

The preceding proof incorporates a simplification suggested to the author by
Professor R. T. Rockafellar.
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NORMAL SYMMETRIC DYNAMICAL SYSTEMS*

ROGER W. BROCKETT anp PAUL A. FUHRMANNY

Abstract. In this paper we establish a form of the state space isomorphism theorem for linear
differentiable dynamical systems in a Hilbert space and make some application of these results. The
methods used are based on spectral representations and suggest a close connection between the state
space isomorphism theorem and certain classical representation theorems in analysis. We also give a
class of counterexamples which illuminate the difficulties in extending the finite-dimensional theory
thus justifying, in part, the stronger hypothesis used here.

1. Introduction. Recently there has been great progress in extending the
main results of finite-dimensional linear system theory to the context of systems
with infinite-dimensional state spaces (e.g., [1], [5], [7]-[10]). A great part of this
work uses shift operators as models for the internal structure of systems. In this
paper we try to give a detailed study for symmetric systems, that is, systems with
self-adjoint or normal generators and identical input and output operators. We
shall characterize the weighting patterns realizable by such systems, prove the
spectral minimality theorem for this class of system as well as a version of the state
space isomorphism theorem which generalizes to this context. Applications to
stability questions are considered and finally, by means of a counterexample, we
indicate how, what seems to be a slight relaxation of the assumptions in the state
space isomorphism theorem is enough to make the conclusion false.

To fix terminology we review some of the standard definitions. We consider
an mXn matrix-valued function vy defined on [0, 00) to which we refer as a
weighting pattern. It characterizes the input/output relations by means of a
convolution type integral

(1.1) y(t)= [ y(t—7)u(r) dr.

The Laplace transform I' of vy is assumed to exist in some half-plane
{A|Re A > w,} and is called the transfer function of the system. A triple {A, B, C}
of operators with A being the infinitesimal generator of a strongly continuous
semigroup T(t) in some Hilbert space H and B : C" - H and C : H- C™ is called
a realization of the impulse response function vy if

(1.2) y(t)=CT(t)B fort>0
or equivalently
(1.3) I'(z)=CU—-A)"'B forzepsA),

where po(A) denotes the principal connected component of p(A), the resolvent
set of A, that is the connected component of p(A) that includes the half-space

* Received by the editors August 27, 1974.

t Division of Engineering and Applied Physics, Harvard University, Cambridge, Massachusetts
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{A|Re A > w,}. In case A is bounded this is the connected component of A which
includes the point co0. Two realizations{A, B, C} and{A,, B,, C.}in Hilbert spaces
H and H, are isomorphic if there exists a bounded and boundedly invertible
transformation R from H to H, for which Fig. 1 is commutative. Two realizations
are unitarily equivalent if the operator R is actually a unitary operator from H
to H,. A realization {A,B,C} in a Hilbert space is controllable if
M ,zo ker B¥*T(t)* ={0} and observable if N o ker CT(¢t)={0}. A realization
which is both controllable and observable is called a canonical realization. A state
space isomorphism theorem is a statement about the relation between different
canonical realizations of the same transfer function.

AN

() T,(1)

Te—2=x

\/

F1G. 1.

A system is self-adjoint if the infinitesimal generator is a (possibly
unbounded) self-adjoint operator and C = B*. In particular y(¢) is a pointwise
self-adjoint matrix-valued map. Similarly a system will be called normal symmet-
ric if A is normal and C = B*.

Whereas there is no inherent difficulty in working directly with unbounded
operators, it is still technically simpler to reduce the problem to bounded
operators. It is clear that given an infinitesimal generator A of a strongly
continuous semigroup of normal operators, then for sufficiently large Ao>0,
A — Aol is the infinitesimal generator of a semigroup of normal contraction
operators. Replacing A by A —A,l has the effect of multiplying the weighting
pattern by e ™. So, without loss of generality, we may, as far as the state space
isomorphism theorem is concerned, assume that the realizations are by contrac-
tive semigroups. To an infinitesimal generator of a strongly continuous contrac-
tion semigroup we associate a contraction T defined as the Cayley transform of A.
Thus T=(A+I)(A—1I)"". T will be called the cogenerator of the semigroup. T
will be self-adjoint or normal if the semigroup is of self-adjoint or normal
operators. For a treatment of cogenerators we refer to [6], [13]. Now T may be
considered as the generator of a discrete system {T, B, C} for which controllability
and observability are defined by N ker B*T*" ={0}, N =0 ker CT" ={0}, respec-
tively. It turns out that the continuous time system {A, B, C} is canonical if and
only if the discrete time system {T, B, C} is [9]. Since two continuous time systems
{A, B, C} and {A,, B,, C\} are unitary equivalent if and only if the discrete time



NORMAL SYMMETRIC DYNAMICAL SYSTEMS 109

systems {T, B, C} and {T, B,, Ci} are, it suffices to prove the state isomorphism in
the later context.

For the case of normal systems the notions of controllability and observability
have weaker counterparts which we call bilateral controllability and bilateral
observability respectively. A discrete time normal system {A, B, C.} is bilaterally
controllable if N ,,.z0 ker B*A"A*™ ={0} and similarly bilateral observability is
equivalent to N, .=0 ker CA"A™*™ ={0}. Clearly controllability implies bilateral
controllability. For continuous time systems bilateral controllability is equivalent
to N ,.=o ker B¥e* ¢*"" ={0} and similarly for bilateral observability.

2. Spectral minimality. We want to study in this section the relation between
the singularities of the transfer function and the spectrum of the generator in a
realization of the transfer function. Let {A, B, C} be a realization and T the
transfer function of the system as defined in § 1. I' is defined a priori only in some
half-plane of the form {A|Re A > w,}. Being an analytic function I' has an analytic
continuation to po(A), the continuation being given by (1.3). Let us denote by
o(I') the set of nonanalyticity of the transfer function, continued analytically as
above to po(A). Obviously the relation

(2.1) o(I') € 00(A)

holds. We call this the spectral inclusion relation. A realization {A, B, C} is
spectrally minimal if there exists an analytic continuation of I" for which o(I') =
o(A).If p(A), the resolvent set of A is connected, then actually oo(A) = o(A) and
there are no complications. However if o(A) is not connected, let p,(A) be a
connected component of p(A) which is not principal. It might turn out that I" as
defined in po(A) has an analytic continuation to p;(A). On the other hand the
function I'i(z) = C(z — A)™'B defined in p;(A) is certainly analytic. Unhappily T
and I'; might be completely different. To avoid this kind of ambiguity we will
restrict ourselves in this section to systems whose generators have connected
resolvents. This assumption is of course redundant when dealing with self-adjoint
infinitesimal generators. In this case there exists an analytic continuation of I for
which o(I') = 0(A). We will say a realization {A, B, C} of I is spectrally minimal if
o) =0c(A).

Tueorem 2.1. If {A, B, B*} is a canonical self-adjoint realization of a
transfer function T', then the realization is spectrally minimal.

Proof. Since A is self-adjoint then by the spectral theorem [3] there exists a
spectral measure E( - ) defined on the Borel sets of the real line and for which we
have the following integral representation:

A= J' AE(dA).

Given an open interval (a, b) on the real line we have, limits taken in the strong
operator topology [3, p. 920], that

(2.2) E((a, b)) = lgm lim L Jb_a [R[A—ig, A)—R(A +ig, A)] dA.

>0 20 2771 Javs
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Hence for every vector £ € C" we have

IE((a, b)) BE|f = (B*E((a, b)) BE, &)
(2.3)

a—3a&
=1lim lim L J' [T(A—ie)¢ &) — (T (A +ig)& &)] dA.
5+0 60 271 J 05

Now let (a, b) be an open interval on the real line that is included in the
domain of analyticity of I'. The equality (2.3) implies E((a, b))B¢ = 0 for every
£eC". Since the semigroup T(t) generated by A commutes with the spectral
measure E(-), we have E((a, b))T(t)B¢ = T(t)E((a, b))B¢ =0. Now the set of
vectors of the form T(t)B¢, t =0, and £ € C" spans the Hilbert space H by the
assumption of controllability and hence it follows that E((a, b))=0. Thus
(a, b)= p(A) which in turn implies that o(A) < o(I'). Taking into account the
spectral inclusion property the proof is complete.

Thus it follows that the spectra of two generators in two different canonical
self-adjoint realizations of the same transfer function necessarily coincide.

As a by-product of (2.2) we have the following lemma which will be used in
the sequel.

LEMMA 2.1. Let {A, B, B*} and {A,, B,, BY} be two canonical self-adjoint
realizations with transfer functions I and Iy and let E( - ) and E,( - ) be the spectral
measures of A and A, respectively. The transfer functions of the two systems
coincide if and only if for every Borel set on the real line we have

Proof. Assume (2.3) holds. Then

I'(z)=B*R(z; A)B = J —Z——i—)\B*E(d/\)B = J ;—i—)\B’fE,(d)\)Bl =BYR(z; A)
= F](Z).

The converse follows from (2.2) for open intervals and hence, by standard
measure theoretic technique, for all Borel sets.

Theorem 2.1 can be generalized to the case of normal symmetric systems. Let
A be a bounded normal operator and let E be the spectral measure associated
with it. For each vector x in H we let u, denote the positive measure defined by
(o) = (E(o)x, x) for all Borel sets o.

THEOREM 2.2. Let {A, B, B*} be a canonical, finite input, normal symmetric
system with p(A) being connected, which realizes a transfer function I'. Then the
realization is spectrally minimal.

Proof. Let o be an open set in the domain of analyticity of I'. Since for each
£e€C" we have

(C(2)6, )= (B*(z—A)"BE €)= | (= \) ' (EWNRE RO= | (2=A)" dyan

it follows that (I'(z)¢, &) is the Cauchy transform of the measure ws,. By Theorem
8.2 in [4], we have

pse(a) =|E(o)BE[* =0

and hence also E(o)B¢=0. Since the normal operator A commutes with its
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associated spectral measure E we have E(a0)A"B¢ =0forall £ C" and m =0. By
the controllability assumption E(c)=0. Therefore, as in Theorem 2.1, we
conclude that the realization is spectrally minimal.

We remark that the conclusion of Lemma 2.1 holds just as well for normal
symmetric systems.

3. Spectral representations and controllability. Whereas abstract Hilbert
spaces provide us with a very general setting, the solution of specific problems
requires frequently more structure. The essence of spectral theory is to study an
operator through some representation, i.e., its image under a unitary transforma-
tion in a different space. In particular, function spaces turn out to be most useful.
For our particular problem the canonical or ordered spectral representation of
normal operators is the natural candidate. This has been recognized by Fattorini
[5] who used the ordered spectral representation to give necessary and sufficient
conditions for the controllability of a system with a self-adjoint generator by
means of a finite input controller. We review the main ideas concerning spectral
representations following [2] and refer to [3] for a more complete account of
spectral representations and multiplicity theory.

Let w1, 12, * +, o be a collection of mutually singular nonnegative meas-
ures and K,, p=1, be p-dimensional Hilbert spaces and let K. be a separable
Hilbert space. We consider the spaces L*(u,; K,) of K,-valued measurable
w,-square integrable functions on the complex plane. In L*(u,; K,) we consider
the normal operator A, defined by (A,f)(A) = Af(A). The operator A, is bounded if
W, has compact support. Next we consider the direct sum @;-,L*(u,; K,) and the
operator A= ®;-;A,. Every normal operator A in a separable Hilbert space is
unitarily equivalent to such an operator A. The unitarymap U : H-> @ L*(u,; K,)
for which UAU ™' = A is called the canonical spectral representation of A. In the
canonical spectral representation the measures w, are unique up to measure
equivalence. The support of w,, i.¢., the complement of the largest open set where
W, vanishes, is the set of multiplicity p. The normal operator A has finite
multiplicity po if w,,# 0 and w, =0 for p > p,.

An equivalent spectral representation is the ordered spectral representation.
Letus choose K, sothat K, c K, < - - - © Ko, Ko =\Vp-; K, and let . =Y u,. Let x,
be the characteristic function of supp (w,), the support of w,. Then x,,x,, =0 for
D1 #p2 and Mp = XpHL- It fPELz(ﬂp; Kp) and Z”fp“2<00 we let f=Zprp' Thus
f€ L?*(u; Ko) and we have a unitary map of @ L*(u,; K,) onto a closed subspace
of L*(u; K.). If A has finite multiplicity m then we consider L*(u; K,,) as the
space in which we have the ordered spectral representation.

Now a self-adjoint system is controllable if and only if it is observable and
hence characterization of controllability is at the same time a characterization of
canonical self-adjoint systems. This is no longer the case for normal symmetric
systems. However if we make the assumption that the resolvent set of the normal
operator A is connected and the spectrum of A has no interior then it follows, by
an application of Mergelyan’s theorem [4] that a normal symmetric system is
controllable if and only if it is observable. So let us assume that the normal
operator A is already given in its canonical spectral representation. Thus H= @
L*(w,, K,), A=A and B : C" - H. For convenience we identify K, with C” and
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hence with respect to the standard orthonormal basis {e;}/~, in C™ we have a
convenient matrix representation for B. Thus Be, =)(Be;), with (Be,),€
L*(u,;C?), and (Be;), = (BY);-1...,. We will denote by B?” the p Xn matrix-
valued function (B{’).

Thus Fattorini’s theorem [5] can be stated in the following form.

THEOREM 3.1. Let A be a normal operator with a connected resolvent set and
spectrum with no interior acting in a separable Hilbert space H. Let B : C" - H be a
linear operator. Then the normal symmetric system {A, B, B*} is canonical if and

only if the spectral multiplicity m of A is less than or equal to n and the conditions
rank (8¥) = p, j=1,--+p, i=1,-+n,
are satisfied p,—a.e. forp=1,--- ,m.

4. The state space isomorphism theorem. We proceed now to the proof of
the main result of this paper, namely the state space isomorphism theorem for
normal symmetric systems.

THEOREM 4.1. Let {A, B, B*} and {A,, B,, B¥} be two canonical normal
realizations in Hilbert spaces H and H, respectively and assume the generators A
and A, have connected resolvent sets. A necessary and sufficient condition that the
two systems realize the same transfer function is that the systems are unitarily
equivalent.

Proof. The sufficiency part is trivial. To prove necessity we assume that the
two systems realize the same transfer function. By Lemma 2.1, the equality (2.4)
holds for all Borel sets in the complex plane. Since we are interested in unitary
equivalence of the system we may, without loss of generality, assume that both
systems are given in their canonical spectral representation. Let x € H. Then we
write x =Y x® with x” € L*(w;, K;), the direct sum decomposition arising from the
canonical spectral representation of A. For every Borel subset o of the complex
plane we have

(E(O_)x)(i) — X"x(i)’

where y. is the characteristic function of o. Consider now the ordered representa-
tion and let B(A)=Y.x,(A)B®()A), where y, is the characteristic function of the
support of w,. Also let u =) u, and we make similar definitions for the system
{A,, By, Bf}. Equality (2.3) implies that for each Borel set o,

j B(A)*B(A) du = J' Bi(A)*By(A) du™
holds. This in turn implies the scalar equality
4.1) J tr BAA)*B(A) du = Jtr Bi(A)*By(A) du.

Since rank B(A) = la.e. with respect to w and rank B;(A) = la.e. with respect
to u” and the supports of w and '’ are the same coinciding with the spectra of
the generators, the above trace functions are positive. This implies that w and u
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are equivalent measures, i.c., each is absolutely continuous with respect to the
other. Let

dp
(4.2) = e
be the Radon-Nykrodym derivative of u with respect to u”. Then
(4.3) $(APB(A)*B(A) =Bi(A)*Bi(A)

and in particular the equality

rank B(A)=rank B,(A)

holds a.e. with respect to w or w'”. Thus the multiplicity sets of the two normal
operators A and A, are essentially the same. If we let ¢y, = x,¢, then we have also
1)

Hp = MKp7s

2_ A
(44) (//p_ du;l)
and
(4.5) Y (APB”(\)*B”(A) = BY(W)*BY(\),

Next we construct the unitary map U that intertwines the two systems. Let
B and B be the columns of B®” and BY’, respectively. By Theorem 3.1,

{B¥li=1,---,n}and {BY)i=1, - - ,n} each space Ca.e. with respect to u and
w respectively. Define a map U,(A) : C” > C” by
(4.6) U,(\)B" =B

From the rank conditions, rank B”(A) =rank BY’(A) = p a.e., it follows that
U,(A) is invertible. Moreover from (4.5) it follows that a.e.(1/¢,(A))U,(A) is
unitary and hence, by Theorem 4.5.bin[2], U, is a unitary map of L*(w,; C”) onto
L*(u,CP). Since it is a pointwise multiplication operator it clearly inter-
twines A, and A}’, the multiplication by A operators in L*(u,;C") and
L*(ul’; CP), respectively. That is, U,A, = A} U,. Next define U by U= @ U,.
Then U is a unitary map of @ L*(u,; C?) onto +L*(u;’; C?) that intertwines A and
AP where A= @A, and AV = @AY, Clearly (4.6) is equivalent to B = B, and this
completes the proof.

5. Realization by stable self-adjoint systems. We characterize in this section
those weighting patterns realizable by means of finite input finite output stable
self-adjoint systems.

Let {A, B, B*} be a self-adjoint system. Thus we assume that A is a
self-adjoint infinitesimal generator of a, necessarily self-adjoint, strongly continu-
ous semigroup 7T(¢) in a Hilbert space H. This implies that A is semibounded from
above, i.e., there exists a real number w such that for all x in the domain of A we
have

(Ax, x) = wl|x|f.

The implication of this inequality is that the spectrum of A is restricted to
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(—0, w]. Let E( - ) be the spectral measure of A. Then, by a simple application of
the spectral theorem, we have for the weighting pattern 7y of the system

®

v(t)=B*T(z)B=B*Jw e“E(d)\)B=J eB*E(d\)B.

—00

If we make the additional assumption that A generates a contraction
semigroup, i.e., that the system {A, B, B*} is stable, then the spectrum of A is
restricted to the negative half-axis or equivalently w =0. In this case 7y(¢)
=", eB*E(d\)B and hence for each & in R",

(& &)= | e (B Be)

Since for each x in H the set function (E( - )x, x) is a finite nonnegative Borel
measure on the real line it follows that

61 CUOU0EH=] (1A (ENBE B =0,

A scalar function ¢ defined on [0, 00) is called completely monotonic if ¢ is
infinitely differentiable in (0, 00), continuous in [0, 00) and satisfies (—1)"¢"’(£) =0
for all +>0 [14]. We extend this definition to Hilbert space operator-valued
functions in a natural way. The differentiability assumption is replaced by weak
differentiability. Thus a self-adjoint operator-valued function ® is completely
monotonic if for all x in H the function ¢ () = (P(t)x, x) is completely monotonic.
Since scalar completely monotonic functions have analytic extensions to the open
right half-plane and since weak and uniform analyticity are equivalent [3] it
follows that a completely monotonic function is actually differentiable in the
uniform operator topology. Thus from (5.1) it follows that the weighting pattern
of a stable self-adjoint system is a completely monotonic function. The converse is
also true and we have the following theorem.

THEOREM 5.1. An n X n matrix-valued function vy defined on [0, ) is the
weighting pattern of a stable self-adjoint system if and only if it is completely
monotonic.

Proof. In view of the remarks preceeding the theorem we have to prove only
that a completely monotonic function is realizable by a stable self-adjoint system.
The proof is based on a representation theorem of S. Bernstein [14] which
characterizes a scalar completely monotonic function ¢ as an integral ¢(¢)
={"_ e™du of a unique finite nonnegative Borel measure p.

Now let y(t) be an n X n matrix-valued completely monotonic function. It
follows from Bernstein’s theorem that for each £ in C" there exists a finite
nonnegative Borel measure u, such that

(0& =] ¢ due
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Using polarization it follows that for each ¢ and n in C" there exists a finite
complex Borel measure u..,, for which

52) (&= ¢ duc,

The uniqueness part in Bernstein’s theorem implies the uniqueness of the
measure ., in the representation (5.2). By standard methods of spectral theory
the uniqueness of the representing measure and (5.2) imply the existence of a
matrix-valued measure M( - ) defined on the Borel sets of the real line such that
for each Borel set o and all £, € C" we have

Hen(0)=(M(0)E n).

Since u.. is a nonnegative measure it follows that M( - ) is actually a nonnegative
matrix-valued measure and

y(t)= L eMM(dM).

For detailed accounts of matrix-valued measures we refer to [3].
To get the required realization we want to factor M( - ) as

(5.3) M(-)=B*E(-)B,
where E( - ) is some spectral measure in a Hilbert space H and B in a linear map
from C" to H.

To this end we construct the space L*(M) consisting of all C"-valued Borel
measurable functions F defined on (—00, 0] which satisty

0
1= (M), Fay< oo,
As usual we identify functions differing by null functions, i.e., functions
whose norm vanishes. We introduce in L*(M) an inner product by means of the
definition (F, G) = [ (M(dA)F(A), G())).
With this inner product L*(M) becomes a Hilbert space [3, Chap. XIII]. In
L*(M) we define the operator A by

(5.4) (AF)(A)=AF(A).

The domain of A is the set of all F in L*(M) for which the function AF(X) is in
L*(M). Clearly A is self-adjoint. Let E( - ) be the spectral measure of A. For each
Borel set o we have

(E(@))(A) = xo(A)f(A),

where x. is the characteristic function of the set o. Next we define a map
B :C"> L*(M) by (B&)(A) =¢, i.e., a vector £ in C" is mapped into the constant
function & Now for every Borel set o we have

(B*E(0)Bt: €)= (E(0)BE BE) = | (M(dN)E )= (M(0)%,6).
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This implies the factorization (5.3). Since the spectrum of A is supported on
(=00, 0], the generated semigroup T(t) is contractive and has the representation

T(t)= J'_O e“E(d\)

and hence

0

B 1B =B E@B- |

—o0

eMB*E(dA)B = j " ML) = (1),

This completes the proof.

We wish to remark that the theorem holds true also for a self-adjoint system
with infinite input and output, that is, for the case where B : H, > H is a bounded
operator from a Hilbert space H, to H. This follows as a corollary to Naimark’s
theorem concerning unitary dilations of positive definite functions defined on
groups [6],[13]. In fact given any set-valued function M( - ) defined on the Borel
subsets of the real line with values that are positive operators in H, satisfying
M(o) = I, then there exists a larger Hilbert space H = H, and a spectral measure
E( -) there for which

M(o) = PE(o)|H,

for all Borel sets o. Here P is the orthogonal projection of H onto H,. Thus
obviously M(o) = PE(o)P and we have the factorization (5.3) as required.

The circle of ideas developed above can be used to yield some more system
theoretic results. Mainly we will be concerned with skew adjoint systems
(A, B, B*), where A =iA,, and A, is a, not necessarily bounded, self-adjoint
operator in a Hilbert space H and B a bounded linear operator. The operator A is
the infinitesimal generator of a group of unitary operators. The analytical tools in
this case are the theorem of Bochner concerning the integral representation of
positive definite functions on R [3] and the related Stone representation theorem
for groups of unitary operators.

Without going into the details of the proof we state the following.

THEOREM 5.2. An operator-valued weighting pattern y(t), t =0, is realizable
by a skew adjoint system if and only if §(t) defined on R by

y(1), t=0,
5.5 S(f) =
(5.5) y(t) {7(—0*, (<0,

is a positive definite function.
We recall that a Hilbert space-valued function ¥(¢) defined on R is positive
definite if for all finite sets ¢,,- - - ,t,eRand &,, - - -, & € H we have

X (¥ —1)é, §)=0.
ij=1
A special class of functions which permits skew adjoint realizations is the
class of completely monotonic functions. This follows, by way of Theorem 5.1,
from the following lemma.
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LEMMA 5.1. Let y(t), t 20, be a completely monotonic operator-valued func-
tion in a Hilbert space H,. Let y be defined by (5.5). Then it is positive definite.

Proof. By Theorem 5.1, we have for t =0 the factorization y(t) = B*T(t)E,
where T(t) is a contraction semigroup in a Hilbert space H. The semigroup T(t)
can be extended to a positive definite function on R by letting

. T(t), t=0,
(5.6) T(t)= {
T(—0)*, <0.

The proof of this fact can be found in [13, p. 30], and it immediately implies the
positive definiteness of 7.

6. External and internal stability properties of self-adjoint systems. In the
case of infinite-dimensional systems, knowledge about external stability proper-
ties of the system, even assuming controllability and observability, does not imply
corresponding results about internal stability of a given realization. Moreover the
lack of a general state space isomorphism theorem precludes us from dealing with
all canonical realizations simultaneously. In fact we may have different canonical
realizations of the same weighting pattern with one realization stable and another
unstable [8]. However when we restrict ourselves to the class of self-adjoint
systems those results become easily accessible.

Let 2:{A, B, B*} be a canonical self-adjoint system in a Hilbert space H. We
will say X is state stable (output stable) if for each x € H there exists an M, such
that || T(¢)x||= M, (|B*T(t)x|= M,) for all t=0, X is asymptotically state stable
(asymptotically output stable) if for each x, lim T(t)x > 0 (lim B*T(t)x - 0) as
t— 00, X is bounded input/bounded state stable (bounded input/bounded output
stable) if there exists an M >0 such that for |u(f)|=1 and all ® =0 we have
Ife T(t)Bu(7) dr||= M(|f; B* T(t)Bu(r) dr| = M). We will refer to these stability
notations as s., a.s., a.8.s., a.0.S., b.i.b.s. and b.i.b.o. stability respectively. Obvi-
ously the following implications hold: s.s.= 0.s.,a.5.s.>a.0.s. and b.i.b.s. stability
= b.i.b.o. stability. We are interested in the converse implications.

THEOREM 6.1. Let {A, B, B*} be a canonical, self-adjoint, finite input, finite
output system. Then

(i) a.s.=>s.s.,
(i1) a.0.s.=> a.s.s.,

(iii) b.i.b.o. stability = a.s.s.

Proof. By the state space isomorphism theorem we may as well assume that
the system is given in the spectral representation.

(i) To prove s.s. it suffices to show that the spectrum of A is restricted to the
negative half-axis. Since the realization is 0.s., by assumption we have for each x in
H,||B*T(t)x||=M,, and hence for each £€C" there exists an M, such that
(B*T(t)B¢, £) = M, or || T(t/2) BE|P = M,. Since this expression remains bounded
for all & we have (B(A)*B(A)¢, €) =0 a.e. with respect to w for A >0. Thus for
A >0, rank R(A)=0 a.e. with respect to u. Hence by Fattorini’s result,
r((0, 00)) =0.

(ii) Assume a.o.s., this implies o.s. and hence by (i) s.s.. We will show that
0 €0,(A) is impossible. Assume 0€ 0,(A) and let E,= E({0}) where E( - ) is the
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spectral measure of A. Thus E, # 0. By controllability there exists a £ € C". such
that E,B¢ # 0. By a.o.s., B¥*T(t)E,B¢- 0 and hence also (B*T(t)E,B¢, £)- 0.
But T(t)E,B¢ = E,B¢ and hence (B*T(t)E, B¢, &) =||E.Bé|* >0, a contradiction.
Hence 0 ¢ 0,(A) and E,=0. Let x be in H. To prove T(¢)x - 0 it suffices to show
by self-adjointness that (T(¢)x, x) > 0. Now (T(t)x, x = j_w e™(E(dA)x, x). Since
E, =0 the measure (E( - )x, x) of {0} is zero. The result follows now by Lebesgue’s
dominated convergence theorem.

(iii) Assume the system is b.i.b.o. stable. This implies B*T(t)B is an n X n
matrix with L'(0,00) entries. Since B*T(t)B is continuous we have
(B*T(t)BE, &)~ 0 for all £€ C". By previous arguments this implies a.s.s.

7. A counterexample. Consider the scalar input/scalar output system

defined by
[xX(Z)] Z%[ ° 1 (1)] [xx(?»] +%[(1)]“(’)’
n=1,3,5,--=,

o

1
y(t) B kz=:1 (2k - 1)

X2 ().

This system is clearly controllable and observable and realizes the weighting
pattern

® 1 (t—o)

wito)= L o ket

This system is of the form (A, b, b) with A skew-adjoint. Let a,, n =1,3,5,- - -
be a real sequence and consider also the system

2

[ Za (1) ] __1_[ sinh 2a, 1+2$inh2a,,][ z,(t) ]+1[ --sinh a"]u(t)
Zon(t)) nl—1-2sinh’*@, —sinh2a, JLz,.:(£)] nl cosh a, ’
n=1,3,5 -,
y(1)= él =L Sinh @)z (0-+ cosh @)z (0)

This system is controllable and observable, realizes the same weighting pattern as
the previous system, but is of the form (A, b, 2b) where X is self-adjoint,
idempotent, and ZAX = A*. In this case the transformation relating x and z is

[ cosh a, —Smhan][ n ]:[zz" ], n=1,3,5,---

—sinha, cosha, JLx, n+l

This is a bounded map if and only if the sequence «, is bounded. Thus we see that
the given weighting pattern admits a realization of the form (A, b, £b) with
S A= A* which is not similar to the normal symmetric realization displayed
above. Moreover, we see that any two sequences {a.}n-: and {B,}n-: such that
{(a, — B.)}is not bounded generate realizations of the form (A, b, 2b); SAZ = A*
which are not similar.
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LINEAR QUADRATIC DIFFERENTIAL GAMES
IN A HILBERT SPACE*

AKIRA ICHIKAWAT

Abstract. We consider linear quadratic games in a Hilbert space. The system equation is linear
and involves an unbounded operator which generates a strongly continuous evolution operator (or
semigroup). We show that the existence of a solution to a Riccati integral equation implies the
existence of a saddle point for the closed-loop game, and that the former is guaranteed if there exists a
unique open-loop saddle point. We also consider quadratic games on an infinite interval.

1. Introduction. Let H,, i =1, 2, 3, be real Hilbert spaces. Consider a linear
differential system

(1.1) x=A()x+B()u+C(t)v,
(]2) x(to)=x0€H1,

and a payoff functional

(1.3) J(u, v) = (Fx(t,), x(t,)) +j [(Wx, x)+(Uu, u)+(Vo, v)] dt.
The inner product of the space H; will be denoted by ( -, - ) and the norm by | - |,
while x(¢) represents the state of the system in H,, and u, v are control functions
with values in H,, H,, respectively. A(t) is a closed linear unbounded operator
whose domain D(A(t)) is dense in H,. We assume that A(f) generates a strongly
continuous evolution operator (or two-parameter semigroup) S(t, s), t=s =0, on
H,. The operators B(t): H,~> H,, C(t): H;> H, are linear and uniformly
bounded on [, t,]. The operators F, W(t) on H, are self-adjoint and nonnegative
definite. U(t), U™'(tf) on H, are self-adjoint and positive definite, while
V(t), V'!(t) on H; are self-adjoint and negative definite. The controller u is the
minimizer of J(u, v), and the controller v is the maximizer.

We define a solution of (1.1), (1.2) corresponding to locally Bochner integra-
ble functions u(t), v(t) by

(1.4) x(1) = S(1, to)xo + J S(t, T)[B(T)u(r) + C(r)v(7)] dr.

Here the integral is in the sense of Bochner (see [5]). We also define a solution
corresponding to closed-loop controls u = ¢(t, x), v = (¢, x) by the solution of
the integral equation

(1.5) x(t) = S(t, to)xo+ I‘ S(t, T)[B(1)d(7, x(1)) + C(1)¢(7, x(7))] dr.

to

Let I =[t, t,] be a fixed interval, and let L,(I; H;) denote the space of strongly
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measurable functions y(t) € H; such that

j, YO di <co,

Then L,(I; H;) is a real Hilbert space with an inner product (-, - ) defined by
v 2= 6,20 d
I

The norm in L,(I; H;) will be denoted by || - ||. We take admissible controls for the
open-loop game to be L,(I; H;)-functions, and for the closed-loop game to be
{2, x), ¥(t, x)}, such that (1.5) has a unique solution. Our problem is to seek a
saddle point (or an optimal pair) &, © which satisfies

(1.6) J(a, v)=J(d, 0)=J(u, D)

for any admissible controls u, v. The number J(ii, ©) is called the value of the
game, if it exists.

The optimal control problems with quadratic cost in a Hilbert space were
studied by several authors[4],[6],[7]. R. Temam [9] and Curtain and Pritchard [3]
considered Riccati equations in an infinite-dimensional space, which arerelated to
optimal control and filtering. A. Benssousan [1] studied differential games in a
Hilbert space. His system is very general, and the results are similar to the present
paper. But our approach is different from his and based on [4],[7], [3]. Our results
are more general than [1], in the sense that the operator K(¢) (given in (2.1))
characterizes the saddle point and the value of the game, and that we do not have
to solve a decoupled system of equations. The results on quadratic games in a
finite-dimensional space are given, for example, in [8]. N-person quadratic games
are discussed in a recent paper [2].

2. Quadratic games with closed-loop control. We consider the system (1.1),
(1.2) and the payoff functional (1.3). Admissible controls are closed-loop control
laws ¢ (¢, x), ¢(t, x) which give a unique solution to (1.5).

THEOREM 2.1. Suppose that there exists a unique strongly continuous linear
self-adjoint operator K(t) =0, t € I, satisfying

(2.1)  K(t) = Sk(t,, ) FSk(t:, 1) + I Kr )[W(r) + K (7)D(1)K(7)]Sk(7, 1) dr,
or, equivalently,
(2.1) K(t)=S*(t,, )FS(t,, t) + J’l S*(r, H[W(r)— K(7)D(7)K(7)]S(7, t) dT.

Here D(t)=B(t)U (t)B*()+C(t)V ' (t)C*(t), and Sk(s,t) is an evolution
operator generated by A(s)—D(s)K(s). Then there exists a unique optimal pair
given by

a(t)=—U"(t)B*(t)K(t)x,
() =—V ' () C*t)K(t)x.

Moreover, the value of the game is given by (K(to)xo, Xo), and the optimal trajectory

(2.2)



122 A. ICHIKAWA

x(t) is expressed by
x(t) = Sk(t, to)xo.

Remark 2.1. Known results on evolution operators are summarized in [3].
Remark 2.2. The nonnegativity of K(t) is necessary since

0=J(, 0)=J(@, d),

and since the existence of K(f) on some interval implies the existence of an
optimal pair on the same interval.

The proof of the theorem involves several steps. First, consider a linear
control problem

23 x=A(t)x+C(t)v,

x(to) = X,
with

J(v) = (Fx(t,), x(t2)) + J [(W(D)x(1), x(1)) + (V(2)o(8), v(£)] db,

to

where F=0, W(t)=0 and V(1) <0. Here v tries to maximize J(v). Let T(t, s) be
the evolution operator generated by A(t), and let L(¢) be a strongly continuous
linear operator.

LEMMA 2.1. Let Q(t) be a self-adjoint operator defined by

2.4) OW)=Tit, OFT.(t, 1)+ r TE(r, ) [W(r) + L*(r) V() L(?)]To(7, t) dr,

where T, (s, t) is generated by A(s) + C(s)L(s). Then (Q(to)xo, Xo) gives the cost J(v)
corresponding to the control v = L(t)x.
Proof. The unique solution of (2.3) corresponding to v = L(t)x is given by

(2'5) x(t) = TL(L to)xo-
Consider the following:

(Q()x(8), x(1)) = (FTL(t:, )x(¢t), To(t:, t)x(1))
+ J”l ((W(r)+ L*(r) V(1) L(7)]T.(7, )x(1), To (7, 1)x(2)) dr.

Using the identity

T.(s, )x(t) = x(s),
we obtain

(Q(0)x(1), x(1)) = (Fx(t), x(1,))

+[ IOV, x(0) + (VEL@ (), L] dr

= (Fx(t,), x(t:)) + J [(W(7)x(7), x(7)) +(V(7)v(7), v(7))] dr.

Setting t = t,, we arrive at our result.
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LEMMA 2.2. Suppose that there exists a strongly continuous linear self-adjoint
operator K(t) satisfying the following:

R() = T2t OFT, (1, 1)+ j Ti(r, [ W(r) ~ K(r) Da(r)R(r)

(2.6) - _
—L¥7)C*(1)K(1) — K(7)C(1)L(7)]T.(7, 1) dr,

where D,(t) = C(t) V' (t)C*(t). Let Q(t) be defined by (2.4). Then
K()ZQ(t) foranyte[to, t].
Proof.

K@®—-Q(1)= ‘J[l #(r, [K(1)Do(1)K(1) + L*(7)C*(r)K(7) + K(7) C(7) L(7)
+L*(r)VL(7)]T.(7, t) dr

=~ [ Tt DL+ V@R VIR
t x[L(1)+ V {(1)C*n)K(D)]TL(7, 1) dr
=0, since V(t)<O0.
The integral equation (2.1) corresponds formally to the differential equation

K(1)=~[A(1) - D()K())]*K(t) - K()[A(t) - D()K()]— W(2)
2.7) —K(@®)D()K(1),
K(t,)=F.

We can rearrange this into

K@{t)=—A*()K(t)— K(t)A(t)— W)+ K({)D()K(t),

(2.7) K(t)=F.
and
K(1)=~[A®)+P(0)]*K(1)~ K()[A (1) + P(1)]
Q.7 W)+ K@)D@)K(t)+P*(t)K(¢) + K(t)P(t),

K(t1) = F.

Here P(t) is a strongly continuous linear operator. The integral equation (2.1)
corresponds formally to (2.7)". The integral equation corresponding to (2.7)" is
given as follows:

K(t) = S¥(ts, FSs(ts, 1)+ j 5(r, D[W(r)— K(1)D(r)K ()
2.1)" '
@D — PH(r)K(r)— K(r)P(r)]Ss(r, 1) d,

where Sp(s, t) is generated by A(s)+ P(s). The equivalence of (2.7), (2.7)" and
(2.7)"is trivial, their meaning aside. We shall show-the equivalence of (2.1), (2.1)
and (2.1)".
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LeMMA 2.3. Let M(t) be a strongly continuous linear self-adjoint operator.
Define for each t €[ t,, t,],

N(t) = j T*(r, OM(7)T(r, £) dr

t

and

N() = J T(r, OM(r) To(r, 1) d.
Here T(r, t) is generated by A(1), and Tp(7, 1) by A(t) + P(t). Then
(2.8) N(t)=N(t)— j TE(r, O[P*(v)N(7) + N(v)P(7)]To (7, t) dr.

Proof. Let

N(t) = j " 5, oM T(r, 1) d.

t

First, we shall show
(2.9) N(t)=N(@)+ J T%(r, ) P*(7)N(7) T(s, 1) dr.

We use the relation [3]

(2.10) To(r, t)=TCr, 1)+ J T(, )P(r) Tp(r, t) dr.

Then

N(t) = j " [T*(T, £+ j ' TE(s, )P*(s)T*(r, 5) dS]M(T)T(T, 1) dr

=N(t)+ j' J TE(s, )P*(s) T*(r, s)yM()T(=, t) dr ds

s

=N(t)+ J ) TE(s, )P*(s) j T*(r, s)M(7)T(z, s) d7T(s, t) ds
= N(1)+ j (s, 1)P*(s)N(s)T(s, 1) ds.

Here we have used Fubini’s theorem for the second equality and the semigroup
property T(r, t) = T(t, s)T(s, t) for the third equality. Now we claim:

Jt' T(r, ) P*(r)N(7)T(s, t) d + j T, ON(T)P(7) Tp(7, t) dr

(2.11) ,
= j TE(r, )[P*(7)N(7)+ N(7)P(1)1Tp(7, t) dr.
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In fact, using (2.9), we have

LHS.= J ) T%(r, )P*(7)N(7) T(x, t) dr

t

+ j T(r, t)[N('r) + j (s, 7)P*(s)N(s) T(s, ) ds] P(1)To(r, ) dr

- j T(r, ON(T)P(r) T (s, 1) dr + j (s, )P*(s)N(s) T(s, 1) ds

t

+ ,[ j T%(s, )P*(s)N(s)T(s, T)P(7) Tp(r, t) dr ds
= [ 136, ON@IP) Totr, 1) e
+J 30PN (s)[T(s, 0+ j T(s, 7)P(x) To(r, 1) dT] ds

= j TE(7, ON(7)P(7) Tp(7, t) d+ J TE(s, )P*(s)N(s)Tw(s, t) ds

=R.H.S.

Here we have used Fubini’s theorem and (2.10). Finally, consider

N@)-N@)= “41 T*(T, I)M(’T)T('T, t)ydr— J‘l TAt('r, HM(7) T(T, 1) d'r]

t t

+ [ J " %, OM(2) T, 1) dr— J " 4, M) T, ) df]

=Il+12.

= J " [T*(r, t)— T%r, )IM(7) T, 1) dr
I H Tr, OP* () T*(r, 5) dS]M(T) T(r, 1) dr
J‘IJ TH(s, t)P*(s)T*(r, s)M(7) T, s)T(s, ) dr ds
J Tt t)P*(S)U | T*(r, s)M(7) T(r, 5) dr] T(s, ) ds

= ~J T3(s, t)P*(s)N(s)T(s, t) ds.
Similarly, we can show

L=— I " e NP To(n 1) dr.

t
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Hence

N - N =1, +1,
- j T%(r, )P*(r)N(z) Tz, 1) dr

- j Ti(r, )N(r)P(x) Tu(r, 1) dr

__ J‘ TE(r, H[P*(7)N(1) + N(v)P(?)| Tp(7, 1) dr.

1

The last equality follows from (2.11). This completes the proof.
Using Lemma 2.3, we can show the equivalence of (2. 1)',(2.1) and (2.1)". We
shall prove this only for F = 6. Since M(t), A(t), P(t) are arbitrary, we take

M(r) = W(r) + K(t) D(t)K(¢),

and T(1, s) to be the evolution operator generated by A(t)=A(t)—D(t)K(t).
Here K(t) is the solution of (2.1). Then the definition of N(t) gives the relation

(2.12) K(t) = J"l M O[W(r)+ K(7)D(1)K(1)]1Sk (7, t) dr.

The relation (2.8) states

(2.13) K(t)= J ) W, )[W(r)+ K(7)D(7)K(7) — P*(t)K(7)
—K(7)P(7)]Sp(7, t) dr,

where Sp(7, t) is generated by A (1) — D(7)K(7)+ P(7). If we substitute D(t)K(t)
for P(t) in (2.13), we obtain (2.1)' with F = 6. If we substitute D(¢)K(t)+ P(t) for
P(t), we find (2.1)" with F= 6.

Remark 2.3. Lukes and Russell [6] considered an integral equation of type
(2.1), while Curtain and Pritchard [3] constructed a solution to an integral
equation of type (2.1). But the one implies the other, and two integral equations
are equivalent.

LeMMA 2.4.Consider the control problem (2.3) with A(t), W(t) given by

A(t)=A@)—D,(DK(2),

(2.14) .
W(t)= W(1) + K(t) D, () K (1),
where K(t) is the solution of (2.1),.and D,(t) = B(t)U ' (t)B*(¢). Then K(t) satisfies
the integral equation (2.6).
Proof. We shall prove this assertion for F = 6. This is an immediate conse-
quence of (2.13) when we set

P(t) = D,(t)K(t)+ C(¢t)L(¢).
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LEMMA 2.5. Consider the control problem (2.3) with A1), W(t) given in
(2.14). The control law

o(t)=—V () C*(t)K(t)x

is optimal, if K(t) is the solution of (2.1).
Proof. Since K(t) satisfies (2.6), we have, in view of Lemma 2.2, that

K®)=0®)

for each L(t). Asin[3], we can construct a sequence of strongly continuous linear
Operators L,(t) such that the corresponding operators Q,(t) satisfy

Q=0,(=---=Q.()="---.

Since Q,(t)=K(t) for each n, Q,(f) converges to some operator Qn(t) = K(¢).
But Q(t) corresponds to a unique optimal control, so that we have

Ox(t) = K(1).

Hence Qu(t) = K(t).
LEMMA 2.6. The control law

a(t)y=-U"'"(t)B*()K(t)x
is a unique optimal control for the control problem
x=(A(t)—D,(t)K(t))x + B(t)u,
x(to) = Xo,

and

1) = (Be(t), x(0)+ [ (W) + K () Dir)K (1) (7). x(7)
+(U(7)u(r), u(r))] dr.

This is the exact counterpart of Lemma 2.5, and therefore the proof is omitted.
Proof of Theorem 2.1. The theorem follows directly from the preceding
results. In fact, Lemma 2.5 gives

Jm, v)=J(u, ),
and Lemma 2.6 tells us
J(a, )= J(u, D).

The relation (K(t,)xo, xo) =J(a&, 0) follows, for example, from (2.4) with L(t)
=—D,(t)K(¢) and the observation that K(t) = Q(t) for this particular L(t).

3. Quadratic games with open-loop controls. We consider the same differen-
tial system (1.1), (1.2) and the payoff functional (1.3). Admissible controls are now
L,(I; H;)-functions. Our solution of the system (1.1), (1.2) is defined by (1.4).
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Define operators P, P;, Q and Q, by

t

(Pu)(t)= J S(t, 7)B(t)u(r) d, Piu = (Pu)(t), uelL,(I; H,),

(3.1) ‘
(Qu)(t)= J S(t, 7)C(r)V(r) dr,  Qiv=(Quv)(t), v e L(I; Hs)

{]

Then, P, Qe B[L:(I; H); L.(I; H)], i=2,3, and P, Q€ B[L,(I; H); H\],
i=2,3. Here B[X; Y] denotes the set of linear bounded operators mapping X
into Y. Let r(¢) = S(t, ty)xo, ri = r(t,); then r(t) € L,(I; H,). We denote by x,,,(t) the
solution of (1.1), (1.2) corresponding to a control pair {u, v}. Then we have

(3.2) Xuo(£) = r(8) +(Pu)(t) +(Qu)(1)
and
J(u, v)=(F[Pyu+Qv+r], PLu+Q,v+r)
+(W(Pu+Quv+r), Pu+Qu +,r)+(Uu, u)+{(Vo, v)
(3.3) ={((PYFP,+P*WP+ U)u, u)+2(PTF(Q,v +r,), u)
+2(P*W(Qu +r), u) +{(QTFQ, + Q* WQ + V)v, v)
+2(QF Fri+ Q* Wr, v) +(Wr, ry+ (Fr, ).

Here * denotes the adjoint of an operator.
THEOREM 3.1. Assume that
Al: V+QOTFQ,+Q*WQ <0 onLyI;H,)

holds, then there exists a unique optimal pair ii, ¥ satisfying the relation
u(t)y=-U "(t)B*(t)[S*(tl, t)Fxﬁ,ﬁ(t,)+j S*(7, t) Wxas(T) d'r],
(3.4) iy
o(t)=— V“‘(t)C*(t)[S*(t,, 1) Fxas(t) + J S*(, t) Wxas(T) dT],
where x;(t) is the optimal trajectory of (1.1), (1.2).
Proof. Under Assumption A1, J(u, v) is strictly convex and lower semicon-

tinuous in u, and strictly concave and upper semicontinuous in v. Hence there
exists a unique saddle point, which is given by the solution of

ViJ(u, v) =2(PYFP,+ P* WP+ U)u+2PTF(Q,v+r,)+2P*W(Qv +r) =0,
(3.5)

V. J(u, v) =2(QFFQ,+ Q*WQ+ V)v +20F¥F(Pyu+r,)+20*W(Pu +r) =0.
Here V,J(u, v), V.J(u, v) are partial Fréchet derivatives of J(u, v) with respect to
u, v, respectively. Thus {#, 0} satisfies the following:

u=-U"[PYF(Pii+Q,5+r)+P*W(Pii+Qb+r)],
0=—V[OTF(Qi+ Qid+r)+Q* W(Pii + Qb +r)].
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Hence we have

a(t)=—U""(t) [P Fxas(t:) + P* Wxas (1),
5(t) = =V () [ QF Fxas(t:) + Q* Wz ](1).
Since we have relations such as

(PTh)(t)=B*(1)S*(t:, ), heH,,

(3.6)

(PO = | B*@)S* (5 0y dr, Y€ LlT; ),

t

we may rewrite (3.6) to obtain (3.4).
Remark 3.1. For the existence of an optimal pair, we require only that

V+QIFQ,+Q*WQ=0.

Let s € I be arbitrary, and let I, =[s, t,]. We define operators P,, P;,, Q, and
Q,, on L,(I;; H;) as in (3.1), with ¢, replaced by s.
LeEMMA 3.1. Assumption Al implies that

3.7 V+Q%LFOQ,, + Q¥WQ, <0, sel

In view of the above lemma, quadratic games on I, for each sel are
well-defined and have a unique optimal pair for any initial value he H,. Let
x(+,s, h) denote the unique optimal trajectory with initial condition h for the
quadratic game on I,. We define an operator K(s), s I, on H, by

(3.8) K(s)h =S*(t,, s)Fx(t,, s, h)+Jﬂl S*(r, s) W(7)x(7, s, h) dr.

We shall rewrite the optimal pair (3.4) in terms of this operator K(s). Since
x(+, to, Xo) restricted on I, is again optimal trajectory on I, corresponding to the
initial value x(s, t, Xo), we arrive at the following relation:

x(7, 8, x(s, to, X0)) = x(7, to, Xo), Tel,

Hence (3.4) has an equivalent form

a(t)=—U"(t)B*(t)K(t)x(t, to, xo),

(3.9
o(t) =~ V() C*(t)K()x (¢, to, Xo).

LEMMA 3.2. K(t), te 1, is a linear bounded self-adjoint operator mapping H,
into itself. Furthermore, K(t)=0, and for any ho, h,€ Hy, te,

(K(t)ho, hy) = (Fx(ts, t, ho), x(t1, t, hy)) +j'l [(W(T)x(T, t, ho), x(7, t, hy1))
3.10 '
10 +(U(T)uo(1), us(7)) + (V(1)00(7), 04(7))] d.

Here {u;, v;}, i =0, 1, is an optimal pair on I, for the initial value h..
The proof is similar to Theorem 2 in [4]. Summing up, we have the following.
THEOREM 3.2. Consider the quadratic game (1.1), (1.2) and (1.3). Let
Assumption A1 hold. Then there exists a unique optimal pair @i, v given by (3.9),
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and
J(ﬁ, 0)= (K(to)xo, Xo)-

Below we shall examine the properties of K(t) and show that K(t) satisfies
the Riccati integral equation (2.1).

LeMMA 3.3. Let {u, v.} be the optimal pair for the quadratic game on I, t € I.
Then {u}, {v.}, tel, are uniformly bounded, or, equivalently, K(t) is uniformly
bounded in t.

Proof. Suppose the contrary. Without loss of generality, we can assume the
existence of {7.} | to, 7. € I, such that at least one of {u, = u,}, {v. = v.,} tends to
+00 in norm. By the saddle point condition, we have

(3.11) J.(u,, ) =T, (U, v,) = J,.(&, v,),

where J,(-,-) is the payoff functional on [, t;]=I,. We note that &, ¢ is the
optimal pair given in Theorem 3.2, and we understand &, ¥ in (3.11) to be
restrictions of w, o on [7,4] If {u.},{v.} are bounded, then so are
J. (U, ©), J. (i, v,). Since J, (&, v,) | —0 as ||[va|l, >+, and J,.(u,, D)} +00 as
ln|l. > +00, we have in either case a contradiction. Here || - ||, is the norm in
Lz(L-; I'I.)

LemMMA 3.4. K(t)—> K(s) strongly as t 1 s.

Proof. Let ty<t,<7;<tj,andlet J;( -, - ), i =1, 2, be the payoff functional on
[7:, t1]. The optimal pair on [, t,] will be denoted by {u;, v;}. The controls u,, v, are
defined on [y, t;], but we extend them on [7,, t;]. Thus expressions J,(u,, v2),
J>(uz, v,) are meaningful. Similarly, when we write J,(u;, v,), J1(u,, v1), we under-
stand u,, v, to be restrictions on [74, t,;]. Consider

Jo(uz, 02) Z Jo(Uz, v1) = (Fxa.1(t, 72), X24(t1, 72))

[ W, 7, 5200, )+ (UE), wr)

2

(3.12) +(V(T)vi(7), v:(7))] d7

= (sz,l(tl’ 7'2), x2,1(t1, 7'2))

+ [ V5 2, 200 + UG sl), ()

71

+(V(1)va(7), v:(7))] d7

[ OV @aa(0, 72, 5200, 7) +(UEte), ()] dir

T2

where x;( -, 7:) denotes the trajectory on [, t,] corresponding to the control pair
u;, v;. Note that, using decomposition as in (3.2), we obtain

X2.1(T, T2) = Xo.1(7, T1) +[S(7, 72) — S(7, T1)}x0+ JTI S(7, 0)B(0)u,(o) do

T2

=x,.4(7, T1) + a(7)
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and

X2,1(t1, ’Tz) = X2‘1(t1, 7'1)+[S(t1, Tz)‘S(tl, T])]X()"“ J“r‘ S(tl, O')B(O')uz(o') dO'

T2

=3 XZJ(t], 71) + B
Then, from (3.12),

Jz(uz, 02) = (F[xu(tl, 71) + B], xz,l(tl, 71) +B)

+ jt‘ (Wlxaa(r, 1) + a(1)], x24(7, 71) + (7)) dT

+J U ), us(m) + (V(D)i(r), vi(r)] dr

1

+ [ IOV 7, 200, 2 H U Es(e), ()]
(3-13) = (sz,l(th 71), xz,l(tl, ’Tl))

* J " [(Watan(r, 1), xau(r, 7) + (U(D)ta(7), ()

+(V(m)vi(7), va(7)) ] dT+y
=Ji(uz, v1) +y
2.’1(“1, Ul) + ‘y,

where

v =(FB, B)+2(Fx2.(t:, T), B)

[ V@), @) +2 W (r, ), ale)] dr

[ V@210, 7). 5200, 72) + (U)ol .

2

Since {u;, v:}, i =1, 2, are bounded by Lemma 3.3, we have an estimate
leli=O(ri—72),  |Bl=O(1i—12),
and hence
lvl=O(r1—12).
Similarly, we can show that
(3.14) Jo(us, v2) =Ji (s, 01) +'

for some y’ with |y'| = O(7, — 7). Combining (3.13), (3.14) gives us our result.

LEMMA 3.5. If the system (1.1), (1.2) and (1.3) is time-invariant, namely,
A(t)=A, B(t)=B, - - -, then K(t) is nonincreasing in t, i.e., K(t{)ZK(s)=0 if
s>t
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Proof. Since K(t) depends on t,, we denote it by K, (¢) to be precise. Since the
system is time-invariant, it is easy to see that K, (t) = K,,—,(0). Hence it is sufficient
to show that £, =5, <s,=t, implies

Oé]l(ul, Ul) —S—JZ(uZa UZ)a

where J;(-,-), i=1,2, is the payoff functional on [t, s;] defined by (1.3) with
t,=s;, and {u,, v} is the optimal pair. As in Lemma 3.4, consider

Ja(uz, v2) = Jo(ua, v1)

= (Fraa(s2), xaa(s)+ | W00, 2000+ (UD7), (1)

to

+(V(r)vu(7), va(7))] d7

= Fraglsn), 2aa(s) + | W21 (), 5200+ (U (ts(r), ()

to

(3.15) +(Vuu(r), (1)) dr
~ (B0, Xaa0)+ | (s (52, x2s(52)

+ [ W), 201+ (Uit ustr )] |

1

= Jl(uz, Ul) - (sz,l(sl), xz,l(Sl)) +le(u2)
= J1(u1, v1) = (Fx2.1(81), X2,1(81)) + J12(u).

Here

Ji2(U2) = (Fx2,1(52), X2.1(52))

+ [TV @342, 525 + (Ust), 1) i

1

Consider the control problem
x = Ax + Bu,

x(s1) = x2.1(51),

with a cost functional

(3.16) Jix(u) = (Fx(s2), x(s2)) + J [(W(r)x(7), x(7))+ (Uu(r), u(r))] dr.

It is known [3] that there exists a unique minimizing control given by
un(t) =—U"()B*()R(t)x,
where R(t) is the solution of

R(t) = Sk(s2, ) FSr(s2, ) + sz &7, O)[W(7)+ R(7)D\(7)R(7)]Skr (7, t) dr.

Sr(7, t) is the evolution operator generated by A(7)— D:(7)R(7), and D(7)-
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= B(r)U™'(7)B* (). Note that
F=R()=R(r) ift>r t, T€[sy, 2.

Since
.’12('/_!12) =min le(u) = 112(1.42)

and
Jia(l12) = (R(51)%2.1(81), X2.1(81)),
we conclude
Ji2(u2) Z (R(51)%2,1(81), X2.1(81))
= (Fx2,1(81), X2,1(51)).
Thus we have shown through (3.15) that
Jo(uz, v2) 2 Ji(us, v1).
From Theorem 3.2, the optimal solution x(¢, t,, x,) is given by the solution of
(3.17) x=(A()-D(OK®)x,
x (o) = Xo.
Let Sk(t, s) be an evolution operator generated by A(t)— D(t)K(t). Then
x(t, to, Xo) = Sk (t, to)Xo.
THEOREM 3.3. The operator K(t) defined by (3.8) satisfies the Riccati integral
equation (2.1):
K(t) = S¥(t:, t)FSx(t:, t) + J‘l Sx(t, )[W(1) + K(7)D(7)K(7)]Sk(, t) dr.

Proof. Let ho, h, € H,. Then
x(m, t, hi) = Sk(7, t)h,, u (1) =—-U"'(7)B*(1)K(7)Sk(T, t)h;
and
v:(1)=—V Y (7)C*(7)K(7)Sk(7, t)h;, i=0,1.

Hence (3.10) may be rewritten as
(K(t)ho, hy) = (FSk(ty, t)ho, Sk (t1, t)h,)
+[" (W) + KD @ISk o, Sclr, D) i

Since ho, h, are arbitrary, we obtain (2.1).
Remark 3.2. This theorem tells us that (18) in [4] is essentially equivalent to
the Riccati integral equation in [3].
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4. A quadratic game on an infinite interval. Consider the time-invariant
system

(4.1) % =Ax+Bu+Cy,
4.2) x(0) = x,,

with payoff functional

4.3) *

J(u, v)=J [(Wx, x)+(Uu, u)+(Vo, v)] dt.

0

We take the sets of admissible control functions to be L,(R"; H;). In general,
J(u, v) may not be finite. But, if we impose a strong condition

A2: The semigroup S(t) generated by A is exponentially stable, namely,
[S(t)|=Me™ forsomea >0, M=1,

then J(u, v) is always finite (Lemma 4.1). A sufficient condition for A2 is given by

IR(A; A)|= AES,,

A]+w’
for some M, w >0. Here R(A; A) is the resolvent of A, and

S¢={)\;)¢#O,g—¢<arg/\<%w+¢}, 0<¢<—27Z.
Define mappings P, Q on L,(R"; H;) by

(Pu)(t) = j‘ S(t—7)Bu(r) dr,

(4.4) ,
(Qv)(®) =J S(t—7)Cv(7) dt.

Then P, Qe B[L,(R"; H,); L,(R"; H})], i =2, 3. This follows from Assumption
A2 and the following lemma.

LEMMA 4.1. Let x(t), k(t) be numerically-valued function in L,(R"), L,(R"),
respectively. Then the function defined by

y0= [ k(t=r)x(r) dr

is in Ly(R"). Furthermore, ||yl = ||k|l:||x[..
We further assume

A3: V+QO*WQ <0 onL,R"; H,).

Then we can derive results analogous to those in § 2. We shall state results without
proofs.

THEOREM 4.1. Let Assumptions A2, A3 hold. Then there exist a linear
self-adjoint nonnegative time-invariant operator K and a unique optimal pair
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u”, Vo such that
Uo = —U "'B*KXow,
Vo=~V 'C*Kxow.
Here x, is the optimal trajectory given by
Xeo(1) = Sic ()0,
and Sk(t) is a semigroup generated by A — DK. Moreover,
J(Uo, Vo) = (KXo, Xo).

THEOREM 4.2. The operator K satisfies the Riccati equation
(4.5) K:I (1 —t)[W+KDK]Sk(r—1) dr,

which is independent of t. From (4.5) we can derive an inner product Riccati
equation

(KAh,, h,) +(Kho, Ahy) +(Why, h.)—(KDKh, h,) =0

for any ho, h,e D(A).
Remark 4.1. Since he D(A) implies he D(A —DK), xo(t)=Sk()x, is
differentiable and satisfies

i=(A-DK)x,
x(0) = xo,

if xoe D(A). Hence x(?) is a strict solution for each x,€ D(A).

Remark 4.2. Assumption A3 implies Al with F=60 for each interval
I=[t, t;]= R". Hence there exists a unique optimal pair for (1.1), (1.2) and (1.3)
with F= 0. Let I, =[0, t,] with ¢, 1 00, and let {u,, v.} denote the optimal pair.
Then, using Lemma 3.5, we can show that

K., (t)» K strongly for each fixed ¢,
and

u"éum} in L,(R"; H;).

Un = Voo

Remark 4.3. It is known that differential game theory can be applied for
sensitivity design and control problems with uncertainty to obtain an upper bound
of the cost. Assumption A2 is very restrictive, but the results of this section may be
used to obtain an upper bound of the cost of a regulator problem (at least in a
finite-dimensional space).

Acknowledgment. The author would like to thank Professors V. Dolezal and
U. Haussman for their encouragement and helpful discussions.
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OPTIMAL CONTROL PROBLEMS IN SOBOLEYV SPACES
WITH WEIGHTS*

CLAUDIA SIMIONESCU*t

Abstract. We consider an optimal control problem in certain Sobolev spaces with weights used
systematically by F. Treves in [1], [2]. The notations and definitions are the same as in [2] and [3].

1. Definitions and background. Let E be areal Hilbertspace and let q(¢) be a
real function with continuous derivatives that satisfies the condition:

(A) there exists a constant p, >0 such that |q'(t)| = p, for every real t.

If k is an integer (k € Z), then 9*(q; E) denotes the Hilbert space obtained
by completing 9(E)' with respect to the structure defined by the Hermitian
product

(1) (@, Pegu= ("D p, e "D Y) 2y = J (D" p, e D" ¢)e dt.
Consequently, the norm of 9*(q; E) is

1/2
@ bolln= e D*ellrer= | [ e D¥ el at]

In [2] the following results are shown:
(i) If k, he Z, h=k, and q(t) verifies condition (A), then there exists a
continuous mapping from %*(q; E) > 9"(q; E) such that

1
(3) Ifle:0n= sup———=lfle.qx forall fe D*(q; E).
wer |q'(1)]

(ii) For each integer k € Z and each real function q(t) verifying (A), 2*(q; E)
is a space of distributions with values in E, that is,

2*(q; E) = 9'(E).

(iii) If k is an integer and k =0, then 9*(q; E) is the space of all (classes of)
measurable functions from R into E such that e *“D"u(t)e L*(E) for every
O=h=k.

(iv) For each ke Z, k=0, 9 "(q; E) is a space of distributions having the
property: if Te 97%(q; E), then there exists k + 1 functions g, € L*(E) such that

T:quo+D(qu1)+' . '+Dk(quk).

* Received by the editors June 27, 1974.

T Facultatea de Stiinte, Universitatea din Bragsov, Brasov-Romania. Results presented in the
paper were obtained while the author was an IREX Fellow in the Department of System Science,
University of California, Los Angeles, California, 1973-1974.

' P(E) is the space of functions defined on the real line taking values in E, with derivatives of all
orders and compact support.
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(v) If A(t) e B(ZL(E, F))*, then f > A(t)f is a continuous linear mapping from
2*(q; E)~> %2"(q; F).

(vi) Let us consider two Hilbert spaces E and F, a positive constant p, and an
operator A(t) € &,(¥%(E, F)). Then for every € >0and k € Z, there exists a positive
function with continuous derivatives G, such that if a function q(t) satisfies the
inequality

|Gl +po=|q'(1)],

then A(t) is a bounded operator from 2*(q; E)~> 9*(q + G..; F) of norm less
than e.

2. Statement of the problem. Let us consider a real Hilbert space U and
suppose that

(a) r(u, v) is a symmetric bilinear continuous form on A,

(b) L(v) is a linear continuous form on %,

(¢) U., is a closed convex subset of U (the set of admissible controls), and

(d) J(v)=m(v,v)—2L(v) is a quadratic functional on %.

ExX1STENCE AND UNIQUENESS THEOREM [3]. If the form 7 (u, v) is coercive on
U, then there exists a unique element u € U.q4, such that

J(u)=) inf I (v)
VEU g
(u is the optimal control).

Let V and H be two real Hilbert spaces, V< H, V dense in H, and let the
injection V- H be continuous. We identify H to its dual so that if V' denotes the
dual of V, we have Vc Hc V',

We consider now the integro-differential operator

1
4) P(t,D)= Y %B.(1)D’, nelN, RB.(t)e €(¥(H, H)),
where 9,(t) is a Hermitian operator and satisfies the condition:
(I) there exists a function b(t) € €. b(t) >0, such that for every ge H,

(5) (Bi(t)g, 8)u=b(t)||g|% forall te R.

Let a(t; u, v) be a bilinear Hermitian continuous form on V X V such that for
every u,ve'V,
(I0) |a(t; u, v)|=k|ul- |lvll, k>0,
(1) a(t; u, u)=a(t)|ul}, «(t)>0 forall teR.
We suppose that the mapping t - a(t; u, v) is measurable.
Then there exists an operator A(t) € €,(£(V, V))suchthatforall u, ve V,we
have

a(t; u, v) =(A()u, v)v,

> B,(L(E, F)) is a subspace of &(ZL(E, F)).(£(¢£(E, F)) is the space of all bounded continuous
operators from E into F which have continuous derivatives of every order with respect to t) and
contains all functions g(¢) having the following property: for each integer r, r =0, there exists %, <o,

such that
lg”Ollece.r = B,

for every real t.
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and consequently:
(IV) there exists a(t) >0 such that

(A(Du, u)y Za(t)|ulp, forallteR.

3. Results.
3.1. Consider a system governed by the integro-differential operator P(t, D)

defined by (4), such that the state y of the system is given by the solution of the
equation

(6) (A(D)y, u)v+(P(t, D)y, u)u = (g + Bv, u)n, ueV,

in the sense of scalar distributions. Suppose that 9% = V. Then we have the
following.

ProposITION 3.1. If p(t) is a real function that verifies the condition (A) and

(a) BeL(V;2"(p; H)),

(b) g€ 2 “(p; H),

(c) Ne¥%(V, V) is Hermitian and coercive,

(d) A(t) satisfies the property (1V),

(e) P(t, D) satisfies the property (1),

(f) the cost function is given by

(7) T (v) =|ly(v) = z4fz + (Nv, v)y,
where
(8) Iyl = lylRp vt Iy lfErpeo

Z4 is an observation of the state of the system and y(v) the solution of (6), then there
exists an optimal control v € V4 of the system (V.4 is a closed convex set in V).

Proof. From Theorem 3.7 of [2, p. 119] it follows that there exists

(a') a positive function G(t), G(t)e C', for every real t and

(b') for every k € Z the positive functions g.(t) € C° and G.(t)€ C" are such
that if p'(t) = g, for all t€ R, and p + G verifies the condition (A), then for each
g€ D*(p; H) there exists a unique solution ye @*(p+G; V)N D*(p; H) of the
equation

(A(t)y, u)yv +(P(t, D)y, u)u=(g, u)u forallueV.

Let us consider v € V. Then %Bv € *(p; H) and from (b) we obtain g+ Bv €
P*(p; H) for every ve V.
Hence the equation

(A(t)))a u)V+(P(t’ D)y’ u)Hz(g+%v7 u)Ha ue ‘/a

admits in *(p+ G; V)N @*(p; H) aunique solution y = y(t, v) for each control v
which describes the state of the system at time ¢.

Let us consider the observation of the system as z(u) = €y(v), where € is the
“observation’ operator

€ D (p+G;V)ND (p; H) > .
J is a Hilbert space, and the cost function is defined by
T(v)= ”(g)’(v)_zd";"*‘ (Nv, v)v.
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If we assume that € is the canonical injection
i:2%p+G; VIND*(p; H)»2*(p+G; V)ND“(p; H),
then the cost function is
T (v) = |ly(v) = zdls + (Nv, v)v,

where z, is the given observation z,€ *(p+ G; V)N %*(p; H) and | - ||« the
norm defined by (8).

Consequently we have

H(u, v) = (y(u) = y(0), y(v) = y(0)+ +(Nu. v)v,
L(U) = (Zd - Y(O), )’(U) - )’(0))*,

and then
T (v) =T(v, v) = 2L () +|za = y (O)[]3-

The coerciveness of N implies the coerciveness of I1. Then, by the existence and
uniqueness theorem it follows that there exists a ue V., V.q a closed convex
subset of V, which minimizes J (v) and hence realizes the optimal control.

We know that u is an optimal control if and only if

) (y(u)—z4, y(0) = y(u))s+(Nu,v—u)y =0 forallve V,,

which may be written

J (e OD*(y(u) = z), e P D*(y(v) — y()))v di

+ J (e "D*(y(u)—z4), e *"D*(y(v)—y(u))udt+(Nu,v—u)y =0

or

J (D* (e D*(y(u)— z4)), y(v) = y(u))v
o) "
+J (D*(e D" (y(u) = za)), y(v) = y(u))us dt +(Nu, v —u)y = 0.

We now transform this expression by means of the adjoint state. For each
control wveV,, we define the adjoint states ¢ (v), c(v)e
@ (p+G; VIND*“(p; H) as being the solutions of the equations

(11) [P(t, D)+ A(D)T*ci(v) = D*(e > D" (y(v) — z4))
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and

(12) [P(t, D)+ A(t)J*co(v) = D (e **D*(y(v) — z4)).
Consequently,
(D*(e*** D (y(u) = z4)), y(v) =~ y(u))v
=([P(t, D) + A(t)]*ci(u), y(v) —y(u))v
=(ci(u), [P(t, D)+ A(D)](y(v)—y(u))) = (c:i(u), B(v—u))
=(B*ci(u), v—u)v,

where 8™ is the adjoint of 8 and
(D*(e"D"(y(u) = 24)), y(v) —y())u = ([P(t, D) + A(O)]*ca(u), y(v) = y(u))u

=(c2(u), [P(t, D)+ A(H))(y(v) — y(u))u = (c2(u), B(v—u))
=(B*ci(u), v—u)n.
Then we obtain from (10), (11) and (12),

(13) J (%*c,(u),v—u)vdt+J (B*ca(u),v—u)y dt+(Nu,v—u)v=0

for every ve V,, and B*e L(D'“(p; H), V')=L(D"*(—p; H), V'). Hence the
optimal control u is characterized by the inequality (13), where ¢,(u) and ¢,(u) are
given by (11) and (12).

3.2. Let us consider the integro-differential operator

2
(14) P(t, D)=} RB.()D’,
where n € N, %,(t) € €.(¥(H, H)).
Suppose that RB,(¢) is Hermitian and satisfies condition (I), in other words,
that there exists a function b(t) € € such that for every ge H and ¢ real,

(15) (B1)g, ©)n = b(1)||g]|er

Let V be the space of controls and let us consider a system governed by the
operator (14) such that the state y of the system is given by the solution of the
equation

(16) (A(t)y, u)v+(P(t, D)y, u)u = (g + Bo, Uu)u,
the sense of scalar distributions.
We have the following result.
PrOPOSITION 3.2. If: p is a real function that verifies the condition (A) and
(a1) BeL(V;D"(p; H)),
(b)) geD*(p; H),
(c1) Ne #(V, V) is Hermitian and coercive,
(d,) A(1) satisfies the condition (IV),
(e1) B,(t) satisfies the inequality (15), then we can find a unique element
u€ V,y < V(V,u—a closed convex set of V') which minimizes the cost function

(17) T (v) =|ly(v) — zd|x + (Nv, v)v,
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where y is the solution of (16), z, is an observation of the state of the system and
”)’"i = ")’||3;p+c.k+ ”)"”%-I;p.kﬂ'

Proof. By virtue of a theorem of Tréves ([2, Thm. 3.7]) there exists:

(a”) a function G(t) =0 of class C" and

(b") for every k € Z, positive functions g (t) € C° and G,(t) e C" such that if
p' = g and p + G verifies the condition (A), then for each g € 9*(p; H) we can find
a unique element ye 2“(p+ G; V)N P*"'(p; H) such that

(A(D)y, u)y+(P(t, D)y, u)y =(g u)y forallueV.

From the hypothesis we deduce that B e £(V; 9*(p; H)) and consequently,
g+ RBve D*(p; H). Hence we have a unique solution y = y(t, v) of the equation

(A(Dy, u)y+(P(t, D)y, u)y = (g +Bv, u)n

that represents the state of the system at time ¢ for each control.
Let us suppose that the “observation” operator is the canonical injection

i:D*(p+G; VIND*(p; H)»D*(p+G; VIND* ' (p; H)

and the cost function is
(18) T (v)=|ly(v)— z4|} +(Nv, v).
Then it follows from the same theorem that there exists a unique element

u € V,, < V which minimizes 7 (v).
The optimal control is characterized by the inequality

(19) (y(u)— za, y(0) = y(u))x +(Nu, v —u), =0 forallve V,,
or by

J e" D (y(u)—z4), e "D (y(v) — y(u))v dt

+J (e ?D* (y(u)—z4), e "D* ' (y(v) — y(u)))u dt + (Nu, v —u)y =0

or

L (D*(e " D (y(u) — 2)), y(0) — y(w))y dt

+ L (D*"'(e7*D*" ' (y(u) = z4)), y(v) — y(u))u dt+ (Nu, v —u)y, = 0.

Let us introduce the adjoint states

di: V> D (p+G; VIND*(p; H),
d,: V> D (p+G; VIND*(p; H)
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as solutions of the equations
[P(t, D)+ A(1)]* di(v) = D*(e*** D (y(v) - za)),
[P(t, D)+ A(N)]* dx(v) = D*"'(e*D* " (y(v) — 24).

Then we obtain

L (di(u), B(v—u)) dt+L (da(u), B(v—u)) dt+(Nu,v—u)y =0
and

L (B* dy(u), v—u) dt+L (B* dr(u), v—u)udt+(Nu,v—u)y =0,

where
B e LD (p; H); V)=L(D“(-p; H), V).
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ON SOME PROPERTIES OF MIN-MAX FUNCTIONS*

T. MATSUMOTO?t

Abstract. Some of the properties of functions resulting from min-max operations are discussed.
First, an implicit function theorem involving min-max functions is proved. Then a formula for the
directional derivatives of the implicit function is given. It is shown that these results can be successfully
applied to some of the problems in differential games.

1. Introduction. During the course of a study in differential games, the
author was led to functions of the form

H(z, 7)=min max F(x, y, z, 7).
yeEY xeX

We will discuss some of the properties of such functions. We will first prove an
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