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EXISTENCE THEOREMS FOR HEREDITARY LAGRANGE AND
MAYER PROBLEMS OF OPTIMAL CONTROL*

THOMAS S. ANGELL"

Abstract. In this paper, we prove existence theorems for optimal solutions in control systems
governed by functional differential equations. We use a model for abstract hereditary systems, formu-
lated by Hale and Cruz, which subsumes functional differential equations of finitely retarded type,
equations of neutral type which are linear in :t as well as a large class of Volterra integral equations.
Using this model, we define an abstract hereditary control system, and then prove several existence
theorems for optimal control problems of the types of Lagrange and Mayer in the line of previous work
by Cesari.

1. Introduction. In a previous paper [2], we proved existence theorems for
optimal control problems for systems whose dynamics are described by functional
differential equations of finitely retarded type. Here, we present existence theorems
for a much broader class of systems, namely the hereditary structures discussed
by Hale and Cruz 16]. In this latter paper, the authors prove theorems ofexistence,
uniqueness and continuous dependence of solutions for this general class of
equations which includes, as special cases, functional differential equations of
finitely retarded type, Volterra integral equations, difference equations, as well as
those functional differential equations of neutral type in which the derivative +/-t
appears linearly. The control systems which we discuss here, will include, as
special cases, those of [2] as well as a large class of neutral functional differential
equations and a class of Volterra integral equations with kernels of the form
[K(t, s, x(s)) + F(s, u(s))].

Our specific goal is to extend the results of [2], in the line of previous work
by Cesari, to this new and more general class of hereditary systems and to present
new theorems for a class of hereditary Mayer problems. The principal results
are the existence theorems, Theorem 6.2 relating to Lagrange problems of optimal
control and Theorem 7.1 applying to problems in the form of Mayer.

We should also point out the relationship between the present results and
the work of Warga [22, Chap. VIII pertaining to functional-integral equations.
On the one hand, the theorems of [22] give existence results for optimal control
including, as do the present results, the case of ordinary and retarded functional
differential equations. In addition, [22] covers a much broader class of integral
equations than do our results. On the other hand, there seems to be no natural
way to include the class of neutral functional differential equations discussed here
in the class of functional integral equations discussed in [22] without making
additional differentiability assumptions which the approach of [16] is designed
to avoid. Moreover, the approach used here utilizing closure and lower closure
theorems differs from the approach in [22] which uses the concept of relaxed
solutions.

The primary difficulty encountered in applying the techniques of [2] to the
present class of hereditary systems is that the usual boundedness assumptions
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or growth conditions imposed on the right member of the differential equation
do not alone yield equicontinuity of the minimizing sequence. As the reader
will see in the sequel, this phenomenon is due to the appearance of terms involving
the past history of the process in the left member of the equation.

Finally, we point out that since we are dealing with a functional differential
system whose state space is a function space, the usual condition [u[ =< M is not
enough to guarantee the various compactness conditions needed for the proof of
the existence theorems.

2. Description of hereditary control systems and examples. Let r be a positive
real number and consider the set C([-r, 0], E"), the class of all n-vector-valued
continuous functions with domain [-r, 0], equipped with the topology of uniform
convergence. When there is no chance of confusion, we will write simply C([- r, 0])
for C([-r, 0], E"). Let A be a closed bounded subset of E C(-r, 0]), let
U(t, b) be a closed subset of Em, and let g’A - E" be continuous. We will be
concerned here with a differential equation of the form

(2.1) d/dt[x(t) g(t, x,)] F(t, x,, u(t)),

where the function u, with values in Em, is the control function x with values in E"
and defined on an interval of the form t r, t2] is the trajectory, and for any
t tl, t2], xt(O x(t -+- 0),--r <_ 0 _< O. We shall refer to (2.1) as an hereditary
control system with control function u.

Since the set A is assumed bounded, its projection onto the t-axis is contained
in some compact interval It]’, t], and the initial value problem

d/dtx(t) g(t, x)] h(t, x), t, t],

is equivalent to the initial value problem posed by Hale and Cruz in [16] as can
be verified easily by the reader. In particular, let m {(t, ck, u)’(t, ck) A and
u U(t, qS)} and let Fi, 1, ..., n, be given real-valued functions, defined and
continuous on the set M. We write F (F1, "’, F,). Ifthe function u" It1, t2] Em,
t-< t -< 2 -< t, is chosen to be measurable, then (2.1) is an hereditary differential
system of the type considered in [16, 7]. The results of [16] show that under
hypotheses, among which is that the function g is nonatomic at zero, the initial
value problem will have a solution provided one specifies, at time t, a continuous
function q C([-r, 0]). Essentially, the property of being nonatomic at zero
insures that the function g does not depend ve,ry strongly on the value b(0).
The reader is referred to [16] for the precise definition as well as for examples of
this behavior.

We now consider pairs of functions {x, u], each pair consisting of a measurable
function u’[tl, t2] E" and a corresponding continuous function x’[tl r, t2]

E", which satisfies, almost everywhere, the hereditary differential equation

(2.2a) d/dt[x(t)- g(t, x,)] F(t, x,, u(t)), t <= <= z,

subject to boundary conditions

(2.2b) (t l, Xtl t2, Xt2 e B,
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where B is a given closed subset of E C([-r, 0]) E C([-r, 0]), as well as
constraints

(2.2c) (t, x,) A for all Its, t2],

(2.2d) u(t) U(t, x,) for almost all Its, t2].

Such pairs of functions are called admissible, and for such a pair, the function x
is called a trajectory of the control system while the function u is called the control
generating the trajectory x. Note that, implicit in the definition of a trajectory is
the condition that the function x(t) g(t, xt), <_ =< 2, is absolutely continuous
so that d/dt[x(t) g(t, x,)] exists almost everywhere in Its, t2].

A control system which admits at least one admissible pair is called a control-
lable system. In what follows, we will always assume that the system is controllable.
Some remarks on the question of sufficient conditions for the controllability of
systems of retarded type have been made elsewhere by the author [1].

Our purpose in this paper is to discuss existence theorems for optimization
problems of the types of Mayer and Lagrange. In the first case, we assume as given
a continuous function h’B E, and we seek the minimum of the functional
I[x, u] h(t, xtl, t2, Xt2) over some nonempty class if2 of admissible pairs {x, u];
that is, we seek a pair {Xo, u01 ff2 such that l[xo, u0] _-< I[x,u] for all {x,u}O.

In the case of Lagrange problems, we wish to minimize an integral of the form

I[x, u] Fo(t, x,, u(t)) dt

under the side conditions (2.2abcd). Here F0 is a real-valued function defined on M
and we shall denote by any class of pairs {x, ul admissible in the sense stated
above and for which Fo(t, x, u(t)) is L-integrable in [t, t2]. Briefly, we shall say
that if2 is a class of admissible pairs for the Lagrange problem under consideration.

We shall refer to this latter problem as a Lagrange problem with unilateral
constraints. If we take the sets U(t, ok) to be compact, the resulting problem may be
referred to as a Pontryagin problem, and if Fo is taken as Fo 1, the resulting
problem is one of time-optimal control.

We now present three examples, similar to those given in [16], to show that
the control systems described here include a number of control systems which
have been studied previously.

Example 1. Setting the function g(t, 4) 0, equation (2.1) becomes

(2.3) d/dt x(t) F(t, x,, u).

This is the type of equation we discussed in detail in our previous paper 2],
a functional differential equation of finitely retarded type.

Example 2. Let the function g have sufficiently smooth derivatives. Then
equation (2.1) becomes

(2.4) :(t) g(t, xt)5 g(t, xt) F(t, xt, u),

where ct(O (t + 0), 0 [-r, 0]. This equation includes equations of neutral
type in which the derivative t occurs linearly. Such equations are discussed by
Driver 14] and by Hale and Meyer [17].
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Ex.ample 3. Let K:[-0, T] x [0, T] x E" E", f:[0, T] E", 0 < T < oc, be
given functions. Assume that F is independent of 4) and that the function g has
the form

g(t, 4)= K(t, + O, x(t + 0))dO + f(t),
--t

Then, (2.1) becomes

or

t[0, r], 95 e C([- r, 0]).

d (t)- K(t,t + O,x(t + O)) dO-f(t) =F(t,u)

x(t)- K(t, + O, x(t + 0))dO- f(t)= F(s, u(s)) ds.
--t

Making the change ofvariables s + 0, the first integral becmesj"t0 K(t, s, x(s)) ds
and so, equation (2.1) becomes

(2.5) x(t) f(t) + [K(t, s, x(s)) + F(s, u(s))] ds,

which is a Volterra equation for x once a control function u has been specified.
The initial value problem for (2.1) and the solution of (2.5) are equivalent problems
provided that the initial functions of (2.1) satisfy the condition 4(0)= f(0).
We refer the reader to [3] and [4] where, in the same spirit as the present paper,
we treat directly systems governed by Volterra integral equations. In addition,
the book of Warga [22] treats such models in a very general context.

Remark. We also wish to point out that certain problems involving hyperbolic
partial differential equations have been shown to be equivalent to problems
involving neutral functional differential equations of the form (2.4). The interested
reader is referred to [5] for details.

3. The orientor field problem and property (Q). Control systems of the type
described in the previous section can be written in terms of orientor field (or
contingent) equations. In other words, we consider the orientor field problem

(3.1) d/dt[x(t) g(t,

where Q:A 2E" is given by

(t, xt) e A,

Q(t, dp) {z F(t, dp, u):u e U(t, b)}.
A solution x(t) of (3.1) is a continuous function x, defined on an interval of the
form [t r, t2] such that (a) x(t)- g(t, x)is absolutely continuous on Its, t2];
(b) (t, xt)e A for all e Its, t2]; and (c) d/dt[x(t) g(t, x,)] e Q(t, xt) almost every-
where in Its, t2]. In what follows, we will assume that the set Q(t, 4)) is convex for
each (t, 40 e A.

Clearly, any solution of the original control problem gives rise to a solution
of this orientor field problem. The question of whether every solution of (3.1)
which, in addition, satisfies the boundary condition (2.2b) can be viewed as a
trajectory of the control system (2.2abcd) is answered by a standard argument
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involving the McShane-Warfield extension of Filippov’s implicit function
lemma 19].

Remark. One remark needs to be made concerning the use of this result in
the present context of hereditary systems. For control systems involving ordinary
differential equations, the set M is a subset of a Euclidean space and is the union
of countably many compact metrizable subsets. In our problem, the set M does not
have this property, but it is a separable space. McShane and Warfield have shown
that their theorem remains true in the separable case provided one is willing to
invoke the continuum hypothesis. The reader is referred to [19] for details.

In what follows, it will be convenient to consider the space X of all continuous
vector functions x defined on arbitrary intervals of the projection IA of the set A
onto the t-axis, x" [a, b] ---, E". We now introduce the structure of a metric space
on X by introducing, as usual, a metric function p’X X E1/. For this
purpose, let x, y X with x defined on an interval [a, b] and y defined on [c, d-].
We may extend x and y to all of IA by taking x(t) x(a) for all < a, and x(t)

x(b) for all > b, and similarly for y. We then define the distance function
p(x, y) by

p(x, y) --la cl + Ib + dl + sup Ix(t) y(t)l,

where the supremum is taken over all IA. With this metric structure, the space
{X, P is complete. When all functions x, of a sequence {x,} are defined on a
fixed interval, the convergence of the sequence to an element x in the metric
topology is just the uniform convergence on that interval.

We now introduce the concept of a closed class of admissible pairs for the
problems under consideration. Before doing so, we remind the reader that a
trajectory x of the control system is a continuous vector function x(t) (x 1, ...,
x"), <_ _< t2, such that x is generated by some measurable control function u,
satisfying the constraints u(t) U(t, xt) almost everywhere, and such that the func-
tion x(t) g(t, xt) is absolutely continuous in [t x, t2].

For Mayer problems, we may introduce the following.
DEIINITION 3.1. A class f of admissible pairs is said to be closed provided,

for every sequence {xk, uk}, k 1, 2, ..., of pairs in f such that x x in the
p-metric, where x is a trajectory of the control system, among all measurable
functions u which make the pair {x, u} admissible, there exists one u such that
{x, u} f.

For Lagrange problems with functional l[x, u] Fo(t, x,, u(t)) dt, we have
a corresponding notion, differing slightly from the above as is to be expected
since the notion of admissible pair is slightly different.

DEFINITION 3.2. A class f of admissible pairs for the Lagrange problem is
said to be closed provided, for every sequence {x, u}, k 1, 2, ..., of pairs in f
such that x ---, x in the p-metric where x is a trajectory of the control system and for
which j lim I[xk, u] < + , among all measurable functions u which make
x, u} admissible and for which I[x, u] <= j, there exists one u such that {x, u} f.

Clearly, the class of all admissible pairs is closed.
Given any point (, ) A and number 6 > 0, we denote by N6(, ) the set

of all (t, 4)) e A such that It [1 =< 6, 4) 11 =< 6, Thus N6([, qS) is a neighborhood,
in the relative topology on A, of the element (t, b).
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Since the sets Q(t, ok) with which we will be dealing will be closed but not
necessarily compact, we will need a concept of metric upper semicontinuity for
set-valued mappings. To this end, we introduce the following definition which is a
restatement of a definition introduced by Cesari [10].

DEFINITION 3.3. A set-valued function Q’A 2E" is said to have property
(Q) at a point (t, b) A if

Q(, )= f"l clco[ LI Q(t, )]0 (t,ck) N6(I,P)

f] Q(t,q;6),
6>0

where we denote by Q(t, ok; 6) the subset of E" defined by

Q(t, ck; 6)=cl co I U Q(t, )].(t,#) N6(l,)

The function Q is said to have the property (Q) with respect to (t, ) in A if it has
property (Q) with respect to (t, ) at each point of A.

_Property (Q) is a generalization of the more familiar concept of metric upper
semicontinuity for closed and convex sets (see El0, p. 377]).

4. A closure theorem nd conditions for lower closure. In this section, we
formulate both a closure theorem and a theorem giving sufficient conditions for
lower closure of functionals in integral form..As we shall see, the concept of
lower closure is an extension of the concept of lower semicontinuity for fcee
problems of the calculus of variations. The first theorem of this section is useful
when we must dal with singular components and have no information concecning
the convergence of the derivatives d/dt[x(k)(t)- g(t, xlk))] along a minimizing
sequence {x()}. For the Lagrange problem, however, the presence of a growth
condition involving F and F0 will be enough to guarantee the weak convergence
of this sequence of derivatives and it will be possible to establish the needed
closure theorem assuming only a weakened form of property (Q), namely prop-
erty (Q) with respect to q5 only. This form of property (Q) has been used by Cesari
[13], Olech [20], M. F. Bidaut [8] and Berkovitz [6] to establish existence theorems
for Lagrange problems involving ordinary differential equations.

Let I be any interval of the real line and let C(I, E) denote the set of all
continuous functions mapping 1 into U. As in the previous sections, we will
continue to write simply C(I) for C(I, E").

Denote by y (xl, xs) the s-vector made up of components xl, xs,
=< s < n, of the vector x (x, x"), and let z be the complementary (n s)-

vector z (xs+ l, x"). Thus, we may write x (y, z). Assume that the domain
of F is contained in E x C([-r, 0], E) x E" rather than in E x C([-r, 0])
x E and let A0 be a subset of E x C([- r, O], ES). Set A Ao x C([-r,O],
E"-). We will assume that the orientor field in A depends only on and Yt and not
on z,, and that g(t, 4) (gl, "’", g,) has the form g+l gs+2 gn O.
Then a solution to the orientor field problem

(4.1) d/dt[x(t) g(t, xt)] e Q(t, yt), (t, It) -. A,
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is an element x e C([tl r, t2 such that x(t) g(t, xt) is absolutely continuous on
It1, t2], x(t) (y(t), z(t)) with (t, yt) e A0 (and hence (t, x,)

_
A) for every e It1, t2],

and d/dt[x(t) g(t, x,)] e Q(t, y,) almost everywhere in It1, t2].
THEOREM 4.1 (Closure Theorem). Denote by Ao a closed subset ofE x C([-r,

0], Es) and let A Ao x C([-r, 0], E"-). Let Q "Ao 21":", and assume that the
map Q satisfies the property (Q) with respect to (t,

Suppose that {x(k)} is a sequence of solutions to the orientor field problem (4.1),
x(k) (y(k), z)) defined on [tk r, t2k], and such that (i) the y() converge in the
p-metric to a continuous function y defined on [t r, t2] with the property that
xi(t) gi(t, x), 1, ..., z, is absolutely continuous; (ii) the z) converge pointwise
to a function z almost everywhere on [t r, t2] and z admits a decomposition z
Z + S where Z is absolutely continuous on Its, t2] and S’ 0 almost everywhere on
[tl,t2]; and (iii) the function g(t, 4))= (g, "-’, g,) has the form g+

g,, 0. Then the continuous vector function X (y,Z), defined on

It1 r, t2] is a solution of(4.1).
The proof of Theorem 4.1 follows closely the proof of Theorem 3.1 in [2]

which treats the retarded case. We refer the reader to that paper for details and
mention here only that the proof involves the use of the Ascoli theorem on com-
ponents governed by a growth condition and Helly’s selection process on the other
"singular components". The appearance of such singular components is typical
in Mayer problems (see 7). References [6] and [13] show that, under hypotheses,
the use of this closure theorem can be avoided, and the weakened form of property
(Q) used.

Specifically, in the case that some condition guarantees the weak convergence
of the derivatives of a minimizing sequence, e.g., in the case that the functions F
and F0 are related by the growth condition to be described later (see Def. 6.1),
it is possible to establish a lower closure theorem under the following weakened
version of property (Q) (see Cesari 13]).

DEFINITION 4.1. A set-valued function Q’A 2 is said to have property (Q)
with respect to dp at a point (t, dp) A provided

Q(t,)= fq clco I U Q(i,q)],
0 (,4) N,,r()

where No,() {(t, b)6 A’II 11
Note that this definition differs from Definition 3.3 only in that

replaces N0(t, 4)).
We now introduce the concept of lower closure (see [9], [12]) for functionals

in integral form. This concept reduces to the familiar concept of lower semi-
continuity for free problems.

DEFINITION 4.2. Let x e C([tl r, t2]) be such that the function Ix(t) g(t,
is absolutely continuous on Its, t2] and (t, xt) ,4 for all It1, t2]. A functional I
has the property of lower closure at x if, for any sequence {x(), uk)}, k 1, 2, ...,
of admissible pairs such that x() converges pointwise almost everywhere in Ia
to x, such that the derivatives d/dt[x()(t)- g(t, xlk))] converge weakly in L to
d/dt[x(t) g(t, xt)], and such that lim I[x), u0’)] < + Do as k , there is some
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measurable function u:[tl, t2] --* E" for which {x, u} is admissible and

(4.2) Ix, u] <= lim IX(k), lg(k)

We remark that, if M is closed and if the sets Q(t, ok) are closed and convex,
then the closure theorem and the McShane-Warfield lemma guarantee the existence
of some measurable function u such that the pair {x, u} is admissible. However, it is
possible that (4.2) does not hold for the pair {x, u} (see [9, p. 90]).

In order to give sufficient condition for lower closure, we must introduce a
new map Q’A given by

Q(t, ()= { (Z0 Z) G En+l "Z0 > Fo(t u) z F(t u)u U(t @)}
We may now state the following theorem on lower closure which is the analogue
for Lagrange problems of the preceding closure theorem for Mayer problems.
It is a corollary of the more general lower closure theorem, Theorem 5.1, of
Cesari [13].

THEOREM 4.2. Let A be a closed subset of E C([-r, 0]), and for every
(t, ) A, suppose that U(t, ) = E. Assume that the set m {(t, , u):(t, ) 6 A,
u U(t, )}. is closed and let, (t, , u)= (Fo, F,..., F,)= (F%F) be continuous
on M. Assume that the sets Q(t, ) are closed and convex and that Q satisfies property
(Q) with respect to in A. Also, suppose that the set B = E C([-r, 0]) x E

C([-r, 0]) is closed and that, for some locally integrable function , we have
Fo(t, , u) (t) for all (t, , u) m. Then the integral

has the propery of lower closure at every x e C([t r, t]) such tha the function
x(t) g(, x) is absolutely continuous on It t] and (t, x,) e A for all e Its, ]

We will not repeat the proof here but refer the reader to [13]. The proof
proceeds by applying the Banach-Saks-Mazur theorem to the weakly convergent
sequence of derivatives to obtain a new sequence of convex combinations which
converges strongly to d/dt[x(t) g(t, x,). Property (Q) is then invoked to prove
that this latter derivative satisfies the orientor field relation (4.1). This technique
was used by Cesari in [13], by Berkovitz in [6 and more recently in [7] which
treats multidimensional problems. We emphasize that, for the present theorem,
we need only property (Q) with respect to 4 and not with respect to (t, 4). This
weakening is not in general possible under the sole assumption that the sequence
{x(} converges to x uniformly. Indeed, uniform convergence of the x( to x does
not imply weak convergence of the derivatives x(’ to x’ in L, and there are
examples (see [13]) which show that property (Q) with respect to both variables
is essential in this case.. General rers. Concerning the proof of existence theorems for optimal
control, we wish to make the following preliminary remarks.

As was shown in our previous paper [2], it is convenient to require the
compactness of the initial data, and this restriction will be in force throughout
this paper also. Indeed, the growth condition is enough to insure that the functions

f generated by a minimizing sequence, are equiabsolutely continuous on the
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intervals It1,, t2,,], but gives no information on the behavior of the functions on
sets [-tl,- r, t,]. Even for the retarded case, it is possible to give examples of
equations for which a sequence of solutions may converge on the intervals [tln,
but which diverge on the intervals It1,- r, l,]. We recall here an example of
15, p. 41] of a functional differential equation of finitely retarded type whose
trajectories after a suitable time are zero regardless of the initial function in the
unit ball of C([- 1,0]).

Example. Consider the equation

where

:(t) ,(t)x( ),

2 sin2 nt,
,(t)

O
[2n, 2n + 1],

(2n 1,2n),

We show that for >= 3, x(t) O. In fact, for e [1, 2], x(t) x(1), and

(t) (t)x(1), e [2, 3].

Thus

x(3)=x(1) 2 sin2nsds =0

and so, x(t) 0 for e [3, 4] and indeed, x(t) 0 for >= 3. For e 1, 2] the equation
isjust x(t) 0 and the solution corresponding to the initial function 4 is x(t) b(1),
e [1, 2]. Since the initial functions are taken to lie in the unit ball of C([- 1,0]),

the trajectories on [1, 2] form an equicontinuous equibounded family. Moreover,
since on [2, 3] we have 12(t)l-<_ 2, the trajectories on [I, 3] are equicontinuous
and equibounded.

Hence, the trajectories restricted to [1, + c) are compact while the initial
conditions are not.

It may, however, be the case that for some classes of equations, the com-
pactness of the initial data guarantee the compactness of the trajectories. We
discuss this possibility at the end of this section.

Moreover, as usual in direct methods of the calculus of variations, we shall
need conditions guranteeing that, from a minimizing sequence {x(")} of admissible
trajectories, we can extract a subsequence {x("k)} which converges, in some suitable
topology, to an element which actually gives the minimum of the functional I.
For example, in Lagrange problems, it will be natural to assume first a growth
condition involving F and Fo. This will immediately guarantee that the sequence
of absolutely continuous functions f,(t)= x")(t)- g(t,x")) is equiabsolutely
continuous and thus that we can extract from it a subsequence f,k} whose elements
converge uniformly .(that is, converge in the p-metric) to an absolutely continuous
function f as k -, oo (see the proof of Theorem 6.2 below). This will, of course,
affect the behavior of the corresponding sequence {x(")}.

In particular, we need to show that this latter sequence, or at least a sub-
sequence, will converge in the p-metric to a trajectory of the system. Since we have
assumed that the set of initial conditions is compact and ( 2) that the function g
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is nonatomic at zero, any condition guaranteeing the convergence of the f,, e.g.,
the growth conditions mentioned above, is sufficient to guarantee the convergence
of a minimizing sequence. The requirement that g be nonatomic at zero implies
that the nonlinear operator defined by g is a contraction on a suitably chosen
closed set of continuots functions. Convergence of the trajectories in the p-metric
to a trajectory of the system is established by straightforward modification of
the arguments establishing continuous dependence in [16, 6] (see in particular
Theorem 6.4 of 16]).

Finally, as mentioned earlier (Introduction), the usual condition u(t)l <= M
is not by itself enough to guarantee the compactness of the minimizing sequence.
We point out that in some specific cases this condition may suffice. For systems
described by integral equations of the form. (2.5) we can see that the set of trajec-
tories is, in fact, a relat.vely compact set under suitable conditions on the functions
K and f. To be more precise, suppose f is continuous on the interval 0, T],
0 < T < + oc, and suppose that, for fixed (t, z) [0, T-I x E", K(t, s, z) is measur-
able in 0 =< s =< t, and that, for fixed S [0, T], K is continuous for (t, z)e Is, T]
x E". Suppose further, that there exists a function qS, L-integrable in [0, T], such
that [K(t, s, z[ < qS(s), 0 <= s <__ =< T. These conditions are sufficient to guarantee
the existence of a continuous solution on [0, T] of the Volterra integral equation

x(t) f(t) + K(t, s, x(s)) ds, 0 <= <= T,

(see [21, pp. 23-24]).
If, in addition to the above hypotheses, the function K satisfies a condition

of the form

]K(t, s, x) K(t*, s, x)l =< ’(s)lt t’l,

where g,(s) is L-integrable on [0, T], then the set of trajectories of (2.5) form a
relatively compact set. To see this, note that the integral equation (2.5) may be

(5.1) x(t) Hu(t) + K(t, s, x(s)) ds,

(5.2) H,(t) f(t) + F(s, u(s)) ds,

where u is an admissible control. In fact, the set of functions {H,} defined by (5.2)
is a relatively compact set of functions; both equiboundedness and equicontinuity
follow from the boundedness of the functions F and f as may be checked easily.
As previously remarked, the conditions imposed onfand K are sufficient to insure
the existence of a solution (5.1) for each given admissible control u. We denote
the generated trajectory by x,. The equiboundedness and equicontinuity of the
set {x,l now follow easily using standard arguments and the properties of K and
equicontinuity of the

Moreover, it is possible that, for some classes of equations, the compactness
of the initial data guarantees the compactness of the trajectories. For example,
Banks and Kent [5-1 show that, when the function g has the form j",,-r ds#(t, s)x(s),
then suitable conditions on t and the assumption that F is linear in 4) are sufficient
to guarantee compactness of the set of trajectories given that the set of initial

rewritten in the form
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conditions is compact. For precise statements, the interested reader may refer to
E5].

6. Growth conditions and existence theorems for Lagrange problems. For the
proof of the existence theorems for Lagrange problems, we will need, as mentioned
previously ( 5), conditions which will insure that a minimizing sequence of
trajectories will contain a convergent subsequence. For this purpose, we will use
a growth condition described in [12]. We remark that this condition will only
insure the equiabsolute continuity of the functions f,(t)= x")(t)- g(t,x"))
generated by a minimizing sequence {x"), u")}.

DEFINITION 6.1. The function F (Fo, F1, "", F,) is said to satisfy the growth
condition (7) if, for any e > 0, there exists a nonnegative L-integrable function

such that

IF(t, ok, u)l <= (t) + eFo(t, ok, u)

for all (t, b, u) M.
THEOREM 6.1. Assume that the set A is closed and bounded in E C([-r, 0]).

Let f be the class of all admissible pairs {x, u}, x defined on It1 r, t2], u defined
on [t l,t2], with l[x,u] <= K, K > 0 a fixed constant. Assume that F (Fo,
F1, ..., F,) satisfies (7)- Then the set

H {f:f(t) x(t) g(t,x,), {x,u} 6f}

is an equiabsolutely continuous set offunc.tions.
Proof. Note that, for we have 0 _< ,(t) + Fo(t, ok, u) for all (t, b, u) 6 M.

Now the set A is bounded so that its projection into E 1, IA, is contained in some
finite interval It]’, t]. Thus

q, ,(t) dt <= ,(t) dt= K
,;

0 K1< q-oo.

Let > 0 be given and choose a 1/2(K + K1)-1. Then for every measur-
able subset E of [t]’, t] we have
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By integrability of the fro, we conclude that there is a 6 > 0 such that, if meas (E)
< , thenE qG(t) dt < e/2. For this choice of E, we then have

and hence the functions d/dt f(t), for f H, are equiabsolutely integrable from
which it follows that H is an equiabsolutely continuous set of functions.

We may now present the following existence theorem for Lagrange problems.
THEOREM 6.2. Let A c E x C([-r, 0]) be closed and bounded, and let B be a

closed subset of E1 x C([- r, 0]) x E x C([- r, 0]). Let U" A ---} 2" be given, and
define a set M
Let us assume that (i) F (Fo, F F,) is continuous on M and satisfies condition
(7); (ii) the set O(t, rk) is closed, convex and satisfies property (Q) with respect to

ck in A; (iii) the set M is closed; (iv) the projection of the set B into its second co-
ordinate space is contained in a compact subset of C([- r, 0]); (v) the map g is non-
atomic at zero and g[A] is bounded.

Then the cost functional

I[x, u] Fo(t, x,, u(t)) dt

has an absolute minimum in any nonempty closed class of admissible pairs.

Proof For e l, we have that 0 =< (t) + Fo(t, d, u) or -l(t) _< Fo(t, , u)
for all (t, 4), u) 6 M. Now the set A is bounded so that IA is contained in some finite
interval ITS’, t] and It1, t2] c ITS’, t]. Thus

[, (t) dt >= t,(t) dt. t
and so, for every pair {x, u

I[x, u] Fo(t,

So, if inf I[x, u], then > and there exists a sequence {x(k), u(k)} in f such
that I[x), u)] as k , each x) being defined on It1 r, t2 and such that
the functions x)(t) g(t, xk)) are absolutely continuous on It 1, tzu Furthermore,
we may assume that

<= I[x(k), U(k)] Fo(t, XIk), u()(t)) dt <= + 1/k <= + 1.
tl

By Theorem 6.1, the set H {f" f(t)= x()(t)- g(t, xlk))} is an equicon-
tinuous family, and, since A is bounded and g[A] is bounded, it is easy to see that the
set H is equibounded. Hence, we may use Ascoli’s selection theorem to extract a
subsequence, which we again call {f.} and which converges in the p-metric to a
function f C([t,t2]), which is absolutely continuous on [t,t2]. Moreover,
since the set of initial conditions is assumed to be compact, we may assume that
the extraction has been performed in such a way that the initial functions

xtl converge uniformly to some function b0 C[-r, 0]. Thus, as indicated above
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( 5), there is some function xo C([t r, t2] such that at least a subsequence
x"k Xo in the p-metric.

As may be seen immediately from the proof of Theorem 6.1, the growth
condition (y) insures that the derivatives d/dt[x(k)(t) g(t, xk))] are equiabsolutely
integrable. Since A is bounded, the set I, is bounded and hence, by a theorem of
Dunford and Pettis, the set of derivatives is weakly compact in LI(IA). Hence,
at least a subsequence of derivatives converges weakly in Lx(Ia) to a function
O(t) L(IA). Since the functions fk converge uniformly on Ia to f, certainly they
converge pointwise almost everywhere to f and hence, by the absolute continuity
of these functions, we have f’(t) O(t) almost everywhere.

The class f being closed, the lower closure theorem guarantees the existence
of a measurable function Uo, defined on It1, t2], such that {Xo, Uo} efL and

I[xo, Uo] =< lirnl[xtk), U(k)] i.

Since {x0, Uo} f, we must also have I[xo, u0] => and so l[xo, Uo] and the
proof is complete.

We remark that, as is well-known in nonhereditary problems, if we assume
that the class f of admissible trajectories satisfies an Lp boundedness condition
of the form

d P

(6.1) [x(t)- g(t, x,)] dt <__ N

for < p < + oo, 0 =< N < + oo, we may replace the growth condition (y) with
a weaker condition involving the function Fo only. More precisely, we may assume
that there is an L-integrable function , such that Fo(t, , u) >- @(t) for all (t, , u)
e M. In this case, the condition (7) insures the equiabsolute continuity of the set
offunctions H (see Theorem 6.1 ). In fact, a simple application ofH01der’s inequality.
shows that the derivatives are equiabsolutely integrable which implies, as before,
the equiabsolute continuity of the set H.

The more familiar Lp boundedness condition, that is a condition on the
trajectories themselves, rather than on the functions Ix(t) g(t, x,)], of the form

’lx]p

(6.2) t- at=<N

for some constant N > 0 and integer p > 1, can be utilized only when we have
additional information concerning the smoothness of trajectories of the hereditary
system and on the function g. Specifically, we have the following.

THEOREM 6.3. Let A be a closed bounded subset ofE x C[- r, 0] and assume (i)
ff (Fo, Fx,..., F,) is continuous on M and that there is an L-integrable function
q, such that Fo(t, dp, u) d/(t) for all (t, qS, u) M; (ii) for each (t,) A, (t,
is closed and convex and satisfies property (Q) with respect to in A; (iii) the set M
is closed and the projection of the set B into its second coordinate space is a set of
absolutely continuous functions which is compact in C([-r, 0]); (iv) thefunction g is

Lipschitzian in both arguments.
Let 1 be a nonempty closed class ofadmissible pairs for the Lagrange problem

such that condition (6.2) holds.
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Then there exists a pair {Xo, Uo} e f such that

I[x, u] Fo(t, x,, u(t)) at

takes on its minimum in at {Xo, Uo}.
Proof From condition (i), it follows, as in the proof of Theorem 6.2, that
inf I[x, u] is finite. Let {x(k), u(k)} be a minimizing sequence, each u(k) being

defined on an interval [t lk, t2k] and the corresponding x(k being defined on

[tlk r, t2]. We may assume that <__ I[x(k), utk] <= + 1/k < + 1, and that

dx(k) p

dt<=N.

By the weak compactness of the unit ball in Lp, < p < oC, we may conclude that
there exists a subsequence of the minimizing sequence and some continuous
function x, defined on It1, t2], such that dxk/dt ---, dx/dt weakly and Xk --’ X uni-
formly, i.e., in the p-metric. Condition (iv) is enough to insure that the function
g(t,x,) is absolutely continuous and, consequently, that the derivative d/dt[x(t)

g(t, x,)] exists almost everywhere in It1, t2].
This shows that the functions Xk(t)- g(t, Xkt) converge pointwise almost

everywhere to the absolutely continuous function x(t)- g(t,x,). The remainder
of the proof proceeds exactly as that of Theorem 6.2.

The restriction on the set of initial conditions, namely that all the initial
functions be absolutely continuous, is necessary in the sense that, even if the map g
satisfies the required Lipschitz conditions, the functions x(t) g(t, x) need not be
absolutely continuous. In particular, note that if g(t, xt)- x(t- 1),(x)(0)

x(t + 0), 0 e [- 1, 0], and we have fixed initial data b(t), 1 =< =< 0, which is
continuous but nowhere differentiable, then the absolute continuity of x(t)-on
It1, t2] does not insure the differentiability of x(t) x(t 1) on the same interval.
Indeed, it is examples of this sort which served Hale and co-workers as motivation
for introducing the present hereditary model and thus avoiding the necessity of
discussing the smoothness of the trajectories x.

7. An existence theorem for hereditary Mayer problems. We now present an
existence theorem for Mayer type problems which is an extension of theorems of
McShane 18] and Cesari 11] involving comparison functions. We point out that
the restriction on the components of the function g, necessitated by the use of
Theorem 4.1, has the effect of requiring all components not governed by a growth
condition to satisfy a retarded equation. This condition is, as we have seen in 6,
automatic in the situation of the Mayer problem which arises from reformulation
of a problem of Lagrange. Moreover, it does not seem possible to avoid the use of
Theorem 4.1 and the assumption that the sets Q(t, x) satisfy property (Q) due to the
presence of the singular components. (See also the remarks after Theorem 4.1.)

THEOREM 7.1. Let , n, 0 <__ o <_ n, be given integers and for x (x x")
let y (x , x), z (x+, x") so that x=(y,z). Let Ao be a closed
bounded subset of E C([-r, 0], E) and let S be a closed bounded sphere in
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C([-r,O], E"-) so that A Ao S is closed and bounded in C([-r, 0], E").
Let (t,) Ao, let U(t, ) be a closed subset of E", let Mo {(t, if, u)](t, ff) Ao,
u U(t, ff)] and let M Mo S {(t, b, u)l(t, ) A, u U(t, ,), (0)

(if(0), z(O))I. Let F (F1, ..., F,) and H be functions defined and continuous
on Mo with F,+ 1, F, and H nonnegative.

Assume for every 1, 2,.-., o, that the following growth conditions holds"
(7i) given > 0 there is a locally integrable function i,(t) >--0 such that

[Fi(t, , u)[ =< i.(t) + eH(t, , u) for all (t, , u) Mo
For every (t, ,)e Ao let Qn(t, d/) c E"+ be defined by

O(t, 4,) {e (o, z’, ..., z")lz >__ u(i, q,, u), z’ F,(t, O, u),

i= 1,--., e, z >_ Fi(t,O,u),

i= z + 1, ..., n, u e U(t, if)}

and assume that Qn(t, ,) is convex for each (t, ) Ao and satisfies property (Q)
in Ao. Since the functions F and H do not depend on the components df / 1, ..., 4)",
we will continue to write simply F(t, , u) instead of F(t, di), u) (and similarly for the
function H), where b (if, Z).

Moreover, assume that (i) the set B is a closed subset of E C([-r, 0])
E C([-r, 0])whichisindependentofthefunctionsx i=+ n, and

whose projection into its second coordinate space is compact; and (ii) the map g is
bounded and has the form gi= O, i= + 1,..., n. Let h(tl, qbl, l, qb2) be a
bounded real-alued continuous function defined on B, which is monotone nondecreas-
ing with respect to each variable dp+ 1, d2. Let f be the class of all admissible
pai-rs (in the sense of Definition 3.1) for which H(t, Yt, u(t)) is L-integrable in
and

H(t, Yt, u(t)) dt <= K

for some constant K >= O, and assume f =/: . Then the functional l[x, u] h[r/(x)]
has an absolute minimum in

Proof By hypothesis, the cost functional h is bounded and hence infn I[x, u]
h(q(x)) is finite. Let {x(k), u(k) I, each defined for tlk -< =< t2k, be a minimizing

sequence for I in f. Then (t, xl)) e A for e It 1, t2] and, writing x() (y(), z()),
we have (t, ylk)) e A0 zl) e S for e It 1, t2]. Also, u)(t) e U(t, yl) almost every-
where in It k, t2],

t

H(t, xl uk(t)) dt < K

k 1, 2,..., and h(tl(X())) as k--+ . Since A is bounded, the projection
of A onto the t-axis is contained in some interval of the form ITS’, t] and, since

,’()ill <ai k= 1,.--,n,i=0+ ...,n.S is bounded, we have II--
Let x denote a new variable satisfying

dx/dt H(t, y,, u),
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Let

x(k)O(t) H(S, Xk) u(k)(s)) ds lk < < t2k k 2
Ik

and note that d/dt(xtk)(t)) >= 0, xttkl <= K I. Let SO be the sphere of radius K
in C([-r, 0], E1) and let A’= SO A.

Since the functions xki, i-- 1,2,..., , k 1,2,..., satisfy the growth
condition (7i), we have as in Theorem 6.1 that the functions g xtki(t) g(t, Xlk)
are equiabsolutely continuous and since, by hypothesis, A and g[A] are bounded,
we may extract a convergent subsequence which we again call {h,}. As before,
we may extract a further subsequence with the property that the corresponding
functions xtk) converge in the p-metric to a continuous function x. Writing
y (x 1, X2, Xa), we have ytk)__, y in the p-metric and so, in view of the
compactness assumption on the set of initial conditions, in particular,

(k)
_

Yt and u(k) --* Yt2 as k"Yt2k

We now consider the sequences f,,.(k)i). ,i=0andi=z+ 1,
<t__< byfunctions defined, for 1 t2,

n, of scalar

x(t)
lk

Xqc)i(t)
lk

H(s, y, u)(s)) ds,

F,(s v) u)(s)) ds i=+ 1,...,n,

where H => 0 and Fi _>_ 0. It follows that the functions X(k)i, 0 and z + 1,
.., n, are monotone nondecreasing and we may use Helly’s theorem to extract
a further subsequence, say again {xtk)} such that xtk)(t) Xi(t) as k- oc for

lim ,tk)i and lim xtk)i(tzk) exist as k c,all and such that the limits x k x
0, and z + 1, ..., n. Note, in particular, that x, 0.
Since Ao is closed, we have that (t, ylk)) A o implies that (t, y,)e Ao for all t,

__< =< 2, and thus (t, yt, zt) A A0 x S. Furthermore, (t., xt,yt, z) A’
=So x Aforallt, t=<t__<t2.

Making the usual decomposition, we write, for 0 and z + 1, ..., n,
x(t) X(t) + S(t), e[t- r, t2], where xi(t) is absolutely continuous on
Its, t2] and S’(t) 0 almost everywhere on It1, t2], and with XI x, S, 0,
Xi, S nondecreasing with Si(t) >_ 0 and XI(O) <= 0 e I-r,012(0) 0]7 i= 0 and
i=+ 1,...,n.

Let (v, u, um, v + 1,..., v")= (v,u, v) be an auxiliary control vector,
Em+n-+ 1, and let O(t, O) {O’u (u, um) e U(t, I[I), v >- H(t, , u),

vi>=Fi(t,o,u),i=a+ 1,...,n}. Let if(t,O,u) and (t,O,u) be the vector
functions

" .., F,)F(t, O, u) (Fo, F1, F F+ I,

F(t, /, u) (F1,..., F,, F+ I, F,)
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with Vo v, IVi vi, e + 1, n. Finally, consider the auxiliary differential
system

with constraints

dx/dt v,
d/dt[xi(t) gi(t, x,)] F,(t, y,, u),

dxi/dt v, ,n,

v(t) >= I-I(t, , u(t)),

u(t) c(t, ),

vi(t) >= Fi(t, Yt, u(t)), o + 1,..., n.

Note that (t, 4, (t, 0)) Qn(t, 0), (t, O, ) Q(t, 0), and Qn satisfies property
(Q) in Ao. Since H, F/I, "’, F, are continuous, the set /o {(t, 0, v, u, v)"
(t,O)e Ao, u eU(t,O), v>=H, vi>=Fi, i=e + 1,...,n is closed. Thus, by
Theorem 4.1, there is a measurable function u(t)= (v,u,v), tl _<__ <= t2, with
u(t) e U(t, Yt), such that

dX/dt v >= H(t, Yt, u(t)) >__ O,

d/dt[x’(t) g(t, y,)] Fi(t, Yt, u(t)),

dX/dt v’ >_ F(t, y,u(t)) >_ O,

almost everywhere in Its, t2]. Taking

z(t) H(s, y, u(s)) ds,

zi(t) xi(tl)-+- (t F(s, y, u(s)) ds,

i=o+1,

i=+1,

Acknowledgments. The author would like to express his thanks to Prof. L.
Cesari for his many helpful suggestions during the preparations of this paper,
and to the referees, whose suggestions have helped the author to significantly
simplify the presentation.

Thus h[rt(X)] and this completes the proof.
Remark (added in proof). Recent improvements on the results of the final

section could not be incorporated here for technical reasons. The results will be
presented elsewhere.

h[r/(X)] h( ]2 X+’tl, X 1, Xtl, t2, X Xt2’ t2

<= h(t, Xtl t2, Xt2 lim h[tl(x(k))] i.

it may be easily checked that the pair {X,u where X(t)= (z(t), y(t),Z(t)),
tl =< =< t2, is an admissible pair for the auxiliary problem. Hence {X,u ,
and h[r/(X)] _>_ i. On the other hand, h is monotone nondecreasing in 4)+ 1, ..., qS
and hence
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CONTROLLABILITY OF THE NONLINEAR WAVE EQUATION IN
SEVERAL SPACE VARIABLES*

WILLIAM C. CHEWNING"

Abstract. On a rectangular parallelopiped in RN, N 2, we consider the equation utt Au
+ f(u, ut), where f is a nonlinear perturbation meeting certain conditions. We prove that the above
system is locally controllable at u 0, ut 0; i.e., the set of states in a certain function space which can
be reached from (0, 0) in a finite time T < oo using boundary controls is an open neighborhood of (0, 0)
in that function space. These results generalize to the nonlinear case conclusions obtained by Russell
for the linear wave equation, in which global controllability was established.

1. Introduction. Cirina has studied controllability for a nonlinear wave
equation in one .space variable in [1]. Recently, Russell has announced in [7]
results which include the following.

PROPOSITION. Let f be a bounded domain in RN, N 2, with boundary F, a
piecewise (N 1)-manifold of class C. Consider the problem

(1) u,, au, u(O) u,(O) o, ulv g.

Then there is a time T < oo, such that for any (Uo, Vo) in HZ(f) x HX(f), a control
g6H3/e(1 x 1-0, T]) exists for which (1) has a unique solution with u(T)= u0,
u,(T) Vo. Moreover,

Thus Russell has established the global controllability of the wave equation
in space, by controls which depend continuously on the states one intends to reach.

In Theorem of 6, pp. 366-367], the authors use the inverse function theorem
in RN to prove that a nonlinear control system (governed by ordinary differential
equations) is locally controllable if its linear approximation is controllable. In a
similar way we shall prove that a class of nonlinear wave equations is locally
controllable using the inverse function theorem in the Banach space He(D) H l(f),
together with Russell’s result on controllability for the linear wave equation. In
order to keep the ideas clear and the results easily stated, we do not consider the
most general possible choices for the domain f, the elliptic operator (A), the method
of exercising boundary control, or the function space in which the problem is
solved. Finally, one could consider more general nonlinear perturbations as well.

Details of the problem. Let X be a rectangular parallelopiped in R with
boundary Y. For any space V c RK, we denote by Hr(V) the Sobolev space of order
r on V. The space He(X) HI(X) we denote as H, and elements in H will be written
as (u, v), (), or w depending on the situation.

Writing the nonlinear wave equation as a system, we have

(2) b=Av + F(v), v(0)=0, vlr h,

Received by the editors April 19, 1974, and in revised form November 24, 1974. We regret to
report the death of Professor Chewning on March 23, 1975.

I Department of Mathematics and Computer Science, University of South Carolina, Columbia,
South Carolina 29208.
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where v (,t) e H, A is the linear operator

A--(0A ;), DA=H3(X)H2(X)

he H3/2(Y x [0, T]) x H/2(Y x [0, T]),

and

F’H+Ht(X) by F(,t) o

The assumptions on f are"

(a) f is continuous and is continuously Fr6chet differentiable in a neighbor-
hood of (0, 0).

(b) f(0, 0) 0.

(c) If(u, v) f(fi,

=<
where C" R + x R + R + is continuous and [Wig [wink(x).

(d) The Fr6chet derivative off is locally Lipschitz in a neighborhood of 0 e H.
Comment. It is not necessary that f be given by a function, i.e.,

f(u, u,)(x) g(u(x, t), u,(x, t))

for some g’R2 RI. If this is the case, however, then f will satisfy the above
assumptions if g has Lipschitz continuous mixed partial derivatives up through
order three.

2. Existence and uniqueness ofa solution to (2). Our plan is to obtain a boundary
control h, for any given u H, such that the problem

(3)

has a unique solution w e C([0, T], H) with w(T) u. If w is small, we can then
solve

(4) =Az+F(z+w), z(O)=O, Zly=O.

Then defining v w + z, we obtain a unique solution to (2) with v(T) u.

3. The linear problem (3). Our first task is to sharpen statements made in
Theorem 2.1 of [7] about solutions to (3).

LEMMA 1. For 6 > 0 and r a positive integer, there is a bounded linear operator
E "Hr(X) Hr(RN) such that Er(f) is an extension off to R and supp (Er(f)) c X,
the 6-neighborhood ofX.

Proof No confusion will result from speaking of equivalence classes in
Hr(X) as though they were functions. Since X is a box, we can construct ), a box
composed of 3 copies of X having the original X as the center box. Let the boxes
in 3 be numbered so that U 3ff Xi. Let the faces of X be numbered in any
order, and then number the faces of each Xi in exactly the same way. X is construc-
ted, starting with the center box, such that if Xi and Xj have a common face, in
each box the face has the same number. If we start in one dimension, we can clearly
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reflect a closed interval through its left- and right-hand endpoints in turn, to
form three intervals that are matched as described above. One can then fit a
rectangle as the middle block in a 3 x 3 group of nine identical rectangles with
appropriate sides in contact. Inductively, one extends this to a 3 x 3 x 3 packing
of rectangular solids with appropriate faces in contact, etc. If f’X R, we define
f/" X R as follows. Let Oi’Xi X be the linear homeomorphism which maps
X X onto X with corresponding faces identified. Then j(x) =- f i(x). Thus
if f H(X), then f =_ U 3i fi is in H()). Now let p’R - g be a C function
such that P[x and supp (p)

We now define E" H(X) H(R) by

Er(f)
O, x 2 f"

It is clear that E is a bounded linear operator.
LEMMA 2. Let B be a rectangular parallelopiped in RN, and for (f, g)e HZ(B)

x Hi(B), (J; g)10B (0, 0) consider the problem

(5) 5=A/t, u[0B=0, u(0)= (fg).
For any fixed T < v, the solution u(f, g) is in C([0, T], HZ(B) x HI(B)) and the
correspondence (f, g) u(f, g) is a bounded linear operator from HZ(B) x Hi(B)
to C([O, T], H2(B) H’(B)).

Proof. We recall that A =_ By direct separation of variables tech-

niques, one can find a complete orthonormal basis for L(B) consisting of eigen-
vectors of A. We term these as {} with corresponding eigenvalues {- 2,2}. Using
direct elementary calculations and Green’s identity, one can verify that {4} is
also a complete orthogonal basis for H(B) and H(B). By normalization, we
obtain {p,} and {0,}, complete orthonormal bases for H(B)and H2(B), respec-
tively. Moreover, APi 22iPi and AOi 2/2i 1, 2,

Using these eigenfunctions we construct the strongly continuous semigroup
{R(t)}>_0 of operators on H2(B) x H(B) whose infinitesimal generator is A. If
such a semigroup exists, then standard results in operator semigroups imply that

the mapping M{J,,)= R(t) (J,,) is a bounded linear mapping from H2(B) x Hi(B)

to C([0, T];H2(B) x H(B)). (See [5]). Let (., )2, ( ", )1 denote inner products
in H2(B), HI(B) respectively. Then the definition of R(t), for >= 0, is

[(f, 0,)2 cos 2,,t + (1/2,) {g, p,) sin 2,,t]O,,
R(t) (fg) .=1

.E, [- 2.(f, On)2 sin 2.t + <g, P.)I COS 2.t]p. /
It is not hard to verify that R(0)= I, {R(t)l is strongly continuous, R(t + s)

R(t)R(s) and (d/dt)R(t)x AR(t)x.
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THEOREM 1. For uH, there is a T < and an h,H3/2(Y [0, T])
H1/E(Y [0, T]) such that (3) has a unique solution w.C([0, T],H) with

w,(T) u.

Proof We supply a proof for N >= 3, N odd. The case N -> 2, N even can be
argued in a similar way after the proof of Theorem 2.1 of [7] is understood. We do
not repeat the (fairly lengthy) details here.

Given u e H2(X) x HI(X), extend this to u e H2(RN) x H(R)
g

by the operator E2 E as defined in Lemma 1. Then solve the Cauchy problem"

(6) i Av, v(O) uo, v e H2(R) x H(R).
There is a time T < oc such that v(T)lx 0. We take h, v(t)lr for 0 __< __< T.
Standard theorems imply that h, e H3/2(Y x [0, T]) x H/2(Y x [0, r]), and that,
by uniqueness, the problem

v Aw, w(0)-- 0, w(t)ly h(T- t)

has a unique solution w, e H with w,(T) u. Actually, w,(t) v(T- t)lx. This
is a sketch of Russell’s proof; details appear in [7].

We observe that since T < oe and supp f6, supp g6 c X6, there is a large
rectangular parallelopiped B = X such that the solution to (6) is identically zero
on c?B and outside of B for 0 <_ < T. (The details are supplied by considering
cones of influence for the wave equation in Ru.) Thus (6), for 0 =< =< T, is equi-
valent to

(7) ,=Az, z(0)= (f), z[0n=0.
g6

From Lemma 2, (7) has the solution z(t)= R(t)u6, and clearly z(t)lx v(t)lx for
O<t<T.

The following notation will be needed in the proofofLemma 4. IfR V W
and (f, g)e Hz(v) x H(V), define

z(V, W)’H2(V) x HI(V)- H2(W) x H’(W) by z(V, w) () (flw, glw).

We define the extension operator

E’H--, HZ(B) x H(B) by E(f, g)= r(RU, B)o E2 x E(f, g).

Notice that v(t)]x r(B, X)o R(t)o E(f, g) on [0, T]. It follows that on [0, T,

w.(t) (B, X) R(T- t) E(u).

We have proved that w, e C([0, T], H) because r(B, X) and E are bounded
linear operators and R(T- t) is a uniformly (in t) bounded linear operator. We
also have the useful formula (8).
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4. The nonlinear problem (4). From Lemma 2, we know that the operator A
with trivial boundary conditions on X, is the infinitesimal generator of a strongly
continuous semigroup {S(t)}t_o and standard results imply that IIS(t)ll <- Meat.
In the proof of Theorem 2, we need these notations"

(a) The norm of v C([0, T], H) is
(b) The function C (defined in connection with the Lipschitz condition on the

nonlinear function f) has property r if there is an r > 0 and a p < such
that C(x, y) -< p/TMea for all (x, y)e R + x R +’x __< r, y _< r.

THEOREM 2. Suppose for some p < and some r > 0, that the function C has
property r. Then if [[w[[ < (1 p)r, (4) has a unique continuously differentiable
solution z C([0, T], H). Moreover, [[z[[

Proof. We represent a solution to (4) as

(9) z(t) S(t v)F[z(v) + w(v)] dr.

Solving for z by Picard iteration, one has

and

Zo(t =- S(t v)F[w(v)] dv

z, + l(t) S(t v)F[w(v) + z.(v)] dr.

Justifying the assumption later, we assume that Ilwll < r and IIw + z, < r for
n 0, 1,2,.... Then ][Zoll =< ]lw]]p and Ilz.+ z,]l <_- pIIz. z._x[[. It follows
that

z.II -<_ Zo +
k=l =o =l-p

Therefore

]]z, 4- w <_ ]]z,]] 4- I]w[ 5 ]lw]](1 4- p/(1 p))-- Ilwll(1/(1 p)).

For the above estimates to be valid, then, we must require Ilwll -<_ (1 p)r.
If Ilwll < (1 p)r, the iteration procedure clearly produces a Cauchy sequence

in C([0, T], H) and thus (4) has a solution z(t) lim, z.(t). The differentiability
of z follows from p. 6 of [5]. Easy calculations show that the right-hand derivatives
of z satisfy (4) and, as z is differentiable, it must satisfy (4). The uniqueness of z is
a standard consequence of the local Lipschitz condition on f.

5. Local controllability of the nonlinear equation. With p fixed < 1, we assume
that the function C has property r.

LEMMA 3. Ify H is small, then the problem

(10) fi= Au+ F(u), u(O)=O, ulr= hy
has a unique continuous solution u(., y)e C([O, T], H). (hy is the boundary control
computed in Theorem which steers (3)from 0 to y in time T.)
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Proof Given y e H, we first obtain wr, the solution to (3) with final state y.
As is argued in Theorem 1, the correspondence y - wy is a bounded linear operator
from H to C([0, T], H). Therefore, if y is sufficiently small, wy will be small enough
for Theorem 2 to apply and we extract a solution zr to (4) with w wr. The
function ur wr + zy is clearly a solution to (10) its uniqueness follows from the
local Lipschitz assumption on F. The proof is completed.

We therefore have the nonlinear map G defined on a ball B about 0 e H:

G(y) u( T, y) w,( T) + zy( T)
LEMMA 4. G is continuously Frchet dijferentiable on a neighborhood of0 H.
Proof G(y) y + S S(T- v)F[z,(v) + wy(v)] dr.
Proceeding formally, we compute

l(11) G’(y) I + S(T- v)F’[zy(v) + w,(v)], + dr.

From (8) of Theorem 1, we have

wy(v) ’r(B, X) R(T- v) E(y),

SO

c?wy(v)
r(B, X) R(T- v) E

COy

since the operator is linear. From (9), we have

c0zy(t)=oy S(t- v)F’[zy(v) + wy(v)] L co3; + y _]
dv

(12)

fl cOzy(V) r(B X) R(t v) E] dr.s(t- v)F’[z,(v)+ w,(v)] L
We note that (12) is a linear integral equation for z/Oy with bounded kernel for
y small, since zr, wy are known and Ilzrl[, IIwll KIy[. Therefore (12)can be solved
by an iterative procedure to yield a unique, bounded, continuous solution. Be-
cause F’ is locally Lipschitz, the solution zr/Oy will vary continuously with y.

Returning to (11), we see that if y is small enough for wy, zr, and zr/y to
exist on [0, T], then the integrand in (11) is bounded on [0, T] and continuous in y.
It follows that G’(y) is continuous in a neighborhood of 0 e H.

LMMA 5. Suppose that

S(T v)’EO] + (, X) (T v) v

has norm in L(H, H) less than one for y O. Then G’(O) is a linear homeomorphism
in L(, ).

Proof Consider the expression (11) for G’(y) whip O. Bcus w 0
and z 0 whBD y O, it follows that

6’(0)- 1 s(- 0v’[0] + r(n, x) (- 0o .
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If the integral has norm less than one in L(H, H), then G’(0) clearly has a bounded
inverse.

THEOREM 3. Under the assumption of Lemma 5, there is a ball about 0 H
such that if x , there is a unique control g,,for which

(13) b= Av + F(v), v(O)=O, v[r= gx

has a unique solution C([0, T], H) with v(T) x. Moreover g,, H3/2(Y [0, T])
H/2(Y [0, T]) and g depends continuously on x.

Proof. The mapping G:B -+ H is continuously differentiable on some ball B
about 0e H, and G(0)= 0. We also have demonstrated that G’(0) is a linear
homeomorphism. By the inverse function theorem [2, p. 268 there is a ball
containing 0 on which G is a homeomorphism. Let/ c G(/).

If x /, let y G-l(x). The element y is small enough for u(t, y) to exist.
But u(T, y) G(y) x; one can steer 0 to x in time T under the nonlinear system
(13). To identify g,, with y G-(x), take hy as it is defined in Theorem 1, i.e.,
hy z(B, X)o R(T- t)o E(y)Ir. Let gx hy; g,, steers 0 to wy(T) + zy(T) x, g,
depends continuously on x and belongs to the function space named.

We note that for small x, G-(x) can be approximated by (G’(0))-Ix in the
calculation of g,, for practical problems.

6. Summary. We have shown that if x is small in H, there is a boundary
control g, such that (13) has a continuous solution with v(T) x. (If there were
two solutions to (13), then the problem Av + F(v), v(0) 0, v[ r 0 would
have a nonzero solution. This is not possible in view of the fact that F is locally
Lipschitz.) Therefore we have a meaningful solution to the problem of local
controllability, using boundary controls, of a certain class of nonlinear wave
equations defined on a box in RN.
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GENERALIZED HILBERT NETWORKS*

VACLAV DOLEZAL?

Abstract. In the paper a general model of a nonlinear network is constructed. The model
considered is a generalization of the Hilbert network introduced in [1]. It is assumed that the
generalized Hilbert network consists of at most countably many lumped elements described by
nonlinear multivalued operators from a subset of a Hilbert space into Yg. Several theorems are
proved on the existence and uniqueness of the solution of the network. Also, conditions are established
under which the admittance operator of a generalized Hilbert network is causal.

Introduction. The model of a Hilbert network which we construct in this
paper has two ingredients: 1. an oriented locally finite graph G having at most
countably many branches, which describes the interconnections of lumped ele-
ments of the network; 2. a multivalued operator z defined on a subset of the
underlying Hilbert space Y(, which describes the behavior of network elements.
We assume that the regime in the network is governed by Kirchhoff’s laws.

As shown in [1], the oriented graph G of a network can be completely
described by a linear bounded operator fi on Yg. Also, it was assumed there that z
is a single-valued operator defined on the entire space Y(, and possibly satisfying
the Lipschitz condition. However, these assumptions severely restrict the applica-
bility of the model. For example, if a network is considered in the time-domain
[0, -], the model in [1] excludes the presence of differentiators. Similarly, if we
consider the time-domain [0, ), presence of integrators leads to difficulties.

On the other hand, in the present paper no such assumptions are made; in
addition to that we allow that, in general, values of z are subsets of , i.e., z may
be multivalued.

Due to this fact, our model encompasses networks containing differentiators
as well as integrators, independently of whether the time-domain is a finite
interval or not. Of course, since the analysis takes place in a Hilbert space, all
energies associated with the network are finite, which, we believe, is a quite
natural assumption.

Naturally, for this degree of generality we have to pay a price: our theorems
giving necessary and sufficient conditions for existence of a solution are concep-
tual rather than practical in nature. On the other hand, it turns out that a quite
elementary yet powerful concept of a monotonicity of z guarantees the unique-
ness of the network solution.

Basically, the ideas developed in this paper are similar to those given in the
pioneering paper [3] by Minty; the approach to the problem, however, is different.

In the first part of the paper we consider the abstract network defined as a pair
(Z, a), where Z, a are certain operators, and derive necessary and sufficient

conditions for the existence and uniqueness of a solution. In the second part, the
results on abstract networks are applied to a Hilbert network -(z, G) and
theorems on uniqueness of the regime in are obtained. Moreover, using the
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concept of causality introduced by Saeks [2], we prove two theorems giving
conditions under which the admittance operator of V (expressing currents in
terms of voltages) is causal.

As an example, we discuss a specific R, L, C-network in the time-domain,
provided that the inductors and capacitors are linear and time-varying, and the
resistors are nonlinear and multivalued.

Finally, using a theorem by Rockafellar [5], we give sufficient conditions for a
network to have a solution for any vector of voltages.

1. Abstract networks. Let X, Y be nonempty sets, and let C(Y) be the
collection of all nonempty subsets of Y; a mapping A X-> (Y) will be called a
set mapping.

If @ X, @ # Q3, we denote

(1.1) (A@) kJ Ax.

If, in particular, A is a set mapping such that Ax is a singleton for each x X,
then A will be called an operator. Since in this case A is in fact a mapping from X
into Y, we have (A@)= A@.

Let A be a set mapping, and let @ < X, @ # A will be called simple on if

(1.2) Xl, X2 , X1 7 X2 :: (Ax1) [") (Axz) =.
Clearly, if A is simple, then A is 1-1.
Let A be simple on @; then we define the operator A- (A@) @, called the

quasi-inverse of A, by the relations" if y (A@), then A-y x, where x 6 @ is
such that y Ax.

Since {Ax x
is meaningful and A- maps (A@) onto @.

It is easy to see that A is simple if and only if for each y (A@) there is a
unique x @ such that y Ax. In this case, x A-y.

Also, it is clear that if A is an operator and is simple on @, then A- coincides
with the ordinary inverse A -1" A@ @.

If A" X-@(Y) is a set mapping and B" Y- Z is an operator, we define
the set mapping BA’X-@(Z) by (BA)x B(Ax)c Z for each x 6 X. Then,
for any @ X, @ , ((BA)@)= B(A@), since LJ(BA)x UB(Ax)
=B(UAx).

If C" U-X is an operator, the set mapping AC is defined in a similar way.
Let Y( and ’ be fixed Hilbert spaces. Let c , @ , and let Z"

@-,(2() be a set mapping; furthermore, let a 6[Y(, ’] (a linear bounded
operator), a 0. Then the ordered pair 3;= (Z, a) will be called an abstract
network over

DEFINITION. Let 2( (Z, a), and let e Y(; an element @ will be called a
solution of corresponding to e if

(i) there exists v Zi such that

(1.3) (c, v-e)=0

for all c 6 with ac O,
(ii) ai O.
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Denote No {x x Y(, ax 0}. Then the solution can clearly be defined in
the following equivalent way:

K*" there exists a v Zi such that v-e N,

K*2" iN,,@.

In the sequel we will assume that Na f"l @ # . Futhermore, let P be the
orthogonal projection from onto Na. Then we have the following.

THEOREM 1.1. Let W" (Z, a) be an abstract network over Y(, and let e
Then W" possesses a solution corresponding to e if and only if
(1.4) e N+ (Z(Na f"l @))".

Proof. (a) Let (1.4) hold. Then there exists x e N] and y (Z(N, @)) such
that e x + y. Consequently, by (1.1), there exists e N, (q @ such that y e Zi; thus
y-e -x N, i.e., is a solution of W" corresponding to e.

(b) Conversely, let be a solution of W" corresponding to e. Then there exists
v Zi such that v e N, i.e., e v N. Thus e v +N c N+ (Z(N 0 @)).
Hence the proof.

Note that if M c y( is nonempty, then N+M P-’{PM}. Hence we have
the relation

(1.5) Na +(Z(Na [’-’l ))o= P-’{P(Z(Na ("1 ))o}.
Let us now consider the uniqueness problem, i.e., to find subdomains of @, on

which the solution of a network is determined uniquely.
If c @ and N, ("1 # , we denote

(1.6) o() P-’{P(Z(No ))o}.

THEOREM 1.2. Let W" (Z, a) and let c @, N, f-) # . Then for each
e Q(o) there exists a unique solution in of corresponding to e if and only if
the set mapping PZ is simple on Na f-) . In this case, Ae, where the operator
A 0() Na ffl is defined by

(1.7) a (PZ)-P.

Proof. (a) Assume that PZ is simple on Na f’) and let e O(). By (1.5) and
Theorem 1.1, there exists at least one solution of W" corresponding to e. Suppose
that il, i2 Na are solutions corresponding to e. Then, by K,*, there exist
v Zil and v2 Zi2 such that v-e, v2--e N2, so that vv26 N2. Conse-
quently, P(v-v2)=O, i.e., Pv=Pv2. This, however, means that
(PZi)f"I(PZi2) ; hence by definition of a simple mapping, i i2, i.e., the
solution of 3c is determined uniquely.

(b) Assume now that for each e e O() the network X possesses a unique
solution. Suppose that for some i,, i2 G Na (-] we have (PZi,) (3 (PZi2) #: . This
means that there exist v, Zi and v2 Zi2 such that Pv, Pv2 y. It is clear that
Py y, and also y P(Z(N,, f-I ))0 c P-’{P(Z(N,, f"l ))0= O(). Thus, we have
P(v,- y) 0 and P(v2- y) 0, i.e., Vl- y, v2- y N,. Hence, by K*, K2*, both i
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and i2 are solutions of W corresponding to y Q(); consequently, by our
hypothesis,

To conclude the proof, assume that PZ is simple on N, f"l @. Observe that
((PZ)(No ))o= P(Z(Na f-1 ))". Construct the quasi-inverse (PZ)- P(Z(Na
))-->N,f-l as it is defined above. Choosing eQ(), we have Pe
6P(Z(N,)); consequently, i=Ae=(PZ)-Pe is well-defined and is in
N, . Thus, satisfies K*. By defihition of (PZ)- we have Pe PZi; thus, there
exists v
corresponfling to e which concludes the proof.

Let @ @; motivated by Theorem 1.1 and 1.2, we will say that W is regular
on if for each e Q() the network W possesses in a unique solution
corresponding to e. Then we have the following.

THEOREM 1.3. Let e Q(@) and let @ be a solution ofWcorresponding to e.
Then there exists a i @ such that

(i) i,,
(ii) is regular on ,
(iii) is maximal, i.e., W is not regular on any other which properly contains

Proof. Let { @, , PZ is simple on N }. The collec-
tion f is nonempty, since o {i} . Moreover, is partially ordered by set
inclusion; also, if . { a I ff is a chain, then clearly Ll and is
an upper bound for .T. Hence, by Zorn’s lemma, there exists a maximal element
in . Then Theorem 1.2 concludes the proof.

Note that, even in the case that i @ is unique for some e Q(), the
maximal subdomain need not be determined uniquely. This is demonstrated by
the example N @ R and (PZ)x x.

Let us now establish some sufficient conditions for regularity. Without loss of
generality we may assume that @.

TEORE 1.4. Let
(i) lf for allx,x2Nofl@, x # x and all yZx, y2GZx2 we have

(1.8)

then W is regular on . If, in addition, Z is an operator, then

(1.9) (Ael-Aez, el-ez) 0

for all
defined in Theorem 1.2 by (1.7).

(ii) Ifthereexistconstantsc >0 andp > 1 suchthatforanyx, x:6 N, @and
any yl Zxl, y Zx2 we have

then W is regular on @; moreover,

and

[(Ae,- Ae2,

for all el, e 0().
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(iii) If there exist constants c > 0 and p > 1 such that for any xl, x2 N, f’l @
and any yl Zxl, y26 Zx2 we have

(1.12)

then N is regular on @, (1.11) hold and

(1.13) Re (Ae-Ae, el- e)_-> 0

.for all e,, e e O(@).
Proof. (i) Since Px x for x N f-I @, j 1, 2, (1.8) yields

(1.14) (Py,-Py, x,-x) # O

whenever Xl # x and yeZx. Let x, xe N, f"l @, x :x, and suppose that
(PZx,) (3 (PZx:) # . Then there exist elements y, e Zx and y e Zx such that
Py Py. This, however, contradicts (1.14); hence, (PZx) (3 (PZx) , i.e., PZ
is simple on N, fq @, and consequently, is regular on @ by Theorem 1.2.

Next, if Z is an operator, then (1.8) means that

(1.15) (Zx-Zx2, xl-x2) 0

whenever x, x2 Na (’1 @, x : x2. Thus, we have as before for such Xl, x2,

(1.16) (PZxl-PZx2, xl-x2) 0.

Also, PZ" Naffl@(PZ)(N, ffl@) is a 1-1 onto operator. Choose yl, y2

(PZ)(N, f-’l @), y, # y2 and put x (PZ)-y, x2 (PZ)-’y2. Since Xl x2, we
have by (1.16),

(1.17) (y,- y2, (PZ)-’ y,- (PZ)-ly2) # 0.

Next, let e e O(@), j 1, 2, be such that Pe Pe; since Pe (PZ)(N, (q @),
we can set y Pe into (1.17) and get

0 (Pe-Pe2, (PZ)-Xpy-(PZ)-IPy2)
(1.18)

(Pe Pe2, Ae Ae2).

Noting the fact that PAe Ae for any e e O(@), we conclude from (1.18) that
(1.9) holds.

(ii) Since (1.10) implies (1.8), is regular on @ by (i). If x N, @ and
yeZx, j= 1,2, then Px=x and we obtain from (1.10) by the Schwarz
inequality,

cl]x,- x211p ----< <Y, y2, P(x,- x2)>l <Py, Py_, x,-

<-IlPy,-Py,ll’llx,-x=ll.

Hence

(. 9) IIx,- xll-<- c-’"-"llPy,- PyII l’- l’

for xi N, f-) @, y Zx, 1, 2.
Now, choose e O(@), j 1, 2, and put i/= Ae (PZ)-Pe N, @. By

definition of (PZ)-, Pe (PZ)i; hence, there exists y Zi such that Py Pe for



GENERALIZED HILBERT NETWORKS 31

j 1, 2. Putting xj ij into (1.19), we obtain

IIAel Ae2[I <= C-1/’p-1)llPe, Pe211’/’P-);

the second inequality (1.11) follows from the first one by the Schwarz inequality.
(iii) Since (1.2) implies (1.10), 3; is regular on @ and (1.11) hold by

proposition (ii). As before, (1.12) implies that

(1.20) Re (Py Py2, x x2) _>- 0

for xj Na (’1 @, yj Zxi, j 1, 2. Choose ei 6 Q(), j 1, 2, and put ii Aej
(PZ)-Pej Na (’1 . Then Pej (PZ)ij, i.e., there exists y Zij such that Py
Pej. Putting x; ii into (1.20), we get

0 _-< Re(Pel Pe2, Ael Ae2) Re(el e2, Ael Ae2),

which concludes the proof.
Remark 1. It is easy to see that inequality (1.9) need not hold if Z is not an

operator.

2. ltilbert networks. Let H be a fixed Hilbert space. If G is an oriented graph
having the set of branches 3 with cardinal c2 =< No, let d 6 (Hc2, HC’) be defined as
in [ 1 ]. Furthermore, if @ c HC2, @ , let " @ @(H2) be a set mapping. Then
the ordered pair fi/" (, G) is called a Hilbert network.

DEFINITION. Let A=(, G) be a Hilbert network, and let e 6HC2; an
element H2 is called a solution of fif corresponding to e if is a solution of the
associated abstract network (, fi) over H corresponding to e, i.e., if

K’l" there exists a v e i such that v e N],

K_:

The network will be called regular on @ if is regular on @.
As in 1 ], we can easily show that is a solution of corresponding to e Hc2

if and only if

K" there exists a v ei such that -r/T- (v-e)=O

for every y c2 satisfying the equation a 3’ 0,

K;" ie@anda.i=0.

Since Ne JH and is 1-1 (see Lemma 2.2 in [1]), let c Ho be a
(uniquely determined) set such that

(2.1)

Then we have by (1.5), (1.6),

(2.2) O(@ (JHo) + (2J).
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A theorem corresponding to Theorem 1.1 which deals with the existence of a
solution of a Hilbert network is merely a paraphrase of the latter and is omitted.

We will need the following.
LEMMA 2.1. Let X, Y, Z, U be nonempty, and let A X-->@(Y) be a set

mapping.
(i) I[ B Y--> Z is 1-1, then

BA is simple :A is simple.
(ii) I]" C U-. X is 1-1 and onto, then

AC is simple A is simple.
The proof is an obvious consequence of the definition of a simple operator.
THEOREM 2.1. Let (,, G) be a Hilbert network. Then 3/" is regular on @

if and only if the set mapping f(*,f( is simple on 0%. In this case, the admittance
operator A Q(@)- Xo% of 3f is given by

(2.3) A

where (2*22)- signifies the quasi-inverse o" 2*22"
Proofi Denote Y" Na (’1 @ - @, the inverse of J" o%- Na (3 @; also, note the

fact that P 22* (see [1]). Then we have by Lemma 2.1, 2*22 is simple on
2"2=(2"22)Y is simple on N. CIeP2=22*2 is simple on
This and Theorem 1.2 conclude the proof.

To prove formula (2.3), choose e e Q(@) and show first that the element
i= 2(2"22)-2"e Ae is well-defined. If e e Q(@), then by (2.2) there exist
m e (2H)X N= N:e. (nullspace of 2", see [1]) and n (22) such that
e rn + n. Since 2*m 0, we have 2*e 2"n, and consequently,

(2.4)

where W 2*22. Hence

2*e e 2"(22Y) (W),
(2.5) q W-(2*e) ,
so that

f(q Ae e Na @(2.6)

by (2.1); thus, satisfies K2.
Next, from (2.6) it follows that .,*,i ’*2.q Wq; also, (2.5) implies that

f(*e Wq, and consequently, .*e e 2"i. This, however, means that there exists
an element v,i such that .*e *v. Hence, *(v-e)=0, i.e., v-eN.

N]. Thus, satisfies K’t too; consequently, is the solution of corresponding to
e and our theorem is proved.

THEOaEM 2.2. Let =(2, G) be a Hilbert network and let W=
--> Wo.

(i) If]or all y,_, y2 , yl # y and all wl Wyl, w2 Wy2, we have

(2.7) (w,-w, y y2)co : 0,

then is regular on @. If, in addition, is an operator, then

(2.8) (Ae Ae, el- e2)c2 0

for all e, e2 Q(@) such thatf*e f(*e2, where A is the admittance operator of.
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(ii) If there exist constants c >0 and p > 1 such thatfor any yl, y2 6 ofand any
w Wyl, w2 Wyz we have

(2.9)

then is regular on moreover,

(2.10)

and
]]IP/(P-1)I(Ae, Ae2, el

for all e, e 6 O().
(iii) If there existconstants c >0 and p > 1 such thatfor any y, yz6 and any

Wl Wy, w Wy we have

(2.11)

then is regular on , (2.10) hold and

(2.12) Re (Ae-Aez, e- e2) 0

for all e, ez O().
Proof. Choose x, xeN and zex, zex. Since is a 1-1

correspondence between ff and Na , there exist uniquely determined ele-
ments y, y ff such that x y, x y. Thus, we have

(z- z, x-x)
(2.13)

=(*z-*z, Y Y2)o,

and

j=l,2.

Hence, if x x2, then yl y2, and consequently by (2.13), (z-z2, x-x2) #0.
Thus, by Theorem 1.4, and tic, too, is regular. As for (2.8), it suffices to note that
Pel tiff" e fffC e Pe2cfCe " e2; this completes the proof of (i).

The proof of (ii) and (iii) follows immediately from (ii), (iii) in Theorem 1.4 by
using the equality (2.13) and the fact (see Lemma 2.2 in [1]) that " is an isometry
between and N (’1 @, i.e., IIx- x211c2 IlY,- Y21[co whenever xj ..’yj, j 1, 2.

Let us now consider causality in Hilbert networks. For every T6 R ’, let 5er be
an orthogonal projection of Hc2 into itself, and let the collection {owr T R 1} be a
resolution of identity on H2 (see [2]), i.e.,

(i) cr, -< -2 for each T --< T,
(ii) for every To R and x e Hc, 5frx OroX as T- To, T> To,

(iii) for every x 6 H, rx - 0 as T-oo and Crx
DEFINITION. Let @ c H, @ Q3, let A @ ,(H) be a set mapping, and

let sj) @, Q3; A will be called causal on 3 if

(2.14) X l, X2 , gTX1 rX2 =) rAx rAx2.

LEMMA 2.2. Let @ be a nonempty set such that6f for any T e R 1.
Then A is causal on s)) <=>A Aron 2 for every T R 1.
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The proof is the same as in the case of an operator and is omitted.
THEOREM 2.3. Let =(2, G) be a Hilbert network and let W= 2*22.- W*. For all yl, y2 , yl y2 and all Wl Wyl, w2 Wy2, let

(2.15) (wl- w2, y- y2)co # 0.

Moreover, assume that
(i) for each T R 1, the projection r commutes with P
(ii) for each r R 1, r(Na f3 @) c Na f-) .@,
(iii) the set mapping P2 22*2 is causal on Na f-I @ 2. Then the admit-

tance operator A of is causal on 0(@).
Proof. Theorem 2.2 shows that, due to (2.15), is regular on @. Also, from

the proof of the same theorem it follows that (2.15) is equivalent to the following
condition" for any xj Na ffl @ and zj 2x, j 1, 2,

(2.16) (ZI--Z2, Xl--X2)c2 ;0

whenever x : x2.
First, we are going to show that the quasi-inverse (P2-" [P2(Na ffl@)]

-Na@ is causal on [P,(Naf-]@)]. By Lemma 2.2 and (ii), r(P,)=
r(P)r on Na @ for every T R’.

Next, choose T R and Ul, u2Naffi@ such that ru ru2. Then
6 N f’l , j 1, 2, due to (ii), and by (2.16),

(2.17) z z2, ,JCI)TU ,JC[gTU2)c2 t O

for any z 2ru. Since ru Pr(Sfruj), (2.17) yields

rPz, 3rPz2, 3ru, 3ru2)c O

Hence, for any u Na f3 @, ru : oWru2 and any p 3rP,SGu 3P,u,
(2.18) (p p2, 9rul SYru2)2 0.

Now, choose v[PZ(Na (3 @)]o such that 5%(P,)-Vl owr(P2)-v2 and let
uj (P,)-v; note that u 6 Na f-I @. Then v P,u, so that 3rv 3rP,u. Conse-
quently, we can put pj--rv into (2.18) and get

(2.19) (9rv- 3v2, 3r(P,)-vl- r(P,,)-v2) 0.

However, (2.19) shows that 3rvl-3rv2 cannot be zero; hence we have the
implication v [P2(Na f-I @)]o, j= 1, 2, 3r(P,)-vl 5r(P2)-f)2@ 5%v # rv2,
i.e., the operator (P)- is causal on [P,(Na fq @)]o.

To conclude the proof, let e, e O(@) be such that ,lYre1 =,9re2. Then
P,fFre, PSYre2, so that by (i), 5rPe,- rPe2; thus, by causality of (P2)-, 2rAel
3r(P,)-Pe, 2(P,)-Pe 3Ae2, i.e., A is causal on O(@), which is what we

wanted to show.
THEOREM 2.4. In Theorem 2.3,
(a) assumption (ii) can be replaced by the stronger condition

(2.20) 5f,r@ @ for each T R ,
(b) assumption (iii) can be replaced by the stronger condition ", is causal on
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Proof. (a) We have

(N (1 @) (N) CI (SG@) (PH)

(PTH) (PH) Na ,
i.e., (ii) is satisfied.

(b) If is causal on , it is causal on N , too; thus, by Lemma 2.2,
W=WW on Na for each T6R’. Hence, by (i), TP2=PT2
PTT rPT, i.e., (iii) holds; hence the proof.
A quite natural resolution of identity on H, and consequently, a natural

concept of causality, can be obtained as follows.
Let {Er T R } be a resolution of identity on H, and let c N No be fixed. For

any T R , define T H H by

(2.21) r[x [Erx ],

x [x] H. Then we have the following.
PROPOSITION 1. The collection {r T R } is a resolution of identity onH.
Proofi Clearly, r is a bounded linear operator from H into itself, since for

any integer N> 0 and x H we have =1 IIExl[ U=, IIETII2" IIxl[ II111.
Moreover, is a projection. Indeed, for any T R and x Hc, x
Ex [Ex x so that =.
Also, it x, y H, (x, y)-Z (Ex, y)=Z (x, Eryk)=(X, ffry); thus,

Next, let T, N T. Then, for any x e H,
((tT2- tJQTI) x, X) E (ET2X --ETIXk’ X) Oo

Hence, SeT, = T, and condition (i) in the definition of a resolution of identity is
satisfied.

If c <bOo, (ii) is trivially satisfied. Thus, let c No and choose To R and
x H. If e > 0, find N> 0 so large that ET--N+I IIxll < 2/8; by our hypothesis on
Er, there exist intervals L =[To, T), i= 1, 2,..., N, such that IIx-,,x,[I
<e:/(2N) for each T6L and i= 1,2,... ,N. Putting I= (’I=IL, we have for
TI,

IIx-oxll E IIEx,- Eox, -- Z I1" 2+ 2
i=1 i=1 i=N+I

< N"+ E (llEll/llEoll)llx, <
=N+I

Hence, ,%x - 9-ox as T-> To, T> To.
The verification of (iii) is similar.
Moreover, we have the following.
PROPOSITIOY 2. The collection {0r T R} satisfies condition (i) in Theorem

2.3.
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Proof. Let projections 5fr" Hc2 -- Hc2 and 0 Hc Hc be defined by (2.21).
Then

(2.22)

for every T R 1o Indeed, let X [ik be the c2 x Co matrix generating the operator
J (see [ 1 ]), and let u [uk He; then we have by linearity and continuity of E,

Hence, the first equation (2.22) holds; the second one follows by taking the
adjoints.

Now, we have Powr 3)*ow J.9r3* .rX*= YrP, what we intended
to show.

Summarizing our results, we see that, when dealing with causality defined via
projections (2.21), conditions (i)-(iii) in Theorem 2.3 can be replaced by the
simple assumption that z is causal on @ and ,9r@ c @ for every T R’.

On the other hand, condition (2.20) may sometimes be inconvenient when
dealing with specific cases of networks. We will show that this condition can be
traded for a different assumption; indeed, we have the following theorem.

THEOREM 2.5. Let= (z, G) be a Hilbert network. Assume that
(i) there exist constants c >0 and p > 1 such that, for every Te R 1, all

xj Na f3 @ and zj ,x,, j 1, 2, we have

(2.23) ](zl-z2, 5r(Xl--X2))c2]>----Cllr(Xl--X2)l]2,

(ii) for each T R 1, the projection commutes with P f(f(*. Then 2 is
regular on @ and the admittance operator A of is causal on Q(@).

Proof. First, choose x Na (-’1 @ and z 2x, j 1, 2. Since r(x,- x2)
xl-x2 as T- oo, (2.23) yields by continuity,

22, Xl- x2)c2l cllx,- x2]lcP2
Thus, by Theorem 1.4, jr is regular on @ and., in particular, the set mapping

P2 is simple on Na f3 @.
Next, choose a T6R’ and xjNaf-I@, j= 1, 2; since by (ii),

5rP(x x2) Pr{5%(x,- x2)}, (2.23) implies that

(2.24)

whenever wi rPxi, j 1, 2.
Now, let y,, y e [P2(Na f-/@)]o, and put xi (P2)-yi e Na ffl @, j= 1, 2. Then

yi Pxi, and consequently, ryj 6 rPxi. Thus, we can put wi ryi, j 1, 2,
into (2.24) and get

(2.25)
](y,- yz, tT(P,)-yl- ,OT(p,)-y2)c2

cl](P.)-yl- o(P)-yzl[.
Hence, if ogr(Pz)-yl oqz)r(Pz)-y2, (2.25) shows that 9ryloqry2, i.e., the
operator (P2)- is causal on [P(Na fq @)].
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Finally, let e,e2O(@) and let re=re2. Then, by (ii), rPe
Prel Pre2 rPe2, and consequently, by causality of (P)-,

rAel (P2)-Pe, 5G(P2)-Pe: 5YrAe2,

which concludes the proof.
Remark 2. If inequality (2.23) is satisfied even for all x, e , z, 2x, and all

T R 1, then assumption (i) in Theorem 2.5 is trivially satisfied, too.
From Theorem 2.5 we easily get the following result.
COROLLARY. Let the resolution of identity {r T R ’} be defined by (2.21).

Furthermore, let= (,,, G) be a Hilbert network and let W= f(*,f(" a-+ W.
Assume that there exist constants c > 0 and p > 1 such that

(2.26) I( w,- w2, y,- Y2))col--> cl[y,-

for all T R l, yj
, and wj Wy,, j 1, 2, where 6::r" HCH is defined by (2.21).

Then is regular on and the admittance operator A of g: is causal on Q().
Proof. By Proposition 2, rP--Pr for every T R 1, i.e., condition (ii) in

Theorem 2.5 is satisfied. Also, by (2.22),

(2.27) 2g=

Choose Te R 1, x, N f-I @ 2and z, 2x,, ] 1, 2. Then there exists uniquely
determined y, e such that x, Jy, and we have by (2.27),

v I(z- z, -(x- x.)L] [(z- z, 20y,- y_))]

1(2:t’Zl- 2*22, OC’Yl- Y2))co].
However, since fi(*zjefii*x=fi(*fi(y=Wy, we have by (2.26),
_-> cl]>(y, y)]],,.

On the other hand, since J is an isometry between N and H, it follows by
(2.27) that

Hence, inequality (2.23) is satisfied and Theorem 2.5 concludes the proof.
Let us now consider an example of a specific network.
Example. Let G be an oriented graph having the set of branches with

cardinal c2-<_No and assume that H is the real space L2[0, r], r > 0. Furthermore,
let us make the following assumptions:

(a) For every index j, let r, be a set mapping from R into @(R 1); assume that
there exists a constant c >0 such that for any m, o-,.e R and any 0 rj(o-),
092 ri(o’2) we have

(2.28) a(cr,- o’2) <= (o)- w2)(o’- o’2), j 1, 2,. ..
Moreover, let there exist an integer N> 0 and a constant/3 > 0 such that, for

all j > N, o- R and w e ri(cr) we have

(2.29)
(b) For every pair of indices i, k, let L(t) be a real function having a

derivative everywhere on [0, r]. Assume that there exists y > 0 such that

(2.30) IL,,,(t)l _-< 3,, ILk(t)l-_<
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for all t[0, -]. Moreover, let [Lik(t)] and [L’ik(t)] be ribbon, symmetric and
positive semidefinite c2 x c2 matrices on [0, -] (see 1]).

(c) For every pair of indices i, k, let S(t) be a real function having a bounded
derivative on [0, ’] and let a 6 > 0 exist such that

(2.31)

for all t[0, -]. Assume that [S,(t)] and -[S(t)] are ribbon, symmetric and
positive semidefinite matrices on [0, -].

Finally, let io c2 be a vector satisfying the equation d T. io 0, where d is
the structural matrix of G.

Let @ c L2[0, -] be the set of all c2-vectors x [xk(t)] such that each xk(t)is
absolutely continuous on [0, -], x’=[x’(t)] L2[0, -] and x(0)= io.

Let the set mapping be defined on @ by

(2.32) y [Zk ]. [y ],

where each set mapping Z is defined by

(2.33) (Zs)(t) (G(t))’ + rt, + S(t) (o) do.

Here rtk 6 r(,(t)), ra 0 for k and r, r, 1, 2,- ..
Let us consider the network d (, G). We are going to show that, under the

assumptions made, tic is regular on @. Thus, we consider an L, R, C-network with
time-varying inductors and capacitors, and with time-invariant nonlinear mul-
tivalued resistors, whose initial current regime is described by the vector io. Note
that, due to condition (2.28), the characteristic r of a resistor may look as
indicated in Fig. 1.

FIG. 1.

To prove our claim, define operators V, U and the set mappings R by

(Vk)(t)=(L,(t))’, (U,)(t) S,(t) (cr) do,

(2.34)
(R,:)(t) r((t)), [0, ’];
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also, let the operators I?,/fl and the set mapping/ be defined on @ by

(2.35) 9y [V]. [y], fy =[U,]. [y], /y =[R,]. [y].

Then, clearly 2 +/ + fQ.
Since

"(/y {[L,,(t)]. [yk]}’ [L;k(t)]. [y]+[L,(t)]. lYe,I,
it follows from (2.30) and the fact that [L,(t)] is a ribbon matrix that y
L2 [0, ’] for each y @.

Furthermore, in [1] we have shown that, for any x, y L2[0, ’], x [x],
y [yk], we have <x, y)c2 ,, xT(o.) y(o.)do-. Thus, if xi, x2e@, we can write

J 9Xl- 9X2, Xl- X2)c2-- -,ff,’r (Xl- /2)T" {L (Xl X2)} do-

[(xl-x2)’. L. (xl-x2)]/- (x’-x’2). L. (x,-x2) do-.

Also,

J= (x-x)r" L" (x-x) do" + (x-x)r" L (x’-x’) do..

Since x(0)= x(0)= io, we get due to the symmetry of L,

J 1/2(Xl- X2)T(,].) L(’) (x- Xz)(’r)
(2.36)

-[’-1/2 (XI--X2)(O.) L’(O.)" (Xl--X2)(O’) do’.

Hence, due to positive semidefiniteness of L and L’, J_-> 0.
Similarly, (2.29) shows that /x = L2[0, -] whenever x @. Also, routine

calculations confirm that (2.28) implies that

(2.37) (w- w2, Xl- X2)c2

whenever xl, x e @ and wl e/xl, w2 /x2.
c2Finally, in 1 we have shown that/fix e L [0, r] whenever x @ and also that

(2.38)
T- y (o)" S’(w)" y(w)do >_-0,

where y(t) Io x(cr) do-.
Thus, by (2.36), (2.37) and (2.38), the set mapping 2 satisfies the condition

(2.39) (W1-- W2, X X2)c2 O IlXl-- X211c22
whenever Xl, X2 and Wl E /’Xl, W2 E 2X2. Since N0 f3 @ c @, (2.39) holds for all
x, x2 N, f-) @, too. Hence by Theorem 1.4 (iii), is regular on @, what we wished
to show.

Also, by (1.11), the admittance operator A of tic satisfies the Lipschitz
condition with constant a -1.
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It is easy to show that the operator A is causal on Q(@) provided the causality
is defined via truncations on L_[0, ’].

Indeed, let r/be a continuous increasing function on R which maps R’ onto
(0, ’). For every T R and u L2[0, ’], let

(E-u)(t)= {(t) for 6 [0, rt(T)],
for 6 (rt (T), ’].

Then {E T R 1} is a resolution of identity on L2[0, -] and {oW T R 1}, defined
by (2.21), is a resolution of identity on L?[0, -] by Proposition 1.

Note that, in this context, causality of an operator M clearly means that
xl(t) xz(t) on [0, T’], T’< =:)2(Mxl)(t) (Mxz)(t) on [0, T’].

Next, by Proposition 2, each projection ow commutes with P, i.e., condition
(ii) in Theorem 2.5 is satisfied.

Furthermore, it is clear that, for every To 6 R and x, z Hc2,

fO
T)

(2.40) (z, ,’oX)c2 z ’(o-) x(o-) do’.

However, this together with (2.36), (2.37) and (2.38) shows immediately that our
set mapping Z satisfies the condition (2.23) for all xl, x @; hence, by Remark 2
and Theorem 2.5, A is causal on O(@), what we wanted to prove.

Concluding the paper, let us make a few comments on our results. As it is
apparent from Theorem 2.2, quite simple conditions guarantee the uniqueness of
a network solution. On the other hand, condition (1.4) giving the existence,
involves the set O(@) which is hard to describe. In particular, itwould be useful to
find conditions under which O(@) H2, i.e., when a Hilbert network possesses a
solution for any vector of voltages in H.

From (1.6) it follows that Q(@)= Hc2 if and only if

(2.41) [P(Na fq @)]= Na.
It is clear that (2.41) does not hold in general, unless we make additional
assumptions on 27 and @. Fortunately, it turns out that (2.41) is satisfied, if @ = Na
and PZ is a maximal monotone and coercive mappin.g.

Indeed, let be a real Hilbert space and let M" @(o) be a set-mapping;
as known, M is called monotone on o if for all xl, xz Y(and zl Mxl, z Mx2,

(2.42) (zl- z2, x, x2) -> 0.

Moreover, M is called maximal monotone on if M’" -@() monotone,
M’x Mx for all x implies that M’= M.

We say that M is coercive if

(2.43) lim a -1 inf {(z, x) z Mx, x , Ilxll a}- .
Then, as proved by Rockafellar (see [5, Thm. 9] and [6, Thm. 3]), we have the
following assertion" if M is maximal monotone and coercive, then (M) .
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Now, since Na is closed in Hc2, and thus a Hilbert space of its own right, and "is a norm preserving isomorphism between H and Na, we immediately get the
following result on Hilbert networks.

THEOREM 2.6. Let H be a real Hilbert space and let (,, G) be a Hilbert
network. Assume that

(i) @Na,
(ii) the set mapping W=*.," Hc WH" is maximal, monotone and

coercive on H’’. Then for anye Hc2, the network possesses a solution.
COROLLARY. Let (Z, G) be such that
(i)’ @2N,
(ii)" Wsatisfies the inequality (2.11) for all yl, y2 H and is maximal on H.

Then for any e H, possesses a unique solution i.
(The proof is obvious).
Another theorem on existence can be derived from a theorem by Minty (see

Theorem 2 in [4]), but we omit the details.
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EFFICIENTLY CONVERGING MINIMIZATION
METHODS BASED ON THE REDUCED GRADIENT*

DANIEL GABAY AND DAVID G. LUENBERGERf

Abstract. This paper presents three computational methods which extend to nonlinearly con-
strained minimization problems the efficient convergence properties of, respectively, the method of
steepest descent, the variable metric method, and Newton’s method for unconstrained minimization.
Development of the algorithms is based on use of the implicit function theorem to essentially convert
the original constrained problem to an unconstrained one. This approach leads to practical and
efficient algorithms in the framework of Abadie’s generalized reduced gradient method. To achieve
efficiency, it is shown that it is necessary to construct a sequence of approximations to the Lagrange
multipliers of the problem simultaneously with the approximations to the solution itself. In particular,
the step size of each iteration must be determined by a linesearch for a minimum of an approximate
Lagrangian function.

1. Introduction. Many computational methods have been proposed to find
the minimum of a real-valued function fix) over the n-dimensional real space
When both the values of the function f and its derivatives Of/Oxi for 1,. , n
are available at every point x, gradient-related techniques are generally favored.
These schemes iteratively construct, from an initial point x, a monotonically
improving sequence of approximate solutions x according to a recurrence
formula of the form

(*) x ’+’ x a,p ’, k O, 1,

where p is a direction.determined on the basis of the gradient Vf(x ), and a is a
positive scalar chosen to achieve a descent in the value of the objective:

f(X’+l)<=f(x’).
The parameter c controls the size of the step k and influences the convergence
properties of the algorithm (.).

The speed of convergence is strongly dependent on the step size choice. This
dependence is well understood in the case of the method of steepest descent,
which takes for pk the direction of the gradient Vf(x) itself, as originally proposed
by Cauchy [6]. The best performance is obtained for the optimal steepest descent
method in which a is chosen to achieve a local minimum off along Vf(x ). As first
exhibited by Kantorovitch 17], the sequence {x} converges to x* linearly, i.e., at
least as fast as a geometric progression. The sharpest possible estimate for the
ratio of this progression is asymptotically given by (M- m/M+ m)2, where M and
rn are, respectively, the largest and smallest eigenvalues of F*, the matrix of
second order partial derivatives of f at x*. We refer to this as the natural rate of
convergence of the problem. It represents the fastest possible speed for a steepest
descent algorithm. It provides, therefore, a standard by which the performance of
other schemes can be evaluated through comparison with this efficient natural
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rate. And, indeed, the rate of convergence of other gradient-related algorithms
can be expressed relative to this ratio [21 ].

In practice, many problems either arise or can be formulated as constrained
optimization problems. In this case, the minimum of the function f is sought
among the values it takes while the variable point x is restricted to a given subset
0. This subset is called the feasible region and is assumed to be described by a
finite number of constraint equalities and inequalities. Without lack of generality,
we can formally write

={xeR"lh,(x)=O,i=l,2,...,m;a<=x<=b,]=l,2,...,n} with m-<_ n,

where at and b are real numbers and can take the values -oo and
One of the most successful gradient-related methods to solve this nonlinearly

constrained problem is Abadie’s generalized reduced gradient algorithm (GRG)
[ 1]. As an extension to the nonlinear case of the upper bounding simplex method
for linear programming [8], this method introduces a partition of the variables into
m basic variables, denoted by the vector xB (xB1, , xB..), and n m remaining
independent variables forming the vector x, (x,,,..., x,._m), such that

a, < x, < b,,

aRi XRj (- bRi, j-- 1, , n-m.

The independent variables are changed on the basis of the reduced gradient [28],
11 ], obtained by "pricing-out" the nonbasic components of the gradient Vf(x), as
the reduced costs are obtained in the simplex method. When the constraints hi are
nonlinear, Abadie’s proposal consists in decomposing each iteration in two
phases. Starting from a feasible point, a move is performed along a direction
tangent to 9 based on the reduced gradient. It is followed by a restoration move,
achieved by adjusting the m basic variables in order to satisfy the constraint
equations. The resulting algorithm [2] is ranked first in efficiency among all
available techniques in the comparison studies conducted by Colville on a series of
test problems [7], [3]. The selection of the size of the tangent move is, in large part,
responsible for the current complexity of the code, since, if this parameter is too
large, the restoration may be impossible or may lead to a feasible point which does
not constitute an improvement of the objective function. Therefore, following this
approach, one is often forced to try several step lengths for the first phase in order
to obtain a satisfactory point at the end of the second phase. Such repeated trials
significantly increase the computation time and, even though a procedure is
developed so as to insure convergence, the rate of convergence may be far from
optimal.

The object of this work is to propose generalized gradient related methods
for nonlinearly constrained problems which properly extend the efficient con-
vergence of the optimal methods of the unconstrained case. We restrict our
analysis to problems without bound constraints on the variables and refer to 15]
for the alterations necessary to treat the general case. The implicit function
theorem [10] provides a natural and convenient framework to study the appro-
priate restrictions of the original methods of unconstrained minimization to the
constraint set ow itself (rather than to the subspace tangent to ow). The theorem
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conceptually allows one to express the basic variables as functions of the indepen-
dent variables, thus converting the original problem to an unconstrained one"

Minimize 4(xR) f(xB(xR), xa).

Solving this reduced problem by the gradient-related methods of unconstrained
minimization leads, in the original space, to schemes in which the independent
variables are moved on the basis of the gradient of the reduced function, which
turns out to be Wolfe’s reduced gradient. The basic variables are altered corre-
spondingly to maintain feasibility. We thus extend the efficient convergence
properties of the method of steepest descent, the variable metric method, and
Newton’s method to nonlinearly constrained minimization.

These ideal extended gradient-related methods cannot be implemented
exactly, since it is not possible in practice to generate arcs along Y. We are led to
consider more practical schemes which accurately approximate the arcs of the
ideal methods.

In 3 we define an implementable generalized reduced steepest descent
algorithm, combining at each iteration a tangent phase and a restoration phase. To
achieve efficiency, it is shown that it is necessary to construct a sequence of
approximations to the Lagrange multipliers of the problem simultaneously with
the approximations to the solution itself. Each combined step then accurately
approximates the arc of the ideal scheme, provided that the step size is determined
by a linesearch for a minimum of the approximate Lagrangian, a procedure which
has been tentatively proposed on other occasions [19], [23].

In 4 and 5, we show how the framework of the reduced unconstrained
problem can establish guidelines to define practical and efficient algorithms
extending, respectively, the variable metric method [14] and Newton’s method
18] to nonlinearly constrained minimization and inheriting their superlinear and
second order rates of convergence.

2. Notation. We denote n-dimensional vectors by notation such as x
(x,..., x,). Unless otherwise specified, they are regarded as column vectors.

For alay matrix A, ’A denotes its transpose.
Given a function f" R"R, its gradient at x is the n-row vector Vf(x)

=((Of/Oxl)(x),..., (Of/Ox,)(x)). For any subset K c{1,..-, n}, we denote by
VK[(x) the vector of components (Of/Oxi)(x) with K. We denote the matrix of
the second order partial derivatives, the Hessian, by F(x).

For a mapping h R" R" with components hi, Vh(x) represents the rn x n
Jacobian matrix with element (i, ) given by (Ohi/Oxj)(x). The second derivative of
h is best regarded as the m-tuple H (H1, H2, , H,,), where H, is the Hessian
of hi. We denote the m-tuple of the associated quadratic forms by ’x. H.x

(’xHx, ’xH2x, , ’xH,,x) fr any x R". We define the operator x associat-
ing an element A of R and an m-tuple H of R into an element of R "", by

X xH= AH+" "+

for any x e R", we have

’x(A x H)x A(’x H. x).
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We denote by (P) the problem

(p) Minimize f(x)

Subject to h(x) O.

3. The generalized reduced steepest descent method or nonlinearly con-
strained minimization.

3.1. The idealized reduced gradient method. The implicit function theorem
has historically played a fundamental role in the theory of constrained minimiza-
tion problems, since it provides the tool required to establish the existence of
Lagrange multipliers. Basically it reduces problem (P) to an unconstrained
minimization (at least locally) by solving the implicit constraint equations. We
assume in all the following that [ and h, are twice continuously differentiable and
possess bounded third order derivatives.

Assuming that the constraints are regular, i.e., that the gradient vectors
Vhl(x), ", Vh,,(x) are linearly independent for all x, then the implicit function
theorem guarantees the local existence of a mapping q: R"-’- R" such that
xB q(xR)..... well known that

(1) V0(x) -VBh(x)-lVRh(X),

where the argument x stands indifferently for the independent variables xR R
and for the n-tuple (O(x), x); and it can be shown that the second derivative of 0
is given by

(2) XP(x) -V,h(x)-’ x [’T(x) H(x). T(x)],

where T(x) is the n x (n- m) matrix

(3)
T(x)= [-V.h(x)-IV.h(x)].

This matrix represents the mapping of R" onto -(x), the tangent subspace to ow at
x. We can view (P) in terms of the reduced problem (R) in

(R) Minimize b(x) f[q(x), xR],

defined at least in a neighborhood of a solution point x* of (P). The gradient of b is
called the reduced gradient and its transpose is an (n- m)-dimensional column
vector denoted by r(x). The chain rule for derivatives leads to

v4,(x) v.[(x)Vq,(x) + Vd(x).

Using (1), we get

(4) ’r(x) V,f(x)- V,f(x)[V,h(x)]-’V,h(x).
Among the methods of steepest descent for solving (R), the optimal steepest

descent algorithm provides the best performing algorithm. It consists of a series of
moves in R"-" along the reduced gradients at the successive iterates x. The size
of each step is determined by a linesearch along r r(x) for a local minimum
point of 4.
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In practice, it is usually not possible to achieve explicitly the elimination of
the dependent variables xB and it is therefore necessary to solve problem (P) in the
original space R". However, the above study of the reduced problem (R) shows
that the most natural algorithm consists, or its kth iteration, starting rom the
feasible point xk= (x, x), in moving the independent variables xR along the
reduced gradient rk, while maintaining feasibility by an alteration of the basic
variables xB. This defines an arc x(fl) on 0 emanating from x . The projection of
this arc on the subspace R of the independent variables, parallel to the basic
subspace B, is the straight line in the (negative) direction of r; hence

[3r() x() x
To satisfy the constraint equations, the basic variables must satisfy

x(fl) O(x . rk).
Assuming that the constraints are uniformly regular (i.e., that there exists a scalar
y >0 such that IIV,h(x)ll-> y for all x), we can write

x(fl) d/(XR)-flVd/r + (fl/2)’r". . r

Using (1) and (2) we obtain

(6) xkB([3) XI__ fl(__(VBhk) VRh)rk [32(Vhk) qk
where q is the m-dimensional column vector of components

(7) q:" "’-r’’H,
This reduced gradient method, illustrated in Fig. 1, belongs to a class of

techniques for nonlinearly constrained problems proposed by Altman [4] and was

FIG.
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presented first in [21] in this specific set-up. To efficiently extend the optimal
steepest descent method, the step size parameter/3k must be chosen to achieve a
local minimum of f along the curve xk(fl)

(8) /3 Argmin {f[x(fl)J/fl _-> 0}.

The speed of convergence of the sequence {x} to x* is then asymptotically given
by the Kantorovitch-ratio (M-m/M+ m)2, where M and m are the extreme
eigenvalues of q*, the Hessian of 4, at x*. This defines the natural rate of
convergence for reduced gradient methods, since this algorithm ideally extends
the efficient performance of steepest descent methods for the unconstrained case.
Our motivation is to find an efficient way to at least approximately find the
parameter/3 of the ideal method, without actually searching the ideal curve. This,
in turn, will lead to an algorithm achieving the natural rate.

A familiar formulation of this result is obtained through the introduction of
the Lagrangian function for (P), R" x R" - R defined by

l(x,A)=f(x)+&h(x).

At every regular point x and for the partition of R" B@R, we define the reduced
Lagrange multiplier as the m-dimensional row vector

(9) A(x) -V,f(x)VBh(x)-’.

We can thus interpret the reduced gradient in terms of the gradient of the
Lagrangian, since

v/[x, (x)] IV.t, v.] [0, ’r(x)].

We can also evaluate the Hessian P(x) of the function (x)"

dp(x ’Vd(x)FB(x)Vg/(x +FR (x )V(x

+ FR,(x)+ VBf(x)(x)
=’T(x)F(x) T(x) + A (x) (T(x) H(x) T(x))

(using (1), (2), (3), (9))

’T(x)L[x, A(x)]T(x),

where L(x,A) is the Hessian, with respect to x, of the Lagrangian I. ’TLT
represents a restriction to 3-(x) of the Hessian of the Lagrangian.

3.2. The slep size selection. The reduced gradient method presented above is
idealized from a computational viewpoint, since it is in practice impossible to
generate the arcs x (/3). We can devise an implementable version of the reduced
gradient algorithm, which is really an approximation, using first order informa-
tion, of the idealized scheme. Calculation of the step along the curve from x to
x (/3) is replaced by a combination of two phases, as depicted in Fig. 2. In the first
phase, a move is made along the tangent to the ideal curve x(/3). (It has already
been established that this tangent direction is given by -T"r.) This step, charac-
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B

k(o)

x -r R

FIG. 2

terized by the step length parameter 0, leads to the point

Ek(O) x -OTkrk,

which generally does not satisfy the constraint equations. A restoration phase
back to a feasible point xk(O) of is needed and is performed by adjusting the
basic variables.

The efficiency of this algorithm depends, to a large extent, upon the selection
of the step length 0k. The study of the idealized reduced gradient method shows
that, in order to achieve convergence at the natural rate, our practical algorithm
must use a step size parameter which asymptotically satisfies

o,, / o(llr"ll).

We can compute an estimate of the value of the objective along the arc {x (/3)}:

/[x’ (fl)] f (x k) BTfkTkr + (B=/2)’rk’TkFkTkrk

2Vdk(V.h k)-lqk + O(llrkll3).

Introducing , (x k) as defined by (9) and using the definition (7) of qk, this can
be written

(10) f[x"()]:f(x")-llr"l[=+(/2)’r"’T"(F +, xHk)Tkr +o([Ir’ll3).

Consider now the value of the Lagrangian function/(., , k) along the direction
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tangent at x to the arc {xk(fl)}" (/3)= x-Tr"
,r,TLkTr/[2(/3), h ]= l(x , h )-flVl(x, )Tr + + O(]lr"[[3)

f(x’)-llr’l( + ’r’TLTr + O(llr’ll3).

Therefore the function I(., ) takes along the tangent direction -Tr up to
second order the value of the objective f at the feasible point with the same
independent coordinate.

Hence a simple and ecient procedure to find an approximation of the order

IIr’ll to the ideal step size consists in selecting the step length parameter of the
tangent phase in order to minimize l(x, ) along the direction -Tr. This rule
defines the parameter "

a Argmin {l(x -aTr, )la 0},

which we refer to as the Lagrangian step size. This selection rule can be easily
incorporated in our algorithm. We describe below the detailed procedures to
handle the possible computational diculties associated with the restoration
phase and to insure the convergence of the sequence of iterates.

3.3. The generalized reduced steepest descent algorithm. We must first notice
that the choice of the Lagrangian step size does not represent any additional
computational work since the evaluation of A is a necessary step in the calcula-
tion of the reduced gradient r.

Under the assumption of uniform regularity of the constraints, the restora-
tion phase from a point [, ] can always be performed, at least conceptu-
ally. A computationally ecient procedure consists of solving the system of
equations

h,(x,,, x,., m,k_.) o, i=...

for the unknown variables x,,...,x using a modified Newton’s method.
Starting from yo= ,, such a method constructs successive approximations y’
R , according to the recurrence

), i=],2,...y,+, y,_[V,h(x,)]-,h(y,

(The inverse of the basic Jacobian at x has already been computed to evaluate A
and r.)

The convergence of this method for obtaining a feasible point has been
established by Kantorovitch [18], provided that the starting point is suciently
close to x and that the matrices H and Vh(x)-’ are bounded in this
neighborhood. It may be necessary to decrease the step length 0 of the tangent
phase, initially defined by the Lagrangian step size , by scaling down 0 by a
factor p (0, 1), possibly several times, until the restoration phase is successful.

Assuming that the level sets of the Lagrangian function

[f(x’)] {x Rll(x, x’) f(x’)}
are compact, the Lagrangian step sizes are bounded. There exists, therefore, a
neighborhood of a solution x* of () and a corresponding integer N such that, for
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all k > N, the iterates x are in this neighborhood and IIrl[ is small enough to
guarantee the convergence of the modified Newton’s method from the starting
point yO i(a).

It is important to provide a rule for the step size which insures that the
sequence {x} is convergent. Each iteration must result in a descent in the value of
the objective, and convergence can be established if this improvement is sufficient
enough. Sufficient descent is achieved in our algorithm by enforcing the test for
the step length 0 first proposed by Armijo [5] in the framework of unconstrained
optimization; namely, 0 is scaled down by a factor O (0, 1) until

11 f[x(G)] < f(x") 0IIr 2,

where r is a positive parameter chosen in (0, 1/2). The Taylor expansion of f,
considered as a function of 0, leads to

f [x G)]-f(x -Gllrl] + 0(0).

Hence, after at most a finite number of scalings by the factor 02 (0, 1) from the
initial determination 0k -ak, the test (11) will be satisfied.

We can give now a detailed description of the algorithm in a pseudo-ALGOL
format. The method depends on the parameters e, o’, 01, and 02 which must be
specified in advance, with e >0, o- (0, 1/2), p, (0, 1), 02 (0, 1). The tolerance
parameter e expresses the accuracy required in the satisfaction of the constraints.
The damping factors 01, p. are selected according to the nonlinearity of the
problem. (They are taken as or o in the GRG method of Abadie [2]).

GRSD ALGORVrHM (Generalized reduced steepest descent method).
Step O. Select a feasible x R’; set k 0.
Step 1. Procedure "check regularity assumption":

if x is not regular, then stop; else partition

X (X,x) and Vh(xk)=[Bk,D].

Step 2. Compute the reduced Lagrange multiplier"

A --V.f(xk)(Bk)-1.

compute the reduced gradient:

’r =Vaf(xk)+AkD k.

Step 3. Procedure "stopping rule":
if r 0, then stop; comment: x is a solution candidate.

Step 4. Procedure "move in the tangent plane":
compute the direction pk Tkrk;

Step 5. Compute the Lagrangian stepsize such that

c Argmin {l(x -ap k, A k)lc _-<0};

set 0 ck and 2(0)= x -Op.
Step 6. Procedure "restoration of the constraints""

set i= 0; set yo= (0);
while (][h[y ,   (0)111 > and <itermax do:
set y’+= y- (B)-lh(y , ) and set 1 + 1.
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Step 7. If IIh[y’, (o)]ll > e, then
set 0 010, go to Step 6;
else set xk(O)= (y, i(O)).

Step 8. If fExk(O)]> f(xk) Ocrllrkll2,
then set 0 020, go to Step 6.

Step 9. Set O 0 and x+1= x(O).
Step 10. Set k k + 1, and go to Step 1.

3.4. Convergence properties. We prove first that the rule given by (11),
adopted to determine the step length, guarantees the convergence of the
algorithm.

THEORrM 1 (Global convergence). Assume thatf is boundedfrom below, and
that the level set [f(x)] is compact. Let {x k} be the sequence of regular feasible
points constructed by the GRSD algorithm. Then every cluster point of {x k} is a
critical point.

Proof. It follows from the assumptions that the sequence {f(x k)} is monotoni-
cally decreasing and that 0k is positively bounded from below.

The above theorem, as well as establishing global convergence, also guaran-
tees that, after a finite number of iterations, IIrll is small enough so that the
restoration phase does not offer any computational difficulties. We can now prove
also that the Lagrangian step size ck satisfies the test (11) for k large enough.

PROPOSITION 1. Let {x k} be a sequence, constructed by the GRSD algorithm,
converging to x*, a critical point of (P) which satisfies the sufficient second order
optimality conditions. There exists an integer N, such that, for all k > N, the step
lengths Ok are determined directly by the values of the Lagrangian step sizes

Proof. The definition of the Lagrangian step size leads to

which yields

IIr ll + O(llr [I),ak ,rktTkLkTkr

(12) f[xk(ak)]--f(xk)=
2 ’rk’TkLkTkr +O(llrll)"

Assuming that x* fulfills the sufficient second order optimality conditions [ 13 ], the
matrix ’T*L*T* is positive definite (at x* and therefore in a domain around x*);
hence, for k large enough the first term of the right-hand side of (12) is negative
and dominates the second term which is only of the order O(llrll). Thus, for k
large enough, the point Xk(ak) satisfies the test of Step 8, and we can make the
choice 0 c; then x+1= Xk(ak). Vl

The introduction of the Lagrangian step size is a very powerful device. We
have just established that, once the algorithm has approached close enough to a
solution, this parameter defines a tangent move from which the restoration phase
can be performed successfully without using complex scaling down procedures.
This choice leads therefore to a computationally simple and convergent
algorithm. We can further prove that the convergence itself is efficient by showing
that the algorithm converges at the natural rate.
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THEOREM 2 (Local rate of convergence). Assume that the sequence {x k}
constructed by the GRSD algorithm converges to x*, an isolated local minimizer of
f, subject to the constraints h(x)= O. Let M and m be, respectively, the largest and
smallest eigenvalues of the matrix ’T*L*T*, the restriction o]" the Hessian of the
Lagrangian to the tangent subspace to if’ at x*. Then the sequence {x k} converges
linearly to x* with asymptotic ratio (M-m/M+ m)2.

Proo]’. The proof is a generalization of a similar estimate for the rate of
convergence of the optimal steepest descent method.

For small rk, equation (12) gives an estimate of the decrease of the objective
function during the kth iteration"

IIrll(13) f(xk+’)-f(x)
2 ’r’TLTr +O([[r[[)"

Introducing the error vector y x-x*, we have

f(x)-f(x *) l(x , )-t(x*, )

Vt(x, h)y -,yLy + O(lly 1).
Let z be the vector of independent components of y. Using a first order Taylor
expansion of the implicit function y (z), we obtain

y T+ O(1111) O(1111).
Using a first order Taylor expansion of 71, we derive an estimate for r"

,r [,yL + O(l[yll)]T ,,TLT + O(llll).
Hence

or, in terms of r, f(x) f(x*) =" ’TLTkz

f(x)-f(x *) 1/2,r(,TLkT)-’r +

Denoting byU the matrix ’TLTk, we have, for the ratio of the successive errors,

f(xk+l)-f(x*) ( (’rr) )f(x)_f(x.
1

,rkUr,rk(U)_lr (1+

Let us introduce the normalized vectors u r/l]r]], which converge to u*; the
Kantorovitch inequality 17] gives for the positive definite matrix F*,

(’u’u*) 4raM
’u’F* u *’u *F*-’u * (M+ m)2"

Hence we obtain the desired result"

f(x+l)--f(x *) (M-m)limk_.o -)-- --< M+m
We have thus been able to establish that the convergence characteristics of

the GRSD algorithm are simple and complete extensions of the corresponding
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properties of the unconstrained steepest descent method. The algorithm has been
run satisfactorily on several examples, derived from Colville’s tests [7] (where
only the constraints active at the optimum were considered and treated as equality
constraints), and its computational performance has been consistently compara-
ble with the results obtained with a GRG algorithm of similar sophistication. We
describe in the next subsection certain situations where the new method performs
even better than the original scheme.

3.5. Comparison with the generalized gradient method. Since the GRSD
method and Abadie’s GRG algorithm [2] use the same procedures to determine
the direction of the tangent phase and to perform the restoration, the step length
determination is the key difference between the two methods. In the latter, the
point in the tangent direction is initially chosen to achieve a local minimum of the
objective function. Although the resulting performance of the GRG algorithm is
often satisfactory [3], this selection rule does not constitute the proper extension
of the optimal steepest descent method and does not exhibit the efficient proper-
ties achieved by the Lagrangian step size in the GRSD algorithm.

For example, if the initial choice of the step length is systematically small
compared to the ideal step size, the convergence of the GRG algorithm may be
slowed. Such a situation arises when the restricted Hessian ’TFT of the objective is
ill-conditioned compared to the corresponding Hessian ’TLT of the Lagrangian.
This phenomenon is illustrated by the following problem"

2-9x +7x X3--6X4Minimize 5x + 3x2 + 5x3 + x4

Subject to hi(x) x + x: + x’ + X4 31- X 7x: + 3x3 5x4 1_ 4 0,

h2(x) 2x + x2 + 2x3 + 3x2 + 5x3-4x4- 9 0.

The objective achieves its minimum value 5 at the solution point x* (1, 1, 1, 1);
the corresponding Lagrange multiplier vector is A* (1,-2). The Hessians at x*
of the objective and of the Lagrangian are respectively

10 4

F* 6 4and L*
10 4

2 4

The starting point is taken as the feasible point x=(3, 2,-1, 4). The
partition chosen treats x and x3 as the basic variables and xl and x4 as the
independent ones. While it takes 19 iterations of the GRG algorithm to reach an
approximate solution where the reduced gradient is in norm less than 10-3, the
GRSD algorithm reaches the same precision in only 6 iterations. Since each step
of both methods consists of the same operations and necessitates about the same
amount of computational work, the GRSD method is about three times faster.

4. A generalized reduced variable metric method for nonlinearly con-
strained minimization. For unconstrained minimization, the conjugate gradient
method [14] or the variable metric algorithm [13], which exhibit superlinear rates
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of convergence, are sometimes preferred to the method of steepest descent. It is,
therefore, natural to seek a way of combining these efficient schemes with the
reduced gradient technique in order to solve constrained problems. But the
appealing properties of these methods rely, to a substantial degree, on the fact
that, at each step, the objective function is accurately minimized along the
direction of search. This is not an obstacle when the constraints are linear, and
simple as well as efficient combination schemes have been proposed in this
framework [25].

The only available extension of the Fletcher-Powell method to nonlinearly
constrained minimization has been proposed by Davies [9] in the context of
Rosen’s gradient proiection [27]. The restoration phase is, however, a source of
difficulty, ignored by Davies but acknowledged by Murtagh and Sargent [24],
since the new feasible iterate is not likely to exactly achieve a local minimum of [.
This leads to a possible deterioration of the convergence properties of the
algorithm.

4.1. The idealized reduced variable metric method. A natural and efficient
generalization to the constrained case can be provided within the implicit function
framework we have already adopted to extend the method of steepest descent.
The key idea consists again in viewing problem (P) in terms of the reduced
unconstrained problem (R). The minimization of 4(xR) is then, at least ideally,
performed by the variable metric method in the subspace R of the independent
variables. The kth iteration of this scheme proceeds from x by searching for the
minimum of 4(xR) along a direction s k, defined by

S Gkl.k,

where G is an (n- m) (n- m) matrix updated according to the formula

which approximates the inverse , the Hessian of b.
In practice it is necessary to solve the problem in the original space R", since

the reduction to the form (R) can generally be achieved only conceptually. The
ideal scheme consists, therefore, in defining a curve {x(/3)} on 5f emanating from
X

k (X B, x.), its projection on R, parallel to the basic subspace B, being the
straight line in the negative direction of s . To extend the Fletcher-Powell
method, the next point x +1 must be chosen to achieve a local minimum of f along
the arc {x (/3)[fl _-> 0}.

By construction, this method exhibits the convergence properties of the
variable metric method in the (n m)-dimensional subspace R. In particular, the
rate of convergence of this variable metric method is actually superlinear.
Moreover, the conceptual framework adopted shows that we have only to
construct a sequence of (n m) (n m) matrices G instead of n n matrices as
proposed in [9].

4.2. A generalized variable reduced metric method. The method developed
in the previous paragraph is an idealized version, since it is computationally
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impossible to generate the curves {x (/3)}. But we can derive from it a practically
implementable algorithm which asymptotically generates the same points. Again,
this is achieved by a move along the direction pk Ts of the tangent subspace-, followed by a restoration.

To obtain the best possible approximation of the arc of the idealized scheme,
we are led, as in 3.2, to define the step length parameter in terms of the
Lagrangian step size, achieving a local minimum of the updated Lagrangian
l(x, ,k) along pk. We have established in 3.3 that this provides a first order
approximation to the step size of the ideal search for the point achieving a local
minimum of f along the arc x(/3).

An even better method would be to adapt this generalization technique in
conjunction with the version of the variable metric method proposed recently for
the unconstrained situation by Oren and Luenberger [26], the self-scaling vari-
able metric algorithm. It exhibits rapid convergence even when the minimization
step is performed only approximately, while the Fletcher-Powell algorithm is
adversely affected by even a small error in the step size.

5. A generalized Newton’s method for nonlinearly constrained minimiza-
tion. In spite of the very appealing fast convergence of Newton’s method for the
minimization of unconstrained convex functions (when second order information
is available and when the dimension n of the problem is not too large to prohibit
storage and inversion of an n x n matrix), very little effort has been devoted to
extend the method to constrained situations. Levitin and Polyak [20] were the first
to study a Newton’s scheme for such cases. They proposed an implementable
algorithm which considers only a linearized version of the constraints and which
uses the inverse of the n n Hessian F of the objective function to compute each
iteration. This does not seem to be the most suitable approach, since it ignores the
nonlinearity of and therefore does not fully capture the essence of the problem
to second order. It is preferable to explicitly incorporate the second order
information available.

5.1. The idealized reduced Newton’s method. An ideal method can again be
conceived by viewing problem (P) in terms of the reduced problem (R) and by
adopting Newton’s method in the subspace R to find the unconstrained minimum
of 4(xR). The derivatives of 4 have already been computed in 3.1:

V(x) ’r(x),

(x) ’T(x)L[x, ,(x)]T(x).

along the (negative of the)Hence the k th iteration consists of a move from xR
direction

(14) p =(’TLT) -’r.
To guarantee a descent in the value of the objective, we must assume that ’TLT is
positive definite and we must sometimes use a damping parameter 0 6 (0, 1] to
reduce the size of the step along -p, until the point

k-t-1x x -- O,p
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satisfies a descent condition; a test like Armijo’s rule, for example [5]. There is no
need, however, to determine the step length by an accurate minimization proce-
dure, as in the previous gradient-related methods, to obtain efficient convergence,
since asymptotically 0k 1 will yield convergence of order 2. If the matrix ’TkLkT
is not positive definite, pk must be modified to preserve the descent character of
the algorithm. Computationally efficient schemes 12], 16] for the unconstrained
case can be applied in this case as well.

In the original space R", a step of this ideal scheme consists in moving along
an arc {xk(fl)10_-</3 =< 1} of5, the projection on R of which is the straight line in the
negative direction of pk. By introducing this ideal scheme, we conclude that it is
necessary to invert only (n- m)x (n- m) matrix. We can also derive from it a
practical algorithm, by approximating the search along the arc to second order.

5.2. The generalized reduced Newton’s algorithm. Let us consider the move
of the independent variables

x(O)=xR-Op with 0(0,1].

To satisfy the constraint equations, the basic variables must be altered to

x(O) q(x-Opk) O(x)--OVOkp +__,pk. +

-Ix(O)= xB--O(-B D)pk-O2B q +

where qk is now the m-dimensional column vector with components

(15) q 1/2’p k’TH,(xk) Tkp k.

We thus obtain a second order approximation of the form

(16)

where

k()=
.(o)

x --OTkp --0 Vkq k,

From a geometric viewpoint, we can interpret this approximation as a move
along the osculating parabola c to the ideal curve {x(fl)[fl>0}, i.e., the
parabola of origin x parameterized by 0 as

2k(O) Ot + 02v

in the 2-dimensional variety containing x and spanned by the vectors and v k,
where

-Tkp k, v Vkq k.

This curve is the natural extension, for second order approximation, to the tangent
k. (See Fig. 3.)

In general, however, the points k (0) are not feasible, and a move back to ow is
again performed by altering the basic variables through a modified Newton’s
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FIG. 3

method to solve the system

h[y, i(0)] 0.

As mentioned in 3.3, the restoration move can be a source of difficulty, since the
modified Newton’s method may fail to converge or may lead to a new feasible
point which does not represent an improvement over x in the objective function.
We handle these difficulties by successive halving of 0 from the initial value 0 1
eventually finding a new feasible iterate x+ such that, given a scalar o- (0, 1/2),

(17) f(x +’) <= f(x) O ll,r -----L r llllr ll .
We emphasize, however, that these difficulties are less frequent than with first
order methods, since the approximations of the constraints used in the present
scheme are valid to within second order.

We now present our algorithm. It is of the same form as the GRSD algorithm
in 3.3 except for Steps 3, 4 and 5.

GRN ALGORITHM (Generalized reduced Newton’s method).
Step O. Select a feasible x e R"; set k 0.
Step 1. Check regularity assumption.
Step 2. Compute A , r.
Step 3. Stopping rule: if r 0, then stop.
Step 4. Procedure "move along the osculating parabola":

compute p (’TLT)-r;
compute q 1/2’p’THTp for 1,..., m.
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Step 5. Set 0 1 and (0) x-OTp-OVq;
Steps 6, 7. Restoration of the constraints.
Step 8. If f[x(O)]>f(x)-O(r/ll’Tgrll)[lr]l,

’0, go to Step 6then set 0
Step 9. Set 0 0 and x"+= x"(O).
Step 10. Set k k + 1 and go to Step 1.
Since -p is a direction of descent, the test (17) is satisfied after at most a

finite number of halvings of the original step size 0 1. This selection rule
guarantees the convergence of a subsequence of {x} to a critical point, as
established in 3.4.

We can also show that, after a finite number of iterations, no halving of the
step length is necessary.

PROPOSIiOY 2. Let {x} be a sequence, constructed by the GRN algorithm,
converging to x*, an isolated local minimizer of (P). Assume that ’L* is
positive definiw. Then there exists an integer N, such that, for all k > N, we may take
O 1.

Proof. An expansion of f[i (1)] to second order gives

f[i( 1 )] f(x -) Vf(x )(Tp + Vq
+’(Tp + Vq)F(Tp + Vq)+ O([p[3).

Using (15), we obtain

[[x()] [(x)-’rp +’p’TCrp + O([Ip[l).
By definition (16), we have

Therefore, if IIrll is not too large, which occurs for k large enough since r 0, the
modified Newton’s method converges to a feasible point x(1). We derive, using
the definition (14) of p,
(18) ]’[x(1)]=[(x) -’ (’TLT r

For any (0, ), there exists an N large enough such that

fix ()]<f(x)-Ii,rgr[lllr[ fo all k>N;

therefore the test of Step 8 is satisfied for the step length 0 1 and the new iterate
x+,= x(). S

The estimate (18) shows that the choice 0 1 achieves, at least asymptoti-
cally, the best possible decrease in the objective along the parabola c .

THeOReM 3. Assume that and h are three times continuously dierentiable.
Assume that {x} converges m x*, an isolated local minimizer o[ (P). Then this
convergence is o[ order at least 2.

Pro@ Let us introduce the error vector y=x-x* and partition it as
y (w, z). Since x+ and x* are feasible, we have

h(x+l) h(x*)= 0 Vh(x*)y+l + O([ly +’11)
h(x,).w+, +h(x*)z+’ +
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Since h is uniformly regular, we get

iiw+lll- O(llz k+lll).
According to Proposition 2, we have, for k large enough,

+ _(,TLT)-lrk"X, R -"XR

The study of this iterative process shows that its convergence is of second order.
Hence

Since

jly+ljl jlz +lj[ + iiw+,ll_ o([lyjl=),

we 6,btain the rate of convergence of order 2"

]lx+l-x*il<=cllx -x*l{2.

Recently Mangasarian [22] has proposed a Newton’s method for nonlinearly
constrained minimization which exhibits quadratic convergence. The role of the
Lagrange multipliers is also central to his approach, although he uses more
general Lagrangian functions than in this paper. Feasibility is not required at each
iteration, but it is necessary to compute the inverse of an n n matrix.

6. Numerical experience. The GRN algorithm has been tested on the
quadratic problem described in 3.5. Convergence was quite rapid. From the
same starting point as used before, the problem was solved in 3 iterations, yielding
a value for the solution with 7 exact digits.

A nonquadratic test problem in 5 variables and 3 constraints was also run.
From an initial approximation defined as the solution rounded to one decimal
place, full precision was achieved after a single iteration.

7. Conclusion. The algorithms presented in this paper are of both practical
and theoretical interest for nonlinearity constrained minimization. On the prac-
tical side, our methods efficiently generalize to this class of problems the appealing
convergence properties of the optimum steepest descent method, the variable
metric method, and Newton’s method for unconstrained minimization. Computa-
tional results indicate that they can provide significant savings in computer time as
compared to the existing schemes, particularly when the constraints are highly
nonlinear. There is, of course, room for further improvement. The requirement of
maintaining feasibility may cause excessive time expenditure in the restoration
phase of each iteration if a high degree of accuracy is demanded in the satisfaction
of the constraints. It is, however, possible to adaptively improve the accuracy
requirements of the restoration phase as the minimization procedure progresses.
Further investigation of such restoration schemes might, therefore, lead to faster
computational performance. Other areas for further research include the exten-
sion of our methods to problems with inequality constraints and the development
of effective rules for updating the partition between basic and independent
variables.
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On the theoretical side, our study has shown how to fully exploit the
viewpoint associated with the implicit function theorem in order to define
computational algorithms for the solution of nonlinear programming problems.
One of the key observations in this perspective is the necessity of constructing a
sequence of approximate Lagrange multipliers {k} simultaneously with the
sequence of approximate solutions {xk}. The resulting interplay of Lagrangian
methods in a primal framework should lead to useful new results.
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FULL "BANG" TO REDUCE PREDICTED MISS IS OPTIMAL*

V. E. BENE

Abstract. Consider the stochastic control problem of minimizing the final value expectation
El(k’z) by choosing a measurable control law u(.,. ), subject to the stochastic differential equation
dz A(t)z dt + B(t)u(t, zt) dt + C(t) dw 0 <_ = l, for the process z, and to the boundedness con-

dition u: [0, 1] R 1, 1It, with w a Wiener process, k 0 a given vector, and l(. an even positive
function increasing in x > 0. C. G. Hilborn, Jr. and others have conjectured that one optimal law takes
the form of full "bang" in the direction of reducing the "predicted miss", defined as the expected value
of k’z with control identically zero. Using the maximum principle for parabolic operators, we prove
this conjecture in the setting of the exponential functionals which express the derivatives of measures
induced by translations in Wiener space.

1. Introduction. We consider the stochastic control problem of minimizing
the final value expectation El(k’zl) by choosing a control law u(. ,. ), subject to
the boundedness condition u: [0, 1] Rd - [-1, 1] on the measurable function
u(.,. ), and subject to the stochastic DE (differential equation)

(1) dzt A(t)zt dt 4- B(t)u(t, z,) 4- C(t) dw,, 0 1,

for the process z., with w. a Wiener process, k a given vector, and 1(. an even posi-
tive function, increasing in x > 0. Our interest in this problem arose from reading
an unpublished work of C. G. Hilborn, Jr., who conjectured that one optimal
control law took the form of full "bang" in the direction of reducing the "predicted
miss", defined as the expected value of k’Zl with control identically zero. This
conjecture is proved here in the setting of Girsanov’s theorem for the exponential
functionals which express the derivatives of measures induced by translations in
Wiener space.

Girsanov’s theorem [1] serves to connect these functionals with stochastic
control theory [2]. It states that for q a nonanticipative Brownian functional with

I ](j912 dt < a.s., and dP exp ((q)dP with ((q) f q dw 1/2 [(49[ 2 dt and
E exp ( 1, the translated functions wt -fro q ds are a Wiener process under/3.
This result is used [2] in stochastic control theory as follows:it is assumed that
the controlled system satisfies a functional DE dx, f(t, x, u(t, x)) dt + dw here
f represents system dynamics and u is a particular control law; a "solution" is
provided by the Wiener functions wt under P with q f(t, w, u(t, w)), in the sense
that there is a Wiener process Wt such that

W f(s, w, u(s, w)) ds + Wt.

This idea has been exploited, in stochastic control for existence proofs [2] for
optimal laws, for Hamilton-Jacobi conditions [3] for optimality, and for direct
proofs of optimality 4. Actually we shall use a slightly more involved version
of Girsanov’s theorem than that quoted above, in order to take account of the
matrix C(. that modifies the noise in equation (1).
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The notion of "predicted miss", as it is to be used here, is introduced in 2.
Our basic assumptions and formulation of the problem, and the resulting repre-
sentation for the cost of a control law, are in 3 and 4, respectively. Section 5 gives
an informal outline of the basic comparison arguments that prove optimality.
The next five sections, 6 through 10, are mostly heuristic, and aim to exhibit the
analytical and probabilistic reasons for the relevance of predicted miss. The
optimality proof begins in earnest in 11 with a study of the sgn of the gradient
of the value function. After a brief but necessary digression on smoothing control
laws ( 12), the comparison of control laws is carried out in 13. There follow
three appendices that are of technical nature.

Appendix A establishes various requisite properties of the functionals used in
representing the cost of using a control law. Appendix B is concerned with the
validity of the hypothesis E exp ((qg) in Girsanov’s theorem, and more par-
ticularly with that ofGirsanov’s Lemma 7 [1]. This lemma has been used by several
authors to prove the above hypothesis;its meaning and validity have also been
questioned. We give a reconstruction of Girsanov’s argument for Lemma 7. For the
case of principal physical interest, viz., linear growth of 0, we give a new short
proof of E exp (qg) 1, not depending on Lemma 7 at all. Appendix C, finally,
answers a question of Balakrishnan about the measure of the set of points at
which switching occurs in the optimal regime.

2. Predicted miss. If a process z satisfying (1) starts from the point z at the
time t, and no, i.e., zero, control is exerted, then the expected value of k’Zl is given
by s(t)’z, where s(. satisfies the "adjoint" equation

(t) -A(t)’s(t), s(1) k.

This function s(t)’z is called the predicted miss. It has previously appeared in the
stochastic control literature [5], [6] as the basis of conjectured optimal or near-
optimal laws for problems with boundedness and/or "finite fuel" constraints, but
nowhere has it been proved to give an optimal policy. It has been guessed that if
s(t)’z is positive, then maximum control effort should go to reducing s(t)’zt, and
inversely if it is negative. For the finite fuel case, it is likely that there is a central
region of space-time in which no effort should be made determining this region is
a problem orders of magnitude harder than the one we are solving, and it is not
considered here. But with simple boundedness constraints on the control, it was
conjectured that for the purposes of final value control in which one seeks to
minimize say the distance of the final point from a subspace k’z 0, the informa-
tion comprised in the state could be compressed into the one-dimensional statistic
s(t)’z, without loss, and that in fact one optimal law had the form

(2) u(t, z) sgn B(t)’s( t)s( t)’z

where the sgn of a vector is the vector of sgna of the components.
We shall show that this is right, in the sense that the u(.,. as defined in (2)

achieves the infimum of El(k’zl) over all measurable control laws restricted in
value to [-1, 1]k, when the "solution" z corresponding to a given control law is
constructed by use of Girsanov’s theorem, as will be done in 3. Notice that this
optimal control in no way depends on the noise modifying function C(. ), whose



role, under the positivity condition C(t)C(t)’> O, will become purely that of
changing the time scale in a suitable representation of the (optimal) value function.

3. Assumptions and formulation. We assume that k 4 0, and that A(.), B(.)
and C(. are (respectively d x d, r x d, and d x d matrix-valued continuous
functions, with C(. meeting the uniform elliptic condition that C(t)C(t)’ ci be
positive definite for some c > 0 C(. is then also nonsingular. For the convergence
of integrals it will be convenient to assume that l(x) O(exp lxl) for some > 0,
in addition to being even, and increasing in x > 0.

Let the class ’ of admissible control laws consist of all measurable functions
u: [0, 1] x Re - [- 1, 1]’. Since the It6 theory of stochastic differential equations
is not available for (1) because u is not Lip, we shall construct solutions, or rather
solution measures, by using Girsanov’s theorem. We define, for each ue,
z e Re, and s [0, 1] a solution of (1) that starts at z at time s and corresponds to
use of control law u. Let wt be a d-dimensional Wiener process defined on a proba-
bility space (fL 3, P); to solve (1) take the functions

z, z + C(u) dw,

under the measure/3 defined by dP exp dP with

C(u)- lg(u, z.) clw. - IC(u)-g(u, z.)l du,

g(t, z) A(t)z + B(t)u(t, z).
Under P, the functions zt form an It6 process with respect to w corresponding to
drift zero and diffusion C(u); assuming the linear growth condition [g(u,z)] 2

=< (1 + ]z]2), it can be shown that E exp 1; it then follows from Girsanov’s
theorem that under P, the translated functions

Wt w, w C(u)- lg(u, z,) du,

form a Wiener process W., and the original functions z form an It6 process with
respect to W corresponding to drift g(u, zu) and diffusion C(u). Thus

dz, g(t, z,) dt + C(t) dW
in the sense that z, z + C(u) dw. and

z + C(u) dw. z + g(u, z + C(v) dw)du + C(u) dW..

4. Representation of the cost. If the system is run from time s to time using
control law u and starting in state z, the expected cost incurred is

(3) J,z[U] El(k’zl) exp C(t)-Xg(t, z,) dwt - IC(t)-Xg(t, zt)[ 2 dr,

where g(t, y)= A(t)y + B(t)u(t, y) and zt z + C(v) dwv. This is an explicit
representation, peculiar to u. By setting z s "time to go" and changing
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variables a bit we can write this cost or value for the control law u as v(:, z)
El(k’[z + o C(1 + t)dwt] exp , with given by

C(1 -’c + t)-g 1 -’c + t,z + C(1-’c + s)dw dw

2
C(1 --"c t)-lg(1 -- + t,z + C(1 - + s)dw)l a

The eventual cost is then J[u v(1, z).. Otlie fte argument. A standard way ofapproaching a Markov control
problem like the one we have posed is to look for a suciently smooth solution
V(, z) of the Bellman-Hamilton-Jacobi equation

(4) V(0, z) l(k’z),

= rain trC(1-r)’DVC(1-r)+VV’[A(1-r)z+B(1-
us[- 1,11"

where D2 is the matrix (2/#z zj). This equation is difficult to attack, even numeri-
cally. It does suggest again, though, that there may be an optimal bang-bang
control law.

We prefer to work with specific control laws, for which the corresponding cost
functions satisfy PDE’s similar to (4), but without the min. When u(.,. is smooth,
say Lip, the solution z of the stochastic DE (1) can be constructed in the usual
It6’s way, and the corresponding value functions v(r, z) E{l(k’z)lza_ z} will
satisfy the backward PDE

(5) v(0, z) l(k’z),

v tr C(1 v)’DzvC(1 ) + Vv’[A(1 r)z + B(1 r)u(1 , z)].

Our method will be as follows" (i) to show that any admissible control law
can be approximated by a smooth one in such a way that nearly the same cost is
incurred; (ii) to single out a special class of control laws, viz., the smooth laws
depending oddly on predicted miss; (iii) to show that for these laws the cost
v(v, z) and its gradient Vv can be calculated from a one-dimensional problem;
(iv) to use the maximum principle for (5) to compare these laws to other, arbitrary
ones. In the course of these comparisons it will turn out that given any law what-
ever there is a law in the class that is (i) at least as good as the given one and
(ii) arbitrarily close to the law a(t,z)= -sgnB(t)’s(t)s(t)’z. From these facts it
readily follows that a is optimal in the sense that it achieves inf J[u]" u e .

6, Reduction to one dimension for laws depending on predicted miss. The next
four sections are heuristic in presentation. While only a few of the results are
actually needed for the optimality argument, we feel that together they shed so
much light on the structure of the problem that we eagerly include them here.
They dispel much of the ad hoc character of the basic proof.

The class of admissible control laws depending only on predicted miss
consists of u s of the form

u(t, z) y(t, s(t)’z)
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for some measurable y" [0, 1] x R [-1, 1]’. We shall exhibit precise analytical
and probabilistic senses in which calculating the cost or value function for laws
in reduces to a one-dimensional problem.

7. Stochastic equation for predicted miss. For u e smooth, let us take the
stochastic DE zs z, u(t, zt)= y(t,s(t)’zt), dzt A(t)zdt / B(t)u(t, zt)dt / C(t)dw,
s < _<_ 1, seriously and define, with Hilborn, a one-dimensional process x as
x, s(t)’z,, s _<_ =< 1. This is the expected value of k’zl, given z, if control were
zero henceforth. Clearly xl s(1)’zl k’zl, and with s , xl s(1 r)’z.
Taking the It6 differential, we find

(6)
dx (t)’z dt / s( t)’ dz

s(t)’B(t)y(t, xt) dt + s’(t)C(t) dwt,

and the expected cost is
v(r,,z)- E{l(xl)lxl-- s(1 )’z},

where x solves (6). Thus we can expect the cost for u e g to have the form v(:, z)
(:, s(1 :)’z), where (, x) solves a one-dimensional parabolic PDE associ-

ated with (6)" this is shown in the next section.

8. Composition with predicted miss. Following the hint of the previous para-
graphs we now note that if u is smooth and belongs to , with u(t, z) y(t, s(t)’z),
and if is a solution of (0, x) l(x),

(7) -- s(1 z)’B(1 :)y(l r, x)x + 1/2a(1 Z)xx

with a(t)= ]s( t)’ C( t)] 2, then the composition

v(, z) (, s(1 )’z)

satisfies the expected cost equation (5) associated with the law u, for we have

v (, s(1 z)’z) 2(, s(1 )’z)(1 )’z

s(1 z)’B(1 :)y(1 z, s(1 z)’z)2(’c, s(1 z)’z)

+ ?-a(1 r)z2(Z, s(1 "c)’z) + 2(z, s(1 z)’z)[A’(1 z)s(1 z)]’z.

Since Vv 2(z, s(1 z)’z)s(1 :)and

s’CC’sJl_22(’c,s(1 -c)’z)= tr C(1 -c)’D2vC(1 -c),

the PDE (5) for expected cost using u follows. This composition result represents
an analytical sense in which a "predicted miss" law u e reduces the problem to
one dimension. Of course, this reduction does not show that in solving the control
problem only laws u need be considered; this must be done separately ( 13).
What the reduction does do is enable us to calculate sgn Vv for u e with y odd
in x.

9. A time substitution. The next task is to "get rid" of the noise modifying
function s’CC’s which appears in the equation for ; this will be done by using
another composition, this time a time substitution, to represent the solution
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of (7). We solve for as (-c, x) (T- t(1 -c), x), where T t(1),

(8) t(r) a(r) dr,

and O satisfies 0(0, x)= l(x),

O=Oxx
For then-- 01(T- t(1 "0, x)o(1

1 s’By
----a(l z)022(T- t(1 z),x)+

2

( ) + s’B .

(v) Is(v)’c(v)l 2 > O,

s’By
+--

O2(T t(1 "), x)a(1 ")
-(t(

10. Reduction to one dimension" Probability version. Let us now see the same
facts probabilistically from the integral for v(:, z). Indeed, all the parts of the
preceding "analytical" reduction can be found "inside" the integral. We shall
find, among the constituents for v itself, a Wiener process w* in R such that

v(’r z) E l(yt( ))l yt*( )

where y.* solves the stochastic DE

Ytl-r) S(1

t- t(r),y*(r)
dt + dw*,

s(1 )’z},

t(1 z) =< r =< t(1),

t(. being the time substitution defined in (8). It is easy to see that x y*(t(v)),
that the stochastic DE for y.* corresponds to the PDE for in 9, and that the
time substitution relating x and y* mirrors that defining from . Note that the
PDE’s are formulated for "time to go" while the processes and t(. itself are
defined for elapsed time; this circumstance explains the use of T t(1) in 9,
the ranges of validity of the DE for y.* and x., etc.

Let s z be fixed and consider the functions on s =< =< 1,

W W W C(v)- l[A(v)zv + B(v)y(v, s(v)’zv) dv,

where zv z + C(r)dwr as in 3. According to Girsanov’s theorem these form
a Wiener process under the measure exp dP where, as in 3,

" ( (G-I[A( ). + B(. )y(., s(. )’. )],.).

We can now express k’Zl as the value X at of a process x. defined as x, s(t)’z,,
s =< < 1" this is obvious, because s(1) k by construction. But we can get still
another expression for k’Zl by examining the stochastic equation satisfied by x.
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Exploiting the relationship between w. and W., we find in analogy with 7,

dx (t)z dt 4- s(t)’ dzt

s(t)’A(t)z dt + s(t)’C(t) dw

(9) -s(t)’A(t)z, + s(t)’[C(t) dW + FA(t)zt + B(t)y(t,xt)]] dr,

dxt s(t)’B(t)y(t, xt) dt + s(t)’C(t) dWt, s <= <= 1.

It follows, noting that x_ s(1 z)’z, that

fl flk’Zl x s(1 T)’z + s(t)’B(t)y(t,xt) dt + s(t)’C(t) d.

Thus v(z, z) E{l(Xl)[X, s(1 z)’z} with x a solution of (9). Introduce again,
finally, the time substitution v t(v) such that

t(v) s’CC’s dr,

which is strictly monotone because CC’ > 0, and k, and hence s(.), does not
vanish. According to a known result of McKean [7, p. 46,

(v)

w* s(u)’C(u) d, t(1 ) =< v =< t(1),

under te same exp dP that maes W Wiener, is a one-dimensionat Wiener pro-
cess w*. to wic te transtorme process x,-,, t(1- )=< v =< t(1), is
related by the equation

y* s(1 :)’z / ff-
s(1 r)’z + v(1 -0

s(u)’B(u)y(u, Xu) du + fl-
s’By] ,,y*,

du + w*

s’CdW

11. The sgn of the gradient Av. We now turn to the proof of optimality. The
first task is to show that for smooth u g’ with u(t, z)= y(t, s(t)’z) and y(. ,x)
odd in x we have sgn Vv sgn s(1 "c)’zs(1 :). Knowing sgn Vv will enable us
to use the maximum principle to compare control laws" this use [4] of the maxi-
mum principle is similar to that in Wonham’s optimality lemma [8, p. 321], and
is not unrelated to Pontryagin’s maximum principle in deterministic optimal
control. Lemmas A.1-A.9 are in the Appendix.

As is customary we use Cm’n to mean the class of functions f" R x Re Re

(or R, etc.) which are rn (resp. n) times continuously differentiable in the first
(resp. second) variable, and C"" to mean the subclass for which all these deriva-
tives are bounded.

LEMMA 1. If u C ’3, and u is of the form u(t, z) y(t, S(t)’z) with y(t, x)
-y(t, -x) (i.e., y is odd in its second argument), then

sgn Vv sgn s(1 :)’zs(1 :).
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Proof There is a unique solution v(z,z) to the problem v(O, z) l(k’z),
v,=1/2trC(1-z)’D2vC(1-z)+[A(1-z)z+B(1-z)u(1-z,z)]’Vv, with v

O(exp ]z[ 2) expressible as v(z, z) (z, s(1 r)’z), with (z, x) the unique solu-
tion of (0, x) =/(x), s’CC’sll_,xx + s’By]l-,.xx that is of exponential type.
In turn, is expressible as [, x) O(T- t(1 z), x), where t(v) o s’CC’s dr
and is the unique solution of ,(v,x) l(x), , 1/2xx + s’By/s’CC’slt-,tT_,),x$x
that is of exponential type. These facts follow from the existence and uniqueness
theorems for Cauchy problems [9, p. 25, Thm. 12 and p. 44, Thm. 10], and from
the elementary calculus with compositions presented in 8 and 9. From Lemma
A.8 it is seen that the integral

El(k’zl) exp l(G(v)- lg(v, zv)), zv z + C(r)

with g(v,z)= A(v)z + B(v)u(v,z) satisfies the same equation as v(z,z)= A(v)z
+ B(v)u(v, z) satisfies the same equation as v(z, z) and so is equal to it, being of
exponential type. Simile and are expressible as expectations, and in particular,
using the even and odd characters of l(. and y(t,. ), we deduce by the first passage
time argument of [4] that sgn 2(t, x)-- sgn x. Since

v(, z) (T t(1 z), s(1 z)’z)

we find at once that

sgn Vv sgn g(T- t(1 ), s(1 z)’z)s(1 :)--- sgn s(1 z)’zs(1 z).

12. Smoothing of control laws. To smooth control laws u(t, z) from ’, which
are defined only on [0, 1] x Rd, we shall extend them to Ru+ by equating them to
0 when [0, 1]. For measurable functionsf" Ru+ [_ l, 1]’ we use the smooth-
ings f Sf defined by

Sa(f)(y) (2)-a-1 fc f(y + v) dr,

where C cube of side 2 centered on the origin in Ra+l. The restriction to
[0, 1] x Ra of a smoothed extension of a member of’ is again in , by convexity.
(s6)mu approaches u in L2 as 0 and has bounded ruth partials. In particular
(S6)3/,/(/, Z) Cb3’3.

13. Comparison of control laws. We next show that given any control law
g and any e > 0, there is another law u depending only on predicted
miss, which is as good as g to within e, and which is within e in norm of our natural
guess candidate a(t, z) sgn B(t)’s(t)s( t)’z.

LEMMA 2. g ,::, : > 0 =*" ::Iu e Ilu all < and

J[u] <= Jg] + .
Proof Choose 6 by Lemma A.9 so that (S)3g g is so small that

J[(S)3g] <= Jig] + /2.
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Let b’R [- 1, 1] be a Cb3-function such that

ok(x) -sgn x outside Ixl ,
(x) -4(-x),

b(x)=<0 forx_>_0

and define u and h both in by

ui(t z) dp(B( t)’s( t)is( t)’z) 1, d,

hi(t, z) (S6)3g(t, z)iu(t, z), 1,... d.

Let Bi be the (t, z)-set on which B(t)’s( t)is( t)’z >= O. Then on Bi we have ui <= 0,
so that if (S)3g(t, z) O, then h >= u, because h >_ u;in the opposite case that
(S6)3g(t, z)i <= 0 it is apparent that u(S6)3g(t, z) >= u. Dually, h =< u on the comple-
ment of B. Thus componentwise, h >= u on s’zB’s 0 and h =< u on s’zB’s <= O.
It is clear that 6 can be further reduced, if necessary, so that both Ilu all < e
and (by Lemma A.9)

J[h] <= J[(S6)3g] + el2.
Now define the operator L[g] by

L[g] 1/2 tr C(1 z)’DzC(1 z)+ g(1 , z)’V

L is parabolic because of the uniform ellipticity assumption CC’ cI > 0. Set
(z, z)= J,z[u], rl(z, z)= J,z[h] to obtain, by Lemma A.8,

L[u] O, L[h]r O.

By construction u is an odd function of B(t)’s(t)s(t)’z so that sgn u(t, z) -sgn B(t)’
s(t)s(t)’z. It follows from Lemma that sgn V sgn s(1 r)s(1 z)’z, and the

inequalities between u and h imply that

[B( r)u(1 r, z)]’v u( , z)’n( r)’v

=< h(1 r, z)’B(1 r)’V.

Therefore L[u h] <__ 0, and so L[h](r/ )= -L[h] <= -L[u] <= O. Since

r/- is of exponential type, the maximum principle for parabolic operators
[9, p. 43, e.g.] implies that r/- >= 0, that is, J,z[h] >= J,z[U]. It follows that
J[u] J[h] <__ J[f] + e,. Lemma 2 is proved.

The following basic justification of the full "bang" to reduce predicted miss

policy now follows at once from this last lemma.
THEOREM 1. For k 4= O, for l, Vl, and D21 of exponential type, for A(. ). B(. ),

and C(. continuous with CC’-cI > 0 for some c > O, the control law or(t, z)
sgn B(t)’s(t)s(t)’z achieves

inf J[u].
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This result readily extends to the more general criterion El(k’zl)
+ E L(t, k’z,)dt containing an averaged time-integral of a suitable function of
trajectory, and to the case of noisy observations of zt, in which case s(t)’zt is re-
placed by s(t)’, with the Kalman filter estimate of z, and C(- is replaced by a
more involved matrix depending on C(. itself, on the observation equation, and
on the covariance matrix arising from the filtering problem.

Appentlix A. Some analytical properties of such functionals as J[u] in (3)
are established here as prerequisite to the optimality proof in 11-13. Although
these prerequisites are few in number, some of their proofs have many steps that
are ancillary to the main arguments, so it was natural to put them all in an appendix.
What we need are the following: (a) conditions implying that exp ( belongs to

L for some e > 1; (b) order estimates for v(z, z); (c) continuous differentiability
of v and Vv in z; (d) order estimates for Vv and D2/2; (e) the natural PDE for
v(z, z); (f) continuity of v in the L2 topology of control laws. For (c) and (e) we
shall assume suitable smoothness of the drift coefficient.

Since the above results do not depend on having a linear system with linearly
entering control, and since they are basic also to further studies, we shall establish
them for a general drift coefficient g(t, z) in place of the function

A(t)z + B(t)u(t, z)

that appears in (a) or (c). Growth or smoothness of g(.,. will be postulated as it
is needed. Also, we use a general cost function k(. in place of the l(k’. in the
original problem, with ]Vk] O(exp tclz]), ](Dzk)ij]--O(exp ]z]). In the next 8
lemmas,

v(z, z) Ek(zl) exp (l-(g(", z.)),

zt z + C(v) dwv,

((z) g(t, z,) dwt Ig(t, z)[ 2 dt.

Arguments of ( are often omitted, and convenient changes of variable are used
without too much explanation.

LEMMA A.1. If g:[0, 1] x Re --+ Rd with [g(t, y)12 =< to(1 + ly[2), then given
> 0 there exist > and K depending only on e, to, and C(. ), such that

where

sup Ee exp ((g) < K exp e[z[ 2,
O<z<l

((g) g(1 -z + t,zt)dwt-- [g(1 -z + t, zt)[ 2 dr,

zt= z+ C(1 -z + u) dwu.
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Proof Girsanov’s Lemma 7 [1] implies that E exp (eg) 1. By his Theorem
1, then, for each e > 1, under exp (eg)dP the functions

Zt zt C(1-z+u)g(1-z+u,z,)du, 0<= <_ z,

form a Gaussian process ofthe same kind as z,. By the c2 and Gronwall inequalities,
for0<t<z< and

/3 x sup C(s)ll 2 (operator norm),
O_<s_<l

Iz,I 2 =< 212,12 / 2fl (1 / Izsl 2) ds

=< 2(=/3 / sup IZl 2) exp 22fl.
O<-s<_t

Now write

E exp (g) E exp {(g) +
2

Ig(1-r+u,z.)lZdu}

=< exp 1/2(a2 a)E exp {#(ag) + tc(a2 a)[a2fl + sup Iz, 2] e2}.
0_<s_<

Since for each > 1, {Zt, 0 _< =< } under exp ((g)dP has the same distribu-
tions as zt, the last expectation simplifies to give

E exp (g) exp x(2 )[1/2 + z2fl e2a _+_ 21z21]
E exp 2/(02 (X) sup Iz zl 2.

0<s<r

Recalling that

sup Iz z[ 2
0_<s<

G dw- G dw =<4 sup
0 O_<s_<l

we find

E exp eo(g) <= h(e, z)E exp 8x(e2 e) sup
O_<s_<l

Gdw

Gdw

with h(,z)= O(exp 2t(2- )[zl 2) uniformly in >= 1. Doob’s submartingale
inequality implies that the sup in the exponent is finite a.s., so a result of Landau
and Shepp [10, p. 377, Thm. 5]-or [11] assures us that the last expectation above is
finite for > 1 small enough, and depends only on , x, and G(. ).

LEMMA A.2. If l(x) O(eKIXl), then for every e > O,

v(z, z) O(exp lzl 2)

uniformly in 0 <_ <= 1.
Proof v(z,z)<= const. EeKlk’’l e; -(g), where g satisfies the conditions of

Lemma 1; since z is a Gaussian process, supo<_<_l E exp fllk’zl < oe; now use
H61der’s inequality and Lemma A. 1.
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LEMMA A.3. Ifg Cb ’2, then with probability 1, V( exists and equals

J(1 z + s, zs) dws (Jg)(1 z + s, Zs) ds,

where J is the Jacobian matrix function
c3gj

i.e., J Vg’= (Vgl, "", Vgn).Ji t?xi’
Proof Set for h Rn, Ihl 1,

qgj(e)
gj(1 z + s,eh + z)- g(1 z + s,z)

h’Vgj(1 z + s, z)

so that Taylor’s formula gives, since g e Cb0’2,

q):(e) (h’V)g(1 z + s, teh + z)(1 t)dt,

E q)(e) dws O(e) uniformly in z, z.

Evidently I0(e + ) q(e)l -_< const. I1 if h is a unit vector, so

E I-q;(e + )- oj()! dw 0(I,1).

Thus the argument for Kolmogorov’s sample continuity theorem shows that an
e-separable version of j’ qgj(e)dw is a.s. a continuous function of e vanishing at
e 0, i.e.,

g(1 + s,z)dw fo J(1 -z + s, z)’ dws.

Similarly, setting

pj(e)
Ig(1 "c + s, eh + z31 z -Ig(1 + s’z31 2(h’Vgj)

e (h’V)2lgj(1 4- s, t h 4- z)12(1 t)dt

we can show, from the linear growth of g and from g e Cb2, that El j’ Oj(e)dsI 2

O(e2) and that

E qt;(e + ) ds k;(e) ds 0(I 12).

By the sample continuity argument just used,D ;() ds is continuous and vanishes
at O, so that a.s.

Ig(1 v 4- s, z)l 2 ds fo- (Jg)(1 + s, z) ds.
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LEMMA A.4. If g Cb’3, then with probability l, DE( exists and equals

D2g(1 z + s, z) dw (JJ’ + g’D2g ds.
-r+s

Zs

Proof of this result is exactly analogous to that of the previous lemma using
the linear growth of g, and the boundedness of J and D2g.

LEMMA A.5. Ifg C’3, then v C as a function of z, with

Vv(z, z)= E et)[Vk(z) + k(zOV((z)],

[Vvl O(exp elzl 2) uniformly in "c for every e > O.

Proof One could appeal to the absolute convergence of the differentiated
integrand under E. Instead, note that

v(’c, z + h)- v(’c, z)= E e=)[k(h + z,)- k(z,)] + Ek(h + z,)[ez+h)-

Since k e C2 and (z)e C2 a.s. we can expand by Taylor"

k(h + z) k(z)= h’Vk(z) + (h’V)2k(th + z)(1 t)dt,

e( + h) e() h’V(z) e() + (h’V)2 e + h)(1 t) dt,

whence

v(r,, z + h)- v(r,, z)- E e()[h’Vk(z) + k(z,)h’(z)]

fi (1 t)E[e()(h’V)2k(th + z) + k(h + z,)(h’V)2 e(z+th)] dt.

The first term is easily seen to be O(Ihl2), by Lemma and the order assumption
on D2k. Then

(h’V)2 e(z+th)= e(Z+th){lh’V(z -+- th)[ 2 q- h’D2(z q- th)h},
so the second term in the last integral above gives at most

Ihl 2 (1 t)E e+ IgC(z / th)l 2 / ID2(z / th)lj dt- O(Ihl 2)

by Lemma 1 and the fact that V(z) and D2(z) are in L uniformly on compact
z-sets. This justifies the formula for Vv; continuity is shown by applying an ana-
logous argument to the integral formula for Vv.

LEMMA A.6. Ifg e Cb ’3, then v e C2 as a function of z, with

D2v(z,z E e(D2k(z) + 2Vk(z)V((z)’ + k(z)D2((z)),

(D2v)i O(exp e Izl 2) uniformly in r, for any e > O.

Proof The proof is very similar to that of Lemma A.5, using the orders of
Vk and D2k, the L2-integrability of V( and D2(, and of course Lemma A.1.
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LEMMA A.7. Let g and h be nonanticipating Brownian functionals such that
E j’ Igl 2 dt < , E Ihl 2 dt < , and E exp (h) < for some o > 1. Then

E g dw exp (h) E g’h e ds.

Proof. Set Z(s) indicator of the event

sup exp (h) < M,
Ous

and recall that E{exp (h)lw, 0 u s) a.s. Then

E g dw + Z(s)h(s) e) dw E g’hz e) ds.

The function g’h e) is ds dP integrable and dominates zg’h e). Similarly,

g dw + Z(s)h(s) e dw

ebth), also integrable because exp (3(h) is anis dominated by g dw SUpo t_

L,-martingale, so that

E[ sup exp ((h)l Ee6h).
ogtg -

The lemma follows by dominated convergence.
LEMMA A.8. Ifg C "3, then v(’c, z) defined as

v(r,, z) Ek(z) exp I _(C(. )-lg(., z.))

belongs to C1’2 and satisfies the PDE

v(O, z) l(z),

v 21- tr C(1 "c)’D2vC(1 r) + g(1 "c,z)’Vv.

Proof It is easy to see that we have the "semigroup" property

(10) v(’c + 6,z)= Ev(r,,z + rl)exp5_(C(.)-ig(.,z + q.)),

where

r/ C(1 6 + u) dw,.

Our method will be to exploit the C2-property of v in z (Lemma A.6), to expand
the right-hand side of (10) into terms that will yield v(:, z) plus an elliptic operator
acting on v. t6’s lemma gives

v(r + 6,z)= v(r,z)+ E Vv(r,z+ I)’C(1 z- 6 + s) dw e

+ D tr C(1 "c 6 + s)’D2v C(1 r 6 + s)ds e,
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where is short for the exponent in (10). By Lemma A.7 we can evaluate the first
expectation on the right as

diE Vv(r,z + r/)g(1 r 6 + s,z + r/)exp’I +(C(.)g(.,z + n.))ds

Vv(r, z)’g(1 , z) + E Vv(r, z + )’g(1 r + s, z + ) ds(e 1)

+ E Z0[Vv(r, z + q)’g(1 r + s,z + )

-Vv(,z)’g(1 z + s, z) ds

+ ZsVv(,z)(1 r + s, z) g(1 r,z)] ds.

The first expectation on the right of (11) is at most

const. E el+"l(1 + Iz + a)/ dsle 11

with again the exponent in (10). There exist, by Lemma A.1, constants e, with- + - and > such that H61der’s inequality implies that this bound
is at most

( )(1 / e;const. E/ealz +"1 +lz+ql2 /2)ndsE II

For 6 < r and Y IC(.)-g(.,z + ,),_,_+,12 du,

EII y1/ + y o(1) as 6 0,

so that e 0 in measure as 6 0. Since e for various 8 are by Lemma
uniformly integrable, they approach in L. Hence the first expectation on the
right of (11) is o(6).

The second expectation on the right of (11) equals, by Taylor,

The first or outer gradient in the integrand is

v(r, +( r + s, +
+ j( r- + s, z + t)v(, z + t).

Applying the growth bound on g, the boundedness of J, and the orders of
and Vv we can bound the second expectation by a constant times

(12) E 2(1 + z + ))/ exp ez + t dt ds.

H61der’s inequality and the fact that for e small enough

sup sup EI exp elz + 1a dt <
0NN1 0NsN
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show that (12) 0(6). The third term on the right of (11) is clearly 0(6), since the
difference in the integrand is O(s) uniformly. Similar procedures for the trace term
give the PDE.

In the next and final lemma of this Appendix we shall suppose that g,(t, z)
are functions of the form

g,(t,z)=g(t,z,u,(t,z)), u.’, n=0,1,2,...,

with g Lip in its 3rd argument, and satisfying the growth condition

Ig(t,z, U)I 2 /(1 --[Z[2).
The lemma establishes continuity of the functional

J[u.] Ek(z,)exp l-(g.(’, z.)) (k >= 0)

in the Lz-topology of ’.
LEMMA A.9. u, e ’, [[u, Uo --* 0 J[u,] JUuo].
Proof Clearly Uo /. We give the argument for 1 for other values it is

exactly analogous. Fix z and set

A’ exp )(go(", z.)) exp )(g,(., z.)),

indicator of sup [z,[ </-1 log N,
O<_u<_t

t(t) indicator of sup exp )(go(’, z.)) < M,
O<u<t

ZMN(t)-- qu(t)d/M(t).

Then from k(z) O(exp/[zl) we find

IJ[uo] J[u,]l =< Ek(z,)lA]l

_-< NE(p(1)IA]I + const. E eKIZ’llA][1 ZMU(1)]

_-< NEzs(1)IA]I / NEIAI[1 (1)3

+ const. E eKIZ’llA’I[[1 Zu(1)].

The second and third terms go to zero uniformly in n as first N T oo and then
M T oo, by H61der’s inequality because Lemma A.1 implies sup, Eexpz(
(g.(., z.)) < . Using, for simplicity,

(g,) ,(g.(., z.)), g. g.(u, z.),

it can be seen that the inequality

f (e(g)go e(g")g,,)ZMU(U dw,,]
is valid; for if 7.Ms(S) 0, the left side is 0, and if )(,MN(S) the equality holds.
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Whence for C to(1 + - 2 log2 N),

7.tN(u) eg)(go g,,) dw,

EZMN(S)IA’I 2 < 2ME Igo g,I 2 du + 2C EZMN(U)IA’I 2 du.

By Gronwall’s inequality it is enough to show that the first expectation on the
right goes to 0 for s as n T oc. Since g is uniformly Lip in its 3rd argument, we
have, with

Q(t) C(u)C(u)’ du,

E Igo g,I 2 du <= const. E lUo(S, zs) u,(s, Zs)l 2 ds

f;f] exp-1/2y’Q(s)y
ds=< const, lUo Unls2,z + y(2g)a/2 ei?5 --1

Choose first r/ so that the first integral is less than ; then pick m so that
n > m implies

const.

(27r)a/2 infdet 1/2Q(s)-I Iluo u, 2 < .
q<s<l

Appendix B. Let (t,) be a Wiener process, and q(t, co) an -adapted
measurable process, with j’ Iql 2 dt < o a.s. The next portion of this appendix
is devoted to this apparently knotty question: When does the (Wald? Girsanov?)
identity

(13) E exp (qo)

actually hold? E. J. McShane [12] has stressed that the answer to this question is
very relevant to applications of Girsanov’s theorem to estimation and control,
e.specially to the approach we use here. Several methods for establishing (13) are
known; however, several are of limited usefulness, and others have been called
in question in point of clarity and rigor [12].

Girsanov 1-I proved (13) for bounded qg, attributing the result to Maruyama.
For a few simple q), direct integration over Wiener space by Kac’s method will
prove (13). Lipster and Shiryaev [13] have considered the problem with the
upper limit in replaced by a Markov time r of {}, or by + oe, and they quote
arguments of Novikov [14] suggesting that the sufficient condition he proves,

(14) E exp Iql dt < ,
is, in the absence of other properties, close to being necessary. Condition (14) will
not cover the physically interesting case of linear growth of ]q(t, co)[ 2 with [tl 2 or
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sup0_<s_<t Irl 2, unless this growth is sufficiently slow. So although it is interesting
and nearly necessary in general, (14) is to this extent unsatisfactory.

Girsanov himself [1], in his currently unsettled Lemma 7, tried to give suffi-
cient conditions for (13) based on what are essentially growth and weak unique-
ness hypotheses. His Lemma 7 was used by the author [2], and elegantly by
Duncan and Varaiya [15], to prove (13) for applications to control theory. It has
been suggested, by the referee, by E. J. McShane, and others, that Girsanov’s
proof of Lemma 7 is at best sloppy. We therefore include a version of this lemma,
using (insofar as possible or necessary) the notation, hypotheses, and concepts of
Girsanov’s paper in its translated form [1]. Page and equation references are to
this work.

On page 297 Girsanov introduced a certain weak sense of uniqueness for
solutions of stochastic equations such as his (3.1)" he called the solution unique if
all processes related to some Wiener process by the equation induce the same
measure on C,. One can also formulate a pointwise almost sure, or strong unique-
ness, such as would be assured by Lipschitz conditions on A and B, but such a
sense is not explicitly used by Girsanov, nor is it needed. Indeed, much of the
difficulty people have had with Lemma 7 arises from what seems to be Girsanov’s
own subsequent imprecise use of his seminal concepts. These have since been
developed and expounded, best perhaps in Lipster’s and Shiryaev’s book [13],
into the two notions of strong and weak solutions, each with its own sense of
uniqueness. Nor does Girsanov indicate how one might prove weak uniqueness
without actually proving the strong form;his remarks about finding solutions of
(3.1) refer one to standard works where Lipschitz conditions are used. We shall
examine carefully how and where weak uniqueness notions can be used in proving
forms of Lemma 7.

Some discussion will precede the statement and proof of the lemma. We shall
use the notion of an ItO process, and that of a process of diffusion type, exactly
as does Girsanov, and shall take it for granted that such processes induce measures
on the space C, of continuous R"-valued functions over [0, 1]. With a process
x(t, co) of diffusion type there can be associated a diffusion matrix B(.,-)" [0, !-I

C, - R", R" and a drift (or as Girsanov’s translator calls it, a vector of transfer)
A(.,. )" [0, 1] C, ---, R", each "causal" in that their values for (t, x) [0, 1] C,
do not depend on values of x after t, and a Wiener process (t, co) in R", such
that if x(. ), is the function {x(t, co)’0 __< =< 1}, then almost surely for e [0, 1],

(15) x(t, co) A(s, x( )) dt+ B(s, x( ),) d(s, co).

Here we of course assume that the entries of B(., x(. ),) are of integrable square
over [0, 1] almost surely, so that the indicated stochastic integral is defined, and
that the components of A(., x(. ),) are integrable almost surely. In this situation
we say with Girsanov that x(t, co) is a process of diffusion type with drift A(., x(.

There is virtually no loss of generality, and some gain in simplicity, in assuming all initial con-
ditions to be 0" extension to the usual assumption of independent initial conditions is immediate.
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and diffusion B(., x(. )o,), with respect to (t, co), started at x(0, co). We also define

U a{x’x(s)A, A Borel in R", 0 =< s __< t}.
This is the r-algebra of C. generated by the past up to t.

The role of uniqueness in proving Lemma 7 is elucidated by the following
concepts. Let x(t, co) be a stochastic process with continuous sample paths, and
let 3 be a Markov time of x(.,. ), i.e., a nonnegative random variable such that
any event {3 _>_ t} is measurable on the -algebra generated by {x(s),,s <= t}.
Then there is a causal functional T:[0, 1] C, - {0, 1, which we call the kernel
of 3, such that T(t,. is Ut-measurable and

Z>_, T(t, x(. )o,).

Alternatively, there is a nonincreasing system of Borel sets Bt Ut with {3 >__ t}
{co x( )o, B,} and B, {fC,’T(t,f)= 1}. By extension, any such func-

tional defines a Markov time and is called a kernel.
We say that x(t, co) is a solution stopped at 3 if and only if (15), or equation

(3.1) of Girsanov, perhaps holds only up to 3, i.e., almost surely __< 3 implies

x(t, 09) A(s, x( ),) ds + B(s, x( )03 d.

A solution stopped at 3 is weakly unique if and only if for any process y(.,. )with
continuous sample paths, not necessarily defined on the same probability space,
and any Markov time x of y(.,. such that x and 3 have the same kernel T, the
measures induced by (x, 3) and (y, x) are the same, i.e., if A is Borel and A f’l { T(t, y)

1} U,, then P{x(.),oA, 3 >= 1} P{y(.),A, >= t}.
We now offer the following modified version of Girsanov’s lemma.
LEMMA 7 (after Girsanov). Let x(t, co) be a process of diffusion type with drift

A(., x(. )o,) and diffusion B(., x(. ),o) with respect to the Wiener process (,, ),
constituting a solution ofequation (3.1). Let q(t, co) be adapted to , and ofintegrable
square almost surely, and let y(t, co) be an ItO process with drift

A(. y(. ),) B(. y(. ),)qg(., o9)

and diffusion B(., y(. ),) with respect to (,, ,). Suppose that for each e > 0 there
exists N N(e) < o, and a nonincreasing system (of Borel sets of C,) CN(t),

[0, 1], such that CN(t) Ut and s < =:, Cu(t) c Cu(s), and
(a) Du(t) =_ {y(. ), Cu(t)}
(b) P{x(. )o, CN(1)} > ,
(C) Iq(t, CO)[ < U ify(. ), Cv(t),
(d) f 6 Cv(s), f C(t), s < = 3s < 3 < tf q C(3) and yet f Cv(v) for

(e) with TN the kernel defined by the system C( ), the solution x(t, CO) stopped
at T(., x(. )o,)is weakly unique.

Then E exp (q) 1.
Proof Define, with Girsanov, q(t, CO) q(t, CO)go,,), and

(16) yu(t, CO) y(t, CO) B(s, y(. ),)qgu(s, CO) ds.
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We first prove the set identity stated at the bottom of page 297"

{to.y,,(. ) e c,,(0}
To see this note that co e DN(t implies oN(s, co) q(s, co) for 0 =< s =< t, whence by
(16) and monotonicity of Du(. ),

y(s, co)-- y(s, co) for0s t.

Since Cu(t)e Ut, we find Yu(" ),o e CN(t), because by definition Du(t) {co’y(., co)
e Cu(t)}. Conversely if yu(. ) Cu(t), then (monotonicity)

y(. ) c,(s), o _< s __< t.

Now suppose that y(., co) CN(t). There are two cases according as or not
y(., co) e Cu(0). Since y(0, co) yu(0, co), and y(., co) e C(0) is a condition on
y(0, co) only, it is clear that y(., co) e Cu(0) if and only if yN(. ),o e C(0). So if 0
there is nothing to prove. If > 0, in the former case y(., co) e Cv(0), and by pro-
perty (d) there is a r with 0 < r =< such that

y(-, co)s Cu(s), 0 <= s < r,

y(., o) c(r).

This implies that co DN(S for 0 s < r so that also

ou(s, co)= o(s, co), 0 =< s < r,

yu(s, co) y(s, co), 0 <= s < r,

and by continuity, yu(r, co) y(r, co), and thus yu(. ) e CN(:), contradicting the
hypothesis. In the latter case y(., co) Cu(O), whence yu(. )o Cry(s) for all s _>_ O,
again contradicting yu(. )o, e CN(t).

Returning now to the main line of proof, we see that since qgu is bounded,
E exp (qu) 1. Hence by Girsanov’s Theorem 1 the functions

(t, co) q),(s, o) as (t, co)

under the measure dPs exp ((q)u)dP form a Wiener process. Under the same
measure, the pair {Yu(’, "), Ts(., y(.))} form a solution of (3.1) stopped at
Tu(., y(. )). Hence by the uniqueness of these stopped solutions,

P{x(. ) e Cu(1)} Pu{yu(. ) e Cu(1)}
P{y(. ) e C(1)}
Pu{Du(1)}

| exp (q0)e(dco).
v(1)

The probability on the left above can be made arbitrarily close to one by a
sufficiently large choice of N, so that P(fl) 1.

We believe that the above arguments show that Girsanov’s proof, although
untidy and, in its translated form, beset by typos, was basically correct except for
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the portion in lines 13-16 on page 298 using uniqueness, which seems to be confused
and incomplete. The point, which I owe to the referee, is that y(t, 09) under PN is
known to satisfy the desired equation with respect to the Wiener process N only
while y(. ) C(t). It is perhaps plausible, but nevertheless as we see it not obvious
nor an immediate sequitur from Girsanov’s assumptions, that

P{y(. ) e C(1)} P{x(. )o, e C(1)}.
This equality is assured by formulating the uniqueness hypothesis in terms of the
kernels T associated with C(. ).

Remark 1. In many applications, including that of this paper, the conditions
A O, B(t, f) B(t), det B(t) :/: 0 obtain; these obviate the uniqueness assump-
tion (e) on the stopped processes.

Remark 2. Varaiya and Duncan F151 have given a proof of (13) from the at
most linear growth of Iqg(t, oJ)[ 2 with I,] 2, using Girsanov’s Lemma 7. It is also
possible to extend the random time change argument of Kailath and Zakai [1 6]
to the vector case; when 99 is of linear growth their uniform boundedness assump-
tion is gratuitous. It has seemed to us that in this physically motivated special
case there should be a simple proof. Such a proof is now sketched.

With Y(t) J’lql 2 ds and new Markov times

rN inf{t’’ V T(t)> N} A

set (t) exp (qg), z (1), N (ru). It can be seen that aN -- in probability,
and EN 1. By a modification of the argument of Lemma A herein, we can show
that if there is a constant/ such that a.s. for every [0, 1],

Iqg(t, )12 =< fl(1 + sup Is12),
O<_s<_t

then there exists 2 > such that

supE < .
It follows that eu are uniformly integrable functions tending to in measure,
whence also in the mean, i.e., Ele eul - O, so Ez 1.

Appendix C. Finally, in conversation, A. V. Balakrishnan has asked on how
large a set of time points the process {s(t)’zt, P} can vanish (notation as in 3). This
question is very natural, in view of the optimal law (2). The answer is the expected
one, namely, that these zeros are with probability one a set of Lebesgue measure
zero. This result can be proved in several ways, the easiest of which just reduces it
to the same property (well known) for one-dimensional Brownian motion. For
simplicity we assume that the diffusion matrix C(-) is C 1.

Let h’[s, 1] Re and f" Is, 1] -. R be C curves, with h(. not passing through
the origin, and consider, in the notation of 3, a process zt z + t C(u)dw

_>_ => s, under the measure dP exp dP with

C(u)- g(u, z.) atw. C(u)- g(u, z,)l: atu.
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We show that

By Ito’s lemma,

P{meas (ue Is, 1] "h(u)’z. f(u))3 0} 1.

z, z + C(t)w,- C(s)w + d(u)w, du,

so the zeros in question are the same as those of

h(t)’C(t)w [.: ((u)w. du + h(t)’[z C(s)w -f(t)]+
h(t)’C(t) h(t)’ C(t)l

since we are assuming as before that CC’ > 0. This is of the form bt B(t, co) with
B(., co) a w-nonanticipating C function, and b a Wiener process in one dimension
under P. Now let for e _>_ 0,

A {w’meas (u e Is, 1]’h(u)’z, f(u)) > e,}.
By Girsanov’s theorem [1] {b. B(., co), P} is equivalent to Wiener’s process,
so P(A) 0 for r, > 0. However, by Lemma A. and H61der’s inequality, for some
> and constant K,

P(A) <= e dP W/(- )(A)

__< K exp ]z]2W/(- )(A).

Thus P(Ao) O.
To apply this result to s(t)’z we have only to take f 0, and to note that

k - 0 implies that s(t) O.
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THE EXISTENCE OF VALUE IN STOCHASTIC
DIFFERENTIAL GAMES*

ROBERT ELLIOTT]"

Abstract. Using the techniques of Davis and Varaiya [3], [4] a two-person zero sum differential
game is considered, whose dynamics are interpreted using the Girsanov measure transformation
method. If the Isaacs condition holds it is shown that the upper and lower values of the game are equal
and there is a saddle point in feedback strategies. The central point of the mathematics is that
analogues of the time derivative and gradient of the upper value function are constructed using
martingale methods; because the Hamiltonian satisfies a saddle condition at each point these then also
give the lower value.

1. Introduction. The following is an extension to differential games of the
work of Davis and Varaiya [3],[4]. In particular upper and lower values for
two-person zero sum games are introduced and it is shown that if the Isaacs
condition holds then the upper and lower values are equal and there is a saddle
point in feedback strategies. This result is stronger than the saddle-point result
established in [5] and is probably the best possible, because Lemma 4.4 shows that
the Isaacs condition must be satisfied at all relevant points. Solutions of the
stochastic dynamical equations are defined using the Girsanov measure transfor-
mation method, and martingale decomposition results are quoted from [8] and [4]
to obtain the analogue of the Hamiltonian.

We suppose the evolution of the system is described by a stochastic functional
differential equation of the form

(1.1) dx, =f(t, x, y, z) dt +r(x, t) dB,.

Here [0, 1 and B is an m-dimensional Brownian motion. Write for the space
of continuous functions from [0, 1 to R m. X denotes a member of and x, denotes
the value of x at t. We wish to consider a solution of (1.1) which at time 0 has an
initial value Xo R". The drift term f depends at time on the past {xs s -<- t} of the
process. The payoff is of the form

(1.2) P(y, z)= E g(x(1))+ h(t, x, y, z) dt

where
(i) g and h are real-valued,
(ii) 0-< g =< k and 0-<- h -< k for some constant k,
(iii) g and h satisfy the measurability properties described below.
A player J1 chooses a feedback control y(t, x) with values in a compact metric

space Y with the object of maximizing the payoff and a player J2 chooses a
feedback control z(t, x) with values in a compact metric space Z with the object of
minimizing the payoff. At time the controls are allowed to depend on the past of
the process.

* Received by the editors September 24, 1974, and in revised form December 9, 1974.
5" Department of Pure Mathematics, University of Hull, Hull, England.
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2. Notation. The situation treated below is similar to that of Davis and
Varaiya [3 ], [4] so we continue a description of their notation, slightly modified.

Write , for the o--field of cg generated by {x, x cg, s =< t}. We suppose the
m-dimensional Brownian motion B, is separable and defined on an underlying
measure space (, ag, ). Write @ for the o--field of [0, 1 cg consisting of subsets
D which have the .property that D Iq{{t}%’}60% for each t[0, 1] and
D ("1 {[0, 1] {x}} is Lebesgue measurable. Beneg [1] proves that a function is @
measurable if and only if f(t, .) is , measurable for each and f(.,x) is
Lebesgue measurable for each x.

The m m matrix o-= (o-ij) satisfies
(i) for 1 <- i, j =< m, o-ij [0, 1 cg _> R is measurable with respect to ,
(ii) o-(t, x) is nonsingular,
(iii) each o-i, satisfies a uniform Lipschitz condition in x.
The equation

dx, r(t, x) dB,, x (0) Xo R

then has a unique solution x, and it induces a measure P0 on its sample space
(g, -1) according to the formtlla

PoA =/x{w" x(w)e A},

Write for the set of functions 4)’[0, 1] x %-> R" which are measurable with

respect to @ and which satisfy

14,(t, x)l <_- M(1 / Ilxll).
Write a, for the matrix r(t, x)tr’(t, x) and for & write

49 49, a dx, 49, a 4), dt,

where

4,, 6(t, x).

Define the measure P+ on (cg, -,) by: P4,A 5a exp (sr(b)) dPo, A ,.
Then we can quote the following results from Girsanov [7] and Beneg [2].
LEMMA 2.1.

(i) P, is a probability measure,
(ii) P, is mutually absolutely continuous with respect to Po,
(iii) {o,, e [0, 1]} is a Brownian motion under P+, where

doo, dB,- o’-l(t, x)b(t, x) dt

o-’(t, x)(dx,- oh(t, x)) dt.
(resp. ) is the o-field of Borel sets of Y (resp. Z).
An admissible feedback control for J1 is a measurable function

y "([0, 1] qff, )--> (Y, ;)

and an admissible feedback control for J2 is a measurable function

z "([0, 1]x % @)-* (Z, ).
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Write MI. (resp. M2) for the admissible controls for J1 (resp. J2). R is always
supposed given the Borel o--field and the drift function f is supposed to satisfy:

(i) f:[0, 1] YZ- R is measurable with respect to the o--field. ,.
(ii) for each (t, x) [0, 1] % f(t, x,...) is continuous on Y Z.
(iii) there exists a constant K such that for all (t, x, y, z) [0, 1 Y Z,

If(t, x, y, z)]
where [1" is the uniform norm in

For y6M, and z M2 and (t, x) [0, 1]% write

F(t, x) f(t, x, y(t, x), z(t, x)),

hYZ(t, x)= h(t, x, y(t, x), z(t, x)).

We see fYz , so writing p,z as P,, Lemma 2.1 can be used to say that under
measure P,,

dx, f(t, x, y(t, x), z(t, x)) dt + o-(t, z) dB,,

where {B,} is a Brownian motion. Lemma 2.1, therefore, enables a solution of the
dynamical equations (1.1) to be interpreted under very general hypotheses on f
and o-.

Suppose E,z denotes the expectation with respect to Pz. Then the payoff
corresponding to y M1 and z ://2 is

e(y, z)= E,(g(x(1))+ f h(t, x, y(t, x), z(t, x) dt)).
\ d /

3. Upper and lower values. Suppose J2 has chosen z e M2. Then for any y eM
the expected remaining payoff from time e [0, 1] is

( Iq#(t) E, g(x(1))+ hYZ(s, x) asia,

Now {qy y ,1} is a subset of L(% ,, Po) bounded above by 2k. By Theorem
1V.8.23 of [6], L(% ,, Po) is a complete lattice so the supremum

./f

exists in L. Note that

Define

W= g(x(1)) a.s.

P* W; supP(y, z).
y

The results of [4] can be adapted (we are now working with a supremum
instead of an infimum) to deduce the following.
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and

LEMMA 3.1. For each z //2:
(i) there existprocesses {/W}, {VW;} with values in R and R" such that

I01 IV Wl dt < oo a.s. (Po),

Wf P* + / W2 ds + VW dxs a.s. (Po),

(ii) for any y

AWf+VWf .[(t,x, y,,z,)+h(t,x, y,, z,)-<0

for almost all (t, x), and y* tl is the optimal reply to z 2 if and only if equality
holds almost everywhere in the above when y y*

As in [3] the optimal reply to z e2 can then be shown to be

y*(t, x)= y*(t, x, VW;(t, x)),

where y*(t, x, p) is the measurable function from ([0, 1]x x R", @, ’) to
Y, ,) maximizing

p f(t, x, y, z(t, x))+ h(t, x, y, z(t, x)).

Consequently, we can conclude as follows.
LEMMA 3.2. For each z 2, J has an optimal reply y* such that

P(y*, z)= sup P(y, z).
yE.l

Now consider J2 who in the "upper game" that we are considering must
choose his control z ff//2 first. The problem is: can J2 choose z M2 to attain

inf sup P(y, z)= inf P(y*, z)?
ZEal2 YI Z’2

For any z 2 and [0, 1], if we assume J1 plays his optimal reply, the
remaining payoff from time onwards is

( 116z Ey:,z g(x(1))+ hY;’Z(s, x) dsl,

Again, because L(, o%, Po) is a complete lattice, the infimum

exists in L(, , Po).

w,+= A
Z.,
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DEFINITION 3.3. W, is the upper value function o[ the differential game.
Notice that W g(x(1)) a.s. (Po) and define P+= W infz2 P(y*, z).

LEMMA 3.4. For each z t2, 6 > 0 and [0, 1],

h y:’z ds]o,] + Ey;,z[ a.s.(Po).

This result is proved by modifying the method of Theorem 3.1 of [4].
LEMMA 3.5. W can be expressed as the difference of a martingale and an

absolutely continuous increasing process.
Proof. The proof is adapted from Lemma 5.1 and Theorem 5.2 of [4].
Choose a sequence {Zn}C,/2 such that P( *yz,, z,) qz,(0) is monotonic

decreasing to W, P+. Then f for each n. As in Theorem 2.2 of [4], the set
{exp (4’) 4’} is weakly compact in L1(% ,, Po) so there is a subsequence,
again denoted by {z,}, and a q such that exp sc(f* converges to p*
exp s(q) weakly in L i(% , Po).

Define P* by putting dP* =p* dP.
The proofs of Lemma 5.1 and Theorem 5.2 of [4] then go through to show

W, has a right continuous modification, which we suppose is the version taken.
Also { W,- E*[ W[,,], ,, P*} is a potential and so, from Theorem VII T 29 of
Meyer [8], W,+- E*[ WI[,] can be expressed as

where A, o as ds for a process as 6 L’(P*).
Further, it is known that the martingale E*[ W, + AI,] can be expressed as a

stochastic integral of the Brownian motion

dto p-’(dx q, dt),

and so, as in [4] we have the following representation.
LEMMA 3.6.
(i) There are processes {/k W,+}, {VW,+} taking values in R and R" respec-

tively, adapted to ,, such that

dt < o (Po),Iv /oSo

and W+, P/ +o A W2 ds + V W2 dx a.s. (Po).

(ii) For any z ,
/k W+VWf f(t,x, y*z(t,x),z(t,x))+h(t,x, y*(t,x),z(t,x))>-_O

for almost all (t, x). z* 2 is optimal if and only if equality holds in the above with
Z--Z*.

For (t, x, p) [0, 1] R" we introduce the Hamiltonian"

H(t, x, p; y, z) p f(t, x, y, z)+ h(t, x, y, z).
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Then for fixed (t,x,p), H is continuous on Y xZ. Suppose S (resp. T) is a
countable dense subset of Y (resp. Z). Then for z Z,

H(t, x, p; y*, z) max H(t, x, p’, y, z) sup H(t, x, p’, y, z)
yeY yes

is continuous in z.
Further, for fixed (t, x, p) and z Z,

{(t, x, p) max H(t, x, p; y, z)<a}= U {(t, x, p); H(t, x, p; y, z)}<a
ye Y yes

and so, maxev H(t, x, p; y, z) is measurable with respect to @ " in (t, x, p).
Now for fixed (t, x, p)

min max H(t, x, p; y, z) inf sup H(t, x, p; y, z),
zeZ yeY zeT yes

SO

{(t,x,p)’minmaxH(t,x,p; y,z)<a}= U {(t,x,p)’maxH(t,x,p; y, z)<a},
zeT

and so by Lemma 1 of Bene,3 [1] there is a measurable function

z* .([o, 1]x xR ", @ ")- (Y,

such that

H(t, x, p; y z**(t, x, p), z*(t, x, p)) min max H(t, x, p; y, z)

for all (t, x, p).
If J2 is to choose his feedback control first, therefore, the best he can do is to

play z*(t, x)= )z*(t, x, VW+(t, x)) because then, as in Theorem 1 of Davis [3] it
can be shown that

/ W+ W+, f(t, x, y**(t, x), z*(t, x))+ h(t, x, yz**(t, x), z*(t, x)) 0

and

p(y* *z*, z inf supP(y, z).
e.,2 e./

Therefore, we can summarize the above by stating the following result.
THEOREM 3.7. Consider a two-person zero sum stochastic differential game

whose dynamics are described by (1.1) and whose payoff is given by (1.2). If the
minimizing player J2 must choose a feedback control first, then the players can
choose controls z* 2, y*. 3/ll which attain the "upper value"

inf sup P(y, z)= P(y*z., z*).
zeta2
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Remarks 3.8. If the maximizing player J1 must choose his feedback control
first, then there are control,s y*eM1, zy*eM2 which attain the lower value

sup inf P(y, z)= P(y*, zy**).
yEa2 zEal

4. The Isaacs condition. H[t, x, p; y, z] is the Hamiltonian defined in 3.
DEFINITION 4.1. We say the Isaacs condition holds if for (t,x,p)

e[O, 1]xxR,
max min H(t, x, p; y, z) min max H(t, x, p; y, z).
y Y zZ zZ yY

For a fixed (t, x, p) let y* be such that maxy H[t, x, p; z] H[t, x, p; y*, z] and
let z* be such that

min H(t, x, p; y*, z) H(t, x, p; y z**, z*) min max H(t, x, p; y, z).

Similarly z*y. and y* are such that

Consequently

max H(t, x, p; y, z*) H(t, x, p; y*, z**)

max min H(t, x, p; y, z).

H(t,x,p; y*,z*)<=minmaxH(t,x,p; y,z)

and H(t, x, p; y*, z*) -> maxy minz H(t, x, p; y, z), so if the Isaacs condition holds,
(y*, z*) is a saddle point for the function H(t, x, p; y, z).

Now in the discussion of the upper value in 3, the control z g2 was optimal
for J2 playing first if and only if

A W+, +VW. f(t, x, yz**(t, x), z*(t, x))+ h(t, x, y**(t, x), z*(t, x))

=min (/ W+, +VW+, f(t,x, y*(t,x),z(t,x))+h(t,x, y*z(t,x),z(t,x)))
.d

=min max (/ W+VW+, f(t,x, y(t,x),z(t,x))+h(t,x, y(t,x),z(t,x)))
z.2 yaff
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We recall that z* had the form z*(t,x, VW+,), where z*(t,x,p) is the
measurable function that attained the minimum of

max (p f(t, x, y, z)+ h(t, x, y, z)).

Suppose now that y*6, is the feedback control y*(t, x) y*(t, x, VW,+),
where y*(t, x, p) is the measurable function that attains the maximum of

min(p .f(t,x, y,z)+h(t,x, y, z)).
zZ

From the remarks above we see that if the Isaacs condition holds the pair of
feedback controls (y*,z*)lx2 is a saddle point for the Hamiltonian
H(t, x, V W,+; y, z) for almost all (t, x).

Consequently for any other (y, z) 61 x2 we have,

A W+H(t,x, VW; y(t,x),z*(t,x))<=/ W+,+H(t,x, VW+,; y*z.(t,x),z*(t,x))

=/ W+H(t,x, VW; y*(t,x),z*(t,x))

=0

<-/ W+, + H(t, x, VW,+; y*(t, x), z(t, x)).

We now quote Theorem 5.1 of [4] in a form adapted to our differential game.
THEOREM 4.2. The admissible control z*6 J/G is optimal for J2 in reply to

y* 61 if there is a constant J* and processes {r/,} c R and {,} R adapted to ,
and satisfying:

(i) $ I ,1 dt < a.s. (Po),
(ii) E , dx, 0,
(iii) X(1)= g(x(1) a.s. where X(t)=J*+jto rlsds+’o sdx,

* Y*’*+ h*’* for almost all t, x) and(iv) ,/,+,.fY*’+h, >O=rl,+,’f,
each z /2. Then infz,2 qy.,z(t)--X(t) and P(y*, z*) is the minimum payoff in
reply to y* 1.

We can now state our main result.
THEOREM 4.3. If the Isaacs condition holds, then there is a pair of admissible

feedback controls (y*, z*) J/t x J/12 which give a saddle point for the payoff

P(y, z*) _-< P(y*, z*) -< P(y*, z).

Consequently, the upper value function of the differential game is almost surely
equal to the lower value function.

Proof. We observe that, taking J* P+ the processes {/ W,+}, {V W,+} satisfy
the hypotheses of Theorem 4.2 and so P(y*, z*)= inf P(y*, z).

We already know that

P(y*, z*)= sup P(y, z*)
y

and so the result is proved.
Finally we prove what is almost the converse to the above theorem.
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LEMMA 4.4. Suppose the upper value ]’unction equals" the lower value function
for almost all (t, x), that is,

W,+= inf sup G(t)=sup inf q%(t)= WT.
Z2 YI Ea

Then for almost all (t, x)

min max H(t, x, V W,+; y, z) max min H(t, x, V W,+; y, z).
zZ y Y ye Y zeZ

Proof. The constructive method of obtaining the optimal controls described in
3 implies that the respective infima and suprema are attained, so the

hypothesis implies there are admissible controls (y*, z*)1 2 such that

4,.,.(t) W, W;.

Now as in Lemma 3.6,

I IW P+ + / W ds + V W+s dx.

and

(4.1) A W[+VW[’ff,*’+h,*’>-O A W+,+VW-’f;*’*+hY,

for almost all (t, x) and each z ’/2.
Now for any y 6 ,///1 and 6 > 0,

W;-E,,.[W-(t+)I,]>=E,z h’* dsl,,

with equality if and only if y is optimal. Because W, W-,

W/-Ey,.(W-[t+][,)=-E,. [/W;+VW;. f’*]ds[ot

and so

Ey,. A W+ + V W;. f’* + h:’Z*) ds], <- O.

Taking the product of this expression with any 0 L(, ,, Po), dividing by 6
and letting 6- 0 we can conclude as in [4, p. 246] that

/ W +VW+. f’* + h’* =< O, t[o, ].

Combining this inequality with (4.1) above we see that if W, W-, then

min max H(t, x, V W,+; y, z) max min H(t, x, W,+; y, z)
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for almost all (t, x). That is, the Isaacs condition holds at almost all "relevant"
points.

$. Final remarks. By multiplying h by the characteristic function I,=, of time
up to some stopping time --< 1, nonfixed time games are included in our
treatment. If the Isaacs condition does not hold, relaxed controls can be intro-
duced.

Acknowledgment. The author is indebted to Professor Varaiya for stimula-
ting discussions.
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UNIFORM CONVERGENCE OF THE
POTENTIAL FUNCTION ALGORITHM*

LLOYD FISHERt AND S. J. YAKOWITZ$

Abstract. The identification problem of concern here is the estimation of a real function f(x) by
means of noisy observations {(Xi, f(X)+ rt,(X))} of its pairs, the Xi’s being chosen independently
according to some fixed law P. The approach taken for estimation is the "potential function" method
(its sources are referenced herein), to wit: Choose fo arbitrarily and define the sequence {f,} by the
recursive relation f.+(x)-- f,(x)+ /,(f(X,,+)+ "o(X+)-f,(X.+))K(X+, x), K being a positive sym-
metric kernel. From earlier publications it is known that under certain mild restrictions E[llo 11=] 0
in the L2(p)-norm. Rates of convergence have been obtained in the restrictive case that K(x, y)

z,_, A,bi(x)di(y) and f(x)span {b,, l<=i<=N}. The contribution of this paper is to prove that
while no uniform bounds exist in the L2(p)-norm (we prove this) if {b,} is an infinite set, we do have
E[llf-f.ll] < c.(llfll) for the norm Ilgll2,,=I g(x)g(y)K(x, y)p(x)p(y)dxdy and {C,(r)} a sequence
converging to 0 for each positive r. A final result concerns the rate at which increasing finite-
dimensional projections of f, -f converge to 0 in the L2(p)-norm. From our methods it is seen that if

f V span ({ok,}), then f. converges in the mean to the projection of f on V.

1. Introduction. Let {X} denote an independent sequence of observations of
the probability experiment (, M, P) and f a real-valued function defined on
Sequentially the pairs (X,,, f(X,)+rl,,(X,,)) are made known, r/,(X,) being a
random variable independent of (X1, X2,’" ,X,_I) and having a variance
uniformly (in n and X,) bounded by the positive number V. The problem
confronted here is how to approximate f by f,, f, being determined by the pairs
{(X, f(X) + r/, (X)), -< n} in such a way that f, - f at some rate depending only on
a norm of f.

The only approach to the above identification problem in this generality
which the authors have found in their survey of the literature is the "potential
function method" which is reviewed in Aizerman et al. [1]. The research results
reported here concern the following version of the potential function method.
Assume P in the probability experiment has density p with respect to some
measure/x, and let {4’} denote some orthonormal sequence in L(p) (the space
of functions with inner product (f,g)=f(x)g(x)p(x)lx(dx)). Let K(x,y)

A4(x)ch(y), where the A’s are chosen so as to assume that K (called the
"potential function") is the kernel of a positive Hermitian operator on La(p). With
K so defined, the potential function method is to form a sequence {,} of functions
by the iterative formula

L+I(X)=L(x)+ y,(f(X,+,)+’o,+I(X,+I)-L(X,+I))K(X,+I, x),
{3’,} being a sequence of positive numbers which sum to infinity, but such that
y. y < oo. fo is selected arbitrarily. From Aizerman et al. [2], it is known that if
f L(p)is in the span of the h’s, then u[llf. -fll] - 0 in P-probability. There are
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no bounds supplied concerning the rate of this convergence, and, in fact, it is
proven here that regardless of fo,

(1.1) supS[IlL-filmier foreveryn.
Ilfll-<-r

Braverman and Pjatnichi [4] have supplied a rate of convergence under the very
restrictive assumption that the set {bi} be finite.

The main result of this study is to show that although (1.1) is true, if we define
the slightly different norm Ilgll to be

Ilgll- I I g(x, y)g(x)g(y)p(x)p(y)tx(dx)tx(dy),

then for every positive number r, one may compute a sequence {c.(r)} converging
to 0 such that

(1.2) E[IIL fll,] < C,(r)

whenever I[fll< r and fo is taken to be the 0 function. Let us compare the two
norms: If g 2 c,b,, then I[gll2= Y c and Ilgl[2 2 ,c.

It appears that the potential function method may be useful, for example, in
finding the shape of ore bodies, aquifers and, as described in [1], [3] and [6],
performing supervised learning in pattern recognition problems.

Although we have not seen mention of it in the literature, the potential
function method appears to be particularly suited to identifying a line or surface u
which is known to be a solution of a differential equation

(1.3)

where L is a given self-adjoint operator on Lz(p), but the forcing function f in
L,(p) is not known. (Such a situation arises in studying the aquifer in the Tucson
basin, for example. Hydrologists believe they know the equation for the pressure
head, but the aquifer recharge from rain and underground sources cannot be
measured.) Under these circumstances, one may conclude (from (4.29) in [5], for
example) that the Greens function G(x, y) for L has the representation

G(x, y)= Z/3-lb,(x)b,(Y),

where the b,’s are eigenfunctions which are orthogonal with respect to the L(p)
inner product and the/3i’s are the associated eigenvalues. If the/3i’s are positive,
then G itself is a positive symmetric kernel and therefore suitable as a potential
function. Otherwise, one may be assured that the function

K(x, y)= f G(x, z)G(z, y)p(z)lx(dz) ,
is positive symmetric and that u is in the span of the b’s. As explained and
demonstrated in [5] and elsewhere, it is often relatively easy to find G(x, y).

If the operator L in (1.4) is an integral operator with positive symmetric L:(p)
kernel of the form

I(u) I u(x)K(x, y)p(x)lx(dx)
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whose spectrum is discrete, then K itself is a suitable potential function for the
potential function algorithm. For we may represent K as K(x, y) ,/3,4,(x)&(y),
where the 4,’s are orthonormal eigenfunctions for the integral operator and
the associated eigenvalues.

While we have not found reports on numerical experiments using the
potential function method, our own studies (which we are preparing to submit for
publication) indicate that the method works well in comparison to alternative
heuristic schemes. We report a typical experiment. Define to be the finite set
{0.00, 0.01, 0.02, , 0.99, 1.00}. We take the target function [(x) to be sin (4x),
x . The noise {i} is a sequence of independent observations uniformly distri-
buted on [-1/2, 1/2]. The X,’s are chosen uniformly on . The potential function
is K(x, y) exp (- 10(x y)2). FromTheorem 14 of 1 ], this is a potential function,
and its orthonormal functions hi are complete in L2([0, 1]). The weights {,),,} are
determined by ,, (20+ n l/2)-1. For purposes of comparison, we chose as a
benchmark a heuristic nonparametric interpolation function which averages when
it can and otherwise interpolates linearly. Specifically, this interpolation function

f’. is defined on by the rule: (i) f,(x)’ average {f(xi)+rt(x):x=x, j<-_n}. If
the set in (i) is empty, (ii) f, (x)’ is gotten by linearly interpolating between average
values at xi and xj, where x and x are the nearest points on each side of x which
have been sampled by the nth iteration. (iii) If one side of x hasn’t been sampled,
f,(x)’ is simply the average value at the point closest to x which has been sampled.
We have found that this "averaging function" works relatively well in the noisy
observation case. In Table 1, we have also given the error associated with
Lagrange and cubic spline interpolation. In the table, we have given the rms error,
where

rms error-- (f(x)-f,(x)) + 100.

TABLE
A comparison ofinterpolation methodsfor noisy sine samples

Number o]: Samples O0 200 300 400

Potential function 0.217 0.157 0.116
Averaging function 0.259 0.231 0.209
Lagrange interpolation* 0.292 32x 105 0.173
Cubic spline interpolation* 3418.000 0.284 0.164

* with averaging at multiply-sampled points

2. Principal results. Let (, ,/z) be a sigma-finite measure space. Let p(x)
be a probability density with respect to /z. Let X1, X2,’", be a sequence of
independent, p-distributed random elements of and r/, (conditionally on X) a
sequence of independent mean-zero random variables with variance bounded by
a constant V< c. Let 4, 42, , 0, q2, ",be an orthonormal basis for L2(p),
that is, with the inner product (g, h)= g(x)h(x)p(x)tz(dx); Ilgl12--(g, g).

Let K(x, y)= ,,b,(x)b,(y), where IKI<-R and ],,<c. Let

f=h+b+O,
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where

(i) hZ(x)p(x)tx(dx) O,
(ii) b + is in L2(p),

() Cii and q dj@i.
Let )’i > 0, Zi ")’, +o0, Z, Y < oo and Yi f (X,) + rt,.

The sequence (Y1, X1), (Y2, X),..., is observed, and f is estimated as
follows. Let fo be a fixed element of L2({,hl, 42,"" "}). Recursively define f, by

(2.1) f,+l(x)= f,(x)-%(f,(X,+l) Y,+I)K(X,+I, x).

For f, g Lz(p), let

(f’ g):- I I f(x)K(x, y)g(y)p(x)p(y)(dxltx(dx)

and

THEOREM 1. Under the above assumptions:

(i) E[(f. 4, f. 4):]" P 0,

(ii) E[(f,,-6, f. -6),]
where lim. C,(]lfll)=0 and C,(r) may be chosen to be nondecreasing in r and
nonincreasing in n.

Proof. (i) follows from (ii) so that it is sufficient to prove (ii). The proof follows
the lines of Lemma 1 of Aizerman, Braverman and Rozonoer [2] and is similar to
many of the proofs in the area of stochastic approximation.

Let

IIf - 11 and fli IIf -fill

(2.2)

Let F. {(Y1, X1)," , (Y., X.)}. We first show that E(a,) is bounded.

E[a,,+I]F,,]= E[( (f,,+l(x)-f,,(x)+ f,,(x)-f(x))2p(x)lx(dx)]F,,1
c. + 2Ex,.,.+, [ f (f.+l(x)-f,,(x))(f,,(x)-f(x))p(x)lx(dx),F.]
+ Ex,,,.+, [ I (f,,+l(x)-f,,(x))2p(x)tz(dx)lF,,].

The middle term of (2.2) is equal to

23,. j jr (h(X) + cb(X) + q,(X) + rb,+,(X)-f.(X)) ai(X)chi(x)

(f,(x)-(h(x)+ ok(x)+ O(x)))p(x)p(X) dF(rt, lX)(dX)x(dx).

Using

(a) For each X, "q dF(qlX) O,
(b) h(X) 0 a.e. (p(x)(dx)),
(c) 6(x)di(x)p(x)tx(dx) 0 for all i,
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we see that the middle term reduces to

-2././3. -2y. I f (ch(X)-f.(X))K(X, x)(cb(x)-f.(x))p(x)p(X)tx(dx)tx(dX)

-2y. 2 a(kc in)2

where L Z c7, Z c, and kc7 c-c (the difference in the ith Fourier
coefficients).

Here and hereafter, sometimes ,() is simply denoted by ,.
We turn our attention to the third term of (2.2). This is equal to

y.x...+, [((X)+O(X)+.+,-f.(X))K(X, x)]p(x)(dx)

.R E,..+,I[((X)-L(X)) + O(n) + n.+, + 2((X)-L(X))$(X)

+ 2(4(X) f. (X)) rt.+l + 20(X)rt.+l]
_--< y.R 2(a. +D + V),

where in the last inequality, we set D---d and used the fact that
L2({4, 42,"" "}), and thus all cross-product terms have expected value zero.

Combining all this and letting c. E[a.],/. El/3.], we have

E(a.+,lF.)<-&,-2y.,, + yZ.RZ(a. +D+ V),

and taking the expectation over F.,

E(a.+l)-<_ cL 27./. + 72.R2(c,, + D + V)
(2.3)

-< c, (1 + 7,R 2) + 72,(D + V),
since y, > 0 and/3, -> 0.

From (2.3), a recursive argument shows that for all n,

(2.4) /(a,+) =< I (1 + y2(R2 +D + V)) max (ao, 1),
i=1

where ao ]If-foil. Clearly this holds for n 0. Then inductively,

(.+) _-< ( + ,o)o + ,.( + v)

=<(I+y,R l (I+y2(R2+D+ V)) max (ao, 1)
i--1

+y](D+ V) [ (1 +y2(R+D+ V))max (ao, 1)
i=l

(I (1 + y2(R2 +D + V)) max (ao, 1).
i=l

Since y2 <, the infinite product converges to a finite limit. Thus let

B 1-I (1 + y(R +D + V)) max (ao, 1).
i=l

For all n,
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(2.5) E(a.) <= B < oo.

We now turn to consideration of the/3.’s.

E([3,,+I]F,,)--- Ex.+,,n,,+,[II (f,,+l(x)-f(x))K(x, y)
(2.6)

(f,+l(y)-f(y))p(x)p(y)t.t(dx)p,(dy)lF.].
Replacing f,,+-f by f.+-f, +f.-f and expanding (2.6), it is found that

(2.7)
E(/3.+IF.) f3. + 2Ex.+,,.+,((f.+l-f., f. -f)K]F.)

It is now shown that the second term is nonpositive. It is equal to

p(X)p(x)p(y) dF(nlX)la.(dX)(dx)p.(dy).

The conditional / integration eliminates the /.+1 term, and the x integration
changes the kernel to Y.i,qi(X)b(y). When the integration is completed, the
term becomes

The last term on the right-hand side of (2.7) is given by

’)/2n If If (b(X)-" ./(X)-]-’]r/n+ -f,,(X))K(X, x)K(x, y)K(y, X)

(b(X) + q(X) + "rl.+l-f.(X))p(X)p(x)p(y) dF(’rb,+,]X)p.(dX)l.t(dx)p,(dy)

-< y. R 2 , I I (b(X) + q(X) + /.+, -f.(X)) dF(n.+,lX)p(X)l.t(dX)

Thus, E(/3. ]F.) </3. 2 y. Y. , 7(Ac 7) + yz.Q, and taking expectations,

(2.8) E(/3.+1) < E(/3.)- 2y. Y, ,E(Ac’)2+y.O.
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Now it is shown that (2.8) implies condition (iii) of the theorem. Without loss
of generality, assume hi h2-h3h4 0.

E(/I)= E(f (f,(x)-d(x))K(x, y)(f,(y)-&(y))p(x)p(y)lx(dx)pt(dy))
,E[(Ac,) ]AIB S

for all n.
To show (ii), it is enough to show that for each e > 0, an N(e) can be found

such that for n N(e), E(fl,)< e, whenever ]]f]l-<U (a constant). Note that the
bound (2.5)is uniform over {f" []f[]-< H}. Choose N1 such that E-__,-y.Q (e/2.
Then as the middle term in (2.8) is nonpositive if E(fl,)( e/2 and m->N (m
fixed), (2.8) implies E(/3,) < e for all n > m. Choose N2 such that h 2N2+lB < e/4.

VN3Choose N3 such that ZiNl yihN28 > S +, yO + 1. By contradiction it will be
shown that E(/3.) < 8/2 for some n with N1 =< n =< N3, implying that E(/3,) < 8 for
all n’ > n -> N3 N(8).

., AE((Ac’)2) >= A’E((Ac’)2)
i=1

_>_ (x,9 E X,E((ac)))
i=1

Thus (2.8) yields

()(E(/3,)- E ,E((c’;))
N2+l

-> (,u)(E(/3.)- AN2+IB).

(2.9) E(/.+I) < E(/.)- 2y. max (A2u(E(/3.)- B),O)+7,O.N2+

If E(/.) >_- 8/2, (2.9) gives

(2.9’) E(/.+I) _-< E(fi.)
2y.,8-+y,O.

4

If/3, -> 8/2 for N1 _-< n _-< N3, repeated application of (2.9) gives

N N3

N2 N2

But/3m/1 >= 0, giving the desired contradiction.
COROLLARY 1. Let F c= L2(p) and let there exist a constant H such that

f e f llfll<- n. Then if the orthogonal projection off onto {491,492, d, .} with
respect to [[. is aenotea by Pf, then IIPf foll - o uniformly for f e F.

On the other hand, it is easy to see that one cannot hope for uniform
convergence in the I1" II-norm.
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THEOREM 2. Let {IJ)l, IJ)2,’" "} be an infinite set. Then F={f:[lf][<-l,
f Y) ci4)i} is such that E[[[f f,[[]- O but suptv E[[[f f,[[] >-_ l for each n. (In
other words, there is no uniform bound on the rate of convergence.)

Proof. Convergence is proved in [2].
It is easy to see that

(2.10)

or

Thus

n+l
Ci Ci -3c’)lnl 2i[f(Xn+l)-’ln+l- fn(Xn+l)])i(Xn)

2E +1E(+I c) TnA, x.,+,((f(X. )-f(X./l))),(X.)).

[E(c7+1- c7)1 _-< /.h [Ex.+,((f(X.+l) -fn (X,,+l))2Ex.+,(2(X)))]1/2

Now

Thus

IE(c?/l-c,)llE(c,-c,)l-A %B.

Fix n and e >0. Since foe L2(p), choose io such that Ice,l< e/2 for i>=io. As
< oo, choose > io such that 2, =1%B < e/2. Let f &i. Then

IlW-  ll-  /E(c7- c,) Ic, , c,,I 1 e/2 e/2 1 e.

The following presents two approaches to the problem of getting uniform
convergence in the [[. [[-norm. The first is to look at the. convergence in the finite
subspace {41,"" ", 4,,} which will be uniform and then to let m(n)-o as the
sample size n approaches o. The second approach is to require fo to be close
enough to f so that all the coefficients converge at an appropriate rate.

THEOREM 3. Under the above assumptions,
(i) Let P, be the [1"[[ projection onto {491,’", 49,} and [[.[[,, be the norm on

{&l,’", b,}, that is, [[P,fll=[[f[[,. Let [4[-<6i<o0 for each i. Suppose F
={f’[[f[[<=H}, where H<oo is fixed. There exists a sequence re(n) such that
lim. suprv E(][f f.[[2=(,)) O.

(ii) Let [4i[--< T< oo for all i. Given H> O, let

F { f" f E c,4, + , + h, E

where fo Z c 4,. Then

lim sup E(IIf -LI[) o.
feF

Proof. (i) Standard stochastic approximation techniques (for example,
see Schmetterer [7]) or arguments similar to those of the proof of Theorem 1,
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show that for each fixed m, [If-f.ll- 0 uniformly over F. The selection of the
sequence re(n) then presents no problems.

(ii) Using the fact that (c’i’-c,)2<-HA;, (2.10) and an argument analogous to
that used in proving (2.5), one can show that

E((c’)) =< A w
for all (where W is constant depending on T, H, and V). As Ellrk-f,
E( (Ac;’)2), choose io such that _<io AW< e/2. Then

i>i

Uniform convergence with respect to II-I1 (as in (i))allows the choice of no such that
for n ->_ no, z(l16-.11) < /2, so that for n >= no, sup,F z(l16-,11) < .

In summary, in this paper it is seen (under suitable regularity conditions) that:
1. f converges to the projection on the subspace spanned by the eigenfunc-

tions of K.
2. The convergence is uniform in the I[.l[-norm for bounded sets in the

II- II-norm.
3. To get uniform convergence in the I1" [I-norm of a set F of functions, all the

functions must be close to the starting function in the sequential approximation
process.
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CONTROLS AND GOALS IN ECONOMIC EQUILIBRIUM*

RODRIGO A. RESTREPO

Abstract. This paper generalizes some results of Gale and Debreu related to results of Bohnen-
blust and Karlin, commonly used to prove the existence of equilibrium in competitive economies.
Applied to economics, these results allow further latitude in the choice of admissible price vectors, and
in the conditions defining equilibrium. These results are also applicable in more general contexts
where, instead of prices, one considers a set of controls or instruments of policy and where, instead of
equilibrium, another goal is sought. These goals are related to the appropriate instruments through the
concept of dual convex cones. Some examples are provided.

Introduction and results. In their study of economic equilibrium, Arrow and
Debreu 1], Arrow and Hahn [2], Debreu [4], [6], Nikaido [10] and other authors,
observing that each price vector p in some set P determines a set Z(p) of excess
demands for goods, have determined conditions for the existence of/ P and
,f Z(/0) with z _-< 0. Thus at price/O, demand can be satisfied.

The proofs of the existence of such/ and are usually based on properties of
convex cones established by Bohnenblust and Karlin [3], Gale [8] and Debreu
[5]. This paper provides a further generalization of these results using, as does
Debreu, the concept of dual convex cones. Though the motivation comes from
economic theory, the results are applicable to situations where instead of a price
simplex P one considers more general sets C of controls or instruments of policy
which, through an appropriate point-to-set mapping, determine a set of out-
comes Z(c) for each c C. The condition z =<0 can then be replaced by other
conditions in the manner indicated below.

In what follows, the inner product of two vectors z and c will be denoted by
z’c, and the Cartesian product of two sets C1 and C2 will be denoted by C1 C2.
With each nonempty convex set C will be associated a set C*, called the dual
convex cone, defined by

C*= {zlz’c <= O, for all c C}.

Using these concepts, the following theorem will be established.
THEOREM. Let C C, Ck and Z Z1 Zk where, for each i, C,

and Zi are nonempty, convex, compact subset of the Euclidean space R% I] to each
c C is associated a set Z(c) such that

(a) ]:or each c C, Z(c) is a nonempty, closed convex subset of Z,
(b) if c=(cl,’’’,ck)C and z=(zi,...,zk)6Z(c), then zci<-O for

i=l,...,k,
(c) the mapping c --> Z(c) is upper-semicontinuous.

then there exist .( C and (.1, ", P-) Z(6) such that, ]:or each i, 2i C*
The following examples motivate the theorem. In economic equilibrium

theory, [1], [2], [5], C is the standard price simplex P, and then C*= P*
{zlz <= 0}. The more general case considered by Debreu [5] corresponds to k 1

* Received by the editors March 7, 1974, and in revised form December 9, 1974.

" Department of Economics, Harvard University, Cambridge, Massachusetts. Now at Depart-
ment of Mathematics, University of British Columbia, Vancouver 8, British Columbia, Canada.
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in the preceding theorem. This case is applicable to markets with commodities
possessing multiple exhaustive uses (e.g., electricity for lighting, for heating, for
cooking and for communications) required to have the same prices. Then C is a
proper subset of P, and C* stipulates only that the total joint excess demand for
these multiple uses be nonpositive, in agreement with intuition. The general case,
with k _-> 1 in the theorem, can be applied to models involving several epochs, with
the a priori requirement that not all goods be free on each epoch. For such models,
C=PP P. The arguments used in the proof of the theorem may be
applied also to multinational markets. Then one obtains equilibria with sufficient
quantities of goods to satisfy demand, and enough foreign exchange to finance
required imports in each country.

Proof of the Theorem. Consider first the case where each set Ci is a convex
polytope with vertices vi,’’ ", v..,. For each ci Ci, zi Zi, let

(1) hi(ci, z,)
c, + Y’, max {0, zvq}vq

j=l

max{O, z’ivq}

Clearly, hi(c,, zi) is a vector in Ci, and the mapping (ci, zi)- hi(c,, zi) is continuous
on Ci Zi. This continuity, together with assumption (c), implies that the mapping
(c, z) W(c, z), defined by

W(c, z) {(% ’)e Cx Z]/, h,(c,, z,), all i; " e Z(c)},

is a point-to-set, upper-semicontinuous map of C Z into its subsets. Further-
more, each image set W(c, z) is nonempty, closed and convex. Thus, the Kakutani
fixed point theorem [9] is applicable, showing that there exists (d, ) C x Z, such
that (c, :) W(, ). Then, in particular,

(2) e Z(g),

and also, h,(,, zT,)= g, for each i; that is,

e, + [max (0, 2:vq)]v,- e,[1 + max (0, z,vq)].
L

Simplifying and multiplying both sides of the preceding equation by ,, one obtains
that

(3) [max (0, 2vq)]z’iv,j zd, Z max (0,

In (3), the left-hand side is the sum of nonnegative terms, while the right-hand side
is nonpositive by assumption (b), since Z(?). Thus, both sides must be zero,
and so must be each term on the left; that is,

[max (0, 2vq)],’oVq 0, all i, j.

This implies that vq _-< 0, all i, j, and therefore ci _-< 0 for ci e C,. That is, 2i C,*,
as desired, under the assumption that each Ci is a polytope.
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To extend the result to general nonempty, convex, compact sets C,, observe
that for each such Ci there exists an increasing sequence {C’21m 1, 2,-..} of
convex polytopes such that C7’ c C, for all m, and rel int C, c t0 ,,C7’. Applying
the result already established to C"= CT’x C7’ and Z with the mapping
c -> Z(c) restricted to c C", one obtains m and z such that

(4) dm Cm, z Z(cm), zT’ (C7’)*, all i.

By compactness, there exists some subsequence of {din, ,,,} converging to some
(?,z)CZ, and zZ() by (4) and the upper-semicontinuity of the map
c --> Z(c); and also by (4) and the construction of {C7’}, one must have 2ci -< 0 for
all c, e rel int C, and therefore, : Ci 0 for all c, Ci, as desired.

The preceding proof incorporates a simplification suggested to the author by
Professor R. T. Rockafellar.
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NORMAL SYMMETRIC DYNAMICAL SYSTEMS*

ROGER W. BROCKETT AND PAUL A. FUHRMANN

Abstract. In this paper we establish a form of the state space isomorphism theorem for linear
differentiable dynamical systems in a Hilbert space and make some application of these results. The
methods used are based on spectral representations and suggest a close connection between the state
space isomorphism theorem and certain classical representation theorems in analysis. We also give a
class of counterexamples which illuminate the difficulties in extending the finite-dimensional theory
thus justifying, in part, the stronger hypothesis used here.

1. Introduction. Recently there has been great progress in extending the
main results of finite-dimensional linear system theory to the context of systems
with infinite-dimensional state spaces (e.g., 1 ], [5], [7]-[ 10]). A great part of this
work uses shift operators as models for the internal structure of systems. In this
paper we try to give a detailed study for symmetric systems, that is, systems with
self-adjoint or normal generators and identical input and output operators. We
shall characterize the weighting patterns realizable by such systems, prove the
spectral minimality theorem for this class of system as well as a version of the state
space isomorphism theorem which generalizes to this context. Applications to
stability questions are considered and finally, by means of a counterexample, we
indicate how, what seems to be a slight relaxation of the assumptions in the state
space isomorphism theorem is enough to make the conclusion false.

To fix terminology we review some of the standard definitions. We consider
an rn x n matrix-valued function y defined on [0, o0) to which we refer as a
weighting pattern. It characterizes the input/output relations by means of a
convolution type integral

(1.1) y(t) 3’(t-’)u(’) d.

The Laplace transform F of 3’ is assumed to exist in some half-plane
{AIRe A > O9o} and is called the transfer function of the system. A triple {A, B, C}
of operators with A being the infinitesimal generator of a strongly continuous
semigroup T(t) in some Hilbert space H and B C" H and C H- C" is called
a realization of the impulse response function y if

(1.2) 3’(t) CT(t)B for > 0

or equivalently

(1.3) F(z) C(I-A)-’B for z too(A),

where too(A) denotes the principal connected component of to(A), the resolvent
set of A, that is the connected component of to(A) that includes the half-space

* Received by the editors August 27, 1974.

" Division of Engineering and Applied Physics, Harvard University, Cambridge, Massachusetts
02138. This work was sponsored by the U.S. Office of Naval Research under the Joint Services
Electronics Program by Contract N00014-67-A-0298-0006.
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{A [Re A > Oo}. In case A is bounded this is the connected component of A which
includes the point oo. Two realizations {A, B, C} and {A 1, B1, C1} in Hilbert spaces
H and H1 are isomorphic if there exists a bounded and boundedly invertible
transformation R from H to H for which Fig. I is commutative. Two realizations
are unitarily equivalent if the operator R is actually a unitary operator from/4
to H. A realization {A,B, C} in a Hilbert space is controllable if
f3,o ker B*T(t)* {0} and observable if ,=o ker CT(t) {0}. A realization
which is both controllable and observable is called a canonical realization. A state
space isomorphism theorem is a statement about the relation between different
canonical realizations of the same transfer function.

T(t)

H

R

FIG. 1.

A system is self-adjoint if the infinitesimal generator is a (possibly
unbounded) self-adjoint operator and C-/3*. In particular y(t) is a pointwise
self-adjoint matrix-valued map. Similarly a system will be called normal symmet-
ric if A is normal and C- B*.

Whereas there is no inherent difficulty in working directly with unbounded
operators, it is still technically simpler to reduce the problem to bounded
operators. It is clear that given an infinitesimal generator A of a strongly
continuous semigroup of normal operators, then for sufficiently large Ao>0,
A-AoI is the infinitesimal generator of a semigroup of normal contraction
operators. Replacing A by A- AoI has the effect of multiplying the weighting
pattern by e -’’. So, without loss of generality, we may, as far as the state space
isomorphism theorem is concerned, assume that the realizations are by contrac-
tive semigroups. To an infinitesimal generator of a strongly continuous contrac-
tion semigroup we associate a contraction T defined as the Cayley transform of A.
Thus T-(A + I)(A- i)-1. T will be called the cogenerator of the semigroup. T
will be self-adjoint or normal if the semigroup is of self-adjoint or normal
operators. For a treatment of cogenerators we refer to [6], [13]. Now T may be
considered as the generator of a discrete system { T, B, C} for which controllability
and observability are defined by f-] ker B* T*" {0}, f-] ,o ker CT" {0}, respec-
tively. It turns out that the continuous time system {A, B, C} is canonical if and
only if the discrete time system { T, B, C} is [9]. Since two continuous time systems
{A, B, C} and {A,, B1, C1} are unitary equivalent if and only if the discrete time
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systems { T, B, C} and { T, B1, C1} are, it suffices to prove the state isomorphism in
the later context.

For the case of normal systems the notions of controllability and observability
have weaker counterparts which we call bilateral controllability and bilateral
observability respectively. A discrete time normal system {A, B, C,} is bilaterally
controllable if (3 ,,,,o ker B*A"A*" {0} and similarly bilateral observability is
equivalent to (3 ,,,,=o ker CA"A*" {0}. Clearly controllability implies bilateral
controllability. For continuous time systems bilateral controllability is equivalent
to 71 ,.o ker B*gA’ a. {0} and similarly for bilateral observability.

2. Spectral minimality. We want to study in this section the relation between
the singularities of the transfer function and the spectrum of the generator in a
realization of the transfer function. Let {A, B, C} be a realization and F the
transfer function of the system as defined in 1. F is defined a priori only in some
half-plane of the form {h IRe > Oo}. Being an analytic function F has an analytic
continuation to po(A), the continuation being given by (1.3). Let us denote by
r(F) the set of nonanalyticity of the transfer function, continued analytically as
above to po(A). Obviously the relation

(2.1) r(F) c Cro(A

holds. We call this the spectral inclusion relation. A realization {A, B, C} is
spectrally minimal if there exists an analytic continuation of F for which o’(F)=
o’(A). If p(A), the resolvent set of A is connected, then actually O-o(A) o-(A) and
there are no complications. However if o-(A) is not connected, let pi(A) be a
connected component of p(A) which is not principal. It might turn out that F as
defined in po(A) has an analytic continuation to pi(A). On the other hand the
function Fi(z)= C(z-A)-B defined in p(A) is certainly analytic. Unhappily F
and F, might be completely different. To avoid this kind of ambiguity we will
restrict ourselves in this section to systems whose generators have connected
resolvents. This assumption is of course redundant when dealing with self-adjoint
infinitesimal generators. In this case there exists an analytic continuation of F for
which o-(F) o-(A). We will say a realization {A, B, C} of F is spectrally minimal if
rCF) o’(A).

THEOREM 2.1. If {A, B, B*} is a canonical self-adjoin realization o[ a

transfer [unction F, then the realization is spectrally minimal.
Proof. Since A is self-adjoint then by the spectral theorem [3] there exists a

spectral measure E( defined on the Borel sets of the real line and for which we
have the following integral representation:

Given an open interval (a, b) on the real line we have, limits taken in the strong
operator topology [3, p. 920], that

(2.2) E((a, b))= lim l)
1

o
[R[A ie, A)- R (X + ie, A)] dX.

+6
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Hence for every vector s C we have

[[E((a, b))Bs[]2= (B*E((a, b))B, (;)
(2.3)

=limlim
1 a-

+,, -o Ja
[(F(A -ie):, :)- (F(A + ie), :)] dA.

Now let (a, b) be an open interval on the real line that is included in the
domain of analyticity of F. The equality (2.3) implies E((a, b))B =0 for every

C". Since the semigroup T(t) generated by A commutes with the spectral
measure E(. ), we have E((a, b))T(t)Be T(t)E((a, b))B:= 0. Now the set of
vectors of the form T(t)B, >= O, and : C" spans the Hilbert space H by the
assumption of controllability and hence it follows that E((a,b))=O. Thus
(a, b)cp(A) which in turn implies that r(A)c o-(F). Taking into account the
spectral inclusion property the proof is complete.

Thus it follows that the spectra of two generators in two different canonical
self-adjoint realizations of the same transfer function necessarily coincide.

As a by-product of (2.2) we have the following lemma which will be used in
the sequel.

LEMMA 2.1. Let {A, B, B*} and {A,, B,, B*I} be two canonical self-adjoint
realizations with transferfunctions F and F1 and let E( and El(" be the spectral
measures of A and A1 respectively. The transfer functions of the two systems
coincide if and only if for every Borel set on the real line we have

(2.4) B*E(o)B B* E,(o’)B1.

Proof. Assume (2.3) holds. Then

F(z)= B*R(z; A)B f I----B*E(dA)B f 1
z -h z -h

B* E,(dA )B, B* R (z

F,(z).

The converse follows from (2.2) for open intervals and hence, by standard
measure theoretic technique, for all Borel sets.

Theorem 2.1 can be generalized to the case of normal symmetric systems. Let
A be a bounded normal operator and let E be the spectral measure associated
with it. For each vector x in H we let zx denote the positive measure defined by
Ixx(r) (E(r)x, x) for all Borel sets r.

TEOREM 2.2. Let {A, B, B*} be a canonical, finite input, normal symmetric
system with p(A) being connected, which realizes a transfer function F. Then the
realization is spectrally minimal.

Proof. Let cr be an open set in the domain of analyticity of F. Since for each
sc C we have

(r(z), ,)=(B*(z-A)-’B,, so) j (z-h)-l(E(dh)R,R,) j (Z --/)-1 d/x,e,

it follows that (F(z)sc, sc) is the Cauchy transform of the measure/xe. By Theorem
8.2 in [4], we have

e(r)--[l()u[I-- o
and hence also E(er)B =0. Since the normal operator A commutes with its
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associated spectral measure E we have E(o-)A mB: 0 for all : C" and m ->_ 0. By
the controllability assumption E(o-)=0. Therefore, as in Theorem 2.1, we
conclude that the realization is spectrally minimal.

We remark that the conclusion of Lemma 2.1 holds just as well for normal
symmetric systems.

3. Spectral representations and controllability. Whereas abstract Hilbert
spaces provide us with a very general setting, the solution of specific problems
requires frequently more structure. The essence of spectral theory is to study an
operator through some representation, i.e., its image under a unitary transforma-
tion in a different space. In particular, function spaces turn out to be most useful.
For our particular problem the canonical or ordered spectral representation of
normal operators is the natural candidate. This has been recognized by Fattorini
[5] who used the ordered spectral representation to give necessary and sufficient
conditions for the controllability of a system with a self-adjoint generator by
means of a finite input controller. We review the main ideas concerning spectral
representations following [2] and refer to [3] for a more complete account of
spectral representations and multiplicity theory.

Let/x,/x,...,/xo be a collection of mutually singular nonnegative meas-
ures and K,, p-> 1, be p-dimensional Hilbert spaces and let Ko be a separable
Hilbert space. We consider the spaces L(/x,; K,) of K,-valued measurable
/x,-square integrable functions on the complex plane. In L2(/x,; K,) we consider
the normal operator A, defined by (Aff)(A) A/(A). The operator A, is bounded if
/x, has compact support. Next we consider the direct sum (,=L (/x, K,) and the
operator A @,=A,. Every normal operator A in a separable Hilbert space is
unitarily equivalent to such an operator A. The unitary map U H-> @L2(/x,; K,)
for which UAU- A is called the canonical spectral representation of A. In the
canonical spectral representation the measures /x, are unique up to measure
equivalence. The support of/x,, i.e., the complement of the largest open set where
/x, vanishes, is the set of multiplicity p. The normal operator A has finite
multiplicity po if/Xo 0 and/x, 0 for p > p0.

An equivalent spectral representation is the ordered spectral representation.
Let us choose Kp so that K1 K2 c. c Ko, Ko /:1 K, and let p. Let X,
be the characteristic function of supp (/zv), the support of/z,. Then X,,,Xm 0 for
p, - p and /xp X/x. If f L(/x; K) and [[f,l[ < o we let f 2xf,. Thus
f L2(/x; Ko) and we have a unitary map of @L2(/x,; K,) onto a closed subspace
of L2(/x; Ko). If A has finite multiplicity m then we consider L2(/x; K,,) as the
space in which we have the ordered spectral representation.

Now a self-adjoint system is controllable if and only if it is observable and
hence characterization of controllability is at the same time a characterization of
canonical self-adjoint systems. This is no longer the case for normal symmetric
systems. However if we make the assumption that the resolvent set of the normal
operator A is connected and the spectrum of A has no interior then it follows, by
an application of Mergelyan’s theorem [4] that a normal symmetric system is
controllable if and only if it is observable. So let us assume that the normal
operator A is already given in its canonical spectral representation. Thus H @
LZ(p, Kt,), A A and B C" ---> H. For convenience we identify Kv with Cp and
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hence with respect to the standard orthonormal basis {ei}Z-, in C we have a
convenient matrix representation for B. Thus Bei=(Bei)p with (Be)p
L2(IXp; CP), and (Be,),=tn.P.q.,.,,,,=,,...,,. We will denote by B(p the p x n matrix-
valued function (/3}’).

Thus Fattorini’s theorem [5] can be stated in the following form.
THEOREM 3.1. Let A be a normal operator with a connected resolvent set and

spectrum with no interior acting in a separable Hilbert space H. Let B C - Hbe a
linear operator. Then the normal symmetric system {A, B, B*} is canonical if and
only if the spectral multiplicity m ofA is less than or equal to n and the conditions

rank (t.."q
,t--j, /=P, j=l,-..,p, i=l ...,n,

are satisfied Ixp- a.e. for p 1,. ,m.

4. The state space isomorphism theorem. We proceed now to the proof of
the main result of this paper, namely the state space isomorphism theorem for
normal symmetric systems.

THEOREM 4.1. Let {A, B, B*} and {A l, B1, B* be two canonical normal
realizations in Hilbert spaces H and H1 respectively and assume the generators A
and At have connected resolvent sets. A necessary and sufficient condition that the
two systems realize the same transfer function is that the systems are unitarily
equivalent.

Proof. The sufficiency part is trivial. To prove necessity we assume that the
two systems realize the same transfer function. By Lemma 2.1, the equality (2.4)
holds for all Borel sets in the complex plane. Since we are interested in unitary
equivalence of the system we may, without loss of generality, assume that both
systems are given in their canonical spectral representation. Let x H. Then we
write x Yx< with x(’e L2(IXi, K), the direct sum decomposition arising from the
canonical spectral representation of A. For every Borel subset o- of the complex
plane we have

(E(r)x)"’ X,x (’,

where X is the characteristic function of or. Consider now the ordered representa-
tion and let B(1)= Xp()B(,), where Xp is the characteristic function of the
support of Ixp. Also let tx ixp and we make similar definitions for the system
{A1, B1, B*}. Equality (2.3) implies that for each Borel set o-,

I,. B(A)*B(A) dix I BI(A)*B(a) dix ’)

holds. This in turn implies the scalar equality

(4.1) Itr B(a.)*B(a) dix ftr B,(A)*B,(A.) dix (1).

Since rank B(a) _-> la.e. with respect to Ix and rank BI(a) -_> la.e. with respect
to IX’ and the supports of IX and Ix

(’ are the same coinciding with the spectra of
the generators, the above trace functions are positive. This implies that Ix and Ix
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are equivalent measures, i.e., each is absolutely continuous with respect to the
other. Let

(4.2)

be the Radon-Nykrodym derivative of with respect to/1). Then

(4.3) (A)2B(,)*B(A BI(A )*B, (,)

and in particular the equality

rank B(A) rank B,(A)

holds a.e. with respect to or ). Thus the multiplicity sets of the two normal
operators A and A are essentially the same. If we let , X,0, then we have also

(1)

d,(4.4)

and

(4.5) 0(,)B’P)(,)*B(’)(A) B]P)(,)*B]")(,).

Next we construct the unitary map U that intertwines the two systems. Let
1 (") and n(") be the columns of B(p) and B]") respectively By Theorem 3 1j,i

{{")i 1, ,n} and t,,*a<")i 1, ,n} each space C"a.e. with respect to > and
) respectively. Define a map U,(a): C C" by

(4.6) U()P) ,i.

From the rank conditions, rank B()(A) rank B])(A) p a.e., it follows that
U,(A) is invertible. Moreover from (4.5) it follows that a.e.(1/G(A))U(A) is
unitary and hence, by Theorem 4.5.b in [2], U, is a unitary map of La(,; C) onto
L2((), C"). Since it is a pointwise multiplication operator it clearly inter-
twines A, and .,(), the multiplication by A operators in L(,’C), and

A(’)U. Next define U by U @ U.L(()" C"), respectively. That is, UA,p
(1 C) that intertwines A andThen U isa unitary map of @L:(, C)onto +L

A(’) where A @A, and A() @A1). Clearly (4.6) is equivalent to B B and this
completes the proof.. Realization by stable seff-adjoint systems. We characterize in this section
those weighting patterns realizable by means of finite input finite output stable
self-adjoint systems.

Let {A, B, B*} be a self-adjoint system. Thus we assume that A is a
self-adjoint infinitesimal generator of a, necessarily self-adjoint, strongly continu-
ous semigroup T(t) in a Hilbert space H. This implies that A is semibounded from
above, i.e., there exists a real number w such that for all x in the domain of A we
have

(nx, x)  llxll
The implication of this inequality is that the spectrum of A is restricted to
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(-, to]. Let E( be the spectral measure of A. Then, by a simple application of
the spectral theorem, we have for the weighting pattern ,/of the system

y(t) B*T(t)B B*I e’E(dA)B f e"’B*E(dA)B.

If we make the additional assumption that A generates a contraction
semigroup, i.e., that the system {A, B, B*} is stable, then the spectrum of A is
restricted to the negative half-axis or equivalently to=0. In this case 3,(t)

e *E(dA)B and hence for each j in [R,

(’y(t), )= e’’(E(dA)B,, B,).

Since for each x in H the set function (E( )x, x) is a finite nonnegative Borel
measure on the real line it follows that

(5.1) (- 1)"(3,"(t)5, 5)= (- 1)nAe’(E(dA)B, B)>-_0.

A scalar function 4) defined on [0, eo) is called completely monotonic if 4 is
infinitely differentiable in (0, oo), continuous in [0, oe) and satisfies 1)"4("(t) -> 0
for all t>0 [14]. We extend this definition to Hilbert space operator-valued
functions in a natural way. The differentiability assumption is replaced by weak
ditterentiability. Thus a self-adjoint operator-valued function is completely
monotonic if for all x in H the function 4(t) ((t)x, x) is completely monotonic.
Since scalar completely monotonic functions have analytic extensions to the open
right half-plane and since weak and uniform analyticity are equivalent [3] it
follows that a completely monotonic function is actually differentiable in the
uniform operator topology. Thus from (5.1) it follows that the weighting pattern
of a stable self-adjoint system is a completely monotonic function. The converse is
also true and we have the following theorem.

THEOREM 5.1. An n x n matrix-valued function 7 defined on [0, oo) is the
weighting pattern of a stable self-adjoint system if and only if it is completely
monotonic.

Proof. In view of the remarks preceeding the theorem we have to prove only
that a completely monotonic function is realizable by a stable self-adjoint system.
The proof is based on a representation theorem of S. Bernstein [14] which
characterizes a scalar completely monotonic function 4’ as an integral 4(t)

e d/x of a unique finite nonnegative Borel measure
Now let y(t) be an n x n matrix-valued completely monotonic function. It

follows from Bernstein’s theorem that for each : in C there exists a finite
nonnegative Borel measure/xe such that

(y(t):, )= e "’ d/xt.
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Using polarization it follows that for each : and rt in C there exists a finite
complex Borel measure/x, for which

(5.2) (y(t), r/)= f e’

The uniqueness part in Bernstein’s theorem implies the uniqueness of the
measure/xcn in the representation (5.2). By standard methods of spectral theory
the uniqueness of the representing measure and (5.2) imply the existence of a
matrix-valued measure M(. defined on the Borel sets of the real line such that
for each Borel set r and all , rt C" we have

tte.,,(cr) (M(o’), r/).

Since/x,t is a nonnegative measure it follows that M( is actually a nonnegative
matrix-valued measure and

y(t) etM(dA).

For detailed accounts of matrix-valued measures we refer to [3].
To get the required realization we want to factor M(. as

(5.3) M(.)=B*E(.)B,

where E( is some spectral measure in a Hilbert space H and B in a linear map
from C" to H.

To this end we construct the space L2(M) consisting of all C"-valued Borel
measurable functions F defined on (-eo, 0] which satisfy

Ilfll (M(d.)F(.), F(A)) <

As usual we identify functions differing by null functions, i.e., functions
whose norm vanishes. We introduce in L2(M) an inner product by means of the
definition (F, G) I (M(dl)F(1), G(,)).

With this inner product L2(M) becomes a Hilbert space [3, Chap. XIII]. In
L2(M) we define the operator A by

(5.4) (AF)(1) ,F(, ).

The domain of A is the set of all F in L2(M) for which the function ,F(&) is in
L2(M). Clearly A is self-adjoint. Let E( be the spectral measure of A. For each
Borel set o- we have

(E(cr)f)(A) X,(,)f(A),

where ’ is the characteristic function of the set r. Next we define a map
B :C- L(M) by (Bse)(A) s, i.e., a vector : in C is mapped into the constant
function . Now for every Borel set r we have

(B*E(o-)B, ) (E(o-)B, B) f (M(dA ), ) (M(o), ,).
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This implies the factorization (5.3). Since the spectrum of A is supported on
oo, 0], the generated semigroup T(t) is contractive and has the representation

T(t) e’E(d,)

and hence

B*T(t)B B* e’E(d,)B e’B*E(dh)B
0

e*’M(dA y(t).

This completes the proof.
We wish to remark that the theorem holds true also for a self-adjoint system

with infinite input and output, that is, for the case where B H1 -> H is a bounded
operator from a Hilbert space H1 to H. This follows as a corollary to Naimark’s
theorem concerning unitary dilations of positive definite functions defined on
groups [6], 13]. In fact given any set-valued function M(. defined on the Borel
subsets of the real line with values that are positive operators in H satisfying
M(tr) => I, then there exists a larger Hilbert space H H, and a spectral measure
E(. there for which

M(o-) PE(o’)IH,
for all Borel sets o-. Here P is the orthogonal projection of H onto H. Thus
obviously M(o-)= PE(r)P and we have the factorization (5.3) as required.

The circle of ideas developed above can be used to yield some more system
theoretic results. Mainly we will be concerned with skew adjoint systems
(A, B, B*), where A iAo, and Ao is a, not necessarily bounded, self-adjoint
operator in a Hilbert space H and B a bounded linear operator. The operator A is
the infinitesimal generator of a group of unitary operators. The analytical tools in
this case are the theorem of Bochner concerning the integral representation of
positive definite functions on [3] and the related Stone representation theorem
for groups of unitary operators.

Without going into the details of the proof we state the following.
THEOREM 5.2. An operator-valued weighting pattern y(t), >- O, is realizable

by a skew adjoint system if and only if 4/( t) defined on by

(5.5) (t) { T(t), _--> 0,

T(-t)*, t<O,

is a positive definite function.
We recall that a Hilbert space-valued function ,(t) defined on is positive

definite if for all finite sets t,, ,t. and ,, , so. H we have

(/(t t), ) _-> 0.
i,j=

A special class of functions which permits skew adjoint realizations is the
class of completely monotonic functions. This follows, by way of Theorem 5.1,
from the following lemma.
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LEMMA 5.1. Let y(t), => 0, be a completely monotonic operator-valued func-
tion in a Hilbert space H,. Let 4/be defined by (5.5). Then it is positive definite.

Proof. By Theorem 5.1, we have for t_->0 the factorization y(t)= B*T(t)E,
where T(t) is a contraction semigroup in a Hilbert space H. The semigroup T(t)
can be extended to a positive definite function on by letting

T(t), t->0,
(5.6) (t)=

T(-t)*, t<0.

The proof of this fact can be found in [13, p. 30], and it immediately implies the
positive definiteness of 4/.

6. External and internal stability properties of self-adjoint systems. In the
case of infinite-dimensional systems, knowledge about external stability proper-
ties of the system, even assuming controllability and observability, does not imply
corresponding results about internal stability of a given realization. Moreover the
lack of a general state space isomorphism theorem precludes us from dealing with
all canonical realizations simultaneously. In fact we may have different canonical
realizations of the same weighting pattern with one realization stable and another
unstable [8]. However when we restrict ourselves to the class of self-adjoint
systems those results become easily accessible.

Let Z: {A,B, B*} be a canonical self-adjoint system in a Hilbert space H. We
will say Z is state stable (output stable) if for each x H there exists an Mx such
that IIT(t)xlI<=M(IIB*T(t)xlI<-M) for all t->0, Z is asymptotically state stable
(asymptotically output stable) if for each x, lira T(t)x-, 0 (lim B* T(t)x - O) as
t-> oo, Z is bounded input/bounded state stable (bounded input/bounded output
stable) if there exists an M>0 such that for Ilu(t)ll <- 1 and all to->0 we have

I1 T(t)Bu()d’ll<-M(ll B*T(t)Bu(-)d-I[<-M). We will refer to these stability
notations as s., a.s., a.s.s., a.o.s., b.i.b.s, and b.i.b.o, stability respectively. Obvi-
ously the following implications hold: s.s. o.s., a.s.s. =) a.o.s, and b.i.b.s, stability

b.i.b.o, stability. We are interested in the converse implications.
THEOREM 6.1. Let {A, B, B*} be a canonical, self-adjoint, finite input, finite

output system. Then
(i) a.s. s.s.,

(ii) a.o.s. =) a.s.s.,
(iii) b.i.b.o, stability a.s.s.

Proof. By the state space isomorphism theorem we may as well assume that
the system is given in the spectral representation.

(i) To prove s.s. it suffices to show that the spectrum of A is restricted to the
negative half-axis. Since the realization is o.s., by assumption we have for each x in
H, IlB*T(t)xll<--Mx, and hence for each C" there exists an M such that
(B*T(t)B, )<=M or IIT(t/Z)BII2< M. Since this expression remains bounded
for all we have (B(A)*B(A):, se) 0 a.e. with respect to/ for A >0. Thus for
A>0, rank R(A)=0 a.e. with respect to . Hence by Fattorini’s result,
((0, oo)) o.

(ii) Assume a.o.s., this implies o.s. and hence by (i) s.s.. We will show that
0 e o-p(A) is impossible. Assume 0 e o-p(A) and let Eo E({0}) where E(. is the
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spectral measure of A. Thus Eo : 0. By controllability there exists a e C". such
that EoBO. By a.o.s., B*T(t)EoBO and hence also (B* T(t)EoB,, )-0.
But T(t)EoB EoB and hence (B*T(t)EoB, :)= ]lEoBsCl] > 0, a contradiction.
Hence 0 o-,(A) and Eo =0. Let x be in H. To prove T(t.2x -.0 it suffices to show
by self-adjointness that (T(t)x,x)-O. Now (T(t)x,x=I_ e"’(E(dA)x,x). Since
Eo 0 the measure (E(.)x, x) of {0} is zero. The result follows now by Lebesgue’s
dominated convergence theorem.

(iii) Assume the system is b.i.b.o, stable. This implies B*T(t)B is an n x n
matrix with Ll(01oo) entries. Since B*T(t)B is continuous we have
(B* T(t)B, )- 0 for all s C". By previous arguments this implies a.s.s.

7. A counterexample. Consider the scalar input/scalar output system
defined by

1[ 0
0 X,,+I(/)J -t-- 1

Y(t) 2
1

Xzk(t)
k=l (2k-1)

n=1,3,5,..=>,

This system is clearly controllable and observable and realizes the weighting
pattern

COS
2k-l"w(t- o’)

1
=1(2/-- 1)

This system is of the form (A, b, b) with A skew-adjoint. Let a,, n 1, 3, 5,.
be a real sequence and consider also the system

[2,,(t)] [ sinh2a, l+2sinh2a,][ z,(t)] _[--sinhc,]2,+1(t) 1-2sinh a -sinh 2a, _l z,+l(t)
+

cosh a, ju(t),
n=1,3,5,...

y(t)
1

1)=1 (2k-
+ (sinh a,)z2(t)+(cosh a,)z2+l(t)].

This system is controllable and observable, realizes the same weighting pattern as
the previous system, but is of the form (A, b, Zb) where Z is self-adjoint,
idempotent, and ZAE A*. In this case the transformation relating x and z is

n=1,3,5,....
sinh a, cosh an J Xn+l Zn+l

This is a bounded map if and only if the sequence a, is bounded. Thus we see that
the given weighting pattern admits a realization of the form (A, b, Eb) with
Y_.AY_, A* which is not similar to the normal symmetric realization displayed
above. Moreover, we see that any two sequences {a,}7=1 and {/3,}7=1 such that
{(a. -/3,)} is not bounded generate realizations of the form (A, b, Eb); EAE A*
which are not similar.
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LINEAR QUADRATIC DIFFERENTIAL GAMES
IN A HILBERT SPACE*

AKIRA ICHIKAWAt

Abstract We consider linear quadratic games in a Hilbert space. The system equation is linear
and involves an unbounded operator which generates a strongly continuous evolution operator (or
semigroup). We show that the existence of a solution to a Riccati integral equation implies the
existence of a saddle point for the closed-loop game, and that the former is guaranteed if there exists a
unique open-loop saddle point. We also consider quadratic games on an infinite interval.

1. Introduction. Let Hi, 1, 2, 3, be real Hilbert spaces. Consider a linear
differential system

(1.1) A (t)x / B(t)u + C(t)v,

(1.2) x(to) Xo HI,

and a payoff functional

(1.3) J(u,v)=(FX(tl),X(t))+ [(Wx, x)+(Uu, u)+(Vv, v)]dt.

The inner product of the space H will be denoted by (.,.) and the norm by I" ],
while x(t) represents the state of the system in H, and u, v are control functions
with values in H, H, respectively. A(t) is a closed linear unbounded operator
whose domain D(A(t)) is dense in H. We assume that A(t) generates a strongly
continuous evolution operator (or two-parameter semigroup) S(t, s), >= s >- O, on
H1. The operators B(t): HzH1, C(t): H3H1 are linear and uniformly
bounded on [to, tl]. The operators F, W(t) on H1 are self-adjoint and nonnegative
definite. U(t), U-(t) on H2 are self-adjoint and positive definite, while
V(t), V-l(t) on H3 are self-adjoint and negative definite. The controller u is the
minimizer of J(u, v), and the controller v is the maximizer.

We define a solution of (1.1), (1.2) corresponding to locally Bochner integra-
ble functions u(t), v(t) by

(1.4) x(t) S(t, to)Xo+ S(t, )[B()u(’)+C()v()] dr.

Here the integral is in the sense of Bochner (see [5]). We also define a solution
corresponding to closed-loop controls u- b(t, x), v- d/(t, x) by the solution of
the integral equation

Let I [to, tl] be a fixed interval, and let L(I; H) denote the space of strongly
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measurable functions y(t)6 such that

I, ly(t)l dt< o0.

Then Lz(I; Hi) is a real Hilbert space with an inner product (.,.) defined by

(y, z)= Jx (y(t), z(t)) dr.

The norm in L2(I; Hi) will be denoted by I1" II. We take admissible controls for the
open-loop game to be L2(I; Hi )-functions, and for the closed-loop game to be
{4(t, x), q(t, x)}, such that (1.5) has a unique solution. Our problem is to seek a
saddle point (or an optimal pair) ti, 5 which satisfies

(1.6) J(ffl, ))<-J((l, )<=J(u, O)

for any admissible controls u, v. The number J(ti, 5) is called the value of the
game, if it exists.

The optimal control problems with quadratic cost in a Hilbert space were
studied by several authors [4], [6], [7]. R. Temam [9] and Curtain and Pritchard [3]
considered Riccati equations in an infinite-dimensional space, which are related to
optimal control and filtering. A. Benssousan [1] studied differential games in a
Hilbert space. His system is very general, and the results are similar to the present
paper. But our approach is different from his and based on [4], [7], [3]. Our results
are more general than [1], in the sense that the operator K(t) (given in (2.1))
characterizes the saddle point and the value of the game, and that we do not have
to solve a decoupled system of equations. The results on quadratic games in a
finite-dimensional space are given, for example, in [8]. N-person quadratic games
are discussed in a recent paper [2].

2. Quadratic games with closed-loop control. We consider the system (1.1),
(1.2) and the payoff functional (1.3). Admissible controls are closed-loop control
laws b(t, x), ,(t, x) which give a unique solution to (1.5).

THEOREM 2.1. Suppose that there exists a unique strongly continuous linear
self-adjoint operator K(t) >= O, I, satisfying

(2.1) g(t)= S*(h, t)fSr(tl, t)+ S*r(’, t)[W(’)+K(’)D(r)K(’)]Sr(r, t) dr,.

or, equivalently,

f," *( t)[ W(r) K(’)D(’)K(’)]S(’, t) dr.(2.1)’ K(/)= S*(/1, t)FS(h, t)+ S r,

Here D(t)=B(t)U-l(t)B*(t)+C(t)V-l(t)C*(t), and S(s,t) is an evolution
operator generated by A(s)-D(s)K(s). Then there exists a unique optimal pair
given by

((t) U-l(t)B#(t)K(t)x,
(2.2)

O(t) V-(t)C*(t)K(t)x.
Moreover, the value of the game is given by (K(to)Xo, Xo), and the optimal trajectory
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(t) is expressed by

(t) SK(t, to)Xo.

Remark 2.1. Known results on evolution operators are summarized in [3].
Remark 2.2. The nonnegativity of K(t) is necessary since

0 _-< s(o, 0) -< s(a, ),

and since the existence of K(t) on some interval implies the existence of an
optimal pair on the same interval.

The proof of the theorem involves several steps. First, consider a linear
control problem

f(t)x + C(t)v,
(2.3)

with
X(to):Xo,

J(v)=(Fx(tl),x(tl))+ [(V(t)x(t),x(t))+(V(t)v(t), v(t))]dt,

where F >= O, W(t)>-0 and V(t)< 0. Here v tries to maximize J(v). Let T(t, s) be
the evolution operator generated by A(t), and let L(t) be a strongly continuous
linear operator.

LEMMA 2.1. Let Q(t) be a self-adjoint operator defined by

(2.4) Q(t) T(tl, t)FT,(tl, t) + I," T(r, t)[ ’v(r) + L *() V(’)L(’)]Tt (’, t) dr,

where %.(s, t)is generated by f (s) + C(s)L(s). Then Q(to)Xo, Xo) gives the costJ(v)
corresponding to the control v L(t)x.

Proof. The unique solution of (2.3) corresponding to v L(t)x is given by

(2.5) x(t) TL(t, to)Xo.

Consider the following:

(Q(t)x(t), x(t))= (FTL(t,, t)x(t), T(t,, t)x(t))

Using the identity

we obtain

([ ffV(’)+ L*(T) V(’)L(’)]TL(’, t)x(t), TL(’, t)x(t)) d’.

T(s,t)x(t)=x(s),

(Q(t)x(t), x(t)) (Fx(t,), X(tl))

+ [(ff’(’)x(’), x(’)) + (V(z)L(T)x(), L(z)x(r))] d

(FX(tl), X(t,)) + [( V(’)x(7"), x(7")) + V(7")o(’r), v(’))] d’.

Setting to, we arrive at our result.
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LEMMA 2.2. Suppose that there exists a strongly continuous linear self-adjoint
operator I(t) satisfying the following"

/(t) T*(h, t)FT(h, t)+ T*(r, t)[ITV(r)-I(r)D(r)(r)
(2.6)

L *(r)C* (r)/(r)- l(r)C(r)L(r)]T (r, t) dr,

where D2(t)= C(t) V-’(t)C*(t). Let O(t) be defined by (2.4). Then

g(t) >= Q(t) for any [to, tl].

Proof.

I(t)-Q(t)= T(r, t) [/(r)D=(r)/(r) + L *(r) C*(r)g(r) +/(r)C(r)L(r)

+L*(r)VL(r)]T,(r, t) dr

T*(r, t)[L(r) + V-l(r)C(r)g(r)]* V(r)

[L(r) + V-’(r)C*(r)I(r)]TL(r, t) dr

_-> 0, since V(t) < 0.

The integral equation (2.1) corresponds formally to the differential equation

I(t) =-[A(t)-D(t)K(t)]*K(t)-K(t)[A(t)-P(t)K(t)]- W(t)
-K(t)D(t)K(t),

(2.7)
K(h)=F.

We can rearrange this into

k(t) -A*(t)K(t)-K(t)A(t)- W(t)+ K(t)D(t)K(t),
(2.7)’

K(t,) F,

and

/(t) -[A (t) + P(t)]* K(t)- K(t)[A (t) + P(t)]

W(t) + K(t)D(t)K(t) + P*(t)K(t) + K(t)P(t),

K(h)=F.

Here P(t) is a strongly continuous linear operator. The integral equation (2.1)’
corresponds formally to (2.7)’. The integral equation corresponding to (2.7)" is
given as follows:

K(t) S*p(tl, t)FSp(h, t)+ S*p(r, t)[W(r)-K(r)D(r)K(r)
(2.1)"

P*(r)K(r)- K(r)P(r)]Sp(r, t) dr,

where S,(s, t) is generated by A(s)+ P(s). The equivalence of (2.7)’, (2.7)’ and
(2.7)" is trivial, their meaning aside. We shall show-the equivalence of (2.1), (2.1)’
and (2.1)".
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LEMMA 2.3. Let M(t) be a strongly continuous linear self-ad]oint operator.
Define for each [to, tl],

N(t) *(’, t)M(z) (’’, t) dz

and

IQ(t) *(z, t)M(’) ,(’, t) d’.

Here (, t) is generated by A(t), and p(Cr, t) by (t)+P(t). Then

(2.8) N(t) =/(t)- p(-, t)[P*(’)N(r)+ N(’)P(r)]p(r, t) dz.

Proof. Let

(t) *(z, t)M(’)(r, t) dz.

First, we shall show

(2.9) (t) N(t)+ (z, t)P*(z)N(’)(’, t) d.

We use the relation [3]

(2.10)

Then

,(’, t)= ’(-z t)+ ]P(z, t)P(’)]Pp(’, t) d’.

Here we have used Fubini’s theorem for the second equality and the semigroup
property (z, t)= (z, s)(s, t) for the third equality. Now we claim"

(2.11)
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+ j" r’*e(’, t)P*(s)N(s)[ ’(s, t)+ I, J"(s, -)P(-)e(’, t)dr] ds

1

(, t)(le(,%(, tl + (s, tle*(sl(sl(s, t as

R.H.S.

Here we have used Fubini’s theorem and (2.10). Finally, consider

N(t)-(t)= [" *(, t)M()(, t)d-f," (, t)M()(r, t)d]
+ [ " (, t)M()(, t)d-," *(, t)M()(, t)d]

=I+I.

(s, O*(s*(r, s(l(r, slY(s, tl aas

Similarly, we can show

e(s, t)P*(s)[ I’ *0-, s)MO’)(-, s)dr] (s, t)ds

*e(s, t)P*(s)N(s) (s, t) ds.

*e(’, t)IQ(’)P(’)e(’, t) dr.
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Hence

N(t) ?(t) I + I:

*e(r, t)P*(r)N(r) (’r, t)dr

*p(r, t)N(r)P(r) ,(r, t) a

p(’, t)[P*(r)N(r)+ N(r)P(r)]p(r, t) dr.

The last equality follows from (2.11). This completes the proof.
Using Lemma 2.3, we can show the equivalence of (2.1)’, (2.1)’ and (2.1)". We

shall prove this only for F-- 0. Since M(t), fi (t), P(t) are arbitrary, we take

M(t) W(t) + K(t)D(t)K(t),

and (t, s) to be the evolution operator generated by fi(t)= A(t)-D(t)K(t).
Here K(t) is the solution of (2.1). Then the definition of N(t) gives the relation

(2.12) K(t) j
tl

S*r(r, t)[ W(r) + K(r)D(r)K(r)]Sr(r, t) dr.

The relation (2.8) states

(2.13) K(t) S*p(r, t)[ W(r) + K(r)D(r)K(r) P*(r)K(r)

-K(r)e(r)]&(, t) &,

where Sp(r, t) is generated by A (r)- D(r)K(r) + P(r). If we substitute D(t)K(t)
for P(t) in (2.13), we obtain (2.1)’ with F 0. If we substitute D(t)K(t) + P(t) for
P(t), we find (2.1)" with F= 0.

Remark 2.3. Lukes and Russell [6] considered an integral equation of type
(2.1)’, while Curtain and Pritchard [3] constructed a solution to an integral
equation of type (2.1). But the one implies the other, and two integral equations
are equivalent.

LEMMA 2.4.Consider the control problem (2.3) with fi (t), ff’(t) given by

(2.14)
A (t) A (t)- D,(t)K(t),

lYe’(t) W(t) + K(t)D,(t)K(t),

where K(t) is the solution of (2.1),.and Dl(t) B(t)U-l(t)B*(t). Then K(t) satisfies
the integral equation (2.6).

Proof. We shall prove this assertion for F 0. This is an immediate conse-
quence of (2.13) when we set

P(t) D:(t)K(t) + C(t)L(t).
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LEMMA 2.5. Consider the control problem (2.3) with A(t), W(t) given in
(2.14). The control law

6(t) V-l(t)C*(t)K(t)x

is optimal, if K(t) is the solution of (2.1).
Proof. Since K(t) satisfies (2.6), we have, in view of Lemma 2.2, that

K(t) >-_ Q(t)

for each L(t). As in [3], we can construct a sequence of strongly continuous linear
Operators L,(t) such that the corresponding operators Q,(t) satisfy

Q(t) <- Q(t) <=.
_

Q,(t) <-_

Since Q(t)<= K(t) for each n, Q(t) converges to some operator Qo(t)<-K(t).
But Qoo(t) corresponds to a unique optimal control, so that we have

Qo(t)K(t).

Hence Qoo(t)- K(t).
LEMMA 2.6. The control law

a(t) -U-I(t)B* (t)K(t)x

is a unique optimal control for the control problem

ic =(A(t)-D2(t)K(t))x + B(t)u,

x (to) Xo,

and

J(tl) (fx(tl), x(tl)) + [([ W(’) + K(’)D2(’)K(’)]x(’), x(’))

+ (U(’)u(’), u(’))] dr.

This is the exact counterpart of Lemma 2.5, and therefore the proof is omitted.
Proof of Theorem 2.1. The theorem follows directly from the preceding

results. In fact, Lemma 2.5 gives

and Lemma 2.6 tells us

J(a, e)<-J(u, ).

The relation (K(to)xo, Xo)=J(tL 5) follows, for example, from (2.4) with L(t)
=-D_(t)K(t) and the observation that K(t)= Q(t) for this particular L(t).

3. Quadratic games with open-loop controls. We consider the same differen-
tial system (1.1), (1.2) and the payoff functional (1.3). Admissible controls are now
L(I; H)-functions. Our solution of the system (1.1), (1.2) is defined by (1.4).
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(3.1)

Define operators P, P1, O and O1 by

(Pu)(t) S(t, r)B(r)u(r) d’,
to

P,u (Pu)(t,),

(Ov)(t) s(t, )c() v() d, Ov =(Ov)(t,),

u L2(I; H.),

J(u, v)--- (F[PIu + Ov + r], Pu + O,v + rl)

+(W(Pu+Ov+r),Pu+Qv+r,)+(Uu, u)+(Vv, v)

(3.3) ((P* FP, + P* WP+ U)u, u) + 2(P* F(Ov + r), u)

+ 2(P* W(Ov + r), u)+ ((Q*FQ + O* WO + V)v, v)

+ 2(Q* Fr + O* Wr, v) + Wr, r) + (Fr,, r).

Here * denotes the adjoint of an operator.
THEOREM 3.1. Assume that
AI" V+ Q*FQ + Q* WQ < 0 on L2(I; H3)

holds, then there exists a unique optimal pair fi, satisfying the relation

a(t) u -(t)N*(t) s*(t,, t)Fx,.o(tl) + S*(-, t) Wx.o(r) d-

(3.4)

[ fl ’1 (r,t)Wxa(-)dO(t) =-V-’(t)C*(t) S*(t, t)Fx,e(t,)+ S*

where x,e(t) is the optimal trajectory of (1.1), (1.2).
Proof. Under Assumption A1, J(u, v) is strictly convex and lower semicon-

tinuous in u, and strictly concave and upper semicontinuous in v. Hence there
exists a unique saddle point, which is given by the solution of

V,J(u, v) 2(P* FP1 + P* WP + U)u + 2P* F(Qv + rl) q- 2P* W(Qv + r) O,
(3.5)

VzJ(/,/, v)-- 2(Q*FQI +Q*WQ+ V)v+2Q*F(P,u +r)+2Q*W(Pu +r) 0.

Then, P, 0 e B[L2(I; H;); L2(I; H,)], 2, 3, and P, O, e B[L2(I; /-/); H,],
i= 2, 3. Here B[X; Y] denotes the set of linear bounded operators mapping X
into Y. Let r(t) S(t, to)x,,, r r(t); then r(t) L2(I; H). We denote by x,,v(t) the
solution of (1.1), (1.2) corresponding to a control pair {u, v}. Then we have

(3.2)

and

x,.v(t) r(t)+(Pu)(t)+(Ov)(t)

Here VlJ(u, v), VJ(u, v) are partial Fr6chet derivatives of J(u, v) with respect to
u, v, respectively. Thus {t/, 5} satisfies .the following:

a U-I[p*F(P, fi + 01 + r,) + P* W(Pa + OO + r)],

V-[O*F(Ot + O, + r,) + O* W(Pa + OO + r)].

v e L2(I; H3)
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Hence we have

a t) -U-l(t)[P*Fxa(tl)+ P* Wx,e](t),
(3.6)

5(t) V-(t)[QFx,,(t) + Q* Wx,,](t).

Since we have relations such as

(P* h)(t) B*(t)S*(fi, t)h, h H,

(P*y)(t) B*(’)S*(’, t)y(’) dr, y(t)e L(I; H),

we may rewrite (3.6) to obtain (3.4).
Remark 3.1. For the existence of an optimal pair, we require only that

V+ Q*IFQ1 + Q* WQ <- O.

Let s I be arbitrary, and let L -[s, h]. We define operators P, P, Q and
Q on L(L;/-/) as in (3.1), with to replaced by s.

LEMMA 3.1. Assumption A1 implies that

(3.7) V+ Q*sFQls + Q* WQs < O, s I.

In view of the above lemma, quadratic games on L for each s I are
well-defined and have a unique optimal pair for any initial value h H1. Let
x(., s, h) denote the unique optimal trajectory with initial condition h for the
quadratic game on L. We define an operator K(s), s L on H by

(3.8) g(s)h S*(tl, s)Fx(t, s, h)+ S*(z, s) W(z)x(’, s, h) dr.

We shall rewrite the optimal pair (3.4) in terms of this operator K(s). Since
x(., to, xo) restricted on L is again optimal traiectory on L corresponding to the
initial value xl,s, o, Xo), we arrive at the following relation:

x(z, s, x(s, to, Xo)) x(’, to, Xo), " 6 L.
Hence (3.4) has an equivalent form

a(t) -U-(t)B*(t)K(t)x(t, to, Xo),
(3.9)

O(t) V-(t)C*(t)K(t)x(t, to, Xo).

LEMMA 3.2. K(t), L is a linear bounded self-ad]oint operator mappingH
into itself. Furthermore, K(t) >= O, and for any ho, h H, L

(K(t)ho, h,)=(Fx(t,, t, ho), x(t,, t, h,)) + [(W(r)x(r, t, ho), x(’, t, h,))
(3.10)

+(u()Uo(), u())+(v()Vo(), v,())] d.

Here {u,, v,}, 0, 1, is an optimal pair on I, for the initial value h,.
The proof is similar to Theorem 2 in [4]. Summing up, we have the following.
THEOREM 3.2. Consider the quadratic game (1.1), (1.2) and (1.3). Let

Assumption A1 hold. Then there exists a unique optimal pair , given by (3.9),
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and

J(gt, ) (K(to)Xo, Xo).

Below we shall examine the properties of K(t) and show that K(t) satisfies
the Riccati integral equation (2.1).

LEMMA 3.3. Let {u,, v,} be the optimal pair for the quadratic game on L, I.
Then {u,}, {v,}, I, are uniformly bounded, or, equivalently, K(t) is uni]:ormly
bounded in t.

Proof. Suppose the contrary. Without loss of generality, we can assume the
existence of {-,} to, ’, e I, such that at least one of {u, u,o}, {v v,.} tends to
+co in norm. By the saddle point condition, we have

(3.11) J,(u,, )<=J,(u,, v,)<=J,(ft, v,),

where J,(. ,. is the payoff functional on [-,, td I.. We note that ti, t5 is the
optimal pair given in Theorem 3.2, and we understand ti, t5 in (3.11) to be
restrictions of u,v on [’,,t,]. If {u,},{v,} are bounded, then so are
J,(u., O),J.(ft, v,). Since J.(bi, /9,) $--CX3 as IIv.ll.-,/oo, and J,(u., )’[ +oo as
Iluollo-, /oo, we have in either case a contradiction. Here I1" I1o is the norm in
L=(I,;/-L).

LEMMA 3.4. K(t)--> K(s) strongly as ’[ s.

Proof. Let to < ’2 < ’ < h, and let Z(", ), 1, 2, be the payoff functional on
[-, tl]. The optimal pair on [-, h] will be denoted by {u,, v}. The controls u, v are
defined on [-, h], but we extend them on [’2, h]. Thus expressions J2(u,, v2),
J2(u, Vl) are meaningful. Similarly, when we write J(u, v2), J(u, v), we under-
stand u=, v to be restrictions on [’1, tl]. Consider

(3.12)

Jz(u2, v2)> Jz(u2,/9,) (Fxz,,(tl, ’r2), Xz,l(t,, "/2))

"- [( W()x2,1(’r, "/’2), x2,1(, ’2)) -" (U(’r) u2(’r), u2(’))

+ (V(r)vi(r), v(r))] dr

(Fx2,(tl, r), x2,1(t1,

+ [(w()x,,(, ), x,,()) + (u()u(r), u())

+ (V(r)Vl(r), vl(r))] dr

where xij(’, ’i) denotes the trajectory on [z, tl] corresponding to the control pair
u, vj. Note that, using decomposition as in (3.2), we obtain

X2,1(’r ’r2)-x2,1(’r, 7"1) -[- IS(7", "/’2) S("/’ 7"1)]x0-- S(7" tr)B(cr)u2(tr) do"

X2,1(7", 71) -" Of’("/’)
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and

’rl

x2,,(tl, ’)= x2,,(fi, ’) +[S(fi, ’)-S(6, ’l)]Xo + S(6, cr)B(o’)u2(o’) dtr

X2,,(t,, "r) + ft.
Then, from (3.12),

Jz(uz, v2) (F[xz,I(tI, 71) + fl], Xz,,(fi, ’,) +)

+ [(g(u(, u(+(v(v(l, v(ll] a

+ (V(r)v(r), v())] d+

L(u, v) +

J(u, v) + %

where

V (Ffl, )+2(Fxz.l(tl, ’), )

+ [(W(r)a(r), a (’)) + 2(W(r)x2,,(r, rl), a(r))] d

+ [(w()x,,(, ), x,,(, ))+(u()u(), u())] d.

Since {u, v}, i= l, 2, are bounded by Lemma 3.3, we have an estimate

and hence

Similarly, we can show that

(3.14) J(u, v) -< L(u,, v,) + ,/’

for some y’ with lY’] O(-,- ’2). Combining (3.13), (3.14) gives us our result.
LEMMA 3.5. If the system (1.1), (1.2) and (1.3) is time-invariant, namely,

A(t)- A, B(t)- B,"’, then K(t) is nonincreasing in t, i.e., K(t)>=K(s)>-0 if
s>t.
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Proo[. Since K(t) depends on tl, we denote it by K,,(t) to be precise. Since the
system is time-invariant, it is easy to see that K,,(t) K,,__,(O). Hence it is sufficient
to show that to-< sl < s2 _<- tl implies

0 <= Jl(u,, vl) <- Jz(u2,

where J(. ,. ), i= 1, 2, is the payoff functional on [to, si] defined by (1.3) with
t si, and {u, v} is the optimal pair. As in Lemma 3.4, consider

L(u, v) <-_ L(u,

(Fxz,,(s2), Xz,,(s2)) + [(W(’)xz.,(’), x2,,(’)) + (U(’)u2(’), u(’))

+ (v()v,(), v())] &

(Fx2,,(s,), x2.,(s,)) + [(W()x2,1(r), x2,1()) - (U("r) [,2(’), u2("r))

(3.15) +(Vv(r), (’))] dr

-(Fx2,,(s,), x,,(s,)) + [(Fx2,1($2), x2,,($2))

+ [(W(r)x,(’), x2,(r)) + (Uu(’), u2(’))] dr

J,(u, v,)-(Fx,,(s,), x,,(s,)) + J,(u)

>=L(u,, v,)-(Fx,,(s,), x,,(s,)) + L(u).
Here

L(u) (ex,,(s), x,,(s))

+ [(w()x,,(), x,,()) + (u()u(), u())] &.

Consider the control problem

k=Ax +Bu,

x(s,) x,,(s,),

with a cost functional

(3.16) J,z(u)=(Fx(s2), x(s2))+ [(W(-)x(-), x(’))+(Uu(’), u(-))] dr.

It is known [3] that there exists a unique minimizing control given by

gt,_(t) -U-’(t)B*(t)R (t)x,

where R (t) is the solution of

R(t)= S*(sz, t)FS(&, t)+ S*(’, t)[W(’)+R(’)D,(’)R(T)]S(’, t) dr.

S(’, t) is the evolution operator generated by A(’)-DI(’)R(’), and DI(r).
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B(z)U-’(z)B*(-). Note that

F<=R(t)<-_R()

Since

and

we conclude

if t>’, t, ’e[sl, s2].

J12(liaz) min J12(b) J,z(u2)

J,2(/,2) --(R(s,)x2,1(s,), X2,,(S,)),

J,,_(u) >- (R (Sl)X2,1(Sl), x2,1(Sl))

>-_ (Fx.,(s,), x,,(s,)).

Thus we have shown through (3.15) that

L(u, v)>=L(u,, v,).

From Theorem 3.2, the optimal solution x (t, to, Xo) is given by the solution of

Y (A (t)- D(t)K(t))x,
(3.17)

x(to)=Xo.

Let $x(t, s) be an evolution operator generated by A(t)-D(t)K(t). Then

x(t, to, Xo)= S(t, to)Xo.

THEOREM 3.3. The operator K(t) defined by (3.8) satisfies the Riccati integral
equation (2.1):

K(t) S(t, t)FS(tl, t)+ $-, t)[ W(-)+ K(r)O(r)K(r)]S,(r, t) dr.

Proof. Let ho, h e H. Then

x(’, t, h,)= S(’, t)h,, u,(’) =-U-(r)B*(r)K(r)$:(", t)h

and

v,(’)=- V-(’)C*(r)K(r)S(r, t)h,,

Hence (3.10) may be rewritten as

(K(t)ho, h,)= (FSK(t,, t)ho, St(t,, t)h,)

tl

+ ([ W(r)+ K(’)D(’)K(’)]S(’, t)ho, S(’, t)hl)dr.

i=0, 1.

Since ho, h, are arbitrary, we obtain (2.1).
Remark 3.2. This theorem tells us that (18) in [4] is essentially equivalent to

the Riccati integral equation in [3].
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4. A quadratic game on an infinite interval. Consider the time-invariant
system

(4.1) 2 Ax + Bu + Cv,

(4.2) x(0) Xo,

with payoff functional

io(4.3)
J(u, v)= [(Wx, x)+(Uu, u)+(gv, v)] dr.

We take the sets of admissible control functions to be L2(R+;/-L). In general,
J(u, v) may not be finite. But, if we impose a strong condition

A2: The semigroup S(t) generated by A is exponentially stable, namely,

IS(t)l<-Me for some c > 0, M2->_ 1,

then J(u, v) is always finite (Lemma 4.1). A sufficient condition for A2 is given by

M

for some M, w > 0. Here R(1; A) is the resolvent of A, and

S, I; 0,--4<arg <r+4 0<4<-.
Define mappings P, O on L2(R+;/-L) by

(Pu)(t) S(t-r)Bu(r) dr,

(4.4)

(Ov)(t) S(t-r)Cv(r)

Then P, O6 B[L2(R+; H); L2(R+; H1)], i= 2, 3. This follows from Assumption
A2 and the following lemma.

LEMMA 4.1. Let x(t), k(t) be numerically-valued [unction in L2(R+), LI(R+),
respectively. Then the [unction defined by

y(t)= k(t-r)x(r)dr

is in L2(R+). Furthermore,
We further assume

A3: V+ Q* WO < 0 on L2(R +; H3).

Then we can derive results analogous to those in 2. We shall state results without
proofs.

THEOREM 4.1. Let Assumptions A2, A3 hold. Then there exist a linear
self-adjoint nonnegative time-invariant operator K and a unique optimal pair
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u, voo such that

uoo -U-1B*Kxoo,

voo V-’ C*Kxoo.
Here xoo is the optimal trajectory given by

xoo(t)= SK(t)Xo,

and S,(t) is a semigroup generated by A- DK. Moreover,

J(uo, vow) (Kxo, Xo).

THEOREM 4.2. The operator K satisfies the Riccati equation

(4.5) K S*,,(z t)[W+ KDK]Sc(z t) d-

which is independent of t. From (4.5) we can derive an inner product Riccati
equation

(KAho, h,) + (Kho, Ah,) + Who, hl) -(KDKho, h,) 0

for any ho, hi D(A ).
Remark 4.1. Since h D(A) implies h D(A-DK), xo(t)= Sc(t)Xo is

differentiable and satisfies

=(A -DK)x,

i(0) Xo,

if Xo D(A). Hence xoo(t) is a strict solution for each Xo6 D(A).
Remark 4.2. Assumption A3 implies A1 with F=O for each interval

/=[to, hi c R +. Hence there exists a unique optimal pair for (1.1), (1.2) and (1.3)
with F= 0. Let I, =[0, t,] with t, ’ oo, and let {u,, v,} denote the optimal pair.
Then, using Lemma 3.5, we can show that

and

K,. (t) - K strongly for each fixed t,

u, Uoo} in L2(R +" H)

Remark 4.3. It is known that differential game theory can be applied for
sensitivity design and control problems with uncertainty to obtain an upper bound
of the cost. Assumption A2 is very restrictive, but the results of this section may be
used to obtain an upper bound of the cost of a regulator problem (at least in a
finite-dimensional space).

Acknowledgment. The author would like to thank Professors V. Dolezal and
U. Haussman for their encouragement and helpful discussions.
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OPTIMAL CONTROL PROBLEMS IN SOBOLEV SPACES
WITH WEIGHTS*

CLAUDIA SIMIONESCU"

Abstract. We consider an optimal control problem in certain Sobolev spaces with weights used
systematically by F. TrOves in [1], [2]. The notations and definitions are the same as in [2] and [3].

(1)

(2)

1. Definitions and background. Let E be a real Hilbert space and let q(t) be a
real function with continuous derivatives that satisfies the condition:

(A) there exists a constant po>0 such that Iq’(t)l>-po for every real t.
If k is an integer (k Z), then @(q; E) denotes the Hilbert space obtained

by completing @(E) with respect to the structure defined by the Hermitian
product

(q’ $)E;q’k (e-q")Dkqg’ e-q<t)D’$)L2<E): I (e-"<’)D’ e-q<t)D$) dt.

Consequently, the norm of (q; E) is

In [2] the following results are shown:
(i) If k, he Z, h <-k, and q(t) verifies condition (A), then there exists a

continuous mapping from @(q; E)- h(q; E) such that

1
(3) [Ifll;.h < sup Ilf[l;q, for all f @(q" E),, Jq’(t)l-h

(ii) For each integer k 6 Z and each real function q(t) verifying (A), @(q; E)
is a space of distributions with values in E, that is,

’(q; E) c ’(E).

(iii) If k is an integer and k _-> 0, then @k(q; E) is the space of all (classes of)
measurable functions from R into E such that e-q)Dhu(t)L2(E) for every
O<=h<=k.

(iv) For each k Z, k =>0, @-a(q; E) is a space of distributions having the
property: if T -(q; E), then there exists k + 1 functions ga Lz(E) such that

T eqgo + D(eqgl) +" + D (e"g).

* Received by the editors June 27, 1974.

" Facultatea de Stiinte, Universitatea din Braov, Braov-Romania. Results presented in the
paper were obtained while the author was an IREX Fellow in the Department of System Science,
University of California, Los Angeles, California, 1973-1974.

(E) is the space of functions defined on the real line taking values in E, with derivatives of all
orders and compact support.
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(v) If A (t) Yd,(5(E, F))2, then f- A (t)f is a continuous linear mapping from
@k(q; E)- @k(q; F).

(vi) Let us consider two Hilbert spaces E and F, a positive constant Po and an
operator A (t) ,((E, F)). Then for every e > 0 and k Z, there exists a positive
function with continuous derivatives G, such that if a function q(t) satisfies the
inequality

]G’,[+po<=lq’(t)],
then A(t) is a bounded operator from @(q; E) @(q + Gk,; F) of norm less
than e.

2. Statement of the problem. Let us consider a real Hilbert space R and
suppose that

(a) 7r(u, v) is a symmetric bilinear continuous form on R,
(b) L(v) is a linear continuous form on
(c) a is a closed convex subset of 0//(the set of admissible controls), and
(d) -(v)= 7r(v, v)-2L(v) is a quadratic functional on
EXISTENCE AND UNIQUENESS THEOREM [3]. If theform 7r(u, v) is coercive on

-tl, then there exists a unique element u liar, such that

-(u) inf -(v)
6

(u is the optimal control).
Let V and H be two real Hilbert spaces, Vc H, V dense in H, and let the

injection V- H be continuous. We identify H to its dual so that if V’ denotes the
dual of V, we have Vc Hc V’.

We consider now the integro-differential operator

(4) P(t, D)= _, YL(t)D r, n 6 , r(t)6 ,((H, H)),

where @r(t) is a Hermitian operator and satisfies the condition:
(I) there exists a function b(t) e,. b(t)>0, such that for every g H,

(5) (B(t)g, g),, _-> b(t)llgll, for a R.

Let a(t; u, v) be a bilinear Hermitian continuous form on V x V such that for
every u, v V,

(II) ]a(t; u, v)]_-< kllull. I1 11, >0,
(III) a(t; u, u)-_>,,(t)llull v, c(t) >0 for all R.
We suppose that the mapping t-. a(t; u, v) is measurable.
Then there exists an operator A (t) G((V, V)) such that for all u, v V, we

have
a(t; u, v)= (A(t)u, V)v,

,(Lt’(E, F)) is a subspace of ,((E, F)).( ,(,(E, F)) is the space of all bounded continuous
operators from E into F which have continuous derivatives of every order with respect to t) and
contains all functions g(t) having the following property: for each integer r, => 0, there exists @, <
such that

for every real t.
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and consequently:
(IV) there exists a (t) > 0 such that

(A(t)u, u)v>-_a(t)llullv for all tR.

3, Results,

3.1. Consider a system governed by the integro-differential operator P(t, D)
defined by (4), such that the state y of the system is given by the solution of the
equation

(6) (A(t)y, u)v+(P(t,D)y, u),=(g+3v, u),, u V,

in the sense of scalar distributions. Suppose that 0//= V. Then we have the
following.

PROPOSiTiON 3.1. Ifp(t) is a malfunction that verifies the condition (A) and
(a) N e3(V; @(p; H)),
(b) g e @k(p; H),
(c) N V, V) is Hermitian and coercive,
(d) A (t) satisfies the property (IV),
(e) P(t, D) satisfies the property (I),
(f) the cost function is given by

(7) -(v) ][y(v)- za[[, + (Nv, V)v,

where

(8)

zd is an observation o]’ the state of the system and y(v) the solution o]: (6), then there
exists an optimal control v Vad of the system Vae is a closed convex set in V).

Proof. From Theorem 3.7 of [2, p. 119] it follows that there exists
(a’) a positive function G(t), G(t) C1, for every real and
(b’) for every k e Z the positive functions gk(t) Co and Gk(t) C are such

that if p’(t) >= g, for all R, and p + G verifies the condition (A), then for each
g e (p; H) there exists a unique solution y e @k(p + G; V) f-) @(p; H) of the
equation

(A(t)y, u)v+(P(t, D)y, u)n=(g, u), for all u V.

Let us consider v e V. Then Nv @(p; H) and from (b) we obtain g + Nv e
@(p; H) for every v e V.

Hence the equation

(A(t)y, u)v+(P(t,D)y, u),=(g+Jv, u),, u6 V,

admits in @(p+ G; V) f’l @(p; H) a unique solution y y(t, v) for each control v
which describes the state of the system at time t.

Let us consider the observation of the system as z(u) y(v), where is the
"observation" operator

@(p+G;V)f-l@k(p; H)- .
9( is a Hilbert space, and the cost function is defined by

-(v)-lly(v)-zll/(gv, ).



140 CLAUDIA SIMIONESCU

If we assume that is the canonical injection

:@(p+G; V)f3@(p; H)-@(p+G; V)ffl@(p; H),

then the cost function is

where z is the given observation z @(p + G; V)f3 @(p; H) and [1" ][, the
norm defined by (8).

Consequently we have

II(u, v) (y(u)- y(0), y(v)- y(0)), + (Nu, V)v,

L(.v) (z y(0), y(v)- y (0)),,

and then

The coerciveness of N implies the coerciveness of H. Then, by the existence and
uniqueness theorem it follows that there exists a u Vad, Vad a closed convex
subset of V, which minimizes -(v) and hence realizes the optimal control.

We know that u is an optimal control if and only if

(9) (y(u)-ze, y(v)-y(u)),+(Nu, v-U)v>-_O for all v V.e

which may be written

I, (e-(P+Dk(y(u)-- ze), e-’P+Dk(y(v) y(u)))vdt

+ fR (e-PD(y(u)-za)’ e-PD(Y(v)-Y(U)))dt+(Nu’ v-u)vO

or

(10)
f’ (D(e-2(P+O)D(y(u) za)), y(v)- y(u))v
R

+Ia (Dk(e-2pD(y(u)-z"))’ y(v)-y(u)).dt+(Nu, v-u)v>=O.

We now transform this expression by means of the adjoint state. For each
control v Vad we define the adjoint states Cl(V), c2(v)
@k(p + G; V)f3 @k(p; H) as being the solutions of the equations

(11) [P(t, D)+ A(t)]*c(v) D(e-2(P+)D(y(v) z.))
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and

(12) [P(t,D)+A(t)]*c2(v)=Dk(e-ZPDk(y(v)-z)).

Consequently,

(Dk(e-Z(P/)D(y(u) za)), y(v)- y(u))v

--([P(t, D) + A(t)]*cl(u), y(v) y(u))v

=(c(u), [P(t, D)+A(t)](y(v)-y(u)))=(c,(u), B(v-u))

(*c(u), v u),,,
where * is the adjoint of and
(D(e-PD(y(u) za )), y(v)- y(u))u ([P(t, D) + A(t)]*c2(u), y(v)- y(u))u

(c2(u), [P(t, D)+ A(t)](y(v)- y(u)))u (c2(u), (v- u))
=(*c,(u),v-u)..
Then we obtain from (10), (11) and (12),

(13) I. (*c(u). v-u),.dt+I. (*c(u). v-u). dt+(Nu, v-u),.>-O

for every v Vo and * (@’(p; H), V’) (@’k(-p; H), V’). Hence the
optimal control u is characterized by the inequality (13), where c(u) and cz(u) are
given by (11) and (12).

3.2. Let us consider the integro-differential operator

(14) P(t, D)= Z L(t)Dr,

where n N, g,(t) e g,((H, H)).
Suppose that N2(t) is Hermitian and satisfies condition (I), in other words,

that there exists a function b(t) g such that for every g 6 H and real,

(15) (2(t)g, g)u

Let V be the space of controls and let us consider a system governed by the
operator (14) such that the state y of the system is given by the solution of the
equation

(16) (A (t)y, U)v + (P(t, D)y, u)u (g + 3v, u),,
the sense of scalar distributions.

We have the following result.
PROPOSITION 3.2. If: p is a real function that verifies the condition (A) and
(a,) (V; @(p; H)),
(b,) g e @(p; H),
(Cl) N ( V, V) is Hermitian and coercive,
(d) A (t) satisfies the condition (IV),
(e) 3(t) satisfies the inequality (15), then we can lind a unique element

u Va c V Vacua closed convex set o] V) which minimizes the cost [unction
(17) if(v) -IlY(V)- zll$ / (Nv, V)v,
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where y is the solution of (16), zd is an observation of the state of the system and

Proo[. By virtue of a theorem of Trbves ([2, Thm. 3.7]) there exists:
(a") a function G(t)>-0 of class C and
(b") for every k Z, positive functions gk(t) Co and Gk(t) C such that if

p’->_ g and p + G verifies the condition (A), then for each g @(p; H) we can find
a unique element y @(p+G; V)f-] @+’(p; H) such that

(A(t)y, U)v+(P(t,D)y,u). =(g, u). for all u V.

From the hypothesis we deduce that (V; @k(p; H)) and consequently,
g + t) @(p; H). Hence we have a unique solution y y(t, v) of the equation

(A(t)y, U)v +(P(t, D)y, u). (g + lv, u).

that represents the state of the system at time for each control.
Let us suppose that the "observation" operator is the canonical injection

@(p+G; V)f-l@+l(p; H)@(p+G; V)f3@k+l(p; H)

and the cost function is

(18)

Then it follows from the same theorem that there exists a unique element
u Vau c V which minimizes -(v).

The optimal control is characterized by the inequality

(y(u)-zd, y(v)- y(u)). +(Nu, v-U)v>=O(19)

or by

or

for all v

IR (P+)D(y(u) z), e-("+)D(y(v) y(u))vdt

+ I. (e-’D+l(Y(U) za), e-"D+l(y(v)- y(u))), dt + (Nu, v U)v >= 0

IR (Dk(e-2(+)D(y(u) z)), y(v)- y(u))v dt

+ f (D+’(e-2’D+l(y(u)- z,)), y(v)- y(u)), dr’+ (Nu, v U)v >= O.

Let us introduce the adjoint states

d, Vae-. @k(p+G; V)f@k(p; H),

d2 V.e @(p+G; V)KI@k+’(p; H)
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as solutions of the equations

[P(t, D)+ A(t)]* dl(v)= Dk(e-2P+Dk(y(v)-zd)),

[P(t, D)+A(t)]* d2(v) Dk+’(e-ZPD+(y(v)-zd)).

Then we obtain

IR (dl(u)’ 3(v- u)) dt + I, (dz(u)’ 3(v- u)) dt +(Nu’ v- u)v>=O

and

where

(I* d(u), v u) dt + I (3" dz(u), v u), dt + (Nu, v u)v >-- O,

N* 6 (@’(p; H); V’)= (-k(-p; H), V’).

Acknowledgments. would like to thank Prof. A. V. Balakrishnan for many
useful remarks and for his constant encouragement. would like to thank Prof. H.
Fattorini for having the amiability to read the manuscript.
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ON SOME PROPERTIES OF MIN-MAX FUNCTIONS*

T. MATSUMOTO?

Abstract. Some of the properties of functions resulting from min-max operations are discussed.
First, an implicit function theorem involving min-max functions is proved. Then a formula for the
directional derivatives of the implicit function is given. It is shown that these results can be successfully
applied to some of the problems in differential games.

1. Introduction. During the course of a study in differential games, the
author was led to functions of the form

H(z, ’)= min max F(x, y, z, ’).
y Y xX

We will discuss some of the properties of such functions. We will first prove an
implicit function theorem for the equation

(1.1) H(z, -) O.

Namely, we will give conditions under which (1.1) uniquely (locally) defines a
function ’(z). We will then give a formula for calculating the directional derivative
of ’(z) in a direction g"

’(z + cg)- ’(z)
lim Dr(z ).
or>0

Finally, we will show how these results can be applied to some of the problems in
differential games.

2. Results. We first state a known result on the directional ditterentiability
of min-max functions.

THEOREM 1. Let (X, dx) and Y, d,) be compact metric spaces, and letZ be a
normed linear space. Let F(x, y, z) be a real-valued function continuous on
X x Y x Z, and let

G(y, z)= max F(x, y, z),
xX

M(y, z)= {x XIF(x, y, z)= G(y, z)},

H(z) min G(y, z), N(z) {y YIG(y, z) H(z)}.
yY

Suppose that the following hold:
(i) At a certain point Zo Z and for a certain g Z, the derivative

O
F(x, y, Zo + vg)
Ou

exists and is continuous in (x, y, ,) on X x Y x [0, c], c > 0.

* Received by the editors January 15, 1974, and in revised form July 4, 1974.
t Department of Electrical Engineering, Waseda University, Tokyo 160, Japan.
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(ii) M(y, zo) is lower semicontinuous in y with respect to inclusion, i.e., at each
yo and [or every e > 0 there is a > 0 such that d.(yo, y) < 6 implies

M(yo, Zo) U(M(y, Zo); e)= (x X[ inf
xo M(y,zo)

dx(xo, x) <

Then at Zo, the ]:unction H(z) is directionally differentiable in the direction g, and

(2.1)

DH(zo) --= lim H(zo
+ ,g) H(zo)

min max wF(x, y, zo),

where

gF(x’ Y’ Z)= [-uF(x’ Y’ Z+ ug)] ,=o"

Proof of this fact can be found in ]. Related results on rain-max functions
are found in [2]-[6].

Remark 1. Condition (ii) cannot, in general, be relaxed, as the following
example shows. Let

F(x, y, z)=x(y +z), X= Y=[- 1, 1].

Then

with

G(y,z)=]y+z[,

/{sgn (y + z)}
M(Y’ z) ].[_ 1, 1]

if y+z +0,
if y+z -0.

Hence M(y, z) is only upper semicontinuous in y at y 0 with z 0. It is clear that
for Izl-<- 1,

H(z) 0, with N(z) {-z}.

Clearly, then,

On the other hand,

[DH(zo)]zo=O.=, =0.

[gF(X, y, Zo)]g=, X,
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so that

min max --F(x, y, zo)/ max x max x 1.
yN(zo) xM(y, zo) Og I zo=O, g= xM(O, O) x[-l,1]

Remark 2. Even if condition (ii) does not hold, the following estimates are
valid"

(2.2) lim inf
,-0

H(zo + H(zo) => min min -:--F(x, y, zo),
/2 yN(z0) xM(y, z0) 0g

H(zo + vg)- H(zo) 0
(2.3) lim sup --< max max F(x, y, Zo).

v-O /’/ yN(z0) x/d(y,z0) 0g
>0

Remark 3. M(y, Zo) is automatically upper semicontinuous in y with respect
to inclusion, i.e., the inclusion

M(y, Zo) U(M(yo, Zo); e)

holds. Hence, if condition (ii) holds, then M(y, Zo) is continuous with respect to the
Hausdorff metric in y. We will later show that if M(y, Zo) is Hausdorff continuous
in y, then the function

(2.4) max F(x, y, zo)

is continuous in y (as a real-valued function), so that the formula (2.1) makes
sense. It is clear that the function defined by (2.4) is upper semicontinuous in y (as
a real-valued function), so that (2.3) makes sense. A similar statement is valid for
(2.2).

Remark 4. Since M(y, Zo) is always contained in a compact space X, upper
semicontinuity and lower semicontinuity with respect to inclusion are equivalent
to sequential upper semicontinuity and sequential lower semicontinuity, respec-
tively. More precisely, M(y, Zo) is sequentially upper semicontinuous in y at yo if

yyo, xxo and x6M(y,zo)

imply

Xo M(yo, Zo).

M(y, Zo) is sequentially lower semicontinuous in y at yo if, for every Xo M(yo, Zo)
and for every sequence {y} with y yo, there is a sequence {x} with

x6M(y,zo) and xxo.

CorollAry. Letcondition (i) hold. IfM(y, Zo) is a singietonset {re(y, Zo)} for
all y in a neighborhood of yo, then

(2.5) DH(zo) min F(m(y, Zo), y, Zo).

Proof. If M(y, Zo) is a singleton for all y in a neighborhood of yo, then it is

continuous in y. Hence condition (ii) is satisfied.
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Remark. The fact that N(zo) is a singleton does not ensure that the formula is
valid. For instance, in the example of Remark 1 after Theorem 1, the set N(Zo) at
zo 0 is the singleton set {0}. But the formula (2.1) does not hold.

Now, consider a real-valued function F(x, y, z, ’) continuous on XxX
x V(zo) x W(’o), where X and Y are compact metric spaces, V(zo) is a neighbor-
hood of a point Zo in a normed linear space Z, and W(-o) is a neighborhood of a
point ’o of the real line. Let

G(y, z, ’) max F(x, y, z, ’),
xX

M(y, z, ’)= {x 6 XlF(x, y, z, ’)= G(y, z, r)},

H(z, r)= min G(y, z, r),

N(z, )= {y 6 YIG(y, z, )- H(z, )}.

We will prove an implicit function theorem for

THEOREM 2. Suppose that

and that the following hold"
(i) The derivative

H(z, ’) O.

H(zo, to) O,

0
--F(x, y, z, ’)
0"

exists and is continuous on X x Y x V(zo) x W(’o).
(ii) M(y, z, ’) is lower semicontinuous in y with respect to inclusion [or each

(z, ) V(zo) x W(,,).

(iii) min min O---F(x, y, Zo, to) > O.
N(zo,’ro) xM(y,zo,’ro)

Then there is a neighborhood V’(zo)c V(z,,) of Zo and a continuous real-valued
function ’(z) on V’(zo) satisfying

H(z, ’(z)) =0.

Proof. It follows from Theorem 1 and conditions (ii) and (iii) that

H(zo, ’o + a H(zo, ’o)
DrH(zo, ’o) lim

min max F(x, y, Zo, ’o)> O,
N(zo,’ro) M(y,zo,’rO) ("["
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D, H(zo, "ro) -= lim
-0

0

H(zo + a H(zo, ’o)

=(-1) min max
N(z0,’O) xeM(y,zo,ro)

(- 1) O-F(x, y, Zo, ’o)

max rain @F(x, y, Zo, to) > O.
yN(zo,.ro xM(y,zo,.rO

It follows from condition (i) that the function

0(2.6) min min -rF(x, y, z, "r)
yeN(z, "r) xM(y,z,’r)

is lower semicontinuous in (z, r). Hence there are neighborhoods V’(z,,)c V(zo)
and W’(ro)c W(zo) such that the function defined by (2.6) is positive on V’(zo)
x W’(ro). Clearly, then, D,H(z, "r) and DH(z, r) are also positive on V’(zo)
x W’(-o). Hence, for each z in V’(zo), H(z, "r) is monotonically increasing with
respect to r on W’(ro), so that there is a unique r(z) satisfying

H(z, "r(z)) O.

In order to prove continuity of ’(z), let {zk}c V’(zo) be convergent to z, and let
{’(zk)} be the corresponding sequence:

H(z, r(z)) O, k=1,2,....

Since {r(z)} is bounded, there is a subsequence {z(z)} convergent to a r*. Since
H(z, z) is jointly continuous,

0 lim H(z,,, ’r(z,,))= H(z,

But, since -(z) is unique, we have

*= r(z).

Thus {T(Z)} has a unique accumulation point r(z), and hence it is, in fact, the limit
point of {r(z)}.

We next give a formula for the directional derivatives of the function z(z).
THEOREM 3. Let conditions (i)-(iii) of Theorem 2 hold. If, in addition:

(iv) O/Ov F(x, y, Zo+ vg, r) exists and is continuous on X x Yx[O, a]x W(ro),
a>O,

then z(z) is directionally differentiable at Zo in the direction g, and

(2.7) OF(x, y, Zo, "r(zo))/Og
Dg’r(zo) max min

mzo,.(o)) x(,z,,,.(zo)) OF(x, y, Zo, r(Zo))/O’r"
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Proof. By Theorem 2, r(Zo+ vg) is uniquely defined and continuous for
sufficiently small u. It follows from the mean-value theorem that

F(x, y, Zo + vg, r(Zo + vg)) F(x, y, Zo, r(zo))+ v.O---F(x, y, z’,
(2.8)

+(r(zo+ vg)-r(zo))-rF(X, y, z’, r’),

where z’ zo + Ovg, r’ r(zo) + 0*(r(zo + vg) r(zo)), with 0 < 0, 0* < 1. For every
y e Y and x M(y, zo, r(Zo)),

G(y, Zo + vg, r(Zo + vg)) => G(y, Zo, r(Zo)) + v-vF(x, y, Z r

(2.9)
+ (r(zo + vg) r(zo))-rF(X, y, Z

In particular, for y N(zo + vg, r(zo + vg)) and x M(y, Zo, r(zo)),

0 H(zo + ug, r(Zo + ug))= G(y, Zo+ ug, r(Zo + ug))

=> G(y, Zo, r(Zo)) + uo-F(x, y, z’, r’)

(2.10) + (r(zo + vg) r(zo));F(x, y, z’, r’)

0
>=v--F(x, y, z’, r’)

+(r(zo+ vg)-r(zo)) OT-F(x, y, Z’,
or

where we have used the fact that

G(y, Zo, r(Zo))>= min G(y, Zo, r(Zo))= O.
yeY

If condition (iii) is satisfied, for every y N(zo, r(zo)) and every x M(y, Zo, r(zo)),

0
-rF(X, y, Zo, r(Zo)) > 0.

Since N(z, r) is upper semicontinuous in (z, r) with respect to inclusion, M(y, z, r)
is upper semicontinuous in (y, z, r) with respect to inclusion, and since r(z) is
continuous, we have that for all sufficiently small u > 0,

0
(2.11) --F(x, y, z’, r’) > O,

Or

where y e N(zo+ ug, r(zo + ug)) and x M(y, z,,, r(zo)). Now, by a proposition
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which will be given shortly, the function

min OF(x, y, zo, "r(Zo))
xeM(y,zo,,r(zo)) IOT

is continuous in y. It then follows from (2.1 O) and (2.11) that for v > 0 sufficiently
small,

"r(zo + vg)-’r(Zo) <_ max rain
OF(x, y, z’, .r’)/Ov.

v ,,,(z,,+,(o+., ,,,(,zo,(z,,, OF(x, y, z’, -’)/a-

It follows from condition (ii) and a proposition below that the right-hand side of
the above inequality is upper semicontinuous in v at v O, so that

(2.12) lira sup
r(Zo+ vg)-’r(Zo) <= max rain _OF(x, y, Zo, "r(zo))/Og

-o v ,,,,-z,,)) x,,z,,.z,,, OF(x, y, Zo, "r(zo))/O’r"

On the other hand, it follows from (2.8) that for every ye Y and every
x 6 M(y, Zo + vg, "r(zo + vg)),

G(y, Zo + vg, "r(zo + vg))-- F(x, y, Zo, ’r(zo)) + vo-F(x, y, z’, "r’)

+ (’r(zo + vg)-7"(Zo))-rF(x, y, z’, ’r’)

-< G(y, Zo, ’r(zo)) +vo-F(x, y, z’, "r’)

+ (r(Zo + vg) r(Zo))F(x, y, z’, r’).

In particular, for y N(zo, -(Zo)) and x M(y, Zo + vg, "r(Zo + vg)),

H(zo + vg, (Zo + vg)) <= H(zo, r(Zo)) + vF(x, y, z’, r’)

((Zo + vg) "r(Zo))F(x, y, z’, ’).+

Since, for v sufficiently small,

H(zo + vg, "r(zo + vg)) H(zo, ’(Zo)) O,

we have, for v > 0 sufficiently small,

OF(x, y, z’, ,r’)/Ovr(Zo + vg) (Zo)
>(2.13) rain

v .zo+..,o+.g)) OF(x, y, z’, "r’)/Or

for all y N(zo, -(Zo)). Since M(y, z, r) is upper semicontinuous in (z, ’), with
respect to inclusion, (2.13) implies that

lim inf
"r(zo+ vg)-’r(Zo)

> min _OF(x, y, Zo, "r(Zo))/Og
.-.o v .(y,zo,(z,,)) OF(x, y, Zo, r(Zo))/O’r
v>O
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for every y N(zo, -(Zo)). This, together with (2.12), implies the desired formula
(2.7).

The following fact is proved in 1 ]. Since it plays an important role throughout
the paper, we will give a proof which is different from that of [1].

PROPOSITION. Let f(x, y) be a real-valued [unction continuous on X x Y,
where X is a compact metric space and Y is a metric space. Let M(y) be a compact
set-valued Junction which is always contained in X. If M(y) is continuous with
respect to the Hausdorff metric, then the [unction

(2.14) max f(x, y)
xM(y)

is continuous. Similarly,

min f(x, y)
x6M(y)

is continuous.

Proof. We will prove only the first statement. The proof of the second is
similar. It is clear that the function defined by (2.14) is upper semicontinuous. In
order to prove the lower semicontinuity, let {yk} be an arbitrary sequence with
yk - yo. Let Xo be an element of M(yo) such that

f(xo, yo)= max f(x, yo)
xM(yo)

holds. Since M(y) is continuous and hence lower semicontinuous, there is a

sequence {x} such that x M(y) and x - Xo (see Remark 3 after Theorem 1). It
is clear that

f(x, y) - f(Xo, yo),

so that for a given e > O, there is an integer K such that k => K implies that

If(xo, yo)-f(xk, y,)] <.
Hence, for k => K,

max f(x, yo) f(xo, yo) < f(x, y) + e
M(yo)

-< max f(x, y,,) + e.
xM(yk)

Since {yk} and e > 0 are arbitrary, we conclude that

max f(x, yo) =< lim inf max f(x, y).
xM(yo) Y-Yo xM(y)

3. Applications. In this section, we will show how the results of the previous
section can be applied to some of the problems in differential games. Consider the
linear system

(3.1) 2 Az + Bu + Cv,



152 T. MATSUMOTO

where z in R" is the state, u in U c R is the control of controller I, and v in
Vc R is the control of controller II. A, B and C are constant matrices with
appropriate dimensions. Let zr be the operator of orthogonal projection of R"
onto its linear subspace RX, and let

where y is a nonnegative real number. The objective of controller I is to steer an
initial state Zo of (3.1) to a point of T, whereas the objective of controller iI is to
prevent that from occurring. This problem is called the pursuit-evasion problem.
T is called the target set.

We will first look at the problem from controller II’s point of view. Let

and for 4’ in Bx, set

q(q, s) max min (O, zr eaS(Bu + Cv)),
vV uU

where ea is the fundamental matrix of (3.1). Let

(3.2) f(O, z, z) (, zrea’z)+ q(O, s) ds,

and assume that the following hold:
(i) q(O, s) is independent of q (written as (s));
(ii) there is a positive number 0 such that

ds

Condition (i) is very strong, but it is satisfied for several nontrivial examples [3],
[7]-[11]. Condition (ii) is a natural one for controller II to accomplish his
objective. Let

H(z) min max F(qJ, z, z),
-r[O, 0] qeB

which is still continuous. Controller II can prevent z Tfrom occurring, as long as
H(z) > 3’. Hence, if controller II can choose a control in such a way that

DrH(z(t)) --lim
H(z(t + a))- H(z(t)) >= O,

(3.3)
H(z(O)) >

hold, then he can prevent z e T from occurring. Theorem 1 can be used to
calculate the right derivative (3.3). Let

G(z, z)= max F(O, z, z),
eBx

M(’r, z) {q B,IF(q, "r, z)= G(’r, z)},

N(z) {z [0, O]]G(’r, z) H(z)}.
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It follows from condition (i) that

{ 7reA,Z }M(’r, z)= 1177.eA,zl ---{I//(7-, z)},

as long as 7reA’z 0. Hence M(-, z) is continuous in - if 7re"’z # 0 for " e [0, 0]. If
the admissible controls are right continuous, then

lim
z(t+a)-z(t)

Az(t) + Bu(t) + Cv(t),

so that Theorem 1 is applicable. The right derivative is given by

D,H(z(t)) min (q(r, z), rreA’(Az(t) + Bu(t) + Cv(t))).
"rN(z(t))

Details can be found in 1 1].
We will next consider the problem from controller I’s point of view. Let

(3.4) , A(t)z + B(t)u + C(t)v

be the dynamics, where A (t), B(t) and C(t) are matrices with the same dimensions
as before with their components continuous. In order to analyze the problem, we
distinguish two information patterns, i.e., the information available to each
controller. The information pattern is called open-loop if controller II first
chooses v(. on [to, oo), and controller I then chooses u(. on [to, oe) knowing the
v(’). The information pattern is called closed-loop if, at time t, controller II
chooses v(t) knowing (z(t), t), and controller I chooses u(t) knowing (z (t), t, v(t)).
It is, in general, extremely difficult to solve the closed problem directly so that one
sometimes makes use of the properties of the open-loop problem. The open-loop
problem is easier to analyze, since it can be characterized by support functions of
various sets.

Let 07/() be the class of all open-loop admissible controls of controller I (II),
and let

F(q, u(" ), v(" ), t, 7") (, rrcb(t + r, t)z(t))

+ (q, 7rdP(t + ’)(B(s)u(s) + C(s)v(s))) ds,

where u(. e 07/, v(" 72, and (.,-) is the fundamental matrix of (3.4). If o?/(72) is
the class of all measurable functions u(. (v(-)) such that u(t) U (v(t) V), and if
U (V) is compact and convex, then o?/ () is weakly compact. Since F(q, u(. ),
v(.), t, ’) is linear in (u(.), v(.)), it is weakly continuous. Hence

H(t, ’)= max max min F(O, u(. ), v(. ), t, ’)
OeB v(" )U u(. )eoll

makes sense and is continuous. It is clear that if H(t, ’)_-< 3’, then z(t) can be
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steered to T at time + r no matter what admissible (open-loop) control is chosen
by controller II. Let -(t) be the smallest value of "r satisfying

H( t, ’)= y.

If controller I can choose an admissible closed-loop control in such a way that ’(t)
is monotonically decreasing, then he can steer the initial state to T under the
closed-loop information pattern, since r(t) 0 if and only if z(t) T. In order to do
this, the right derivative

Dr’r(t)

is again important. This can be calculated by Theorem 3 under certain conditions.
Let

G(q, v(. ), t, ’)= min F(qt, u(.), v(. ), t. r),
u(-)e

G’(4, t, r)= max G(, v(" ), t, r),
(-)

M(q, v(" ), t, r) {u(" 6 R IF(q, u(" ), v(" ), t, ’) G(0, v(" ), t, ’)},

N(q, t, -) {v(" )6 [G(@, v(" ), t, -) O’(q, t, ’)}.

It is clear that M is independent of v(’), so that it can be written as M(q, t, r). If
upper semicontinuity and lower semicontinuity of M(q, t, ) and N(q, t, -) are

understood in the sense of weak convergence, everything remains valid. Now an

important assumption of Theorem 2 and Theorem 3 was the continuity of
M(q, t, -) and N(q, t, -) with respect to q. This condition is satisfied if one assumes
the following:

(iii) For each q in Bx and for each interval It, + -], the formula

min (q, r(t + -, s)B(s)u(s))=(q, r(t+’, s)B(s)u(s; b, t, r))
u(s) U

uniquely defines u(s; O, t, ), except for at most a finite number of points of
[t, t+’].

A similar condition is assumed for controller II. Under condition (iii),
u(s; q, t, r) is piecewise continuous in s on [t, + r], so that u(. 4’, t, r) belongs to
R. More important is the fact that M(q, t, -) is a singleton:

M(q, t, ’)= {u(.; @, t, -)}.

Hence the continuity condition is satisfied. A similar statement is valid for
controller II. Condition (iii) is satisfied for many nontrivial examples [3], [7]-[ 11 ].

Another assumption of Theorem 3 was the differentiability of F(q, u(.),
v(" ), t, r) with respect to r. By a slight modification of the proof of Theorem 3, one
can see that the differentiability of

(3.5) F(q, u(’; qt, t’, "), v(’; q, t", ’"), t, ’)
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with respect to - for each (t’, -’) and (t", -") in a neighborhood of (t, ’) will suffice.
Under condition (iii) the function defined by (3.5) is differentiable in a-. If the
closed-loop admissible controls are right continuous, then Dr,’(t) can be explicitly
calculated (see [10] for details).
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THE CLOSED-LOOP TIME OPTIMAL CONTROL.
II: STABILITY*

PAVOL BRUNOVSK’’

Abstract. The problem, to which extent does the closed-loop time-optimal control of a linear
system fulfill its task if the system is subject to small perturbations, is studied.

In part I of this paper (ref. 1 ]) we have studied the problem of optimality of
the (Filippov) solutions of the linear system in R" under the action of the
closed-loop control v:

(1) Ax + v(x)

(i.e., of the solutions of the associated multivalued differential equation

(2) Ax + V(x), V(x) (q ("1 co cl v((x + 6D)\N),
6>0 (N):0

D the unit disc in R"), which is obtained by synthesizing the open-loop time
optimal control of the linear system

(3) 2 Ax + u

with control constraint u U, under the assumptions that U is a convex polytope
containing the origin in its relative interior and that the system is normal.

We now turn to the problem (mentioned in [1, 1]) of stability. Namely, we
ask how far the closed-loop control v, which was constructed for the unperturbed
system (3), fulfills its task if the system is subject to small but permanently acting
perturbations, i.e., whether, and in what time, the trajectories of the perturbed
system under the action of the control v will approach the origin. Of course, one
can expect positive results only if the closed-loop control v yields optimal
solutions if no perturbations are present.

Let us note that the consideration of perturbations exhibits clearly the
inadequacy of the classical definition of the solution. An excellent explanation can
be found in [3] (the author was unaware of this paper while writing [1]).

The perturbations shall be modeled along the lines of [2] as measurable
functions added to the right-hand side of (2), the magnitude of which does not
exceed a given positive constant e (note that the "measurement perturbations" of
[3] are included). We shall be interested in estimates and results concerning the
behavior of the system under any perturbation of this kind, i.e., results which take
into account only the information about e. Using the definition of solutions of
multivalued differential equations, one sees that the Filippov solutions of the
equation

Yc Ax +v(x)+p(t),

where Ip(t)l<-e is measurable, are solutions of the multivalued differential
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? Mathematical Institute, Slovak Academy of Sciences, 886 25 Bratislava, Czechoslovakia. Now

at Institute of Applied Mathematics, Comenius University, 816 31 Bratislava, Czechoslovakia.
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equation

(4) 2 Ax + V(x) + eD

and vice versa (cf. [2]). Therefore, we are led to study the solutions of (4) and we
shall formulate the results, summarized in the following two theorems, in terms of
these solutions. Note that all solutions of (4) are solutions of (4,,) for e _<-

Henceforth we shall assume that the system (3) with control domain U is
normal and that U contains 0 in its relative interior without further notice. As in
[1], we denote by T(x) the minimal time in which x can be steered to 0,
YZ() {x[T(x)<_-’} and U o(-). We recall that under these assumptions
and notations, the sets (’) have Properties 1-3 of [1, 2].

While the first one of the following two theorems does not require any
knowledge of the structure of the synthesis and is valid for systems of any
dimension, the proof of the second one is heavily based upon the study of the
structure of the closed-loop time optimal control in two-dimensional systems
from 1 ].

TIEOREM 1. Assume that all the solutions of (2) are optimal trajectories of (3).
Then given " [0, oo) and O > O, there exists an e > 0 such that any solution o of (4)
with p(O) () satisfies ]q(t)l--< O for >= T(x).

THEOREM 2. Let the assumption of Theorem 1 be satisfied and let dim x
=dim U= 2. Then given ’6[0, oo), for sufficiently small e >0, there exists a
function T (r)R such that any solution q of (4) with q(0)= x (’) satisfies
q(t) 0 for > T(x) and T(x)- r(x) as e - 0 uniformly over (’).

Let us note that the Theorem of 1] gives necessary and sufficient conditions
for two-dimensional systems to satisfy the assumption of Theorem 1. Further, let
us note that Theorem 2 cannot be extended to the case dim U 1. This follows
from [2], where the smallest neighborhood of the origin in which the system can be
kept is constructed and shown not to be the origin in general.

For the proof of Theorem 1 we need two lemmas.
LEMMA 1. Let {ek} be a sequence ofpositive constants tending to 0 and let

be a sequence of trajectories of (4k) on [0, T] such that
uniformly on [0, T]. Then q is a solution of (2) on [0, T].

Proof. q is a quasi-trajectory of (2) as defined in [4, Def. 5]. Since Ax + V(x)
is convex for every x, the lemma follows from [4, Thm. 5].

LEMMA 2. Let the assumptions of Theorem 1 be satisfied. Then given T> O,

" >= O, for every rt > O, there exists an e > 0 such that any solution q of (4) on [0, T]
with o(O) (-) satisfies ]lq ql] < rt, where is the solution of (2) with q(O) tO(O)
and I1" is the supremum norm in C(O, T).

Proof. Let us note first that because of the linear growth of the right-hand side
of (4), all its solutions can be extended to the entire right half-line.

Assume that the assertion of the lemma does not hold. Then there exists an
> 0 and sequences {ek } of positive constants tending to 0 and {qk } of solutions of

(4) such that

where 0k is the solution of (2) with qk(0)= 0k(0). Since both the sequences
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and {0k} are uniformly bounded and equicontinuous, we can assume that they are
uniformly convergent. Denote by q, b, respectively, their limits. From (5) it
follows that 4 11 >-- On the other hand, q(0) 0(0) and, by Lemma 1, both q
and q are solutions of (2). Since under the assumptions of Theorem the solution
of (2) starting at a given point is unique, then q q, which is impossible.

Proof of Theorem I. Let to > 0 be chosen in such a way that toD c (O) and
(0) + toD pD for some suitably chosen O > 0. Due to [ 1, 1, Property 1 ], such

an to exists. By Lemma 2, there exists an e > 0 such that for every solution q of (4)
with q(0) x (’), we have ]t0(t)- (t) < to for [0, "r], where q is the solution
of (2) with q(0)=q(0). Since O(T(x))=0, we have q(T(x))toD. We prove
p(t) pD for >= T(x) by induction.

Assume q(T(x)+ k’) toD for some positive integer k. Since (4) and (2) are
autonomous, then

(6) Iq(t)- qk (t)l =< to

for t6[T(x)+k’, T(x)+(k + 1)-], where 0k is the solution of (2) with dA(T(x)
+k’)=q(r(x)+k-). Since 0k is a solution of (2), we have r(ok(t))
<--_ T(qk(T(x))+k7)<-O and qk(r(x)+(k + 1-) 0. From this and (6) we obtain
q(t)pD for t6[r(x)+k’, T(x)+(k+l)’] and q(r(x)+(k+l)r)6toD. This
completes the proof.

For the proof of Theorem 2 we have to recall some of the notations and
results of [1]. In the rest of the paper we shall always assume n 2.

For u U, denote H(u, U)= {O](O, u)= maxv(q, v)}, where (.,.) stands
for scalar product. The set H(u, U) is a closed convex cone with vertex at 0 for
every u U. If w is a vertex of U, due to normality and the linearity of the adjoint
equation q)=-A’O, all its solutions which meet a boundary half-line of H(w, U)
have to cross it transversally in one direction. We call w

--attracting, if both boundary half-lines of H(w, U) are crossed inwards,
--neutral, if one of the half-lines is crossed inwards, the other outwards,
-repulsing, if both boundary half-lines are cross outwards.
A vertex w is repulsing, neutral, or attracting according to whether Case 1,2,

or 3 of the proof of Theorem 1 of [1] takes place. It is shown in this proof that all
the solutions of (2) are optimal precisely if no vertex of U is attracting and that w is
attracting if and only if it satisfies the condition of [1, Thm.], i.e., if H(w, U)
contains the eigenvector of the larger eigenvalue of -A’ but not the other
eigenvector of -A’. We now prove the following.

LEMMA 3. If no vertex of U is attracting, then all vertices of U are neutral.
Proof. Assume there exists a repulsing vector w0 of U. This means that the

solutions of the equation q) A’O (which are the solutions of the adjoint equation
with time reversed) cross both boundary half-lines of H(wo, U) inwards. How-
ever, this is possible only if A’has two distinct eigenvalues and H(w0, U) contains
the eigenvector of the larger eigenvalue of A’but not the other eigenvector of A’.
This implies that there exists another vertex w which contains the eigenvector of
the smaller eigenvalue of A’, which is the larger eigenvalue of -,4’. Consequently,
w is attracting, which contradicts the assumption of the lemma.
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For a vertex w of U define

F(w)= e-Aw ds O <-- <-- ’(W

where -(w)= max {t[fqo<=s_<__,e "A’ H(w, U)0} (cf. [1, Corollary 2]).
LEMMA 4. For every vertex w of U and any ’<-(w), there exists a

neighborhood B of F(w)fq(’) which is divided by F(w) into one-sided
neighborhoods B+, B- such that

(i) There exists a C function s on B such that

r(w) () {x ()ls(x) 0}, y(x) Os/Ox(x) o
]:or x B, s(x) > 0 ]:or x B and s(x) < 0 [or x B-.

(ii) I[ w is neutral and w is the vertex adjacent to w such that the solutions of the
adjoint equation leave H(wl, U) [or H(w, U) then

(7) (y(x),ax+w,)<

for x B and some > O, and

{w} lor x B-,
V(x) {w,} for x +,

co{w, w} lor x F(w) Cl B.

Pro@ The neighborhood B is obtained by patching together the neighbor-
hoods B of 1, Lemma 9]. The validity of (ii) follows from the analysis of Case 2 in
the proof of 1, Thm.] (to obtain (7) we use 1, (13)] and the compactness of/).

LEMMA 5. Let dim U 2. Then for every " > O, there exists a IX, > 0 such that
for every x (’), 0 Eo(x),

max (0, Ax + u) (= (, Ax + v(x))) > IX,.
uGU

Proof. By [1, 2, Property 3], max,v (0, Ax + u) max,v (e -Tx)a’, u) for
every Eo(x). Since dim U 2, there exists an r/> 0 such that rD m U. Further,
since o_,,{e []1 1} does not contain the origin and is compact, we
have min,s,[XI > 0. Thus we have

min min max(O, Ax+u)
O<=T(x)<=. q, elo(x) U

rain min max(e-m)’0, u)
O<=T(x)<=. qeU()(x) ueU

=> min min max (e-r(xa’o, U)>--_ min max (X, u)
O<=T(x)<=’r Iq,l=l ueU xes- ueU

r/min IX > o.
XS-

The following lemma is a transcription of [5, Thm. 3.2 and Remark 2].
We use the notation dT for the differential of T and OT/Oe(x)

limh_.o h-(T(x + he)- T(x)) for the directional derivative of T in the direction
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LEMMA 6. If min,.,,<x) max,u (4’, Ax + u) > O, then (OT/Oe)(x) exists ]:or any
eR", and

(OT/Oe)(x) max [(, Ax + v(x))-l(o, e)].
tO Eo(x)

Moreover, if lim,_,oe(t) e, then

lim t-l[T(x + te(t))- T(x)] (OT/Oe)(x).
tO

Note that Lemma 7 of [1] is a consequence of Lemma 6.
COROLLARY 1. If q "I--or, (r]--) R" and b(0)) exists, then (d(To q)/dt)(O)

=(OT/O((O))(q(O)). In particular, (OT/O(Ax+v(x)))(x)=(O(Tox(t))/dt)(O)
1 (x being the open-loop optimal trajectory from x).
LEMMA 7. Let dim U= 2. Then given >0, there exists a K, such that

I(OT/Oe)(x)l <- K, for every x (’) and every ]el <- 1.
Proof. The proof follows immediately from Lemmas 5 and 6.
COROLLARY 2. IdT(x)] <- K, as soon as it exists and K, >-_ lax + v(x)l- for all

x().
Proofof Theorem 2. By virtue of Theorem 1, it suffices to prove Theorem 2 for

-> o sufficiently small. Namely, assume that we have proved Theorem 2 for
0 -< " _-< ’o. Then given r/> 0, we can choose p > 0 such that pD (r//2) and e > 0
such that every solution starting in pD reaches the origin in time -< r/2 +
Let us now choose -_-> 0 arbitrarily. By Theorem 1, if e is suitably restricted, the
solutions of (4), starting at points x (’), reach pD in time T(x) and, thus, reach
the origin in time T(x) + 1.

Let us therefore assume that " < min {-(w)lw vertex of U}. We prove that
given e > 0 sufficiently small, for any x (’), x # 0, there exists acr > 0 such that

(8) T(qg(t))- T(x) (- 1 + Ke)t

for any [0, o-] and any solution of (4) with q)(O)= x.
Let us assume first that x e (’)- F, where F U {I’(w)l- vertex of U}. Since

for any e >0 the right-hand side of (4) is uniformly bounded in (-+ 1) and
int (-+ 1)\F is open, given e > O, for any x (-)\F, there exists a o- > 0 such
that for e [0, cr], q(t) e int ("+ 1)\F. Since T is differentiable in (-+ 1)\F,
we have for almost all e [0, o-],

dT(q(t))/dt dT(q(t))(Aq(t) + w(t) + e6(t)),

w(t) and (t) being measurable and w(t)6 W(q(t)), 16(t)]_-<1, where W(x)
=co U ,,,(x {u U]O H(u, U)} (the existence of measurable w and 3 follows
from the upper semicontinuity of W ([1, Lemma 6]) and the Filippov implicit
function lemma [6]).

In the definition of W in [1, after Lemma 5] there is an obvious error: ffl should be replaced by
U.
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For x (-)\F, Eo(x) consists of a unique point which we denote by (x)
(cf. 1, Cor. 2]). We have

(9)

dT(q(t))[Aq(t) + w(t) + e6(t)]

dT(q(t))[Ao(t)+ w(t)]+e dT(o(t))6(t)

_-<-max (q(q(t)), aq(t)+ u)-’(q(q(t)), Aq(t)+ w(t))
U

Choosing e < K,, we see that T is decreasing and therefore T(q(t))<- for all
[0, tr], whence K,+ in (9) can be replaced by K,. Integrating (9), we obtain (8).
Now let x e F(w) (-). We define B, B* etc. as in Lemma 4. Again, e, r can

be chosen so small that for [0, tr], q does not leave B. We prove that for e > 0
sufficiently small, q does not enter B for

Assume the contrary. Then there exists an interval [o1, r2] such that q(o’)
6F(w) and q(t)B+f3(-(w)) for t(o’1, o-2], which is possible only if
ds((t))/dt= (y(q(t)), b(t))>0 on some subset of nonzero measure of [o-1, o-2].
However, if 0 < e < max]y(x)lx-1, we have

(y(qg(t)), (p(t)) (y(qg(t)), Aqg(t) + w +

<= (y(qg(t)), Aqg(t) + w,) + e ]y(,(t))l < + 0

(where ]6(t)l-< 1 and w is as in Lemma 4) as soon as q(t) B and b(t) exists,
which is impossible.

Since cannot enter B +, we have (y((t)), qb(t))_-<0 as soon as q(t) 6 F(w)
and qb(t) exists. Given s [0, o-], denote by I the set of those points [0, s] for
which qb(t) exists, by L the set of those I for which q(t) F(w) and qb(t) is not
tangent to F(w), by 12 the set of those I for which q(t) F(w) and b(t) is tangent
to F(w) and by 13 the set of those I for which q(t) F(w). Obviously/, as well as
11, 12, 13, are measurable and /x(I)= s. Furthermore, L obviously consists of
isolated points and therefore has zero measure. Since Ax + w is tangent to F(w) at
x, for 12 we have by Lemma 4 and Corollary 2,

i.e., b(t) is a multiple of Aq(t)+w by a coefficient _->(1-K,(we). Since w
v(q(t)), we have by Corollaries 1 and 2,

(O T/O( (o( t)))( q( t)

[(o(t)llAo(t)+ wl-’(OT/O(Aq(t) + w))(q(t))

((o(t))(Aq(t) + w)-’(- 1) -<_ 1 + Kwe.
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From this we obtain for some 16(t)[ =< 1,

T(q(s))- T(x)= (dT(q(t))/dt) dt

I, (dT(q(t))/dt) dt+ f, (dT(q(t))/dt)dt

f (OT/O(t))(q(t)) dt+ f dT((t))(t) dt
d13

=[- + Ke](2) + {((), ()+

()(0+)+(0)(0}

[- 1 + K()E](I2)+[- 1 +

[- 1 + K)e]s.
Again, if e is chosen suciently small, K)can be replaced by K. Thus (8) is

established for all x ().
We now prove that if e > 0 is suciently small and is a solution of (4)

starting at some point x (), then

(0) T((t))- T(x)max {- T(x), (- +
Assume the contrary, and denote by o the supremum of those for which (10) is
valid. Since (8) is valid for all x 0, T(()) is nonincreasing. Therefore,
T((o)) >0 and there exists a sequence of points {&}, o such that T((&))
T((o)) >(-1 + Ke)( o), which violates (8).
Now, given x(), it follows from (10) that ()=0 as soon as

(1- Ke)-T(x), which completes the proof.
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CONTROL OF LINEAR SYSTEMS
THROUGH SPECIFIED INPUT CHANNELS*

J. P. CORFMAT AND A. S. MORSE’I

Abstract. It is shown for the controllable linear system k Ax + Bu + Dr, y Cx that there exists
a feedback map F for which k--(A +DFC)x +Bu is controllable if and only if the number of
transmission polynomials of (C, A, B) is no greater than the rank of the (nonzero) transfer matrix of
(C, A, B). If this condition fails to hold, then for all F, the spectrum of A + DFC contains a uniquely
determined subset of transmission zeros, and this subset coincides with the spectrum of A + DFC
modulo the controllable space of (A + DFC, B) whenever F is selected so that the dimension of the
controllable space is as large as possible. Under mild assumptions, the transmission polynomials are
identified as the numerator polynomials of the rational functions which appear in the Smith-McMillan
form of the transfer matrix of (C, A,/3).

Introduction. In this paper, we consider the problem of selecting for the
two-input channel, controllable, linear system

2(t) Ax(t) + Bu(t) + Dr(t)
(1)

y(t) Cx(t)

an output feedback law v Fy so that the resulting closed-loop system

(2) 2(t) (A + DFC)x(t) + Bu(t)

is controllable with u(. ). The solution to the problem extends earlier results
([1]-[4]) and is central to the construction of decentralized feedback laws for
assigning the closed-loop spectrum of a linear system (cf. [5]). Applications to
decentralized control will be discussed in a future paper.

The present study differs from previous work [2] in that here (1) is not
required to be an observable model. Unobservable models appear more the rule
than the exception when one begins to examine the structural properties of
various interconnections of linear systems. For example, if (1) is the composite
model of two noninteracting subsystems, one (Z1) with input u and output y, the
other (2) with input v and output

(3) z(t)--Lx(t),

then (2) is the state equation which results if 5:1 is connected in cascade with 2 by
means of the control v Fy. Note that the subsystem Z1 (C, A, B) can be neither
controllable nor observable, even if (1) together with (3) is. By studying the
conditions under which F can be chosen to make (2) controllable with u (and
observable with z), one can determine what is required to stabilize or otherwise
control dynamic response with feedback from z to u.

* Received by the editors July 9, 1974, and in revised form December 23, 1974. This work was
supported by the U.S. Air Force Office of Scientific Research under Grant 72-2211.

1" Department of Engineering and Applied Science, Yale University, New Haven, Connecticut
06520.
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In the sequel ( 1), it will be shown that (2) can be made controllable with F
just in case the number of transmission polynomials of (C, A, B) (cf. [6]) is no
greater than the rank of the (nonzero) transfer matrix C(M-A)-B over the field
of rational functions in A. If (2) cannot be made controllable, then for each choice
of F, (2) has an uncontrollable spectrum Av. It is shown that for arbitrary F, Av
contains a fixed subset Ao consisting of certain uniquely determined transmission
zeros of (C, A, B); it is further shown that Av Ao whenever F is selected so
that the dimension of the controllable space of (2) is as large as possible. Finally, in
2, we relate the transmission polynomials of (C, A, B) (a state space concept) to

a familiar invariant of transfer matrices by showing that under mild assumptions,
the transmission polynomials coincide with the numerator polynomials of the
rational functions which appear in the Smith-McMillan form of the transfer
matrix of (C, A, B).

Notation. In the sequel, R[A is the ring of polynomials with coefficients in the
field of reals R. Script letters , ,..., denote R-vector spaces with elements
x, y,..., and d() is the dimension of . Both linear maps and matrices are
denoted by capital letters A, B,. , while im A and ker A abbreviate image A
and kernel A, respectively. The restriction or definition of M b on -c is
written as MI-.

The spectrum of a map A" gS, written o-(A), is the symmetric set of
complex roots of the characteristic polynomial (c.p.) of A repeated according to
multiplicity. The set of invariant factors (i.f.) of A is written as a list
{a, a2,’", ak} ordered so that a, la,_ (divides), i=2, 3,..., k. If 7/V is A-
invariant, AI3V denotes the restriction of A to //V and AII(/) is the map
induced by A in gS/W.

If k is a positive integer, k {1,2,. , k}, and {a,, k} abbreviates the list

The maps A’gS, B’//gS, C’, and D’Vg8 (d()=n,
d(-//) m, d() p, d(V) q) are fixed and are associated with the linear system
(1), (2). We write for im B, (AI) +A +. +A"- for the controlla-
ble space of (A, B), and [CIA]= (3,%1 ker CA i- for the unobservable space of
(C, A). If AT/V c 7V ker C, the system induced by (C, A, B) in /7U is the triple
(, fi,/) where fi AI[(/7/V), / PB, P" Tg/kV is the canonical projec-
tion, and C is the unique solution to C---CP.

1. Main problem. The problem to be analyzed is as follows.
Main Problem. Let A, B, C, D be fixed with (A] + @) . Find conditions

for the existence of a map F" 0 V such that

(A + DFCI)- g.

Remark 1. In the sequel, it will be assumed without loss of generality that

(4) C(AI- A)-B # O.

For if (4) were false, (A + DFC]) would be independent of F.
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First, let F* denote the class of all maps F for which the dimension of
(A +DFC[) is as large as possible. It is reasonably clear (and can easily be
shown) that if F is chosen arbitrarily, it is almost certain to be in F*; in other words,
either F* coincides with the space of all maps F: V, or, at worst, F* can be
viewed as the complement of a suitably defined proper variety in the space of all
maps from toV. Thus the problem of selecting F so that d((A + DFC[)) is as
large as possible is, in principle, a simple computational matter.

Our interest is not so much in computing FF* as in expressing
d((A + DFC[)) for F6F* in terms of the problem data A, B, C. To this end, let
{ci, 6 t} denote the list of transmission polynomials (t.p.) of (C, A, B) (cf. [6]),
ordered so that cilci_l, 2,..., t, write r for the rank of the nonzero transfer
matrix C(AI-A)-IB over the field of rational functions in A, and define

-deg cei if r < t.
i---r+l

Our first result is as follows.

THEOREM 1. Let A, B, C, D be fixed with (A] +@)= and
C(AI-A)-IB SO. Then

(5) max d((A + DFC[))= n*.
F

The theorem asserts that if F is selected so that the dimension of (A
+ DFClYd) is as large as possible, then this dimension must equal the dimension of

less the degree of the product of the last t-r polynomials in the list of
transmission polynomials of (C, A, B). The solution to the main problem is now
clearly as follows.

COROLLARY 1. Under the hypotheses of Theorem 1, there exists a map Fsuch
that

(A + DFCI)-

ifand only if the number of transmission polynomials of C, A, B) is no greater than
the rank of the transfer matrix of C, A, B).

Remark 2. We call (C, A, B) complete if <= r. Since the rank of a transfer
matrix is invarient under transp6sition, and since the t.p. of (C, A, B) are the same
as the t.p. of the dual system (B’, A’, C’) (see Remark 6), it follows that (C, A, B)
is complete if and only if its dual system is complete.

Corollary 1 implies that if (A, B) is controllable, then (C, A,/3) is complete.
This and duality allow us to assert that either controllability of (A,/3) or

This variety can be defined in matrix terms as the set of all points F in the real parameter space of
d()x d() matrices for which all qth order minors of the controllability matrix of (A + DFC, B)
equal zero, where q max,. d((A + DFCIYd)).

D plays no role in what follows, provided (A]@ + @) .
Prime denotes dual.
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observability of (C, A) implies completeness of (C, A, B). From this and Corol-
lary 1, we recover the main result of [2], as follows.

COROLLARY 2. ff (C, A) is observable and (A]3 +) , there exists a map
F such that (A + DFC, B)is controllable.

If (C, A, B) is incomplete (i.e., if r<t), then Corollary 1 implies that
(A + DFC, B) cannot be made controllable. In this case, the following theorem
provides a characterization of the "uncontrollable spectrum" of A +DFC in
terms of the list {a+, , a,} (i.e., the remnant polynomials of (C, A, B)).

THEOREM 2. Suppose (C, A, B) is incomplete(i.e., > r), and, for arbitrary F,
let {p, qV} denote the list of invariantfactors of the map induced by A + DFC in
/(A + DFClYd). Under the hypotheses of Theorem 1,

(6) qV >= t_ r and a,+lp.V, {1, 2, t- r}, for alI F.

In addition, if d((A + DFClYd)) n*, then

(7) qV=t_r and cr,+=pf, i{1,2,...,t-r}.

Let Ao denote the symmetric set of complex roots of the polynomial I=r+
repeated according to multiplicity (i.e., the remnant zeros of (C, A, B)). Theorem
2 implies that Ao is a fixed subset of the spectrum of A + DFC for all F, and that Ao
equals the spectrum of A + DFC mod (A + DFCI3) (i.e., the uncontrollable spec-
trum of A + DFC) whenever d((A + DFCI3)) is as large as possible. From this,
we immediately obtain the following corollary.

COROLLARY 3. Under the hypotheses of Theorem 1, there exists a map Fsuch
that the pair (A + DFC, B) is stabilizable if and only if Ao is a stable set.

The principal problem involved in proving Theorems 1 and 2 is that unless
(C, A, B) is complete, the family of subspaces {(A + DFCI) F: - } does
not contain a unique largest member relative to a partial ordering by inclusion. To
proceed, it is first necessary to show, for any F, that tv=-(A + DFCI3) can be
viewed as the controllable space of another system.

Below, - denotes the unique smallest subspace satisfying 3 c - and
A(- ker C)c S- (cf. [6]); in addition, K={K: (A + KC)ffc -}, and K* is the
(nonempty) subset K* -={K im K @ + S-+ AS-, K K}.

PROPOSITION 1. For each map F: q/--> U, there exist maps F0: d U and
K 6 K* such that

(Sa) Yv (A + KC[-+ (DFo K)

(Sb) (A + DFC)I](/) (A + KC)]I(/).
Conversely, if Fo" --> U and K K* are arbitrary, there exists a map F" 21--> U
such that (8) holds.

Proof. First, obserye that if KK, then -+A?= -+(A +KC-KC),
-+ KC-, so that

(9) S-+ AS-+ @ S-+ KC-+ -, K K.

Ao is stable, if each of its elements is a point in the open left-half complex plane.
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It will now be shown that (i) for any F" ad--> K, there exist K K* and
Fo" --> K such that

(10) im (DF-K)c 3-+(DFo-K)C3-,

(11) F" Ca- Fol Ca-,
and conversely, that (ii) for any K K* and Fo" --> K, there exists F" ->
satisfying (10) and (11).

(i) Let Fbe fixed; then (11) holds with Fo= F. To construct K, let 3-o be any
subspace satisfying 3-o(R) 3- FI ker C 3-, and write To for the insertion of 3-,, in
then CTo is monic with left inverse L. If

(12) g =- DF A + DFC) ToL,

then KCTo DFCTo-(A + DFC)ToLCTo=-ATo, so that (A + KC)To =0. It
follows that (A + KC)f-=(A +KC)(3-o+ O-f) ker C)= A(3-f-) ker C) 3-; thus
K K. From (12), im (DF- K) im (A + DFC) To im (A + DFC) ToLCTo
=im (DF- K)CTo, so im (DF- K) (DF- K)C3-, and since F Fo, (10) is true.
But (10) implies im K + 3-+ KC3-; thus, from (9), im K c 3-+ A3-+ @, and
since K K, K K*.

(ii) Let Fo and K K* be fixed. Then K K, so from (9) and the definition of
K*, im K KC3-+ 3-+ @ (DF,,- K)C3-+ 3- + @. Hence there exists a map F
such that

(13) im (DF K) (DFo K)C3-+ 3-.

Let o be any subspace satisfying -go C3- , and define F so that F[o
and FIC--F,,ICa-; then F satisfies (11). Since im(DF-K)=(DF-K)
(o+C3-)=(DF-K)o+(DFo-K)C3-, (13) implies that F satisfies (10) as

well.
Now let K K*, F and Fo be any maps satisfying (10) and (11). To complete

the proof, it is sufficient to show that (8) follows.
Set Yt (A + DFC[3), then t and A ((ker C) FI) Yt. Since 3- is

the smallest subspace with these two properties, ff=Ytv. Thus
{A + DFCI) (A + DFC[3-} c (A + DFCI) , or (A +

Clearly,

(14) t A + DFCI 3- + (A + DFC)
But 3-+ (A +DFC)3-= 3-+(A +KC+DFC-KC)3-= 3-+(DF-K)C3-;hence,
from (11), 3-+(A+DFC)3-=3-+(DFo-K)C3-. This and (14) imply that
tF=(A+KC+(DF-K)CI3-+(DFo-K)C3-). It now follows from (10) that
(Sa) is true.

Let P" --> f/YtF be the canonical projection, and write Av and AK for the
maps induced by A +DFC and A + KC, respectively, in /v. From (8a) and
(10)’, im (DF- K) c Ytv; thus P(DF- K) 0, so P(A + DFC) P(A + KC). By
definition, AvP P(A + DFC) and A,P P(A + KC); since P is epic, it follows
that Av A.

LZMMA 1. Let 7"c T be A-invariant, write {oi, k} i.f. A, {/x,, j}
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=i.f. Allg’and {/3’, q}--=i.f. AI](/). Then
(i) j-<k and
(ii) k j <= q and if j < k, then crj+,[/3,, e {1, 2,. ., k j}.
A proof of this lemma appears in the Appendix.
LEMMA 2. Let (C, A, B) be a controllable system with [C]A] # 0; write

ek}--i.f. A I[CIA ]. There exists a map F and a polynomial 6 such that i.f.
(A + BFC) {as,, s2,

Proof. In the quotient space --- /[CIA], the system (’, ,/) induced by
(C, A, B) is both controllable and observable. Hence, by the main result of [1],
there exist maps g lI -> R, h --> and Fo" --> R such that
(hC, A + BFoC, Bg) is single-input controllable and single-output observable. As

is an infinite field, root locus analysis provides a scalar o‘ 1 for which c.p.
(A+BFoC+Bgo‘hC) is coprime with s l. Fix O‘ at this value, let 6 be the
corresponding c.p. and define F Fo + go,h; then A + BFC is cyclic with c.p. 6. If
{/i, ej}--i.f. (A +BFC), then /31 =minimal polynomial (m.p.) of A +BFC.
Since 6 m.p. (A + BFC) rood [CIA ], sl m.p. (A + BFC)I[CIA], and s and
are coprime, it follows that 1=6sl. In addition, [|Ji=/3i=c.p. (A+BFC)

6([1=1 s,) and, by Lemma 1, k -< j and s,I/3, j. This is possible only if j k
and/3 si, {2," k}.

Remark 3. In the sequel, use will be made of the following interpretation of
the transmission polynomials of (C, A, B), which by Remark 6 are the same as the
transmission polynomials of the dual system (B’, A’, C’).

If ow is the largest (A, B)-invariant subspace in ker C, and if and - are
the annihilators of and S-, respectively, then, as noted in [6], - (resp. - (3)
is the largest (A’, C’)-invariant (resp. controllability) subspace in ker B’. Hence,
by definition, t.p. (B’, A’, C’) i.f. (A + KC)’II("/( CI 0+/-)) for any K e K.
Since (A +KC)’I](S-/(S-f3) is similar to (A +KC)II((+-)/S-), it follows
that

(15) t.p. (C, A, B)-i.f. (A + KC)II((+ -)/-), K K.

For future reference, we also note here that if H is defined so that ker HC
ker C+ -+ O, then

(16) [HCIA +KC]= ,-+, K6K.

For, with H so defined, im C’H’= -- f3 5- f3 (ira C’), and since - (
{A’ + C’K’I (’1 +/- (’1 (ira C’)), K K, (i.e., - (’1 is a controllability space),

(16) follows by duality.
Proofof Theorem 1. We first construct a polynomial and a map K K* such

that

(17) i.f.(A + KC)I[(/ S-) {as 1, S2,

where {s, iet}=t.p. C, A, B ). For this, let KoeK* be fixed;
then im K,,c S-+ A-+ @, so (A+KoC[-+A-+@)=(A[S-+A-+@)

If (C, A,B) has no t.p., replace the right side of (17) by {g}.
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(AI-+ @) (A]N +@)= . Therefore, if M is the insertion of -+A-+@ in
f, then (A + KoC, M) is controllable. If H is defined as in (16) so that [HCIA
+KoC]=-+, then the system (C, Ao, M) induced in =/ by
(HC, A +KoC, M) is also controllable; in addition, since [o]=(+)/,
(15) implies i.f. o[]o] {a, e }. Use Lemma 2 to construct d and a map L so
that i.f.(Ao+MLC)={a,a2,’",a,}. Thus, if KKo+MLH, then
(A + KC)i](/)= Ao+ MLC, so (17) is true. In addition, the definition of K
implies im K cim Ko x im M c + Aft+ , and since HC 0 and Ko K, it

must be that K e K. Thus K K*.
It will now be shown that there exists a map F such that

(18) d((A +DFCN))n*.
In view of Proposition l, it is enough to find a map Fo such that d((A + KC)[
+ (DFo-K)C)) n*. This in turn will be true if Fo is selected so that

(19) d(( l(OFo- )C)) n* d(),

where (A + KC)]], PK, PD and P" - is the canonical projec-
tion.

If r t, let be the zero subspace in ; if r < t, let be the sum of the t- r
cyclic subspaces of a rational canonical decomposition of corresponding to the
invariant factors {a+,, , a,} of A as shown in (17).In either case, the definition
of n* implies n*= n-d(); hence (19) can be rewritten as d(((Fo-g)C)
d(/). In /, this inequality is equivalent to

(20) (AI(DF,,- R)c) ,
where [], D , and " is the canonical projection.
Hence it is enough to select Fo so that (20) is true.

Since K K*, (9) and the definition of K* imply im K + +KC; thus
(A+KCi++KC)=(A[++KC)(A]+)=Y. It follows that
(A +KC+ +KC) , (A[ +KC) , and thus

But the definition of and (17) imply that has k min {r, t} invariant factors
{a, a,’’’, a}; hence, by the main result of [4], there exists a k-dimensional
subspace +C such that

(22) (AI) .
By Remark 7, d(C-) r; since r k, there exist maps R C--> C-, S "’CO---> Y"
such that im (OS + IJR), where J is the insertion of C- in . From this and
(22), it follows that if I is the identity on CS-, then

(23) (/i Jim (1)S + Ii;J(R + IXI)))= f

for IX 0. Thus, by the well-known generic property of controllable pairs over
[7, Thm. 11, p. 100], (23) remains true for all but a finite set of values of tx
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Since in addition, det [xI + R] has only a finite number of zeros, there exists a
value/x N for which (23) holds and [R + 2I] is invertible.

Set Fo=--S(R +t2I)-J-1, where j-1 is a left inverse of J. It follows that
(/Fo-/)C im (DS(R + xI)-lJ- + K)J= im (1)S + IJ(R + I)). From this,
the choice of and (23), it now follows that (20) is true. Hence (18) is correct.

If r => t, then n* n, and (18) clearly implies (5). To complete the proof for the
case r < t, it is enough to show that for arbitrary F, d((A + DFC]I)) <= n*, but this
follows from the definition of n* and (6) in Theorem 2, which will be proved
below.

Remark 4. In both the preceding proof and in the proof of Lemma 2,
constructions are used which depend on the fact that N has infinitely many
elements. Thus we cannot assert that Theorem 1 holds for arbitrary fields, and we
expect that for finite fields the theorem is false. On the other hand, the proofs of
Proposition 1, Lemma 1 and Theorem 2 which follow do not involve field-
dependent constructions and are therefore valid for arbitrary fields.

Proof of Theorem 2. Let F be arbitrary, and choose Fo and K K* according
to Proposition 1 so that (8) holds. If P" -/- is the canonical projection, and
=(A +KC)]I(/-), then (A +KC)]I(/,)is similar to 11((/)/(,/-)).

From this, (Sb) and the definition of {O, q’}, it follows that

(24)

If {ai, et}-=t.p. (C, A,B) and {/3, e/x}=i.f. A, then from (15) and (i) of
Lemma 1 applied to the data P, P and A, we have

(25) [d6; O[.ili t.

Since (8a) implies P.= (A IP(DFo- K)C-),P is generated by a subspace
of dimension at most equal to d(C-). Thus, if {% i6r}=-i.f. AIPv, then
r<-d(C-). But d(C-)=r (Remark 7), so o-=<r. Thus, from (25) and the
hypothesis r < t,

(26) o- <- r < <-_ tx.

In addition, o- _-< r implies 3r+1/3+i, 6 {1, 2, , t- r}, which, with (25), yields

(27) Olr+ilcr+i, {1, 2, , t- r}.

From (26), r < t; hence (ii) of Lemma 1 can be applied to the data P, P, and A
to obtain,

(28) (/x o.) =< qV;
But (26) implies (t- r) -< (/x o’). Thus, from (28) and (27), there follow (t- r) qV
and ar/,lp, i{1, 2,’", t-r}, so (6) is true.

Now, suppose that d() n*= n-deg (]-li=r. a); then d(gF/e)
--deg ([Ii--r/l a). Since d(g/v)-= d(PgF/P), it follows from (24) that

deg (i J)+, a)= deg (,(" pV),
but this and (6) can be true only if qV t- r and Off ar+, {1, 2, , t- r}.
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2. Smith-McMillan form. As has just been shown, the transmission polyno-
mials of (C, A, B) play an important role in determining the extent to which the
pair (A + DFC, B) can be made controllable or stabilizable with F. In this section,
we relate the transmission polynomials to familiar invariants of the transfer matrix
of (C, A, B).

If I is the identity on g(, then (L A) is clearly observable; it follows from
Corollary 1 and duality that there exists a state feedback map F such that
(C, A +BF) is observable just in case (C, A, B) is complete; and if (A, B) is
controllable, then by Remark 2, (C, A, B) is necessarily complete. In this case, we
have the following theorem, which asserts that the transmission polynomials of
(C, A,B) coincide with the numerator polynomials of the rational functions
appearing in the Smith-McMillan form of C(AI-A-BF)-B.

THEOREM 3. Let (C, A, B) be a controllable system with nonzero transfer
matrix. The set F-=-{F (C, A +BF) is observable} is nonempty, and for each
F F, the Smith-McMillan form of C(AI- A BF)-B has the structure PO-where O diag [fl,,...,/3,,, 1,..., 1]....

R=diag [1,...,1, c,...,c,].... {/3,, itx}=i.f.(A+BF), {ai, ik}=t.p.
(C, A, B) and r rank C(AI- A BF)-1B.

It is, of course, well known [9] that for F F, the/3, are the invariant factors of
A +BF and r is the rank of C(AI-A-Bf)-B. It is also known [10, Thm. 4.1,
p. 111] that for F F, the ai in the Smith-McMillan form are the same as the
invariant polynomials (i.p.) of the [[h]-matrix

Thus the remaining assertion of Theorem 3 (i.e., {i, k} t.p. (C, A, B)) is a
direct consequence of the following lemma.

LEMMA 3. Let C, A, B) be fixed. For all F,

(29)

and

(30)

rank (My)= n + d(C-)

i.p. (My)= t.p. (C, A, B).

Remark 5. Although Lemma 3 holds for arbitrary triples (C, A, B), Theorem
4.1 in [9, p. 111] holds only in the case where (C, A + BF, B) is controllable and
observable. If (C, A + BI, B) is not controllable or observable, it is not clear how
the list of polynomials la, ik} in.the Smith-McMillan form of C(M-A
-BF)-IB is related to the transmission polynomials of (C, A, B). Note in par-
ticular that if (C, A, B) is incomplete, the number of transmission polynomials of
(C, A, B) exceeds the rank of C(M A)-B, which in turn is an upper bound for k.

An alternative version of this theorem has recently appeared in [8].
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Remark 6. Since the invariant polynomials of an N[A]-matrix are invariant
under matrix transposition, it follows from (30) that the transmission polynomials
of (C, A, B) are the same as the transmission polynomials of the dual system
(B’,A’, C’).

Remark 7. From the matrix identity

-C(AI-A)-I Mo
0 -C(AI-A)-’B

and (29) (with F=0), it follows that r, the rank of C(AI-A)-’B, must satisfy
r d C-).

The preceding remark together with (29) show that the rank of the matrix
N(A) Mo equals n + r over N[A]. From this, (30) and the structure of the Smith
form of N(A), it follows that for all /xC (= the field of complex numbers),
rank N(/x) _>- n + r- t. Thus (C, A, B) is a complete system (i.e., r _-> t), just in case
rank N()>= n for all x C. But, since det [/xi-A] is an nth order minor of
N(), rank N(tx) cannot be less than n, except possibly on the spectrum of A. We
are led to the following corollary, which provides an alternative test for the
completeness of (C, A, B).

COROLLARY 4. A triple (C, A, B), with C(AI- A)-B O, is complete if and
only if

rank I/xI- AC ]>n
]:or all t e o-(A ).

ProofofLemma 3. First, note that if H - , G o?/ o?/and T are
automorphisms, and if F - o//and K - f are arbitrary, then the matrices

O=-
0 -fr-1

are invertible in I[A], and Mo is equivalent to the matrix

OMoP [I- T(A +BF+ KC) T-’ TBG]
HCT-1 0 J"

Hence i.p. (M) and rank (M) are independent of F. In addition, we can assume
that (C, A, B), is in the @*-canonical form of [6]. Thus, after suitable row and
column permutations, Mo admits the more detailed representation"

0 0 0 0 O-

0

AI-A B 0 0 0

0 0 0 AI-A3 0 0

0 0 0 C3 0 0

0 0 0 0 AI-A4 B4
0 0 0 C4 O-

The *-canonical form constructed in [6] is for systems (C, A, B) with C epic and B monic.
Extension to the more general case treated here (C3 and B2 are no longer required to be full rank
matrices) is a simple matter and therefore will not .be discussed.
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where i.f. (A1) t.p. (C, A, B), (A2, B2) is controllable, (C3, A3) is observable, and
(C4, A4, B4) is in prime canonical form. Observe that ’0--column span (c.s.) of
Mo over R[A] is a free submodule of -=E[A]"+P; in addition,
@Mc3@M4, where Mcl=C.S. [hi-At], d//2=c.s. [AI-A2, B], //3=c.s.
[M- A’3, C3], and

=c.s.L C
Since (Az, B) is controllable, [M-A, B] has Smith form [L 0] (el. [9]), implying

is a direct summand of. By similar reasoning,3 is also a direct summand.
Next, observe that since (C4, A4, B4) is in prime canonical form, C4(M

-A)-B4=diag[1/y, 1/y], where {y, ]} i.f. (A4). It follows that

C4
=-det (M-A4) det (C4(M-A4)-B4)=-1,

so4 is the span of an invertible N[I] matrix and therefore a direct summand

Hence, if we define n size A and 0 rank B4, theno @, where
is a free n-dimensional submodule with invariant polynomials equal to t.p.
(C, A, B), and@@is an (na+ n+ n4+o)-dimensionaldirectsum-
mand of . It thus follows that i.p. (Mo)= i.p. () (cf. [10, Chap. X, 8]) and
rank Mo n + n + n + n4 + 0. Thus (30) is-true. In addition, n + n + n + n4 n
and 0 d(C) (cf. [6, pp. 358-361]), so (29) follows.

eligers. The main results of this paper (Theorems 1 and 2) are
basic to the analysis of interconnected linear systems and therefore should prove
useful in a variety of applications. For example, Theorem 1 provides necessary
and sucient conditions for the existence of a control map F which will make the
cascade connection of two systems and N (see introduction) controllable. The
theorems are also applicable to the analysis of feedback interconnections
and , the design of decentralized control systems, and the study of the generic
solvability of various control problems [13]. Some of these applications will be
treated in a future paper.

ProooLemma 1. Without loss of generality, assume m.p. A is a power of an
irreducible polynomial (cf. [14, Ch. VII]). Since m.p. A and m.p. A(/

In this case, the conditions can be restated more explicitly in terms of properties of minimal

realizations (C, A, B) and (/S, fi,/) of E and E2 respectively. Since E and E2 are assumed to be
noninteracting, the set of transmission divisors of (C, A, B) (i.e., the elementary divisors determined by
t.p. (C, A, B) when the latter is viewed as a list of invariant factors) equals the disjoint union of the set

of transmission divisors of (C, A, B) together with the set of elementary divisors of A. From this,
Corollary and some lengthy but straightforward combinatorics, it can be shown [12] that if {a,,
it}-t.p. (C, A,/) and {/3, ik}=i.f, fi, then the cascade connection of and 2 can be made
controllable if and only if k <- and g.c.d. (/3,, a 1, r, where/3, a, for > k and > t. If no
transmission zero of Y. (i.e., (C, A, B)) is a pole of Z2 (i.e., an eigenvalue of ,), these conditions can be
replaced by the still simpler requirement that the number of invariant factors of a be no greater than
the rank of the transfer matrix of ,, and in a neighborhood of Et or Z:, all of these conditions are

bound to hold.



174 J. P. CORFMAT AND A. S. MORSE

each divide m.p. A, both m.p. A //V and m.p. A [[(W/7/V) are also powers of zr. Thus
the invariant factors {o-i, i k}, {/z, i j} and {/3, i el} are also the elementary
divisors of A, A]W and AI[(W//), respectively. From the Jordan decomposition
theorem applied separately to A, AIT/V and

(k) deg (zr)= d(ker or(A))

(A.1) (j) deg (’)= d(ker

(q) deg (’)- d(ker r(A]l(/V)))
(i) The relations ker zr(A]7/V)= 7/VYl(ker zr(A))ker zr(A) and (A.1)

imply

(A.2) k _-> ].

Since m.p. A[W divides m.p. A, there follows o-[/x. If j 1, the proof of assertion
(i) is complete.

Assume ]>1, and fix 0e{2, 3,...,]}. Set =(R)W(R).. "(R)o- and
V f"l W, @ f’l 7/V2 @" @ f"l 7/Vo, where {, e k} and { 7/V, e j} are sets of
component subspaces of rational canonical decompositions (r.c.d.) of F and
respectively. Thus the map fi--AIg has / =O-1 invariant factors. Since

f-’l /g’i i and 7g’i is cyclic, either f"l 7’i 0, or f3 V is cyclic with m.p. equal
to:a power of zr. Therefore the )" nonzero component subspaces of o/ form an r.c.d.
of t/’, so [/" has f invariant factors. Since (A.2) is valid for the data , 7g/’, fi, it
follows that /->_f or f--<O-1. Hence there exists an integer 660 such that
//V f’l 0. Thus, if O" W- W/W is the canonical projection and B the map
induced by A in o/Tg#, then clearly m.p. AITg’=m.p. BIOT,V and
m.p. A[f,,o m.p.B. Since m.p. B IQV divides m.p. B and m.p. A[Y=o

m.p. A]o, it follows that x o-o. But 6 _-< p, so xo]oo. Since O {2, 3,’.’, ]} is
arbitrary and tx[o-,, clearly xilo-, e j, so assertion (i) is true.

(ii) If P" -f/W is the canonical projection, then "n’(A]l(g/t4/’))P Pzr(A);
thus ker(’tr(Al[(Y(/Tg)))kerP’tr(A). But kerPzr(A)=(W’+kerr(A))/V,
which in turn is isomorphic to (ker zr(A))/(Vffl(ker r(A))). Since
7/Vf3 (ker zr(A)) ker zr(A 7/V), it follows that d(ker
=> d(ker -rr(A))-d(ker zr(A 7/V). From this and (A.1),

(A.3) q>=k-].

Assume k>j, and fix O{1,2,’",k-]}. Set
@--.@7/Vo_), where //Vo= 7K/7/V and {7/V, iq} is an r.c.d, of PY( relative to
A=AII(g/7/V). The definition of 9 impJies 7g’ 9 and Pg=
(R) 7o-t. Thus is A-invariant and AII( C/ I (i.e.,/ invariant
factors. Clearly, m.p. ll(P/P)=m.p. 1, but since m.p. fi-17o =/3o and
m.p. AII(/)= m.p.

(A.4) m.p. AII(/) =/3.

Let / denote the number of invariant factors of A---A]. Note that the
numbers of invariant factors of and A are ] and O 1, respectively.
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Since (A.3) is valid for the data , 7V, ft,, it follows that (p 1) -</ -j, or

(A.5) --< ] + o- .
Set 7J f3 1 (R) f-) 2 (R)" (R) f-) +o- Since f) i c i and is cyclic,

either FI T 0, or f’l is cyclic with m.p. equal to a power of 7r. Thus the f
nonzero component subspaces of o/j/, form an r.c.d, of 7, so that fi, 17 has f
invariant factors. Since (A.2) is valid for the data , 7i2, A, it follows that/ _-> j, or,
from (A.5), f_-< j + O 1. This and the definition of 7J/" ensure the existence of an
integer 6 e { 1, 2,. , j + O} such that f3 f 0. Clearly, m.p. nll(( ))/)

m.p. AIWa o-a. In addition, since m.p. A[I((Wa @)/) divides m.p. AI[(W/),
it follows from (A.4) that oral/3. But 6 -<_j + p, so o-+01/3. As p e {1, 2,’’’, k-]} is
arbitrary, assertion (ii) is true.

Acknowledgment. The potential application of Theorems 1 and 2 to the
cascade connection of systems was suggested by the work of E. J. Davison and S.
H. Wang 15].
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THE SEPARATION PRINCIPLE IN STOCHASTIC CONTROL
VIA GIRSANOV SOLUTIONS*

M. H. A. DAVIS,

Abstract. This paper deals with the separation of estimation and control for linear systems with
additive Gaussian white noise and nonquadratic cost function. All measurable functions of the observa-
tions are admissible as controls, the corresponding solutions being defined by the Girsanov measure
transformation. The separation principle is established, under certain conditions, if the dimension of the
observation process is equal to that of the state:if there are fewer observations, then additional ones of
arbitrarily low signal-to-noise ratio can be adjoined such that there is a separated policy based on the
augmented observations which is superior to any policy using the original observations.

1. Introduction. Recently a number of papers, for example [1]-[5], have
appeared in which the theory of control of nonlinear systems with additive white
noise is developed using the concept of "Girsanov" or "weak" solutions of
stochastic differential equations. This allows solutions to be defined for a very
large class of control laws, and using it, various existence results and conditions
for optimality have been obtained. Mostly, however, the results apply only to the
"complete observation" case, where the entire history of the state process is
available to the controller. A standard idea, going back at least to [6], for dealing
with partially-observable problems is that of the hyperstate or information state.

The conditional distribution of the state represents all the relevant information
gained from the observations, and one can therefore, at least in principle, replace
the original problem by a completely observable one whose state is the conditional
distribution function. One technical problem is, of course, that this is in general
infinite-dimensional. There are special cases where it is not, for example, if the
state space is a finite set or if the system is linear with Gaussian noise, when all
conditional distributions are normal and hence parametrized by the conditional
mean and covariance. In this paper, we consider the latter case in order to examine
the applicability of the hyperstate idea in the Girsanov solution context. The
system dynamics are represented by the stochastic differential equations

dx,-- A(t)xt dt + (u(t)) dt + G(t) dw,

dy F(t)x, dt + R1/2(0 dw2

where the control {u,} is to be chosen as a function of the observations {y, 0 ._<_ s
< t} so as to minimize a cost criterion of the form

(1.2) J(u) E L(t, x,, u) dt.
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In (1.1), w and 141
2 are vectors of independent Wiener processes so that (1.1) is

similar to the Kalman-Bucy filter model except for the control term/. The effect of
/ will be simply to shift the mean kt of the conditional distribution of xt, which
remains normal with nonrandom variance. Thus the hyperstate is in this case k,,
and one therefore expects that an optimal controller will first compute k, and then
implement a policy based on k, i.e., that the optimal policy will be ofthe "separated"
form u u(t, ). This is the assertion of the separation principle. The principle
is most easily established when the cost rate L is quadratic, when an explicit
solution to the control problem can be worked out" see [11]. This solution has the
additional feature that the function u is the same as in the complete observation
case’ the optimal control based on {x.,0 =< s __< t} is u(t,x). This feature is
known as the certainty-equivalence principle and will not hold for more general
cost functions.

In 11], Wonham proved the separation principle for general cost functions
under certain conditions, notably that xt and Yt had to be of the same dimension to
insure the uniform ellipticity of a certain differential operator. The problem (1.1),
(1.2) is replaced by an equivalent one involving the completely observable hyper-
state k, and the existence of a solution to the resulting Hamilton-Jacobi equation
of dynamic programming is established, thus defining a separated control policy
which is easily seen to be optimal. Here we consider the same problem in the
framework of Girsanov solutions. Unfortunately, the condition of equal dimension
of x and yt seems indispensable to obtaining the existence of an optimal separated
policy via the results of [2], [3]. The reason for this is that otherwise, even using the
Girsanov method, the existence of solutions to (1.1) is not guaranteed for a suffici-
ently wide class of separated controls. However, for the case dim (y) < dim (x), we
prove the following result’if we allow ourselves some additional observations of
arbitrarily low signal-to-noise ratio, then there is a separated policy based on the
augmented observations whose performance is at least as good as that of any
policy based on the original observations. This is almost as good a result as could
be desired since the additional observations are, for all practical purposes, just
noise. It is perhaps worth remarking that a similar type of argument can be carried
through in the converse, less typical, case where dim (yt) > dim (x).

2. Problem formulation. Let (, , P) be a probability space carrying four
independent separable Brownian motion processes 1, 2, 3, B of dimensions n,
m, n m, n m respectively (here m =< n), and a normal random n-vector a which
is independent of these processes. Let t be the sub-a-field of generated by
{a, x, 2, 3, Bs 0 _< s _< t}. The stochastic processes x, y are defined for the rest
of this paper by

(2.1)
dx, A(t)xdt + G(t)d, Xo a,

dy, F(t)x, dt + R1/Z(t) d2
Y0 0.

Here x R", y R and A, F, G, R are matrices whose elements are piecewise
continuous functions of time. G and R/z are assumed to be nonsingular and F to
have rank rn for all t. The time-dependence of these matrices will generally not be
explicitly expressed. Now let a{Z, 0 <= s <= t}, U be a compact subset of
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some Euclidean space and/3: U R" be a continuous function. The set ofadmissible
controls ’ is the set of measurable functions u:[0, 1] x 2 U such that u(t, is

t-measurable for each e [0, 1]. For u e , let Pu be the measure on (),) defined
by the Radon-Nikodym derivative

(2.2) p(u)-
dP

exp (G-lfl(u,))’ d] - [G-lfl(u,)] 2 dt

where is the matrix transpose and l. the Euclidean norm in R". By Girsanov’s
theorem ([1, Lemmas 0, 1, Thm. 1]) Pu is a probability measure and (w, w2) defined
as follows are independent Wiener processes under P,:

Thus the processes {x, y} defined by (2.1) satisfy an equation of the form (1.1)
under the new measure P,. Let L:[0, 1] x R" x U R be a measurable function
satisfying

(i) 0 =< L(t, x, u) <= K for all (t, x, u) [0, 1] x R" x U, for some K R,
(ii) L(t, x, is continuous on U, uniformly in (t, x).

The cost corresponding to u is

(2.3) J(u) E, L(t, x,, ut) dr,

where E, represents integration with respect to measure
Let t E,(x,l) and define the process v, by

Vt Yt F2 dr.

This is the innovations process which is, as is well known, a Wiener process with
respect to {r}. Equation (1.1) is similar to the Kalman-Bucy filter model except
for the additive control term fl(u), which is, however, adapted to t and therefore
affects the estimation of x from simply by shifting the conditional mean. This is
the content of the following theorem which is proved in [7, Thms. 1 and 2].

THEOREM 1. The conditional distribution of xt given t is normal. The covariance

Pt E[(xt (t)(Xt t)tlot] is nonrandom and is the unique solution of the matrix
Riccati equation

P AP + PA’ + GG’- PF’R-1FP,

P(0) cov a.

There exist measurable versions oft and similar processes introduced below; see 12, Lemma ].
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The mean t satisfies the stochastic differential equation

d A, dt + fl(u,) dt + a, dvt,

(2.4) o Ea +
where a, PtF’t.

Let g(. ;t, x) be the n-dimensional normal density function with mean x and
covariance Pt. Define the function L by

(t, x, u) fR, L(t, z, u)g(z" t, x) dz.

Then for u //, the cost J(u) can be expressed as

(2.5)
J(u) . W.[L(t, x,, u,)l,] dt

Let be the set of measurable functions v:[0, 1] R" U. The idea of the
separation principle is that since the entire conditional distribution of x, is specified
by t, the optimal control should be of the form ut v(t, ) for some v such
control policies will be called "separated". Notice, however, that one cannot
define a solution to (1.1) for such policies by standard application of the Girsanov
transformation, because the random variable t depends on {us, s _<_ t}, and so
u(t, t) is not specified as a function of {y.,., s =< t} unless (1.1) already has a solution
in the Ito sense. It is therefore necessary to introduce a new definition of the
solution of (1.1) for separated policies. This is done by not considering the problem
(1.1), (2.3) directly, but switching attention instead to the equivalent problem (2.4),
(2.5), which is one of complete observations with state . (This is effectively what
Wonham 1 1] does). Problems of this type were considered in [3], where an optimal
policy was shown to exist under very weak conditions when a is invertible, which
in the present context means that xt and Yt must have the same dimension (this
condition was required, for related reasons, in [1 1]). If m < n, the measure corre-
sponding to the process cannot be directly defined by the Girsanov formula
and it is necessary artificially to adjoin some extra observations. This idea is con-
sidered in the next section.

3. Control with augmented observations. Let

Yt t3 and y (Y’t, Yl).

Define o a{37, 0 _<_ s <__ t} and let ff be the set of controls which are adapted to
t.(instead of to 8/t as before). Let fit be an (n- m) x m matrix witla piecewise
continuous elements such that F, [F’i ] is nonsingular. For k 1 2, 3,
define 5 LI(fL, P) by

pk exp k-a/2 (Fx,)’d,3- IFx,I 2d
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Then for u e ’, the formula

(3.1) dP"= p(u)fi
dP

defines a probability measure P, with respect to which dw d (1/x//)Fx dt is
Brownian; thus under P, the processes (x,, y,/p,) satisfy

dx, Ax, dt + fl(u,) dt + G dw,

(3.2) dyt Fxt dt + R x/2 dw2,

dYt (1/.4/-)xt dt + dw
The cost for u e q/is given by

fi(u) E p(u)fi L(t, x,, ut) dt

It is clear that for practical purposes the new information y is useless for large k;
indeed, th covariance of the conditional distribution of x, given o, is P, satisfying

where

P= APk + pkA’ + GG’ Pk’(Rk)-pk,

(Rk) 11R-1 0

0 (1/k)I

so that P Pt as k . The conditional mean 2 Eku(xtlt) satisfies, as in (2.4)
above,

(3.3)

where ak pkff, and

d, A2, dt + fl(u,) dt + ak(t) dv,

dv dfi_ I F, 1
In this framework, it is possible to calculate directly the cost corresponding

to a separated control u e . Let B, be an n-dimensional separable Wiener process
on some probability space (f’, s, p), and let X be the solution of

(3.4) dX, AX, dt + ak(t dB,, Xo Yr.

Then for u e , a measure/?u is defined by

(3.5) exp
d

(if; fl(u(t, Xt))f dB, " IO’- lfl(u)12 dt

Under pk,, X, satisfies

(3.6) dX, AX, dt + fl(u(t, X,)) dt + ak
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which is of the form of (3.3) 2 with u, u(t, t), and it follows from Lemma 2 of [4]
that all solutions of such an equation have the measure given by (3.5) above. Thus
the cost corresponding to u is (compare (2.5))

(3.7)

where

Mk(u) fn dpku f/ L tt, x,, x3) t

Lk(t, x, u) | L(t, z, u)gk(z t, x) dz,

gk(. "t, x) being the normal density with mean x and covariance Pt.
Denote by (C", B") the measurable space of all continuous functions from

[0, 1] to R" with the Borel a-field. Let/x be the measure on (C", B") generated by
{Xt}, the solution of (3.4), and for any fixed u.e , let p be the measure generated
by the process 2 Ek,(xtlt) of (3.3).

LEMMA 1. p -- Px.
Proof. {,} satisfies (3.3), where {vt} is a Wiener process with respect to .

Let 57 a{s, 0 =< s __< t} and let 0, "C" R" be the function such that

Ot(x)=Uu[fl(u,)l,] a.s.

Now define

d, a; l(d,, (Ac, + 0,()) dt).

Then (t, f,) is a Wiener process (this is the standard innovations theorem" see, for
example, [8, Lemma 2.1]) and satisfies

d A dt + Ot()dt + ak dt,

where all terms are adapted to Y’t. It now follows from the Girsanov theorem, since
0 is bounded, that

_
Px with Radom-Nikodym derivative

dpx(X) exp (a lO(X))’a;1 dX Icr-10(X)l 2 dt

THEOREM 2. There exists U . such that

Furthermore,

Mk(uk) inf Mk(u).

(3.8) Mk(uk) inf Jk(u).

I.e., (3.6) defines a #k,-Wiener process {B,}.
The referee has pointed out that Lemma 2 of [4] was established by appeal to Girsanov’s Lemma

7, whose proof is incomplete, but that the special case needed here can be proved by Girsanov’s argu-
ment. Also, Lemma 2 of [4] needs the stronger hypothesis Ib(t, x)[ -<_ f(supo_<s_<, Ixsl) rather than

-<- f(I x as assumed by the authors of [4].
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Proof. The first statement is a direct application of Theorem 3 of [3]. One has
only to check that for fixed (t, x, p) e [0, 1] x R" x R", the Hamiltonian function

p’(Ax + fl(u)) + L(t, x, u)

achieves its minimum over u e U. But this is immediate since L and/3 are continuous
in U, and U is compact.

Let b(t, x) be the value function [8] for the control problem (3.6), (3.7), i.e.,
the minimum cost over It, 1] starting at Xt x. Thus, in particular,

q(0, fi) inf Mk(u),
(3.9)

4(, x) 0.

It is shown in Lemma 6.2, Theorem 6.1 of [8] that there exist measurable functions
Ab’0,1] R" R and Vb’[0,1] R" R" such that the process
satisfies

4(t, X) 4(0, ) A4(s, Xs) ds + V4(s, X) dXs a.s. (x).

The optimality condition states that

(3.10) A(t, x) + V(t, x)(Ax + fl(v)) + L(t, x, v)>__ 0

for almost all (t, x, v) e [0, 1] x R" x U, and u e 5 is optimal if and only if equality
holds in (3.10) a.e. for v u(t, x).

Fix u e q/. From Lemma 1,/ tx, i.e., these measures have the same null
sets, so that the process b(t, 2,) satisfies

(t, ,) (0, a) A(s, ) ds + V(s, )d a.s. (p).

Now satisfies (3.3), so that

4,(,,)- 4,(o,)= (A4,(s,) + Vck(S,s)(A + (u)))ds +

Thus, in view of (3.9) and (3.10),

M(u) dp(O, ) E. (Ab(s, ,) + Vb(s, )(A: + fl(u))) ds

and consequently,

<= Ek. (t,, u) ds Jk(u),

Mk(uk) <= inf. fi(u).
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To get the opposite inequality, we start with arbitrary v 5 and e > 0 and produce
a control u e ’ such that

(3.11)

This shows that

IM(v)- J(u)l < e.

inf Jk(u) <= inf Mk(v) + e,
uq7 v5

which gives the desired result. The control u is constructed by delaying v slightly
and then using the fact that (1.1), with the delayed control, always has a solution in
the Ito sense. Indeed, let v , fix 6 > 0 and define

v(t,X,st)=v(t-a,X,_) for t__>6,

va(t, .)--0 fort<6

(v is not actually in 5C but this causes no problems in terms of the framework of
(3.4)-(3.7)). Now let {,, r/t } be the solutions on (fL , P) of the equations

(3.12)
d, A{, dt + fl(v(t- 6, ,_a)) dt + G d{,

drl, (, dt + R/2 d{2,
with o a, r/o 0, v(t, 0 for < 0 and (, E[(,Ir/,, 0 __< s =< t]. (3.12) has a
unique solution, constructed successively on intervals of length a. ror e [0, a],
fl(v(t 6, (,-a)) fl(0) so that (3.12) can be solved on [0, 6]; then {(,s e [0, 6]} is
known and (3.12) can be solved on [6, 2a] Now let u"[0, 1] x C" U be a
function such that

v(t 6, ,-a)- u’(t, {rl,, s <= t}) a.s.

and define u e q by

u(t, o) u’(t, {y,, s __< t}),
where {y,} is defined by (2.1). In view of the uniqueness of the measure given by the
Girsanov formula ([4, Lemma 2]),

a(u) L(t, ,, u3 dt

E L(t, ,, v(t a, ,_))at.

On the other hand, writing down the Kalman filter equation corresponding to

(3.11), we see that

Mk(v) E Lk(t, ,, v)

so that Mk(va) Jk(ua), and (3.12) will be established if it is possible to choose
such that

(3.13) IM(v)- M(v)l < e.
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It follows from a standard result of Lebesgue integration ([8, p. 91]) that for almost
all co’ f’,

(3.14) [vt vtl dt

and hence, since U is compact, that

la[ (fl(v) fl(v))l dt -0 0 a.s.
o

as 6 --* 0. From [9] we can choose a sequence 6, --, 0 such that

e lim sup [a[ l([(UOn) /(U))[ 2 dt >= O,
0

and for this sequence,

sup ([ (fl(v") fl(v)))’ dB 0
te[O,1]

so that

aoSo

(3.15) a.s.
dp dp

By fixing ’ e ’ and considering a sequence of continuous functions v converging
to vt(’), one can show that

a.s. as 6 ---, 0. Now, since the set of densities

is uniformly integrable ([1, Lemma 1]) and Lk is bounded, it follows from (3.7), (3.15)
and (3.16) that

M’(v.) M(v).

This establishes (3.13) and completes the proof.
COROLLARY. Suppose n m, i.e., that the state and observations are of the

same dimension, and that the observation matrix Ft is nonsingular for all [0, 1].
Then the separation principle holds.

As k increases the additional observations y get increasingly noisy, so one
expects the cost associated with the optimal policies u to increase with k. At the
same time, the original observations y are always retained, so u should approxi-
mate the performance of the best control in //for large k. The following theorem
establishes these assertions.
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THEOREM 3. (i) The sequence Mk(uk) is monotone increasing.
(ii) Let M* limk Ma(u*). Then

M* inf d(u).

Proof. (i) Fix k and u q. We are going to show that there exists u q
such that J(ul) <= J+ l(u). Then inL Jk(u) < inf J+ l(u), which gives the result
in view of (3.8). The idea of the proof is that the observations in case k + can be
regarded as the observations in case k plus an additional independent noise
component. We can thus construct a superior k-policy by selecting a better-than-
average sample function from the additional noise. Indeed, let {B,} be the (n m)-
dimensional Brownian motion specified in 2 and define

v/k v/z,=
k + 13 +

k + B’’

Then under measure Pu defined by (3.1), z satisfies

(3.17)

k V/ dBdzt-- k at-
dyt q- -k-

Fx dt + dw3 + dB
+ k+’ k+l

where w3, B are independent Brownian motions under Uu, so that the bracketed
term on the right of (3.17) is itself a standard Brownian motion. The control (ut),
being adapted to (#), can be regarded as a function of the sample path of (y, V), i.e.,
ut(og) f(t, y(o), ,V(o)). Now construct a new control 0 by replacing by z, giving

F,(og) f(t, y(co), z(o9)).

In view of (3.2) and (3.17), the sample space measure of (x, y, z) under P is the same
as that of (x, y, y) under Pk, + 1. Putting

we have

7(0) L(t, x, 0) dr,

Now let a{B, 0 __< s =< t} and o’C R be a measurable function such
that

EIT()I] (B) a.s.

Then

J+ l(u) E-o(B) fc.-, (B)pw(dB)’
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/w being Wiener measure on C"-m. Thus there exists B e C such that

(Bo) =< jk+ I(U).
Now define

(3.18) zt + it +
+1 B

and

u (t, y, ) u(t, y, z).
It is clear from (3.17) that the conditional measure of (x, y, z) given is equal to the
U,-measure of (x, y, .) with p translated as in (3.18). Thus

jk(ux) a(Bo <= jk+ l(u).
It follows that mk(uk) inf, fi(u) <= inf,o jk + l(u m + l(uk+ 1) as claimed.
Since Mk(uk) <= K for all k, there is a least upper bound M*.

(ii) Here we show that for large k, the cost of a policy u(t, y, f) ql is close to
the cost achieved if, is replaced by w3. The new policy u(t, y, w3) is just a "random-
ized" policy in ’, and we pick a "good" noise sample function as in (i) above to
produce a policy u e q/whose cost is close to that of u e ’.

Recall that u is the optimal policy in for case k. Fix > 0. In view of (3.8)
there exists, for each k, Ok e such that

Jk(tTk) =< M* + e/4.

For any u e , the cost in case k is

Jk(u) E(p(u)fikT(U)).

It follows from [1, Lemma 1] that {p(u)pk’k 1, 2,..., u e } is a uniformly
integrable subset of Ll(fl, if1, P). Since L is bounded, the subset

#’g {p(u)k(u)y(u)’u e , k 1,2,...}
is also uniformly integrable. By the definition of the stochastic integral in [9], there
is a subsequence k,, such that

P lim sup ]Fx[ 2 dt >_ O,

and for this subsequence,

so that

sup ,, (Fx)’ d --, 0

/Sk. a.s..

Choose 6 such that h e,.’# j’e h < 1/4 for any Ee with PE < c5. Now by
Egorov’s theorem, there exists E o such that PE < 6 and ilk, - uniformly on
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f)- E. Choose k k,

(3.19)

such that lSk(o9 11 < e,/(4K) for o9 e f/- E. Then

2. ,
< + K 43-=4 -Now Ep(k)?() is the cost of policy r/ when y is replaced by w3. Let Y-U a{w3,

0 =< s =< t} and r/"C R be a function such that Ep(uk)7(u)[#/] r/(w 3) a.s.
Then

Ep(u)7(u) fo l(W3)/.lw(dW 3)

and we can choose Wo cn-m such that

,(Wo) <= Ep(u)(u).

If we now define U2 ff /’ by

then

ua(t, y) u(t, y, w0),

(3.20) J(u2)-- r/(og) __< Ep(uk)7(Uk).

From (3.19) and (3.20),

J(u2) -<_ J(5)+

Since J0/) < M* + 1/4e,, we have d(u2) M* + e. Hence

J* A inf J(u) <= M*.

For the reverse inequality, observe that

(3.21) inf Jk(u) <_ J*
u60h

since q/ < . If J* < M*, then J* < Mk(uk) for some k, which is a contradiction in
view of (3.8) and (3.21).

Theorem 3 is our main result’ if m n and F is nonsingular, then there is a
policy in ,Y whose cost is minimal in q/. If m < n and F has rank m, then we can
augment the observations to achieve the same result while giving the controller
negligible additional information. The condition rank F m is harmless since
this property is generic, i.e., can be achieved by arbitrarily small perturbations of
the elements of F which are irrelevant from the information-gathering point of
view.



188 M.H.A. DAVIS

REFERENCES

[1] V. E. BENE, Existence of optimal stochastic control laws, this Journal, 9 (1971), pp. 446-472.
[2] M. H. A. DAVIS, On the existence ofoptimalpolicies in stochastic control, this Journal, (1973),

pp. 587-594.
1-3] Optimal control of a degenerate Markovian system, Recent Mathematical Developments

in Control, D. J. Bell, ed., Academic Press, New York, 1973.
[4] T. E. DUNCAN AND P. P. VARAIYA, On the solutions of a stochastic control system, this Journal,

9 (1971), pp. 354-371.
1-5] R. W. RISI-EL, Weak solutions of a partial differential equation of dynamic programming, this

Journal, 9 (1971), pp. 519-528.
I-6] R. BELLMAN, Dynamic Programming, Princeton University Press, Princeton, N.J., 1957.
[7] M. H. A. DAVIS AND P. P. VARAIYA, Information states.fi)r linear stochastic systems, J. Math.

Anal. Appl., 37 (1972), pp. 384-402.
1-8] Dynamic programming conditionsJbr partially observable stochastic systems, this Journal,

11 (1973), pp. 226-261.
[9] H. P. McKEAN, Stochastic Integrals, Academic Press, New York, 1969.

[10] H. L. ROYDEN, Real Analysis, Macmillan, New York, 1968.
[11] W. M. WONHAM, On the separation theorem ofstochastic control, this Journal, 6 (1968), pp. 312---

326.
12] M. P. ERsHov, Representations ofIto processes, Theor. Probability Appl., 17 (1972), pp. 165-169.



SIAM J. CONTROL AND OPTIMIZATION
Vol. 14, No. 2, February 1976

SINGULAR PERTURBATIONS OF TWO-POINT BOUNDARY
VALUE PROBLEMS ARISING IN OPTIMAL CONTROL*

MARVIN I. FREEDMAN AND JAMES L. KAPLANf

Abstract. This paper considers a two-point boundary value problem which arises from an
application of the Pontryagin maximal principle to some underlying optimal control problem. The
system depends singularly upon a small parameter, e. It is assumed that there exists a continuous
solution of the system when e 0, known as the reduced solution. Conditions are given under which
there exists an "outer solution", and "left and right boundary-layer solutions" whose sum constitutes a
solution of the system which degenerates uniformly on compact sets to the reduced solution. The
principal tool used in the proof is a Banach space implicit function theorem.

1. Introduction. In this paper, we study a two-point boundary value problem
which arises by applying the Pontryagin maximal principle to a nonlinear optimal
control problem in which a small parameter multiplies derivatives in the state
equation. Specifically, we shall be concerned with the system

(la) = dp(t, ,, X, p, , u, e),

(lb) , r(t, , X, P, u, u, e),

(lc) e y(t, ,, X, p, u, u, e),

(ld) e) b(t, , X, P, ’, u, e),

(le) O= H,(t, ,, X, O, u, u, e),

on the interval [O, T], together with the boundary conditions

(lf) (;(O): a(e),

(lg) x(T)=b(e),

(lh) p(O)=c(e),

(li) v(T)-d(e).

In the above, denotes d/dt, e is a small, positive, real parameter, c, X, b, rr
E"’, t9, v, % , E"2, u is a measurable function on [0, T] with values in E"3, H is a

scalar-valued Hamiltonian function, and Hu denotes the partial derivative of H
with respect to u. We may imagine system (1), hereinafter referred to as the full
system, arising as the result of an application of the maximal principle to some
underlying optimal control problem in the variables and t9. The variables X and e
may be thought of as the "costate variables" corresponding to and p. Alterna-
tively, this may be expressed by saying that (X(t), e(t)) represents the adjoint
response to the underlying problem (and hence the reason for the boundary
conditions on X and v at T). The function u(t, e) appearing in (la)-(ld) maybe
viewed, as a consequence of (le), as the optimal choice for the underlying control
problem; that is, it represents that choice of admissible controller which max-
imizes the Hamiltonian function. (See Lee and Markus [9] for a discussion of the
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maximal principle. See Freedman and Granoff [5] for an example of a control
problem which gives rise to a system of the form (1).).

We present sufficient conditions which enable us to construct an "outer
solution," a "left boundary layer solution" and a "right boundary layer solution"
whose sum is a solution of the full system. Moreover, as e - 0+, this solution will
degenerate uniformly on compact subsets of (0, T) to the solution of the system
(1) with e set equal to 0. System (1) with e set equal to 0 and with (lh) and (li)
omitted is known as the reduced system. The reduced system has no boundary
conditions related to (lh) and (li), because the number of derivatives of the full
system has been reduced by setting 0. Specifying additional boundary condi-
tions would, in general, overdetermine the reduced system. Thus, unless the
reduced solution happens by chance to satisfy po(0) c(0), ,o(T) d(0) (which, in
general, it will not), we cannot expect that the solution of the full system (1) will
converge to the solution of the reduced system as e 0+, especially near the
boundary 0 and T. This phenomenon is known as boundary layer behavior.
It necessitates the construction of the left and right boundary layer solutions which
explain the behavior of the full system near 0 and T, respectively.

The principal motivation for our approach to the problem is a paper of
Hoppensteadt [8] in which he establishes similar results for a singularly perturbed
initial value problem not involving a controller. We will rely heavily upon this
previous work in 5. Nevertheless, our work differs from that of Hoppensteadt in
several respects. The most obvious differences are that we treat a boundary value
problem instead of an initial value problem, and that we accommodate the
presence of the additional functional equation (le). Additionally, our proofs are
somewhat more concise, due to a utilization of the Banach space implicit function
theorem. This eliminates many of the estimates required by the method of
successive approximations employed in [8]. We mention that Fife [16] has
previously used a Banach space implicit function theorem in the singular pertur-
bation context.

Wilde and Kokotovic [14] have examined this type of problem for linear
systems with quadratic cost functionals.

O’Malley has investigated similar questions for linear and restricted non-
linear systems [11], [12].

A recent paper which treats a problem closer to our own is that of Hadlock
[6]. He also treats a singularly perturbed two-point boundary value problem,
although it does not involve a controller. Although his existence theorem estab-
lishes a solution which degenerates regularly as e 0+, he does not explicitly
exhibit the form of either the outer solution, or the left and right boundary layer
solutions.

In [13], Sannuti gave an asymptotic analysis for a class of nonlinear problems
in which the variables which are multiplied by the small parameter appear
linearly. The control appears linearly in the state equations and quadratically in
the performance criterion. In this situation, the control can be directly solved for
as a linear function of the costate variables.

Finally, in a recent paper, Freedman and Granoff [5] develop formally the
asymptotic series for the solution of the full problem whose existence is rigorously
established here.
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2. Notation and a statement of the problem. It will be convenient for us to
introduce the following notation"

x y f r

with corresponding notation for Xo and yo.

The full system may now be written as

(2a) 2 f (t, x, y, u, e),

(2b) ey g(t, x, y, u, e),

(2c) 0 H,(t, x, y, u, e),

(2d) c(0) a(e),

(2e) x(T) b(e),

(2f) o(O)=c(e),

(2g) v(T) d(e ),

(3a)

(3b)

(3c)

(3d)

(3e)

while the reduced system becomes

o f(t, Xo, yo, Uo, 0),

0 g(t, Xo, yo, Uo, 0),

0 Hu(t, Xo, yo, Uo, 0),

Co(0) a(0),

Xo(T) b(0).

We will assume throughout that there exists a reduced solution Xo(t), yo(t), Uo(t) of
system (3).

DEFINITION 2.1. A solution

x*(t, e)=
\x*(t, e)

y*(t, e)= u*(t, e)
u*(t, e)

which satisfies (2a)-(2c) together with

(4a) /*(0, e)= a*(e),

(4b) x*(T,e)=b*(e),

where a*(0) a(0), b*(0) b(0), is called an outer solution oforderK if x*, y* and
u* are K + 1 times continuously ditterentiable with respect to e (in particular,
x*(t, 0)= Xo(t), y*(t, 0) yo(t), and u*(t, 0)= Uo(t)). The system (2a)-(2c), (4a),
(4b) will be called the outer system. We remark that an outer solution is a solution
of the differential equations (2a)-(2c), possessing additional smoothness in e,
which is close to the reduced solution and such that no boundary conditions have
been imposed on y*(t, e).
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Of course, there is no reason to expect that any particular outer solution will
also be a solution of the full system (2), as the boundary conditions on y(t, e), (2f)
and (2g), will not, in general, be satisfied. In order to compensate for this
deficiency of the outer solution, the solution of the full system will have to
incorporate terms which will correct behavior at the boundary. These terms are
known as the left and right boundary layer solutions, respectively.

In order to obtain these corrections, let

X= XL, Y=

where st’, XL e E"’ and p, v’ e E"2, and perform the change of variables

X(t, e) x(t, e)-x*(t, e),

Y(t, e)= y(t,’e)-y*(t, e),

U(t, e)= u(t, e)-u*(t, e),

in (2a), (2b), (2c). This results in a system of the form

(5a) dX
dr

eJ(e" X, Y, U, e),

(5b) dY
dr

(e’, X, Y, U, e),

(5c) 0 =/L(e, x, Y, u, ),

where we have used the notation (ez, X, Y, U, e) to mean

j(ez, X, Y, U, e)=f(ez, X(-, e)+x*(t, e), Y(z, e)+y*(t, e), U(z, e) + u*(t, e), e)

-f (e’, x*(t, e), y*(t, e), u*(t, e), e).

The function and , are defined in an analogous manner.
DEFINITION 2.2. A solution X"(’, e), Y"(’, e), U"(’, e) of (5a), (5b), (5c) on

0 <-_ " <- T/e, and satisfying an initial condition

(5d) oL(0, 8) (),

is called a left boundary layer solution of order K if XL(, e), yL(, e) and UL (r, e)
are K+ 1 times continuously differentiable with respect to . Moreover, we
require that there exist some positive constants C, 6 such that for all -, 0 =< r =< T/e,

(6) IXL(z, e)l+lyL(.r, e)I+[uL(z, e)[<=Ce-L
For now, we will leave the choice of (e) in (5d) unspecified. Our solution to this
stage consists of the sum

(x*(t, e), y*(t, e), u*(t, e))+(X(", e), Y"(’, e), U"(’, e)).

Whatever our choice of (e) in (5d) (even if it is such that the above sums will
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satisfy (2d) and (2f)), we do not expect the right-hand boundary conditions, (2e)
and (2g), to be satisfied. This necessitates the inclusion of an additional (right)
boundary layer solution, in order to obtain a solution of the full system. Towards
this end, let us introduce

and similar expressions for Y(t,e), U(t,e) in (2a), (2b), (2c). Setting
o. (T- t)/e results in the system

dX- -ef(T- X, Y, U,(7a)
do"

(7b)
dY
do"

-(T eo",X, Y, U, e)

(7c) 0 H,(T- eo", X, Y, U, e).

Here we have used the notation

f(r-eo", X, Y, U, e)=f(T-eo", X+XL, Y+ yL, U+ UL, e)

f T- eo", XL, yL, U, e ),

wfiere, fn terms of o-,

X’(", e)= X’(t/e, e)= X’(T/e -o", e), etc.

The functions and H are defined in a similar manner.
DEFINITION 2.3. A solution

\x*(o-, e)
YR (Pn(O" e)))\v*(o.,

of (7a), (7b), (7c) on 0 <-o. =< T/e, and satisfying an initial condition

(7d) vn(T,e)=d(e),
will be called a right boundary layer solution of order K if Xn(o", e), Yn(o", e),
Un (o", e) are K + 1 times continuously differentiable with respect to e, and if there
are positive constants C, such that for all o", 0-<_ o" _-< T/e,

(8) Ix*(, ,)1 + Y* (o, e)l + u*(o, e)l<=Ce-.
In the next section, we will discuss the manner in which one formally

constructs the asymptotic series for the outer solution and the left and right
boundary layer solutions. In 4 and 5, we will consider the more difficult
problem of the selection of a*(e), b*(e), #(e) and d(e) so as to ensure the
existence of these solutions. Finally, in 6, we will combine these results to
establish our principal theorem (Theorem 6.1). Roughly speaking, we will show
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that under suitable hypotheses it is possible to select a*(e), b*(e), g(e), d(e) so
that the sums

will constitute a solution of the full system (2).
3. e tl esis. In order to show how to construct the formal

asymptotic expansions of the outer solution and the left and right boundary layer
solutions, it is necessary to make several assumptions concerning our data.
Throughout the remainder of the paper, we will assume that the following
conditions hold:

(9) the reduced system (3) has a continuous solution xo(t), y0(t), uo(t) on the
interval 0 N N T,

(10a) there exists eo > 0 such that , g are K + 2 times continuously differenti-
able and H is K+ 3 times continuously differentiable with respect to
t, x, y, u and e, for all 0 N N T, 0 N e N eo and (x, y, u) in a neighborhood
of the reduced solution,

(10b) a(e), b(e), c(e), d(e) are K + 2 times continuously differentiable with
respect to e on 0 N e N eo,

(10c) the naXnmatrixH,,(t,x(t), yo(t), uo(t), 0) is invertible for 0NtNT.

Let us now proceed to develop the formal expansion of the outer solution.
We will assume that the functions a*(e), b*(e) appearing in (4) have K+ 1
contiuous derivatives with respect to e and satisfy a*(0) a(0), b*(0) b(0). We
further assume the existence of an outer solution of order K. Such a solution is
K + 1 times continuously differentiable with respect to e. Under these smoothness
hypotheses, the outer solution has a finite Taylor series expansion in powers of e,

given by

(x*(t, e), y*(t, e), u*(t, e))= (xo(t), yo(t), uo(t))
K

(11) + (x(t), y(t), u(t))e + R,(t, e),
k=l

where R,(t, e)= O(e*). Observe that (xo(t), yo(t), uo(t)) in (11.) must coincide
with the solution of the reduced system.

We may now substitute series (11) into (2a), (2b), (2c). Taking note of
smoothness hypothesis (10a), the resulting equations may be differentiated k
times with respect to e, for 1 N k N K. Upon setting e 0, we obtain
(12a) 2(1 g()x(t)+(t)y ()+L()u(t)+ p(t),

(12b) _() g(t)x() + g,(t)y(t) + g(t)u() + q(t),

(12c) O=H(t)x(t)+H,(t)y(t)+H,(t)u(t)+s(t).
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Here we have used the notation

h(t) -x (t, Xo(t), yo(t), Uo(t), 0),

the other partial derivatives being similarly abbreviated. The expressions pk(t),
qk(t), s(t) are polynomials in Xl(t),’", xk-l(t), yl(t),-", y-l(t),
ul(t),’", uk_l(t), with coefficients depending on (t, xo(t), yo(t),Uo(t)). The
appropriate boundary conditions for (12a), (12b) and (12c) are readily found to be

(12d) a
k! de

*(0) 1 d
(a*(e))lE=o,

1 d(12e) X*(T) b*
k! e

(b*(e))lE=’

for 1 _--< k _-< K. Here we have used a*, b* to denote the coefficient of e in the finite
Taylor series expansion of a*(e), b*(e), respectively.

We may now make a crucial observation with regard to system (12). If we
assume that Xo(t), yo(t), Uo(t), ".., xk_l(t), y-l(t), u_l(t) have been previously
determined, then (12b) and (12c) may be regarded as a pair of simultaneous
inhomogeneous linear functional equations in the unknown functions y(t) and
uk(t). These equations will determine y(t) and u(t) uniquely whenever the
coefficient matrix

g(t) g.(t),)H,(t)

is nonsingular. Since, in (10c), we assumed that Huu(t)- Hu(t, Xo(t), y0(t), u0(t),
0) is invertible on 0 =< -< T, we see that (12b) and (12c) will determine Yk (t) and
Uk(t) uniquely whenever the 2n2 2n2 matrix L(t), defined by

(13) L(t)= g(t)-gu(t)[Huu(t)]-1Hu(t), O<-t<= T,

is invertible.
Upon substitution of the resulting expressions for y(t), uk(t) into (12a), we

are faced with the problem of solving a linear, inhomogeneous, two-point
boundary value problem in x(t). It is well known that this problem will have a
unique solution, provided the corresponding homogeneous problem

(14) . M(t), (0) 0, ,(T) 0

has only the trivial solution. The 2nl 2nl matrix function M(t) is given explicitly
by

(15) M(t) f(t)-[fy(t), f.(t)]\H,y(t H..(t) H..(t)/"

This discussion suggests the following definition.
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DEFINITION 3.1. The outer system (i.e., (2a)-(2c), (4a), (4b)) will be said to
be formally solvable if

(i) L(t) is invertible for 0_-< <_- T, and
(ii) the homogeneous boundary value problem (14) has only the trivial

solution.
Our discussion has now established the following result.

THEOREM 3.1. Let hypotheses (9) and (10) be satisfied. Then system (12) has
a unique solution xk (t), yk (t), u (t) for 1 <= k <= K provided the outer system is
formally solvable.

We now turn our attention to the problem of determining the form of the left
and right boundary layer solutions. Consider first the left boundary layer solution
X’(z, e), yL(., e), U’(", e). This solution, if it exists, possesses K + 1 continuous
derivatives with respect to e. It therefore has a finite Taylor series expansion

K

(16) (X"(’, e), Y(z, e), U"(’, e)) (Xf(’), Yf(z), Uf(’r))e + R2(t, e),

where R2(t, e)= O(e+’). Substitution of series (16) into (5) yields, when we set

(17a) "X----z 0,
dz

(17b)
dYe,

L

dr
g(O, X, Y, Uo, 0),

(17c) 0 H. (0, X, Y,, Uoc, 0).

The appropriate initial condition for (17a), (17b) and (17c) is found from (5d) to
be

(17d) t(0) 8o.

The equations satisfied by the remaining coefficients are determined by differen-
tiating (5) with respect to e k times and then setting e 0, for 1-< k _-< K. This
yields

(18a) dX
dz

P(’)’

(18b)
dT

gx(’)X+ gy(z) Yf+ g.(z) Uf+ qf(’),

(18c)

with initial condition

0 H.x(z)X+ H.,(z) yt+ H..(z) Ut(z) + st(’),

(18d) p(0) 8.
In the above, we have used x(-) to denote (,gg/OXt’) (0, X(z), Yo(Z), Ug(z), 0);
p(’), q(’), and s(z) are polynomials in X(z), ., Xi_,(r),
Y(z),..., Y_(r), Uf(z),...,U_(r), with coefficients depending on
(r, Xo(r), Yo(r), Uo(r)). Moreover, we see from Definition 2.2 that p(z), q(-)
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and s(’) decay exponentially as - oo. The numbers Co, cl, , ck represent the
coefficients in the finite Taylor series expansion of c(e).

We remark that condition (8) implies, when we set e 0, that

(19) ]X(-)]+IY(-)I+IU[f(-)I<-Ce-" for 0_<- " < oo.

Before we can prove a result concerning the formal solvability of systems (17)
and (18), we will require a preliminary lemma. It is an adaptation of results of
Hartman [7, Chap. IX], which employs topological techniques for the study of the
behavior of solutions of an autonomous system in the vicinity of a stationary point.
This lemma will enable us to establish the existence of certain locally invariant
manifolds from which the left and right boundary layer solutions decay exponen-
tially, as required in (6) and (8), respectively. The proof is omitted. It may be
supplied by the reader, or the details may be found in [15].

LEMMA 3.2. Consider the differential system
dz
d7

h(z(r)), z E z (Zl," Zn)

Let h be twice continuously differentiable, and assume that the Jacobian matrix
A h (0) is nonsingular. Suppose thatA has k eigenvalues, 1 k n, with negative
real part, and n k with positive real part. Let P be a 2n2 x 2n2 nonsingular matrix
such that

where B is a k x k matrix whose eigenvalues all have negative real part, while the
eigenvalues of C have positive real part. Suppose, further, that

p=
kp: P::/’

where the k x k matrix P satisfies det Pl 0. Then there exists 6 > 0 such that if
(a, , )E, with 1]< 6, then there exists a solution z(r) of (21) satisfy-
ing z(O) , 1 k, which decays exponentially to zero as .

In order to be able to apply Lemma 3.2, we are forced to make an additional
technical assumption on the matrix L(t) in (13). We require the following:

for each t, ON tN T, L(t) has n: eigenvalues h(t), h2(t), , h,:(t), with
(20) Re h(t) N -y < 0, 1, 2, , n:, and n2 eigenvalues

1,+(t), , h:,:(t) with Re 1,(t) 7 > 0, n: + 1,. , 2n:.

Remark 3.1. It is well known that under the smoothness assumptions of this
paper, eigenvalue condition (20) is equivalent to the existence of

(i) an n: x n: matrix B (t), 0 N N T, with all eigenvalues having negative real
parts N -y < 0;

(ii) an n: x n: matrix C(t), 0 N N T, with all eigenvalues having positive real
parts y > 0; and

(iii) a 2n: x 2n: continuously differentiable matrix P(t) such that

(B(t)P- (t)L(t)P(t)=
\ 0
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Hypotheses essentially the same as (20) have previously been used by
numerous other authors: Flatto and Levinson [4], Hadlock [6], Hoppensteadt [8],
Levin 10], Chang 1] and Chang and Coppel [2].

We are now prepared to prove the following result.
THEOREM 3.3. Suppose that hypotheses (9) and (10) hold. Assume, further,

that L(t) is invertible and that eigenvalue condition (20) holds. Assume that the
matrix P(t) of Remark, 3.1 (iii) satisfies det P,,(0) : 0, where

(P,,(t) P,(t)
P(t)

\P(t) P22"F/’)/
Then, for sufficiently small vectors Ix, e E", the following are true"

(i) System (17) has a unique solution X(’), Y(’), U(’) satisfying p(O)
Ix, and the additional condition

(21) lim X(-r) lim Y(’r) lim U(’r) 0.

Moreover, X(’)= 0 and Y,;(), U(’) decay exponentially.
(ii) For each k, l <= k <= K, system (18) has

X(), Y(), U(’) satisfying p(O)= rl and
a unique solution

(22) lim Xf(-) lim Yf(-r) lim Uf(-r) 0.

Moreover, the solution X(), Y(), U() decays exponentially.
Remark 3.2. Under suitable conditions, as in O’Malley [12], the smallness

conditions on g and may be eliminated. However, in the general nonlinear
context with which we are dealing, those conditions are necessary and related to
the general problem of estimation of the size of the region of attraction.

Proo[ o[ (i). We first note that (17a), together with the condition lim X(r)
0, imply that

(23a) X() 0.

Utilizing (23a), we reduce (17b) and (17c) to"

(23b)
d’/"

Yo(r) U(z)O)(0, O,

Lg(0, Xo(0), yo(0)+ ,(r), Uo(0)+ Uo(), 0)
-g(0, xo(O), yo(0), Uo(0), 0),

(23c) 0 =/-?L(0, 0, Y(’r), US(’r), 0)= H,(0, Xo(0), yo(0)+ Y(’r), Uo(0)+ U(’r), 0).

In (23c) we have used the fact that H,(0, Xo(0), yo(0), Uo(0), 0)= 0. In addition to

this, (10c) implies that det H,u(0, Xo(0), yo(0), Uo(0), 0)#0. By the standard
implicit function theorem in Euclidean space, it follows that (23c) may be solved
for U(7") in terms of Y(z) in some sufficiently small neighborhood of 0 in E2"2.
More precisely, there exists a continuously differentiable map from a neighbor-
hood of 0 in E2’ into E"3 satisfying

,(0)=0,

qr,o, -H.-.’(O)[H.y (0)],
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and

0 H,(0, Xo(0), yo(0) + a, Uo(0) +(a), 0)

for any a in this neighborhood.
It will now suffice to prove that the equation

dY(’)
(24) dr

g(0, Xo(0), yo(0) + Y(’), Uo(0) + (Y(’)), 0)

-g(0, Xo(0), yo(0), Uo(0), 0)

has a unique solution Y(-) which decays exponentially and which satisfies
p(0) =/x for any sufftcien’tly small/x 6 E"2.

Now, define

h(Y(-)) g(0, Xo(0), yo(0) + Y(), Uo(0) + $(Y,(’)), 0)
-g(0, Xo(0), yo(0), Uo(0), 0).

We easily compute

dh
gy(O)+ g,(O)[-H..(O)]-’H.y(O)= L(O).

Thus (24) satisfies the requirements of Lemma 3.2. The conclusion of that
lemma completes the proof of Theorem 3.3 (i).

Proof of (ii). Consider now system (18). By induction, it is easy to establish
that for each k, 1 _-< k _-< K, the function p(’) decays exponentially as - co. It then
follows that the only solution of (18a) which satisfies lim X(-) 0 must be given
by

X(’) p(s) ds.

Equation (18c) may be written as

(25) Uf(’r) --[lIuu("l’)]-l[x(T)Xf -Af Huy ("F)y--- sf(’/’)].

From this, we see that it will suffice for us to show that if r E"2 is sufficiently
small, then the solution Y(-) of (18b) satisfying p(0) r/decays exponentially.

Towards this end, let us insert expression (25) into (18b) to obtain

dT

+ (,()

+ qf(’) , (-)[/2/., (r)]-’ sk (-).

If we now utilize the fact that X[(-) is a known function of - which decays
exponentially, we see that this equation is a linear, inhomogeneous differential
equation of the form

(26)
d Y___[ A ,r Yi "r + S "r
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where A (’), B(-) are known functions. The function B(-) decays exponentially as
’-->, due to the presence of the terms X(’), q(-), s(-), all of which decay
exponentially. (The decay of qf(-), sf(-) is established by induction.) On the other
hand, the matrix A (-) is given by

A (-) (r)- .(’)[/-/. (’)]-’[/2/. (,r)],

where ,(-)= gy(0, Xo(0), yo(0)+ Y,;(’), Uo(0)+ U(’), 0), and ,,/-u, and ,, are
similarly defined. In part (i) of this theorem, we established the fact that if
a p(0) is sufficiently small, then Y(r) (and hence U(z)= (Y(z))) decay
exponentially. Combining this with the continuous dependence of solutions upon
initial conditions, if a is sufficiently small, we may ensure that Yo(-), U(r) will be
uniformly small on [0, o). It now follows, by choosing a sufficiently small, that we
can make IIA( )-L(0)II as small as we desire for all re[0, m). Moreover,
A(-)- L(0) decays exponentially. By rewriting (26) as

dY
L(O) Y;(’r) +[A(’r)-L(O)]Y(’r) + B(r),

d"

we may now therefore view it as a perturbation of the linear, homogeneous,
constant coefficient equation

(27) d_f L(O)z(’).

The proof that Y(-) decays exponentially for any choice of p(0) in a suitably
small neighborhood of the origin will now follow directly from an application of
the following lemma.

LEMMA 3.4. Consider the linear system )) Ay +f(t, y), where f is continuous

for [Yl small and >=0. We assume that, given a >0, there existS, Tsuch thatfor all
t>-O,

If(t, x,)-f(t, x)[ =< a[x,- x[ for Ix,I, Ix l--<

Let A have k eigenvalues with negative real part and n- k with positive real part.
Then for any to there exists a real k-dimensional manifold S containing the origin
such that any solution ch of Ay + f(t, y) with (to) S satisfies ok(t) - 0 exponen-
tially as --> .

Lemma 3.4 appears in Coddington and Levinson [3, Thm. 41, p. 330]. A
careful examination of the proof will reveal that it is not necessary that for any
a > 0 there exist 6 such that If(t, Xl)--f(t, x2)[-< alxl- x2l for Ix,I, Ix l--< but
merely that it hold for/3 sufficiently small, which is the case here. Moreover, the
change of variables y Pz in (27) shows that the k-dimensional manifold whose
existence is assured consists of the first k components of y. Since det P,I(0) 0, an
implicit function theorem argument allows us to choose the first k components of
z in some suitably small neighborhood of 0.

Let us now turn our attention to the determination of the right boundary
layer solution of order K. In a manner paralleling the previous procedure, we find
that such a right boundary layer solution XR(tr, e), YR(tr, e), U(cr, e), which is
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K+ 1 times continuously differentiable with respect to e, will of necessity satisfy

(28a) dX/dr O,

(28b) dYe/do= (T, Xg, Y, U, 0),

(28c) 0 =/-). (T, X, Y, Uo, 0),

together with initial condition

(28d) ug(0) do.
For 1 N k -< K we have

(29a) dX/do" p(r),

(29b) dYf/do -.(o)X- (o) Yf- .(o’)u + q(o),
(29c) 0 =/-).. (r)X(r) +/., (o-) Y(r) +/..(o-) U(o-) + sf(o’),

with initial condition

(29d) u(0) a.
In the above equations, X, Y, U, d, 0-< k =< K, denote the coefficients of the
finite Taylor series expansions in powers of e of X, Y, U, d, respectively. The
symbol ,.(r) denotes (Og/OX)(T, Xg(o-), Y(o-), U(o-), 0), the other partial
derivatives being similarly defined. We require, of course, that

lim XR(o-, e)= lim YR(tr, e)= lim U(tr, e)= 0,

which is equivalent to requiring that

,imx(T-t, )limo y(Tt ) u(T-t )e ,e =lim ,e =0.
eO E e-O E

Note that, by induction, these conditions imply the exponential decay of p(o-),
q(o’), sg(o’) as o---> oo.

By analogy with Theorem 3.3, we now have the following.
THEOREM 3.5. Suppose that hypotheses (9) and (10) hold. Assume, further,

that L(t) is invertible and that eigenvalue condition (20) holds. Assume that the
matrix P(t) of Remark 3.1 (iii) satisfies det P22(T) 0, where

P(t)
/
/
P’l(t) Pl(t)
Pl(t) P(t)/"

Then, for sufficiently small vectors a, q E", the following are true"

(i) System (28) has a unique solution X(r), Yo(O), U(r) satisfying u(O)
a and the additional conditions

lim Xo(O-) lim Yo(O-) lim ’Uo(,)=0.

Moreover, Xg(r) =- 0 and Y, U decays exponentially.
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(ii) For each k, l<-k<-K, the system (29) has a unique solution
RXk (r), gf(r), U’(tr) satisfying t,f(O)= rl and

lim X(tr)= lim Y(tr)= lim U(o’)= 0.

Moreover, the solution X’, Y’, U’ decays exponentially.
In this section, we have shown how one formally constructs an outer solution,

and a left and right boundary layer solution. We have deliberately avoided, to this
point, any discussion of how one might select a*(e), b*(e), g(e), d(e) so that

(x*(t, e)+XL(", e)+XR(tr, e), y*(t, e)+ Y’(’, e)
+ YR(cr, e), u*(t, e)+ U"(’, e)+ UR(tr, e))

will constitute a solution of the full system. In the following sections, we will show
that such a selection is possible.

4. Existence of an outer solution. In this section, we shall see that hypoth-
eses (9) and (10), plus the assumption of formal solvability of the outer system,
appear insufficient for a rigorous proof of the existence of outer solutions. We will
again require the use of eigenvalue condition (20).

THEOREM 4.1. Suppose that (9), (10), (20) hold, and the outer system is
formally solvable. Let a*(e), b*(e) E"’ be as in Definition 2.1, i.e., a*(0) a(0),
b*(0)=b(0). Suppose, further, that a*(e), b*(e) are K+ 1 times continuously
differentiable on 0 <= e < eo. Then there exists e > 0 such thatfor all e, 0 <-_ e < e 1, the
outer system possesses a solution x*(t, e), y*(t, e), u*(t, e) satisfying

K

x*(t, e)- , Xk(t)e= o(k+l),
=0

K

(30) y*(t, e)- Y’, y(t)e o(K+I),
=0

K

u*(t, )- Y u(t) 0(+’),
=0

where the O(e +1) is taken to hold uniformly for 0 <-_ <- T.
Proof of Theorem 4.1. We will establish our result under the assumption that

L(t) is in block diagonal form, i.e., L(t) diag [B(t), C(t)], where B(t) is an n2 x n2
matrix having all eigenvalues with real parts =<-3’ < 0, and C(t) is an n2 x n2
matrix whose eigenvalues all have real parts => 3’ > 0. Upon completion of the
proof in this case, we shall show how the general case may be reduced to this one.

We consider first the case K= 0. Let (r(t), s(t), v(t)) lie in a suitably small
neighborhood of (0, 0, 0) in E2"’ X E2"2 X E"3 for 0 -< =< T. For 0 _-< e < eo, define

(t, r, s, v, e

f(t, Xo(t)+er(t), yo(t)+es(t), uo(t)+ev(t), e)-f(t, Xo(t), yo(t), 0)

L(t)r(t) + f(t)s(t) +f,(t)v(t) +L(t)

for e # 0,

for e 0.
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In a similar manner, define (t, r, s, v, e) and Y(, (t, r, s, v, e). Then o%, 3 and , are
continuous at e 0+.

Also, define

a*(e)- a(O) f b*(e)- b(O)
e #0, e #0

A*(e) e B*(e) e

a, e 0, b*, e 0.

It will be convenient for us to adopt the following notational convention through-
out the remainder of the proof. If w denotes any variable with values in E2", for
some integer n, then

(wl)W

where w and w denote the first n and the last n components, respectively, of w.
It is readily verified that any bounded, continuous solution

(c(t, e), t(t, e), y(t, e)) of the system

(31a) & o(t, c,/3, 3’, e),

(31b) e/ c(t, c,/3, T, e)- 3)0,

(31c) 0= ,(t, a,/3, V, e),

(31d) c((), e)= A*(e),

(31e) c(0, e)= B*(e),

yields an outer solution of order 0 (i.e., a solution of (2a)-(2c), (4a), (4b)), given by
(x*(t, e), y*(t, e), u*(t, e))=(Xo(t), yo(/), Uo(t))+(t(t, e), (t, e), y(t, e))e.

In the light of the above remark, we will focus our attention on solving system
(31). As a preliminary step, we first consider the auxiliary system

(32a) & ,(t, r, s, v, e),

(32b) e/ gy(t) + g,(t)/ + *(t, r, s, v, e)- o,
(32c) O=H.y(t)+H,,(t)+Yg*,(t,r,s,v,e),

together with boundary conditions

(32d) ol(0, 6) A*(6),

(32e) -(O,e)=B*(e).

The function * is defined by

c*(t, r, s, v, e)= c(t, r, s, v, e)-g,(t)s- g,(t)v,

and ,* is similarly defined. System (32) may be thought of as a partial lineariza-
tion of system (31), in which the nonlinear terms are treated as an inhomogeneous
forcing function.
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(33)

From the definitions of c, and *, it follows that

(t, r, s, v, 0)=0, (t, r, s, v, 0)=0,
Os Ov

(t,r,s,v,O)=O,
Os Ov

(t, r, s, v, 0)=0.

Let M(t, r, s, v, e) denote the expression

-g.(t)[H,,(t)]-lN*.(t, r, s, v, e)+ *(t, r, s, v, e)-o.
It is easily verified that M is K + 2 times continuously differentiable with respect to
e. Moreover, (32c) may be solved explicitly for y in terms of /3 and then
substituted into (32b) to yield

(34) e L(t) + M(t, r, s, v, e).

Consider now the solution of system (32) satisfying the additional boundary
conditions

(35a)

(35b)

’((), e)=-[B(0)]-I[M(0, r(0), s(0), v(0), 0)] 1,

Z(T, e)=-[C(T)]-I[M(T, r(T), s(T), v(T), 0)].
Admittedly, reasons for this choice of additional boundary conditions are

obscure. The role that they play will only become apparent later in the proof.
Given any e >0, the solution of (32), (35) may now be written down

explicitly. It is given by

(36a) al(t, e)= A*(e)+ [(’, r(’r), s(-r), v(’r), )]1

(36b) 02(/, e)= B*(e)- [(’, r(’), s(-), v(’), e)] dr,

(36c) /31(t, e) 4(t; 0, e)fll(0, e)+- ,b(t; r, e)[M(r, r(r), s(r), v(r), e)] dr,

(36d) /32(t, e) q(t; T, e)2(T, e) -1 O(t; ’, e)[M(r; r, s, v, e)] dr,
E

(36e) 3,(t, e) [H,.(t)]-[H.,(t) + *N,(t,r,s,v,e)].

In equations (36), /31(0, e) and fl2(T, e) are as given in (35). The functions
4(t; -, e) and q(t; -, e) are the fundamental matrix solutions of the systems

ez’= B(t)z and ez’= C(t)z,

respectively, satisfying 4(r; ’, e)= I= q(r; r, e).
It is well known that our eigenvalue assumptions on the matrices B and C

imply the following:
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There exists C> 0, 6 > 0 such that

(37a)
[14,(t; , Ce-(’-’)/

Ilq,(t; , )ll c e-(-’)/

(37b)
Io’ b(t; r, e) dr 0(e),

’q(t; ’, e) dr= O(e),

for 0 < e < eo and 0 -< " <- -< T,

for 0 < e < eo and 0 =< _-< " _-< T,

uniformly for 0--< <_-- T.
Now, denote by the mapping of (r, s, v, e) to (a,/3, % e) given by (36). Let

denote the Banach space of continuous functions on [0, T] taking values in
E2"’ E2" E"3. Then is defined in some neighborhood 0 of (0, 0, 0) in , and
for 0 < e _-< eo, that is,

O" 0x(0,

For e =0, given (r, s, v)6 0, define (r, s, v, 0) to be the unique solution
/3o, yo of the system

(38a) o=L(t)r+L(t)s+L(t)v+L(t),

(38b) 0 gx(t)r + gy(t)o+ g.(t)yo+ g.(t)- o,
(38c) 0 H.x(t)r + H.y(t)flo + H,. (t)To + H.(t),

with associated boundary conditions

(38d) a(()) A*(O)= a*’
(38e) cg(T) B*(0) b *.
We note that our assumption of formal solvability suffices to ensure the existence
of a solution to (38). In fact, given (r, s, v), ao may be determined from (38a) by
quadrature, while/3o and ,o can then be solved for in terms of (r, s, v) using the
invertibility of H,,.(t) and L(t). We have thus extended the domain of definition of

so that

O. ox[o, eo]- .
Claim 1. The map is continuous.

The continuity of on 0 (0, eo] is obvious. All that we must verify is that is
continuous at e 0.

Note first that the continuity of at e =0 implies that c(t, e)-ao(t)
uniformly on 0<_-t_-< T as e -0. Moreover, /(t, e), given by (36e), will reduce, as
e-0+, to (37c), provided we can first establish the fact that /3(t, e)-flo(t)
uniformly on 0 _-< _-< T as/3 - 0+.

Let us therefore examine the behavior of fl(t, e). Recall that we have
previously shown that (32b) and (32c) may be solved for ), in terms of/3, to yield
(34). It follows that for e 0,

(39) L(t)fl(t, O)---M(t, r, s, v, 0).
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By direct computation, we can verify that (38b) and (38c) may be similarly solved
for/3o to yield

L(t)o(t) =-M (t, r, s, v, 0).

Thus, since L(t) is invertible,/3(t, 0)=/3o(t). If we now use the assumed represen-
tation L(t)= diag [B(t), C(t)], then (39) can be rewritten as

,(t) l(t, O)=-[B(t)]-[M(t, r, s, v, 0)] 1,

/3(t) :/32(t, 0)=-[C(t)]-[M(t, r, s, v, 0)]2.

If we now employ (35) and (36), we have that for e > 0,

/31(t, e)= b(t; 0, e)/3o1(0) + th(t; ’, e)[M(’, r, s, v, e)] d’,

/32(t, e) qt(t, T, e)(T)
1 f,r 0(t; ’, e)[M(’, r, s, v, e)] dr.

Let us now show that ill(t, e) ---/3(t) uniformly on 0-< t T as e 0+. The proof
for/32(t, e) is similar.

Define W(t, e)= 131(t, e)-(t). It is then easy to show that W(t, e) satisfies
the equation

W(t, e)= th(t; ’, e)
M(r, r, s, v, e)-M(r, r, s, v, O)

(Note that it is in the derivation of this equation that the additional boundary
condition (35a) is crucial.)

Now the bracketed term on the right in the above equation is O(1), while

’o 4,(t; ’, e) o(e), e -0. It follows that l(t, e) fl(t) uniformly on [0, T], thus
establishing our claim of the continuity of .

We remark that it is easily verified that 0 [0, eo]- 3 has a continuous
Fr6chet derivative for each (r, s, v)0 and 0=< e < eo. The continuity of these
derivatives at e 0 may be demonstrated by a proof analogous to the one just
given for the continuity of at e 0.

In particular, let us write down the Fr6chet derivative at e 0. At any point
(r, s, v) 0, the Fr6chet derivative D )]=o must be a bounded linear transfor-
mation in @:

It may be shown that/(t),/d,2(t),/.t,3(t) must be differentiable, and they will satisfy
the equations

(40a) l(t) f (t)r/1 -t- fy(t) yl2 + f, (t)r/3,

(40b) 0 gx(t)rl, + gy (t)/z2 + g,(/)/3,

(40c) 0 H,(t)rll + H,, (t)/z2 + H.(t)/3,

together with boundary conditions

(40d) /x I(0) =/x(T) 0.
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It may be useful to observe that (33) plays a crucial role in the derivation of system
(40). Not surprisingly, equations (40) are simply the "variational equations"
corresponding to (38).

To complete our proof, under the assumption L(t)=diag[B(t), C(t)], we
must show that there exist c(t, e),/3(t, e), 3,(t, e), jointly continuous in and e for
0 -< t -< T, 0 _-< e < eo, satisfying

(, t, v, e)= (c, ,
Our tool for the demonstration of this fact will be the Banach space form of the
implicit function theorem.

Define " 0 [0, eo] by

(r, s, v, e)= (r, s, v, e)-(I(r, s, v), e),

where I is the identity map. Then is a continuous mapping which has a
continuous Fr6chet derivative for each (r, s, v, e)e 0 [0, eo]. Moreover, a com-
parison of (12) with (36) shows that for (r(t), s(t), v(t)) (x(t), y(t), u(t)) (where
xl(t), yl(t), u(t) denote the appropriate coefficients which were formally derived
in 3), we must have

,ty(x, y, u,, 0)= 0.

The Banach space implicit function theorem will now establish the existence of the
desired (a(t, e), (t, ), y(t, e)) satisfying

0 4(, t, , e)

or, equivalently,

(c, t, v)= q(c, , , e),

provided we can demonstrate that the Fr6chet derivative of at (x, y,, u, 0) is a
topological linear isomorphism. But

Thus, by (40), for (n, n:, n3)e N, the mapping

is given explicitly by

( + 1)()= [g(r)(r) +()n(r) +()3()]
(41a)

(,+)()=- (r)(r)+g(r)(r)+()()] dr,

(4 lb) 0 g(t) + g,(t)( +)+g()( +),
(41c) O=H(t)+H,(t)(+N)+H,(t)(a+3).
In differential form, (4 la) may be rewritten as

(42a) ( +,)=L(t)n,
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with boundary conditions

(42b)

(42c)

Now the system (41b), (41c), (42) represents a continuous linear mapping from
(rtl, r,, rl3) to (ix1, t*2,/x3), since det L(t) O.

To check that this map has a bounded linear inverse, it is convenient for us to
set

6i rti + tx, 1, 2, 3.

With this change of variables, (41 b), (4 lc), (42) become

(43a) }, f(t)61 +fr (t)62 +f,(t)a3-[f(t)Ix, +fy(t)/2

(43b) 0 gx (t)6, + g (t)62 + g,(t)63-

(43c)

(43d) 6,(0) 0,

(43e) 8(T) O.

But our assumption of the formal solvability of the outer system is now precisely
what is required to ensure the existence of (61, 32, 63)6 a satisfying (43) for
any choice of (tz,, t*2, tx3)e N. Moreover, the linear map so defined from
(t*l, ix2, ix3) -+ (61, 82, 83) is clearly continuous. Finally, since rti 8, t*, 1, 2, 3,
the linear map from (txl, t*2, t*3) -+ (r/l, rl2, rl3) must be continuous. Of course, this
is -1.

We have therefore shown that D,.s,,l,,,,,,,o is a topological linear
isomorphism. We conclude that there exist c(t, e),/3(t, e), y(t, e) continuous in
0-< t_-< T and 0 =< e < eo, satisfying system (31). As previously remarked,

(x*(t, ), y*(t, e), u*(t, e))=(Xo(t),yo(t), Uo(t))+(a(t, e), (t, e), ,(t, e))e

constitutes the outer solution whose existence is asserted in the statement of
Theorem 4.1.

We now remark that the general case in which L(t) is not block diagonalized
can be reduced to the previous case. Let P(t) be the matrix given in Remark 3.1.
The change of variables y P(t)z will now transform the outer system into the
system

Ye= f(t, x, Pz, u, s),

ei =[P(t)]-l g(t, x, Pz, u, e)-[P(t)]-’P(t)z,
O=H,(t,x,P(t)z,u,e).

This system is of the same general form as the outer system, but the appropriate
"L(t)" for this system is block diagonalized, thus reducing the general case to the
one already treated. We omit the details.

The proof for the case K > 0 proceeds inductively.
Suppose that we have already established the existence of an outer solution of

order k 1, 1 <- k -< K, which satisfies the other requirements of the theorem. We
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define

(t, e)

k-1

x*(t, e)- x(t)e
=0

k-1

y*(t, e)- Y’, yj(t)e
j=o

k-1

u*(t, e)- u(t)e
j=O

Then a,/3, 3’ will satisfy a system of the same form as (31), with appropriately
modified functions , d, ,, A*, B*, and o replaced with ))k-1.

By using the analysis developed previously, we may establish the existence of
a continuous, bounded solution c(t, e),/3(t, e), 3,(t, e) of the resulting system for
0 <- <= T, 0 =< e < e,,. We omit the details.

5. The existence of left and right boundary layer solutions. In this section, we
shall return again to the consideration of the left boundary layer equations (5) and
the right boundary layer equations (7). For suitable choices of initial conditions,
(5d) and (7d), respectively, we will establish the existence of solutions which
satisfy our requirement of exponential decay. We will begin with the left boundary
layer solution.

THEOREM 5.1. Let (9), (10) and (20) hold, and suppose that the outer system
is formally solvable. Let the matrix P(t) of Remark 3.1 satisfy det Ply(0). Then for
each g(e) E" sufficiently small, which is K + 1 times continuously differentiable,
there exists a solution X"(-, e), yL(., e), U"(’, e) of (5) on 0<= ’<--_ T/e, satisfying
p"(0, e)= c(e). Moreover, XL(", e), Y’(’, e), U’(", e) are K + 1 times continu-
ously differentiable with respect to e, and satisfy decay condition (6) for some C> 0,
> 0 and for all 0 <- - <- T/e.

In addition, if Xd (’), Y(’), Ud (’) represents the solution of (17), while for
1 <_- k _-< K, X(’), Y(’), U(’) represents the solution of (18), then

(44)

K

xL(’T, f,)-- Xl(T)e o(K+I),
k=O

K

Y"(’, e)- E Y(’)e O(e
0

K

uL(’T, e)-- E UI(’T) sk O(eK+l),
k=O

uniformly on 0 <- <-_ T/ e, as e 0+.
Our proof of Theorem 5.1 will follow by an appropriate interpretation of

Hoppensteadt’s Lemma 2 [8]. For easy reference, we restate that result as our
Lemma 5.2, using Hoppensteadt’s notation.
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(45a)

(45b)

(45c)

(45d)

(46a)

(46b)

Consider the systems

dX
dr

ef(e’r’ X, Y, e),

(46c)

(46d)

and, for 1 -< k _<- K,

XE",

dYo
dT

(47a)
dXk
d"

pk ’)’

(0, Xo, Yo, 0),

Xo(O) 8(o),
Yo(O) (o),

(47b)
dYe_ ,x(r)X + gy(’)Y + q(’),
d"

(47c) Xk(0)- ,
(47d) Y(0) ,
where p, qk are polynomials in Xl, Y1, , X_, Yk-1 with coefficients depending
on -, Xo(’), Yo(r). In the above, f, g have arisen in a manner similar to that of our
paper from functions f and g, respectively.

LEMMA 5.2 (Hoppensteadt [8]). Let hypotheses analogous to (9) and (10)
hold for system (45). Suppose, moreover, that the analogue of (20) holds, in which
we require that gy(t) have k eigenvalues with negative real part Re A(t)_-<-IX < 0,
and n- k with Re A(t)_-> tx >0. Then, for each small e >0, there exists a k-
dimensional manifold S(e)eE such that (45) has a unique solution X(t, e),
Y(t, e) on O<-_t <- T, provided ((e), l(e))eS(e). Moreover, if (, l)eS(e), the
problems (46) and (47) have unique solutions existing on 0 <- " < oo, and

K

(X(t, e), g(t, e))- , (X(r), Y(r))e= O(eK+),
=0

where O(e ’+) holds uniformly for O<=t<= T as e 0+. In addition, there are
positive constants K, 3, e;’ such that

IX(t,
for O<-t<- T, O<e <-eg.

Thus the differences between Hoppensteadt’s Lemma 2 (Lemma 5.2 above)
and our own Theorem 5.1 are as follows. First, we must also contend with the
additional function U(-, e) in (5). Second, we impose the additional assumption
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that det Pll(0) # 0. AS we shall see, this enables us to show that the projection of
E2"’ E2"2- E"2 given by (:, )-. 1 maps S(e) 1-1 onto some neighborhood of
the origin in E":. Here we have again used to denote the first n2 components of

Proo o eorem 5.1. As was pointed out, our proof will rely heavily upon
Hoppensteadt’s proof of Lemma 5.2.

First, let us attempt to solve (5c) for U in terms of X and Y. By a simple
continuity argument, H(er, X, Y, U, e) will be nonsingular for X, Y, U and e in
a suciently small neighborhood of 0 and 0 N N Tie. This follows, since

(er, X, Y, U, e)=H(t,x*(t,e)+X(,e), y*(t, e)
+ Y(r, e), u*(t, e)+ U(r, e), e),

and by hypothesis (10c), H,,(t, Xo(t), yo(t), Uo(t), 0) is nonsingular for 0t Z
Thus, by the implicit function theorem in Euclidean space, there exists a

continuously differentiable map & with U (ez; X, Y, e) satisfying

0 &(er, 0, 0, e),

which is defined for X, Y in a sufficiently small neighborhood of 0 and 0 < e e
< eo, 0 r Te. Moreover,

0= .(e, x, Y, (e, x, Y, e), e)
and

4(0) -[H.. (0)]-IH. (0),
(48)

4(0) -[H.. (0)]-H. (0).

If we make use of these relations in system (5), we obtain the new system

(49a) dX_ ef(er, X, Y, (er, X, Y, e), e),
d

(49b)
dY
d

(er, X, Y, (er, X, Y, e),

which is of the general form treated by Lemma 5.2. We may verify, moreover, that
the hypotheses of Lemma 5.2 will be satisfied, provided

L(O) g,(O)- g.(O)[H..(O)]-lH.y(O)

has n eigenvalues with negative real part, and n with positive real part, and the
system

M(O),

(o) =0,

)(Y) =0,

has only the trivial solution. Here we have again used the notation (), and

M(t) was defined in (15). Thus Hoppensteadt’s Lemma 2 is applicable here.
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A careful examination of the details of the proof of Hoppensteadt’s Lemma 2
to our system shows that there exist smooth mappings

Wl(q", /, "O(e))E’’, W2(’r, e, "O(e))E, Ws0-, e, rt(e))E",

defined for 0 <_- - _<- T/e, e sufficiently small, and rt(e) in some neighborhood of 0 in
E:", with the following properties:

w(0, , ()) (e),
and the solution of system (49) is given explicitly by

x(-, e)= w,(-, e, (e)),

Y(’, e)= P(e,’r)( W2(’r’ e,

w(. e, (e))

-(L-’(e’r))[g,,(e’r)- g,,(e’r)][H,,,,(e’r)]-’H,,,(e’r) W(’r, e, rl(e)).

It follows that

(50a) X(0, e)= W,(0, e, r/(e)),

( () ),c(0, e)= P(0)
W(0, e, (e))(0b)

--[L(0)]-l[g,,(0)- g,,(O)][H..(O))]-IH.,,(O) Wl(0, e,

Our proof will be completed if we can show that the mapping xP (rt(e), e)o
(Y(0, e))’ is a local homeomorphism for e sufficiently small and r(e) in some
neighborhood of the origin in E:":.

By the inverse function theorem, it will suffice to show that the linear
mapping

D.q[o.o (r(e). e)

is a linear isomorphism.
Now, when e-0, our consideration of the mapping reduces to an

examination of the solution Xo(-), Y(-), satisfying (17). (The function U(r) is
extraneous in this computation.)

We have already seen in Theorem 3.2(i) that X(’)--0. It follows that
Xoc(0) 0, so that

OnWl(0 6,/)(0))lo,o 0.

Also, it follows from Lemma 3.2 (see [15] for details) that

DnW3(O E, ’0(0))1(o,o)= 0.

Combining the above Fr6chet derivatives with (50b), we obtain

(5 l) D,(Y(O, e))’= P,,(0).

Our assumption that det P (0) #- 0 now guarantees that for each sufficiently small
(e)E", equations (49) have a solution X(-, e), Y(-, e) on 0-<"-< T/e, for e
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sufficiently small, which satisfies

YI(O,/)--(E),

as well as

]X(’, e)l +]Y(’, e)]" -<_ Ce-
for some C, 6>0. Recalling that U=rh(e’r,X, Y, e) now establishes that
IU(’r, e)l <- Ce-, and X(’, e), Y(-, e), U(’, e) satisfy (5), as well as (44).

We note that, as a consequence of Theorem 5.1, we may consider X(0, e) as
a smooth function of the initial condition (e). This may be indicated explicitly by
X(0, e, 6(e)). We further note that when e 0, X(0, e, (e)) X,(0) 0, so that
De()X(O, e, $(e))[=o 0.

We now turn our attention to the right boundary layer solution. By direct
analogy with Theorem 5.1, we have the following theorem.

THEOREM 5.3. Let (9), (10) and (20) hold, and suppose that the outer syste is
.formally solvable. Let the matrix P(t) satisfy det P::(T) # O. Then [or each d(e)
E" sufficiently small, which is K + 1 times continuously differentiable, there exists

a solution X’ (or, e), Y’(o’, e), U’(r, e) of (7) on 0 <-r T/e, satis[ying
(Y)’(0, e)= d(e). Moreover, X’(r, e), Y’(cr, e), U’(o", e) are K+ 1 times con-
tinuously differentiable with respect to e and satis[y (8) [or some C, > O, 0<= cr
<-_ T/e.

In addition, i[ X’d (o-), Y (tr), U (tr) represents the solution o[ (28), while [or
1 _-< k _-< K, X(o-), Y (or), U (or) represents the solution o[ (29), then

K

x"(,, e)- E x’()e o(e"+’)
k=0

(52)
K

Yn(cr, e)- ’. Yr(o’)e
k=0

K

u"(,, e)- E u(,)e o(e"+’),
=0

uni[ormly on 0 <= o <- Te, as e 0+.

6. The main result. Our only remaining task is to show that we can synthesize
a solution of the full system as the sum of an appropriate outer solution, a left
boundary layer solution and a right boundary layer solution.

THEOREM 6.1. Let (9), (10) and (20) hold, and suppose that the outer system is
formally solvable. Let the matrix P(t) of Remark 3.1 satisfy detPll(0)#0,
det P22(T) # O. Then there exists rl > 0 such that if ICo- po(0)l < r/and [do- t,o(T)
< rl, the full system (1) has a unique solution x (t, e), y (t, e), u (t, e) for e sufficiently
small. In fact, there exists a choice of a *(e), b *(e), (e), d(e) such that there exists
an outer solution x*(t, e), y*(t, e), u*(t, e), a left boundary layer solution of (5), (6),
X"(’, e), Y"(’, e), UL(’, e), and a right boundary layer solution XR (tr, e),



214 MARVIN I. FREEDMAN AND JAMES L. KAPLAN

YR(tr, e), UR(m e) of (7), (8), with

(x(t, e), y(t, e), u(t, e))= (x*(t, e), y*(t, e), u*(t, e))

(53) +(X’(t/e, e), YL(t/e, e), UL(t/e, e))

(x(T- t, e), Y(Te- t, e), T-

We remark that the outer solution, the left boundary layer solution and the
right boundary layer solution satisfy (30), (44) and (52), respectively.

Pro@ Consider the mapping r defined on a subset of E’ x E, x N" x E
into E"1 x Enl x E x E’ given as follows:

(a*(e), b*(e), ?(e), d(e))= ((0, e), x(T, e), o(O, e), u(T, e)),

where

x(t,e)
\x(t,e)

and
(t,e)

are given in (53). The domain of definition of the mapping r is chosen so that for
an (a*(e), b*(e), (e), d(e)) in its domain, our previous existence theorems ensure
the existence of the corresponding outer solution and the left and right boundary
layer solutions. Now, using the asymptotic decay of the boundary layer solutions,
we see that for e 0 we have

r(a*(0), b*(0), g(0), d(0))= r(ao, bo, c(0), d(0))-- (ao, bo, po(0) + ((0), vo(T) + d(0)).
If we now choose ((0)= Co-po(O), d(0)= do-,o(T), then, provided these are
sufficiently small, our existence theorems, Theorems 5.1 and 5.3,. will guarantee
boundary layer solutions for which

(a*(0), b*(0), (0), d(0))= (ao, bo, Co, do),

that is, the desired boundary conditions are satisfied at e 0.
We may now compute the Jacobian matrix of the mapping r. (The terms in

which we are interested have, in fact, been computed previously at various points
in the paper.) This matrix, when written in block form, will be a 4 x 4 matrix, with
the blocks along the principal diagonal having dimensions nl x nl, nl x nl, n2 x n2
and n2 x nz, respectively. Let us examine one of the typical terms of this matrix.
For example, the block in the first row, second column is @(0, e)/Ob*(e). But
5(t, e) depends only upon the choice of a*(e), so that (O/Ob*(e))(O, e) 0. In fact,
this same reasoning applies to all the superdiagonal elements. Thus the Jacobian
matrix is lower triangular. It is given by

Inl 0

Inlnl

Pz(T)
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where we have omitted the specific form of the subdiagonal elements. It is readily
seen that our hypotheses imply that this matrix is nonsingular. It follows from
what are by now standard implicit function theorem arguments that for e > 0, e

sufficiently small, we may solve for (a*(e), b*(e), 6(e), d(e)) as a function of a(e),
b(e),c(e),d(e).
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ON PENALTY AND MULTIPLIER METHODS
FOR CONSTRAINED MINIMIZATION*

DIMITRI P. BERTSEKAS?

Abstract. In this paper we consider a generalized class of quadratic penalty function methods for
the solution of nonconvex nonlinear programming problems. This class contains as special cases both
the usual quadratic penalty function method and the recently proposed multiplier method. We obtain
convergence and rate of convergence results for the sequences of primal and dual variables generated.
The convergence results for the multiplier method are global in nature and constitute a substantial
improvement over existing local convergence results. The rate of convergence results show that the
multiplier method should be expected to converge considerably faster than the pure penalty method.
At the same time, we construct a global duality framework for nonconvex optimization problems. The
dual functional is concave, everywhere finite, and has strong differentiability properties. Furthermore,
its value, gradient and Hessian matrix within an arbitrary bounded set can be obtained by uncon-
strained minimization of a certain augmented Lagrangian.

1. Introduction. One of the most effective methods for solving the con-
strained optimization problem

minimize f(x)
(1)

subject to h,(x)=O, i= 1,..., m,

is the quadratic penalty function method (see, e.g., [6], [12], [13]). This method
consists of sequential unconstrained minimization of the function

(2) f(x) +ck , [h,(x)]2

for an increasing unbounded scalar sequence {ck}. The properties of the method
are well known, and we refer to [6] for an extensive discussion.

Recently a method, often referred to as the multiplier method, has been
proposed and investigated by a number of authors [2]-[5], [7]-[ 11 ], 15]-[ 18] (see
[2] and the survey papers [20], [21] for a more detailed account). In this method,
the function

(3) f(x)+ cyh,(x)+ [h,(x)]
i=1 i=

is minimized over x for a sequence of vectors y (y, , yr)’, and scalars c.
The function above can be interpreted as a Lagrangian function to which a penalty
term has been added. A number of ways of updating of the scalar c have been
proposed. One possibility is to let c increase to infinity in a predetermined
fashion. It is also possible to keep c fixed after a certain index. The distinctive
feature of the method is that after each unconstrained minimization, yielding a

* Received by the editors September 14, 1973, and in revised form February 2, 1975.
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minimizing point xk, the vector yk is updated by means of the iteration

(4) y,+ y, + c,h(x,), i= 1,..., m,

where h(x,) denotes the column vector (hl(x,),"’, h,,(x,))’, (prime throughout
this paper denotes transposition).

The convergence of iteration (4) to a Lagrange multiplier 37 of the problem
has been shown under various assumptions. Global convergence results (i.e.,
results where the starting point y0 is not required to be sufficiently close to ) have
been given for convex programming problems in [17], and in [3], [10], [11]. For
nonconvex problems, the results available [2], [5], assume boundedness of the
penalty parameter sequence {ck} and are local in nature; i.e., convergence has
been shown under the assumption that the initial point yo is within a sufficiently
small neighborhood of . Existing rate of convergence results [2] also assume
boundedness of the sequence {c}.

All the results mentioned above have been obtained by interpreting the
multiplier method as a primal-dual method. In this paper we adopt instead a
penalty function viewpoint. Both the quadratic penalty method and the multiplier
method are imbedded in a more general penalty function algorithm. In this
algorithm, the augmented Lagrangian (3) is minimized for sequences of scalars
{ck} and vectors {y}. The only requirement imposed on the sequence {Yk}is that it
remains within an arbitrary given bounded set S. Thus the quadratic penalty
method is obtained as a special case by taking

c-*co and y=0, ’V’k.

The multiplier method is obtained by updating y via iteration (4), whenever
y, + c,h(x,) S.

Under assumptions which are specified in the next section, we show that for
the general penalty method described above there exist nonnegative scalars c*
and M such that for all c, > c* and y S, we have

(5) IIx <--MI[Y,
and

(6)

where x, y are the optimal solution and Lagrange multiplier vector for problem
(1), x is a point locally minimizing the augmented Lagrangian (3) in a neighbor-
hood of , and yk+l is given in terms of c, y, and x by (4). The result mentioned
above can be used to establish global convergence of the multiplier method, when
S is, for example, an open sphere centered at )7, under the assumption that c > M,
c > c* for all k greater than some index. Furthermore, the result shows that in the
multiplier method, the sequence {[lYk-[[} converges at least linearly if c is
bounded above and superlinearly if c --> co, while in the quadratic penalty method
(yk 0), the convergence rate is much less favorable. A similar (but sharper) rate
of convergence result has been shown in [2] under the assumption that c is
bounded above.
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From the computational point of view, it appears advantageous to carry out
the minimization of the augmented Lagrangian only approximately while increas-
ing the accuracy of the approximation with each minimization. We consider this
case as well, and we obtain estimates similar to (5), (6), for two different
gradient-based termination criteria. The estimates obtained are used in turn to
establish global convergence and rate of convergence results for the correspond-
ing algorithms.

In 4 we use the results obtained to construct a global duality theory much in
the spirit of the one recently proposed by Rockafellar [18]. However, our dual
functional is continuously differentiable, and its value and gradient can be
calculated by unconstrained minimization of the augmented Lagrangian (3) in a
manner similar to that for convex programming problems. In this way we are able
to interpret multiplier methods as primal-dual methods in a global sense.

For simplicity of presentation, we consider equality constraints only. The
analysis, however, applies in its entirety to inequality constraints as well, since
such constraints can be converted to equality constraints by using (squared) slack
variables. This device, due to Rockafellar 1 6], results in no loss of computational
efficiency and is discussed in 5.

2. A generalized penalty tunction algorithm. Consider the nonlinear pro-
gramming problem

(7)
minimize f(x)

subject to hi(x) O,

The functions f and hi for all are real-valued functions on R" (n-dimensional
Euclidean space). Let .f be an optimal solution of problem (7). We make the
following assumptions concerning the nature of f and hi in an open ball B ($, e) of
radius e > 0 centered at ft.

A. The point together with a unique Lagrange multiplier vector 37
satisfies the standard second order sufficiency conditions for .f to be a
local minimum [12, p. 226], i.e.,

A.1. The functions f, hi, 1,.", m, are twice continuously differentiable
within the open ball B(, e).

A.2. The gradients Vhi(), 1, , m, are linearly independent, and there
exists a unique Lagrange multiplier vector 37 (yl,..., y,,), such that

Vf($) + E iVh,() 0.
i=1

A.3. The Hessian matrix of the Lagrangian Lo(x, y)=f(x) +Y?_- yhi(x),

V2Co(,, Y) V2f(,) +
i=l

is positive definite on the tangent plane corresponding to the con-
straints, i.e.,

w’VZLo(:, 37)w > 0
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for all w 6 R" such that

w : 0, w’Vhi() 0, 1, , m.

B. The Hessian matrices V2f, V2h, are Lipschitz continuous within the open
ball B(, e), i.e., for some K>0, we have for all x, x’ B(g, e)

and

]lV2f(x)- Wf(x’)[I Kl[x x’ll

IlV=h,(x)- Vh,(x’)l[ KIIx x’ll,

where ]]. corresponds to the usual Euclidean norm.
Now let S be an arbitrary bounded subset of R ". Consider also for

any scalar c > 0 and any vector y S the augmented Lagrangian function

(8)
C

L(x, y, c) f(x) + y’h(x)+llh(x)ll.
We shall be interested in algorithms of the following general (and imprecise) form:

Step 1. Given ck > 0, yk S, find a (perhaps approximate) minimizing point
x of the function L(x, y, c) defined by (8).

Step 2. Determine c+1 > 0, yk+l e S on the basis of x, y, c according to
some procedure and return to Step 1.

It is easy to verify that for every x R" we have

L(x, y, ck)>=f(x)+ IIh(x)ll=- 
Hence, as c oe, we have L(x, y, c,)-oo for all sequences {y}S, and all
infeasible vectors x. It is, thus, evident that one may devise a penalty function
method based on sequential unconstrained minimization of L(x, yk, c) for any
sequences {c}- oe, {y}c S. This method exhibits the same convergence proper-
ties as the usual quadratic penalty function method [6]. Thus there is no difficulty
in showing convergence of some sort for the general alogrithm described earlier
whenever c oe. The question which is most interesting, however, is to deter-
mine methods of updating y which result in desirable behavior such as acceler-
ated convergence. Before proceeding to a detailed analysis, let us consider a
heuristic geometric argument which shows that it is advantageous to select y as
close as possible to the Lagrange multiplier .

Let p be the primal functional or perturbation function 19] corresponding to
problem (7)

p(u) min f(x)
h(x)=

In the above equation, the minimization is understood to be local within an
appropriate neighborhood of . Also p is defined locally on a neighborhood of
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u O. It is known that

p(O) f()= optimal value of problem (7),

Vp(0) .
Now we can write

min L(x, y, c) min min f(x) + y’h(x) +-][h(x)[I
h(x)=u

or

{ c }minx L(x, y, c) min p(u)+ y’u _[_[[1/[[[2
The above equation can be interpreted geometrically as shown in Fig. 1. Notice
that the addition of (c/2)llul]2 to p(u) has an important convexification effect. It can
be seen from Fig. 1 that as y is closer to the Lagrange multiplier 7, the
corresponding value minx L(x, y, c) is closer to the optimal value of the problem.
This fact will also be brought out by the analysis that follows.

min L (x,y, c) f(
X

--min L(x,y,c)
X

Y- min L(x,O,c)
X

!
!

U FP- 4076

FIG.

The preceding argument leads us to the conclusion that the convergence of
the generalized penalty algorithm could be accelerated if, at the kth minimization,
a vector yk, where yk f, were to be used in the augmented Lagrangian (8) in place
of y 0 which is used in the ordinary penalty function method. Such vectors are
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readily available. It is easily shown that if x(y, c) minimizes L(x, y, c), then the
vector

y + ch[x(y,c)]

is an approximation to the Lagrange multiplier 37 in the sense that limc_, 37- )7.
Thus we are led to a particular scheme whereby at the end of each minimization,
the vector y is updated by means of the equation above. This iteration is identical
to the one used in the method of multipliers. In the analysis that follows, it is
shown that this iteration leads to a much faster convergence rate than the one of
the ordinary penalty method. Furthermore, in order for the iteration to converge
to , it is not necessary to increase ck to infinity.

PROPOSITION 1. There exists a scalar C*l >---- 0 such that for every c > c*, and
y S, the augmented Lagrangian L(x, y, c) of (8) has a unique minimizing point
x(y, c) with respect to x within some open ball centered at . Furthermore, for some
scalar M1 > 0 we have

(9) I[x(y, c)-2zll=<MIIy- Vc > cT and y S
C

and

(10) IIp(y,c)-fll<= MIly-plI Vc>c*l and yS,
C

where the vector (y, c) R is given by

(1 1) )7(y, c) y + ch[x(y, c)].

The proof of the above proposition is given in the next section. The result of
the proposition has been proved for the case of the pure quadratic penalty method
(y 0) by Polyak [14] under the additional assumption that the Hessian matrix
V2Lo in assumption A.3 is positive definite over the whole space, i.e., local strong
convexity holds. Our proof is based in part on Polyak’s analysis.

Some important conclusions can now be obtained from the result of Proposi-
tion 1. Assuming that 0 e S, we have that in the quadratic penalty method (yk 0),
we obtain convergence if ck--)oc and, furthermore, the sequences
{x(O, c)}, {37(0, c)} converge to x, y, respectively, at least as fast as M,llfll/c . It is
evident, however, from the proposition that a great deal can be gained if the vector
yk is not held fixed but rather is updated by means of the iteration of the multiplier
method

(12) y+l (Y, c)= yk + ch[x(y, c)].

In order to guarantee that the sequence {y} remains bounded, we require that the
updating takes place provided the resulting vector yk+l belongs to the set S.
Otherwise y+l= y, i.e., y is left unchanged. Of course, the choice of S is
arbitrary, and in particular, we can assume that S contains 37 as an interior point.
Under these circumstances, we have that if ck --> oo, then
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i.e., the sequence {yk} converges to 37 superlinearly. If ck c < oe, where c is
sufficiently large (large enough to ensure that c > M1, c > c* and that y, + ch(x,)
belongs to an open sphere centered at 17 and contained in S), then

lim sup IlY+I- 7[1_<M

i.e., {yk} converges to 7 at least linearly with a convergence ratio inversely
proportional to c

In conclusion, the method of multipliers defined by (12) converges from an
arbitrary starting point within the bounded set S provided ck is sufficiently large
after some index k, 37 is an interior point of S, and the unconstrained minimiza-
tions yield the points x(y, c) for all k->k. In addition, the multiplier method
offers distinct advantages over the quadratic penalty method in that it avoids the
necessity of increasing c to infinity, and furthermore, the estimate of its con-
vergence rate is much more favorable. For example, if c s, s > 1, then for the
penalty method, we have

IIx (o, c)- 1[ M,II;lls-
while in the multiplier method with yo O,

The ratio of the two bounds in the above inequalities is

S

and tends to infinity as k
In order to avoid creating false impressions, it is perhaps worthwhile to

emphasize the fact that the global convergence property of the method of
multipliers concluded above is contingent upon the generation of the points
x(y,, c,), k >= k, by the unconstrained minimization method employed. These
points are, by Proposition 1, well-defined as local minimizing points of L(x, y,, c,)
which are closest to . Naturally L(x, y,, c,) may have other local minimizing
points to which the unconstrained minimization method may be attracted, and
unless after some index the unconstrained minimization method stays in the
neighborhood of the same local minimizing point of problem (7), our convergence
analysis is invalid and there is no reason to believe that the method of multipliers
should do better (or worse) than the penalty method. On the other hand, it should
be noted that the usual practice of using the last point xk of the kth minimization as
the starting point of the (k + 1)-st minimization is helpful in producing sequences
{xk} which are close to one and the same local minimizing point of problem (7).

We now turn our attention to a generalized penalty method where, given c
and y the augmented Lagrangian L(x, y,, c,) of (8) is not minimized exactly, but
rather the minimization process is terminated when a certain stopping criterion is
satisfied. We consider two different stopping criteria. Similar criteria have been
considered in the past in the context of penalty [14] and multiplier methods [2],
[3], [5], [10]. According to the first criterion, minimization of L(x, y,, c,) is
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terminated at a point xk satisfying

(13) IIX7L(x, y, c)ll=< /c,
where {3’k} is a bounded sequence with 3 >=0. According to the second criterion
minimization is terminated at a point x satisfying

(14) I]VL(x, y, c)ll--< min {7ffc,

where {y}, {y,} are bounded with y -> 0, y,-> 0.
We have the following proposition, the proof of which is given in the next

section.
PROPOSITION 2. There exists a scalar c* >--_ 0 such that for every c > c* and

y S and every vector a R" with Ilall--< /c, there exists a unique point Xa(y, C)
within some open ball centered at satisfying

(15) VL[xa(y, c), y, c]= a.

Furthermore, for some scalar M2 > 0 we have

(16) Ilxo (y, c) gll < M2(IIy 11 / d)1/2
Vc > c*, y S and Ilall--<

and

(17) 1137.(y, c)-Nll <M=(Ily-NII=+x)’/=-
C

where a is given by

(18) Ta (y, c) y + ch[x,(y, c)].

If, in addition, a and x,(y, c) satisfy

(19) Ilall ykllh[x.(y, c)]ll
then we have

(20) Ilx(y, c)- 11--< M(4(’/’) + 1)I/2IIY 3711
C

and

(21) 113L(Y, c)- 711 < M(4(’/’)+-1)’/IIY- 3711
C

Vc > c*, y S and Ilall -< ’,
C

Vc > c* and y S,

Vc > c* and y S.

The proposition above may now be used to establish convergence and rate of
convergence results for the iteration

(22) y+x yk -F Ckh(X).

This iteration takes place if y +ch(x)e S. Otherwise yk/l y, i.e., y is left
unchanged. The point x satisfies either the criterion

(23) I!VL(x.,
or the criterion

(24) IIX7L(x, y, c)ll-< min {3,/c, ,l,llh(x)ll}.



224 DIMITRI P. BERTSEKAS

Furthermore, xk is the unique point xa(yk, ck) corresponding to a VL(xk, y, c)
and closest to 2 in accordance with Proposition 2. It is assumed that the
unconstrained minimization algorithm yields such points after a certain index.

It is clear from Proposition 2 that any sequence {x, y} generated by the
iteration (22) and the termination criterion (24) converges to (, 15), provided c is
sufficiently large after a certain index and is an interior point of S. Furthermore,
{yk} converges to f at least linearly when c- c < oo, and superlinearly when
ck- oo. However, for the termination criterion (23), linear convergence cannot be
guaranteed, and in fact an example given in [2] shows that convergence may not be
linear. In addition, for this termination criterion it is necessary to increase c to
infinity in order to achieve global convergence unless {y} is a sequence converg-
ing to zero.

3. Proofs of Propositions 1 and 2.
Proof of Proposition 1. The proof proceeds in two parts. We first prove the

proposition under the following condition:
C. The Hessian matrix of the ordinary Lagrangian function

V2Lo(), Y) V2f() -}- ;iV2h,(Y)
i--1

is a positive definite matrix; i.e., local strong convexity holds.
Subsequently, we extend the result to the general case.

Let C hold. For all x B(Y, e) and any fixed y 6 S, c > 0, consider the auxiliary
variables

(25) p x ,, q y + ch(x) ,
where h(x) is the m-vector with coordinates hi(x), i= 1,..., m. For every
x B(, e) we have

(26) Vf(x) Vf() + Vzf(.)p + rl(p)

(27) Vhi(x) Vh,() + VZhi(:g)p + r(p), 1,..., m,

where rl and r are n-vector valued functions of p satisfying

(28)

r,(0) r(0) =0, 1,..., m,

Vr,(p) VZf(x)- Vzf(.l),
Vr(p) VZh,(x)-VZh,(X), i= 1,..., m.

By the Lipschitz condition assumption B, we have for all Ilpll < ,
(29)

and

(30)

]]Vrl(p)][-< K][pl]

vr2(p)l[ <- K[lpll V 1,. ., m.

Consider now the augmented Lagrangian L(x, y, c) of (8). We have, by (25), (26)
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and (27),

VL(x, y, c) Vf(x) + Vh(x)[y + ch(x)] Vf(y) + Vzf(:)p + r,(p)

+ (qi + fi)[Vh,(X) + VZhi()p + r(p)],
i=1

or equivalently,

(31) VL(x, y, c)= V2L,,(Y, y)p+Vh(X)q+r3(p, q),

where Vh() is the n x m matrix with columns Vhi(Y), and r3(p, q) R" is the
vector defined by

(32) r(p, q)= rl(p)+ Y (qi + 7’)rz(p)+ Z q V h(Y)p.
i=1 i=1

We also have from (25),

q + Y Y= h(x) h(Y) + Vh(X)’p + r4(p),

or equivalently,
1
(7- y)- r4(p),(33) Vh()’p-q -where the function r4:B(O, e)- R satisfies

(34) r4(0) 0, Vr(p) Vh,(x)-Vh,(ff), i= 1,..., m,

and using the Lipschitz condition assumption B,

(35) IlVr(p)ll<-_(Kllpll+llVZh,(x)ll)llpll<=(Ke + ]lVZh,(x)ll)llpll.
Combining now (31) and (33), we have that in order for a point x B(Y, e) to

satisfy VL(x, y, c)= 0 it is necessary and sufficient that the corresponding point
s [p’, q’]’, as given by (25), solves the equation

(36) As + r(s),

where we use the notation

V2Lo(., }7) Vh(/) 0 -r3(p, q)

(37)A s= t= r(s)=

Vh()’
I y- y

-r(p)

and I is the m x m identity matrix. Concerning r(s), we have, from (28), (32), (34)
and (35),

(38) r(0) 0.

Furthermore, for any s corresponding to an x B(Y, e) we have, by straightfor-
ward calculation from (29), (30), (32), (35) and (37),

(39) IIVr(s)ll <-- ce]lsll,
where c > 0 is a constant depending only on e.
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The proof now follows the pattern of 14] by showing that (36) has a unique
solution within the domain of definition of s for any y 6 S and c > c*, where c * is a
sufficiently large constant. We make use of the following two lemmas due to
Polyak 14].

LEMMA 1. The matrixA of (37) has an inverse for every c > O. Furthermore, the
inverse is uniformly bounded, i.e., for some M1 > 0 and all c >0,

(40)

LEMMA 2. The equation (36), As + r(s), has a unique solution s* within the
open ball B(O, 8MII/II) n(0, e) for every y S and every c sufficiently large to
guarantee that

Iltll -<min 16Ma’ 8M1

where a, M1 ate as in (39), (40). The solution s* satisfies [Is*[I =< M,Iltll.
Now from Lemma 2 and the definition (25), (36), (37), it follows immediately

that for every y S and c > c*, where c* is a sufficiently large constant, the
equation

(41) VL(x, y, c)=0

has a unique solution x(y, c) within an open ball centered at Y satisfying

(42) Ilx(y, c)- ll 

(43) Ily + ch[x(y, c)]- 37ll--<

Hence, in order to complete the proof of Proposition 1, we only need to show that
for c sufficiently large the point x(y, c) is a local minimum of L(x, y, c). To this
end, it is sufficient to show that 72L[x(y, c), y, c] is positive definite for all y S
and c sufficiently large. Indeed, we have

72L[x(y, c) y, c] V2f[x(y, c)]+ (y’ + ch,[x(y, c)])72h,[x(y, c)]
i=1

+ cVh[x(y, c)]Th[x(y, c)]’.

Now the third term in the above expression is a positive semidefinite matrix.
The sum of the first two terms, in view of (42), (43), is arbitrarily close to the
positive matrix WLo(Y, ) for sufficiently large c. Hence, for all c greater than
some c, V2L[x(y, c), y, c] is positive definite and x(y, c) is a local minimum of
L(x, y, c). Thus Proposition 1 has been proved under condition C.

In order to extend the proof of Proposition 1 to the general case where
condition C is not satisfied, we convert the general nonlinear programming
problem (7) to an equivalent locally convex problem for which condition C is
satisfied. We achieve local convexity by adding a sufficiently high penalty term to
the objective function as first indicated by Arrow and Solow [1].
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It is evident that problem (7) is equivalent for every tx => 0 to the following
problem

(44)

minimize f(x) + llh(x)ll
subject to h,(x) O,

Problem (44) has as an optimal solution and as Lagrange multiplier vector.
Now consider the Hessian with respect to x of the ordinary Lagrangian of problem
(44). We have

(45) V2L,,(,, )= V2Lo(, y)+ tx[Vh(,)Vh(,)’],

where V2Lo(, y) is the Hessian of the ordinary Lagrangian of problem (7). Using
assumption A.3, we have the following easily proved lemma.

LEMMA 3. There exists a scalar tz * > 0 such that for every I >-- tx *, the matrix
V2L(, )) of (45) is positive definite.

The immediate consequence of the above lemma is that problem (44) satisfies
the local convexity condition C for all /z->/z*. We apply now the result of
Proposition 1 as proved under C and with c replaced by c-/z*, to problem (44)
with/z =/z*. We have the following:

There exists c* -> 0 such that for all c -/z* > c*, y S the augmented Lagran-
gian

(46)
L(x, y, c) f(x) + y’h(x) +c2[Ih(x)[I

has a unique unconstrained minimum x(y, c) within some open ball centered at .
From the estimates (9), (10), we obtain that for some constant M> 0,

(47) IIx (y, c) ll

(48) Ill(y, c)- 7 (y, c)ll

where 7 is given by (11) and the vector 6(y, c) R" is given by

(49) 6(y, c)= tx*h[x(y, c)].

From the equation above and (47), it follows that for some constant B > 0

(50)

Combining the inequalities (47), (48) and (50), we have

(51) IIx(y, c)- 11 <Mlly -Yll
C--/X
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and

]l(y, c)- 371l <
M,,yll 11 +I](Y, c)ll

(52)

c-/x*
Let M, > 0 and c* _-> c* +/x* > 0 be any constants such that

(53)
M------_ ,

_
Vcc.

c- c- c

Then the desired estimates (9) and (10) follow immediately from (51), (52) and
(53), and the proposition is completely proved. Q.E.D.

Proof of Proposition 2. The proof of Proposition 2 follows similar lines as the
proof of Proposition 1. Again we assume first that C holds. For an y a R" with

llal /c, we have in place of (36)the equation

(54) As ta + r(s),

where A, s, r(s) are as in (37) and ta is given by

(55) ta

Now from Lemma 2 with ta in place of and using the fact that {y} is bounded and
l}al] <- y/c, we obtain for some M2 > 0 and all y e S, c _-> c2", where c2" is a suffi-
ciently large positive scalar (cf. (42) and (43)),

(56) ],x,,<y,c) yI,<__M2(II,_c:I{_ + ’la )1/2 M2(II’ 1’2 "" //)1/2C
and

(57) II;. (y, c)- 711 M_ (IIY -I1= + Ilall)/ M2(IlY-I}=+YD/=

which are the relations to be proved.
Now assume, in addition, that a and x,(y, c) satisfy

(58) Ilall=< y,l]h[x (y,

Then we have, from (56), (57) and (58),

(59) IlXa(y, C) "ll M2(IIY:112 ),/2<=

and

)
1/2

(60) II3L(y, c)-Tll--<Mz [lY-Yll’---+(’v’,,))-llhfxo(y, c)]ll
C
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Using (18), the last relation is written as

_< +(r,)=llh[x(y, c)]ll
from which

)
1/2

cllh[x.(y, c)]ll--<M IlY yll+(%)llh[x.(y c)]ll
C

(M2 )---+ 1 IIY 3711+ M=%llh[x.(y, c)]ll.

Thus, finally, we have

C +M2IIh[xo(y, c)]ll--<
For c _-> (1 + 2y,)M2, the inequality above yields

(61) IIh[x(y, c)311
211y- NIl

C

Substitution of (61) in (59) and (60) yields

and

1137. (y, c)- 3711
M2(1 + 4(3/’)2)’/211Y 3711

which are the desired estimates. Thus Proposition 2 is proved under condition C.
The extension to the general case is entirely similar to the corresponding exten-
sion in Proposition 1 and is omitted. Q.E.D.

4. A global duality framework for the method of multipliers. In this section
we utilize the results of 2 to construct a duality framework for problem (7). In
contrast with past formulations for nonconvex problems (see, e.g., [5], [12]), the
framework is global in nature (at least in as much as the dual variables are
concerned). By this we mean that the dual functional is an everywhere defined
real-valued concave function. The theory is similar in spirit with the one recently
proposed by Rockafellar 18] under weaker assumptions, and the one of Buys [5]
which is local in nature. Our construction, however, is more suitable to the
analysis of algorithms since in our case the dualfunctional has strong differentiabil-
ity properties. Furthermore, its value and derivatives within an arbitrary open
bounded set may be computed by unconstrained local minimization of the
augmented Lagrangian. In this way the iteration of the multiplier method can be
interpreted as a gradient iteration in a global sense.

For any vector u R’, consider the minimization problem

(62)
min fix).
h(x)=u
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Now by applying the implicit function theorem to the system of equations

Vf(x) + E y,Vh,(x) 0, h,(x) u,, 1,..., m,
i=1

and using assumption A, we have the following lemma.
LEMMA 4. Under assumption A, there exist positive scalars and 6 such that

for every u with Ilul[ < problem (62) has a unique solution x(u) within the open ball
B(2, 6) with a Lagrange multiplier y(u) satisfying Ily(u)- Nil < . Furthermore, the
functions x(u), y(u) are continuously differentiable within the open ball B(O, t) and
satisfy x(O)= , y(O)= .

We define now the primal functional p B(O,)R by means of

(63) p(u) min f(x) f[x(u)].
h(x)=u
xB(x,$)

It follows from the implicit function theorem that

(64) Vp(u) =-y(u), u B(O, ),

and, since y(u) is continuously ditterentiable, we have that p is twice continuously
differentiable on B(0,/3). Without loss of generality, we assume that the Hessian
matrix of p is uniformly bounded on B(0,/3).

Now for any c >-0, consider the function

p(u)=p(u)+
c

It is clear that for c sufficiently large, the Hessian matrix of p is positive definite on
B(0,/3), and hence pc is strictly convex on B(0, ). We define for such c the dual
unctional d R - R by means of

/ c
(65) d(y)= inf p(u)+ Ilull inf {pc(u)+y’u}

.(o,)
y U

We note that this way of defining the dual functional is not unusual, since it
corresponds to a perturbation function taking the value p(u) on B(0, ) and
+ oo outside B(0, ).

The function d of (65) has the following properties which we state as a
proposition.

PROPOSITION 3. Under assumption A, for every c for which the Hessian matrix

ofp is positive definite on B(O, ), we have the following:
(a) The function d is a real-valued, everywhere continuously differentiable

concave function. Furthermore, it is twice continuously differentiable on the open set

(b) For any y A, the infimum in (65) is attained at a unique point uy
B(0, ), and we have Vd(y)= uy, V2d(y)=-[Wp(uy)]-.

(c) The function d has a unique maximizingpoint, the Lagrange multiplier .
Proof. (a) Consider the closure [19, 7] of the convex function taking the

value p(u) on B(0, ) and + outside B(0, ). The closure is essentially strictly
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convex [19, 26], and its effective domain is a compact set. Hence its conjugate
convex function is real-valued and continuously differentiable [19, Thm. 26.3].
Since this conjugate is simply -dc(-y), we have that de is everywhere finite and
continuously differentiable. Also by the conjugacy relation between pc and de, we
have

(66)

where

Vcl[-Vp,(u)] u Vu (o, ),

Vp[Vd(y)]-- -y Vy A,

A {YIY -Vp(u), u e B(0,/3)} {ylVdc(y)= u, u e B(0,/3)}.

The set on the right above is open by the continuity of Vdc, thus implying that the
set A is open. Now let 37 be any point in A and let fi Vdc()7). We have that
fi B(0,/3) and

vp(a) -f.

Applying the implicit function theorem in the equation above, we have that there
exists an open ball B(y, A)cA and a continuously differentiable function
u(. B(7, )-* B(0,/3) such that u()= a and

Vp[u(y)] -y.

It follows from (66) that

v,(y) u(y) Vy n(f, x).

Since u(y) is continuously differentiable on B(37, A), so is Vd(y). Hence d is twice
continuously differentiabte at y. Since )7 is an arbitrary point in A, we have that d
is twice continuously differentiable on A, which was to be proved.

(b) The fact that for y e A the infimum in (65) is attained at a unique point is
evident from the argument above. The formula V2dc(y)---[V2pc(uy)]-1 follows
from (66).

(c) We have, by (66) and the fact that Vpc(0)=-y,

Vdc() O,

and hence 37 is a maximizing point of de. It is a unique maximizing point by the
differentiability of pc. Q.E.D.

We now proceed to show that the value and the derivatives of the dual
functional d can be obtained by local minimization of the augmented Lagrangian
L(x, y, c) of (8) provided c is sufficiently large. Let S be any open bounded subset
of R ". Then for any y S, by Proposition 1, we have that for c sufficiently large,

Ilx (y, c) 11- < ,
C

MIlY-IIIll(Y, c)- 711 < ,



232 DIMITRI P. BERTSEKAS

where

(y, c) y + ch[x(y, c)], a h[x(y, c)].

Furthermore, we have

Vf[x(y, c)]+ 37’(y, c)Vhi[x(y, c)]= 0.
i=l

It follows from the implicit function theorem and Lemma 4 that x(y, c) is the
unique minimizing point in problem (62) when u ft. This implies

p(fi) =fix(y, c)], X7p(a) =-(y, c)=-y
and therefore

Vpc(a)+y=O.

Hence y A, fi attains the infimum in the right-hand side of (65), and by part (b) of
Proposition 3,

Vdc(y) fi h[x(y, c)], V2dc(y) =-[Wpc(fi)]-1.

Furthermore,

de(y) p(a)+ y’fi + llt/ll
=fix(y, c)] + y’h[x(y, c)] +llh[x(y, c)]ll= min L(x, y, c),

where the minimization above is understood to be local in the sense of Proposition
1. In addition, a straightforward calculation [5], [12] yields

(67) D(y) Wd(y)=-Vh[x(y, c)]’{WL[x(y, c), y, c]}-IVh[x(y, c)],

where Vh[x(y,c)] is the nm matrix having as columns the gradients
Vhi[x(y, c)], 1,. , m, and WL denotes the Hessian matrix of the augmented
Lagrangian L with respect to x. Thus we have proved the following proposition.

PrOPOSITION 4. Let S be any open bounded subset ofR m, and let assumptions
A and B hold. Then there exists a scalar c* >-0 such that for every y S and every
c > c*, the dual functional dc satisfies

de(y) =fix(y, c)]+ y’h[x(y, c)]+
c

12211h[x(Y’ c)]l min L(x, y, c)

Vdc(y)=h[x(y,c)],

where x(y, c) is as in Proposition 1. Furthermore, dc is twice continuously differenti-
able on S and X72d(y) is given by (67).

It is now clear that the iteration of the method of the multipliers can be
written, for c sufficiently large,

y+ y + cVd,(y),

and hence can be viewed as a fixed step size gradient iteration for maximizing the
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dual functional de. Thus one may obtain a tight rate of convergence result by
utilizing a known result on gradient methods. This result, however, is rather
uniformative since it involves the eigenvalues of the matrix Dc of (67) which
strongly depend on c. A modified version of this result which is more amenable to
proper interpretation is given in [2], together with an analysis of the convergence
rate aspects of the method of multipliers in the presence of inexact minimization.

The primal-dual interpretation of the multiplier method suggests also several
possibilities for modification of the basic iteration. One such modification was
suggested in [2], [3]. Another interesting possibility rests on the fact that when
second derivatives are calculated during the unconstrained minimization cycle,
then one obtains the Hessian matrix Dc of (67) in addition to the gradient 7d.
Thus it is possible to carry out a Newton iteration aimed at maximizing d in place
of the gradient iteration corresponding to the method of multipliers. It is also
possible to use a variable metric method for maximization of d. Such possibilities
have already been suggested by Buys [5], who in addition provided some local
convergence results. It is to be noted, however, that for large scale problems
arising, for example, in optimal control, where the number of primal and dual
variables may easily reach several hundreds or even thousands, such modifications
do not seem to be attractive. This is particularly so since the simple gradient
iteration already has excellent convergence rate.

5. Treatment of inequality constraints. As pointed out in the Introduction,
inequality constraints may be treated in a simple way by introducing slack
variables. Indeed, the problem

(68)
min f(x)

gj(x)=<o, j= 1,---,r

is equivalent to the equality constrained problem

(69)
min j(x),

gj(x)+z=O, j= 1,"’,r

where z1," , Zr represent additional variables.
Now assume that (, y) is an optimal solution-Lagrange multiplier pair for

problem (68) satisfying the following second order sufficiency conditions for
optimality (which include strict complementarity).

A’. The functions f, gj, j 1,..., r, are twice continuously differentiable
within an open ball B(, e). The gradients Vg(Y.),jJ(), with J(f)
={jlg(x)=O}, are linearly independent. We have V/(x)
+=, 7’7g(y) 0 and yJ => 0 with yJ > 0 if and only if j J(Y). Further-
more,

for all w - 0 such that w’Vg(2) 0 for all ] e J().
Then it is easy to show that (i, an optimal solution

of problem (69) satisfying (together with ) assumption A and hence it is covered
by the theory of 2 and 3 provided the Lipschitz assumption B is also satisfied.
Thus one may use the multiplier method for solving problem (69) instead of
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problem (68). On the other hand, slack variables need not be present explicitly in
the computations, since the minimization of the augmented Lagrangian,

t (x, z, y, c) f(x)+
j=l

can be carried out first with respect to z1," ", z,, yielding

(x, y, c)= min L(x, z, y, c)

1
[max (0, yJq-Cgj(X))]2--(yJ)

The optimal values of zj are given in terms of x, y, c by

(70) z.(x, y, c) max [0, y/c g(x)], j 1, , r.

Now minimization of/_(x, y, c) with respect to x yields a vector x(y, c), and the
multiplier method iteration in view of (70) takes the form

+ c)]+ z [x(y, c), y, c]]
(71)

max [0, y+ cg[x(y, c)]], j 1, , r.

Also in view of (70), the stopping criterion (14) takes the form

IlV/(x, y, c)]l<_-min Y y max ---, g(x)
j=l Ck

Thus there is no difference in treating equality or inequality constraints, at least
within the second order sufficiency assumption framework of this paper.

6. Conclusions. In this paper we provided an analysis of multiplier methods
by imbedding them within a general class of penalty function methods. The
viewpoint adopted yields strong global convergence results. Furthermore, it
provides a fair basis for comparison of multiplier methods with pure penalty
function methods. This comparison conclusively demonstrates the superiority of
multiplier over penalty methods. The global duality theory obtained has many
similarities with the duality theory associated with multiplier methods for convex
programming. In addition, it provides a framework within which multiplier
methods can be viewed as primal-dual methods in a global sense.

Notes added in proof. The results of this paper have been presented at the
1973 IEEE Decision and Control Conference, San Diego, Calif., Dec. 1973 and
at the SIGMAP Symposium on Nonlinear Programming, Madison, Wis., April
1974. They were reported without proofs in [4] and in Nonlinear Programming 2,
O. L. Mangasarian, R. R. Meyer and S. M. Robinson, eds., Academic Press, New
York, 1975, pp. 165-191.

While this paper was under review, results similar as those of Propositions 1
and 2 appeared in B. T. Polyak and N. V. Tret’yakov, The Method of Penalty
Estimates for Conditional Extremum Problems, U.S.S.R. Comput. Math. and
Mathematical Phys., 13(1974), pp. 42-58.
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Generalized versions of Propositions 1 and 2, involving augmented Lagran-
gians with nonquadratic penalty functions and adjusting essentially the same
proof as the one given here, are provided in D. P. Bertsekas, Multiplier Methods:
A Survey, Preprints of IFAC 6th Triennial World Congress, Part IB, Boston,
Mass., Aug. 1975.
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CANONICAL FORMS OF LINEAR MULTIVARIABLE SYSTEMS*

S. H. WANG]" AND E. J. DAVISONzI:

Abstract. This paper considers the problem of finding a complete set of invariants and canonical
forms for a linear, time-invariant, multivariable system (A, B, C) under a group of transformations. The
group consists of input coordinate transformations, state coordinate transformations and state feedback
transformations. A set of canonical forms is derived. A set of invariants called the transmission zeros is
given, which has application to the servomechanism problem.

Introduction. The problem of finding invariants and canonical forms of linear,
time-invariant, multivariable systems under different groups of transformations
has been an interesting topic in recent years. In [1]-[3], some invariants for
feedback transformations have been utilized in solving different control problems.
For a controllable pair (A, B), Brunovsk3) [4] and other authors [5], [6] have found
a complete set of feedback invariants and a set of canonical forms. Rosenbrock [6]
and Kalman [7] have related feedback invariants to the Kronecker invariants
associated with a singular pencil of matrix. Morse [8] has investigated the invariants
of a system (A, B, C) under a large group of transformations, which includes
output-coordinate transformations and output injection transformations. Popov
[9] has recently found a complete set of invariants and canonical forms for a
controllable pair (A, B) under state coordinate transformations with or without
feedback transformations.

In this paper, we derive a complete set of invariants and a set of canonical
forms of a system (A, B, C) under: input coordinate transformations, state co-
ordinate transformations and state feedback transformations. We also derive a
set of feedback invariants, which is not complete, called the transmission zeros of a
linear controllable system (A, B, C). This set of transmission zeros plays an import-
ant role in linear multivariable system theory; as an application, we have shown
that the necessary and sufficient conditions for a linear control system to exist to
regulate a linear multivariable system with arbitrary unmeasurable disturbances
present can be stated in terms of the transmission zeros of the system.

In the sequel, the following notation is used. Let k be a positive integer. Then
k denotes k =_ 1,..., k}. Let and U be linear subspaces in R". Then + //#

{v + wlve,we}.

1. Definitions and problem statements. Consider the following definitions.
DEFINITION 1.1 (MacLane and Birkhoff 10]). Let X be a set, and let E be an

equivalence relation on X. If F is another set, a function f’X F is said to be an
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supported by the National Research Council of Canada under Grant A4396.
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invariant for E if xEy = f(x) f(y); it is said to be a complete invariant for E if
xEy ,**, f(x) f(y).

DEFINITION 1.2. Let X be a set, and let E be an equivalence relation on X. A
map b:X X is said to be a canonical map for E on X if

(i) xE(x), Vx e X,
(ii) xEy ,, (x) dp(y), Vx, y e X.

The image of b, denoted by Im 4, is said to be a set of canonical forms for E on X.
It is also said to be a set of E-canonical forms on X.

Remark 1.1. The above definition of canonical forms is clearly equivalent to
the definition given by MacLane and Birkhoff [10].

The following lemma states that the set of fixed points of 4) coincides with the
set of canonical forms given by 4). Its proof is omitted.

LEMMA 1.1. Let E be an equivalence relation on a set X, and let dp be a canonical
map for E on X. Then

x e Im 4) .*" 4(x) x.

Let X {(A, B, C)IA e R" ", B e R"m and C Rpx n}, and let

{(T, F, G)ITe R"" and G e R"m are nonsingular matrices, and F e Rmx,,}.
We define an equivalence relation on X as follows.

DEFINITION 1.3. Two triples (A1, B1, C1), (A2, B2, C2) X are said to be -equivalent if and only if there exists a (T, F, G)e such that

(1.1) A T(Az + B2F)T -t,

(1.2) B TB2G

(1.3) Cx C2T- 1.

With respect to different groups of transformations, say,

{(T, 0, I)]Te R"" is a nonsingular matrix, 0 is an m x n zero(1.4)
matrix and Im is an m x m identity matrix},

(1.5) * {(T, O, G)IT e R"" and G Rmm are nonsingular matrices, and 0 is
an m x n zero matrix}.

One can define equivalence relations -equivalence and *-equivalence on X in a
similar manner.

In the next section, we will derive canonical forms for -equivalence.

2. Canonical forms for @-equivalence. In the sequel, we will impose some
conditions on the triples (A, B, C) and consider the set
X {(A, B, C)[A R"", B R" m, C Rpxn, (A, B) is a controllable pair and

rank B m}.
We first state the following lemma.
LWMMA 2.1 (Brunovsk3) [4] and other authors [5], [6]. Consider the set Xo

{(A, B)IA R"", B R"", (A, B) is a controllable pair and rank B m}. Two
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pairs (A1, B1), (A2, B2) G X0 are said to be -equivalent if and only if there exists a
T, F, G) , where is defined in 1, such that

(2.1) A T(A2 + B)F)T -1,

(2.2) B1 TB2G.
Any pair (A, B) Xo is -equivalent to a pair (Ac, Bc) Xo shown below"

(2.3)
Ac block diag [A1, Am]

Bc block diag [bl, bm],

where Ai, b are of size n ni, n respectively, and

0 1 O0 O0 0

0 1 0 0
hi-- o,

The pair (A, B) is called the Brunovsk canonical form. The set of integers, n n2,
.., n,, which satisfies

n >= n2 => => n >= 1" n + n2 + + n,. n,

is called the set of controllability indices of the controllable pair (A, B), and is
uniquely determined by (A, B).

For a proof of this lemma and a detailed discussion on this subject, see [4]-[7].
In the construction of canonical forms for -equivalence, the following

preliminary results are required.
DEFINITION 2.1. For a given set of integers nl, n2, ..., n, satisfying n- /’/2 ’’" n,, _>_ 1; n + n2 + + n n, define a set of n n real

matrices T as follows’

L1 T12 Tim }nl

(2.4) T=
T2 T2 T2m }/72
Y, Y r }n

/’/1 t/2 nm

where Tj is an ni r/j real matrix of the following form"

ti t -Jt!’Y ni +

tj t2ij

0

tlTj-ni+ 1)

for nj >__ ni,
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and

T/j 0 for nj < ni.

For convenience, any matrix T of the form (2.4) is said to be a block stripe matrix.
LEMMA 2.2. For a given set of integers n 1, n2, ..., n,, satisfying n >_ n 2

rtm 1 and ’[’=1 ni n, the set of nonsingular block stripe matrices T in

(2.4) forms a group under the usual matrix muitiplications. Any block stripe matrix
T in (2.4) is nonsingular if and only if the m x m real matrix

V It!n.s- n +
t.-j 1)]

is nonsingular, where tlj-"’+ 1) is the (i,j)-th element of V.
Proof. By straightforward matrix calculation, (though tedious), one can prove

this lemma. The details are omitted.
The relationship between the Brunovsk, canonical form and the group of

block stripe matrices is stated in the following proposition.
PROPOSITION 2.1. For a given set of controllability indices n l, "", nm, !et ,,,

be the corresponding group of nonsingular block stripe matrices, and let (A, B) be a
pair of matrices in the Brunovsk canonical form specified by nl, n,,. Then

1. T is an n x n real nonsingular matrix

2. A T(Ac + BcF)T- for some m x n real matrix F

3. B TBcG for some m x m real nonsingular matrix G

Proof. Let T be an element of ,,,. We want to show that there exist an m x n
matrix ff and an m x m nonsingular matrix 0 such that

(2.5)

and

(2.6)

A (A + Bc1)-1

B TBG.

From the elements of , (see (2.4)), define an m x m matrix

V It!n’j- "i + 1)]

where tl’-"’+ 1 is the (i,j)th element of V. From Lemma 2.2 and the assumption
that is nonsingular, V is clearly a nonsingular matrix. Let ( ___a V-1. It can be
easily verified that the pair of matrices (, () satisfies (2.6). Next consider (2.5).
From (2.6) one can rewrite (2.5) as follows"

(2.7)
TA AcT TBcF

BcF
where/ _a _(-lp. It is easy to show that there exists a unique m x n matrix
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F satisfying (2.7) which is as follows"

where fj is a 1 nj row vector defined by

Fo... o,
lJ

ni (nj-

Hence F & - satisfies (2.5).
It remains to show that any real nonsingular matrix satisfying (2.5) and (2.6)

is a block stripe matrix. It is again easier to use (2.6) and (2.7) to show this. The
details are omitted. Q.E.D.

In the construction of -canonical form, we first transfo the triple (A, B, C)
X into a new triple (A,B,)X by applying appropriate transformation

(T, F, G) constructed in Lemma 2.1, where A and Be are specified in (2.3) and
CT-. Note that for a given triple (A,B, C) X, the set of matrices (T,F, G)

constructed in Lemma 2.1 is not unique in general. Therefore, the procedure of
transforming a given triple (A, B, C)X into a new triple (A, B,)X is not a
function in the usual sense. In other words, the matrix is not uniquely determined
by (A, B, C). However, from Proposition 2.1, the following results can be immedi-
ately obtained.

PROPOSITION 2.2. Consider two triples (A,B,Cx), (Az,Bz,Cz)X.
Assume that these two triples are transformed into (ACx, Bx, C), (Ae2, Bc2, C2) X
according to Lemma 2.1. Then (Ax, B C) and (A2, B2, C2) are -equivalent if and
onty

(i) Acx A and Bx Bc2 i.e., the two sets of controllability indices of
(A1, B1) and (A2, B) are equal, which are denoted by nx, n"

(ii) T z, for some nonsingular block stripe matrix T in .
From Proposition 2.2, we can see that the problem of finding -canonical

forms on X can be performed in two steps.
Step 1. Find an appropriate set of matrices (T, F, G) which transforms a

given triple (A, B, C) Xa into a new triple (A, B, ) Xa, where the pair (A, B)
is in the Brunovsk canonical form.

Step 2. Find a nonsngular block stripe matrix in , which transforms
into its canonical form . More precisely, in Step 2, we want to solve the following
problem.

Canonical form for block stripe equivalence.
DEFINITION 2.2. Let X2 {C[C RYe"}, and let nj, (j 1,2, ..., m), be a

given set of positive integers satisfying

nl >=n2 >= _>nm> and Z //j y/.

j=l
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Two matrices C1 and C2 X2 are said to be block stripe equivalent if and only if
there exists a nonsingular block stripe matrix T in ,i, such that C1 C2 T.

The problem now becomes: find a canonical map ff:X2 X2 with the
following two properties:

(i) (C) and C are block stripe equivalent, VC X2,
(ii) if(Ca) (C2). C and C2 are block stripe equivalent, VC, C2 X2.

Then from the definition of canonical form, Im q is a set of canonical forms for
block stripe equivalence on X2.

Before we solve the above problem, we first consider a simple example.
Example 2.1. Let n 7, m 3, nl 3, n2 2 and n3 2. Assume that two

matrices C and D are block stripe equivalent and they are partitioned as follows:

ICl11C21iC22]
3 i’-1

(2.8)

0 0

0 t

0 0

0 0

0 0

0 0

0 0

t213 0

0 t13

[ ]Dll D21 D22
3 "1 2

or, equivalently,

(2.9)

(2.10)

Dll-- t:lCll + tll[C21 0] 4- t2l[0 C21
4- t1[C22 0] 4- tl[0 C22],

D21 t2C21 + t2C22,

(2.11) D22 t213C21 4- t133C22
Writing D1, Ida, d, d,], D2, [d2, d.,], D22 Ida2 d22], and simi-
larly for Co’s, then from (2.10), (2.11), we have

(2.12)
d., 1d222 Lc221 tlC22 2 Lt. t 3]

Similarly from (2.9), we have

[dil [c’il Ic1211 [ 0 I L0C122]] I 0 ](2.13) [d2 tl, [Cl2 4- t121 C22 4- tl C121 4- tl 1C2 4- tl C212
o
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Let

and

span c cg2=span

c;

cl, c1 0 0

ko 0 C221 C222
Similar subspaces are constructed from matrix D. Then from (2.12) and (2.13), the
following relations hold:

(2.14) 92 (2

and

(2.1 5) 621 (-1 + "From (2.14) and the definitions of g,, there follows

(2.6) .
Since block stripe equivalence is symmetric, if we exchange the role of matrix

C and matrix D, we have

(2. 7) % = , + .
From (2.15)-(2.17), it is easy to see that

(2.18)

The above derivation shows that, if two matrices C and D in (2.8) are block
stripe equivalent, then (2.14) and (2.18) hold. In fact, one can show that the converse
statement is also true.

In order to deal with the general case, we need the following notations.
Consider a given matrix C X2 and a given set of integers nl, n2,’.’, nm

satisfying

nl >n2> >n,,>-

171 + 172 + + n., n,

and

171 17ql 1,

?q + 17ql +q2’ 322’
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where

In other words, 71 is the largest number among hi’S, and 72 is the second largest
number among n’s, etc.

Any matrix C e X2 can be partitioned as follows"

C_ECll Clq C21 C2q C31 Clql]}p

71 71 2 72 )3 l

where each submatrix Cij can be written as

Ecb ie, l, J6qi.

From Cij, one can define a p 7g column vector consisting of the columns of Cj,
i.e.,

,p

c|}p

cij= /el, J6qi.

1
cj_] }p

Then we can define a subspace c Rpx i, il, as

(2.19) span {cij, j Eqi},

and a subspace in Rvk, 2,..., 1" k I, as

(2.20) cg,= {xlx= [O,...,O’c’’ 0,...,03’ ceCC p=O 7-7,}

p x / p x 7 P x (/k--7--)

where cg, is constructed by adding zeros to the tops and bottoms of the vectors in
Z in order to make its length equal to p 7k.

With the above notations, we are ready to state the following lemma moti-
vated by Example 2.1.

LEMMA 2.3. If tWO matrices C and D are block stripe equivalent, then using the
above notations, we have
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The proof of Lemma 2.3 follows closely the derivations in Example 2.1 and is
omitted.

Continuing our effort in the construction of canonical form for block stripe
equivalence, we return to Example 2.1.

From equations (2.14), (2.18), we construct two subspaces

(2.21) 2

(2.22) , (% + 2) 1’3

where (cg)l c Rpx 3 denotes the orthogonal complement of cg2 c Rvx 3. Sub-
spaces 91 and 92 are constructed in a similar way. Clearly cg i, 1, 2. From
(2.21), (2.22), we construct two matrices 1 and 2 as follows"

such that ci span 4, i= 1, 2, and both if, and if2 are in the column-reduced
echelon form (see Loomis and St.ernberg [11, p. 104]).

From (2.23), we construct C as follows"

(2.24)

3 2 2

We can construct /3 from subspaces 1 and 2 in a similar fashion. From the
property of the column-reduced echelon form and the fact that c i, 1, 2,
we can see that ( =/3.

In order to show that C is block stripe equivalent to the original matrix C in
(2.8), we need the following lemma.

LEMMA 2.4. Let ’ span {a ,..., ak} and M span {b l, b}, where a,
b.i e R", e k, j I. Write each vector a as

ai gt + ?t, e k,

where ai e +/- and ?t e . Define a subspace s? as jbllows"

Then

J (s + N +/-

span {11,""" ak}.

Proof. Since a e agt and a t , I t (t + ). By construction, a e +/-, hence. This shows that
s = span {al, ak}.

Conversely, any vector x e I can be written as

x=a+b= oia
i=1
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where a t’, b M. Since fii, b M and i, X M-l-, there follows

Oil + b O,
i=l

and

X 20iii"
i=1

This proves that sg c span {81,"", k}. Q.E.D.
From (2.22), (2.23) andthe above lemma, we can write

(2.25)

where

21 ];211] -[- ]211]
Cl
3 Le31J

(2.26) __211 e cg and /e2 e (cg2)-.
Le, La?

From (2.22), (2.26) and Lemma 2.4, we have

(2.27) c span/g2

Hence from (2.23), there exists t{l va 0 such that

(2.28) tll "/112 /112
La La

From (2.26)and the definition of cg2, there exist constants t21, t131, tz2a and t23 such
that

(2.29) tll-/e2’ -t121 -t’- tl" 2 -+- t221 C121 -+- tl" C122
2Le131 L21 Lc22J

From (2.21), (2.23) and the definition of cg
2, there exist constants t12, t3, t2, t3

such that

icl2 el211 itl2 2 /7123]__ r211(2.30)
c1 c l_ rlaj 1

Furthermore, in the above equation, /)122" t3- /7123 t2 7 0. From (2.25), we
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can write the C matrix as follows"

(2.31)

From (2.25), (2.28) (2.31), we have

t] 0 0

0 tl 0

0 0 tl

0 0

0 0

0 0

0 0

0 0

0 0

--tll --t221 0 tl2 0

o -t ,l o

--tl --t231 0 t2 0

o0 --t31

0

t123

t3 0

0 t3

This shows that ( is block stripe equivalent to C. Hence the above procedure of
constructing ( is a canonical map and ( is in a canonical form for block stripe
equivalence.

The following algorithm summarizes the procedures ofconstructing canonical
forms for block stripe equivalence.

ALGORITHM 2.1.
Step 1. For any given real matrix C e X2 and a set of controllability indices

nl,..., n,,, construct a set of subspaces cgl, e 1, and cg, 2,..., l; k 1, as in
(2.19), (2.20).

Step 2. Construct a set of subspaces as follows:

%=%,

cg_, (_, + I-’)1’3

@, (, + ’ +"" + l) n (2 +... + ])+/-,

where c- c R denotes the orthogonal complement of cg c R.
Step 3. Construct a (p 7i) qi matrix (i in the column-reduced echelon form

(see 11, p. 104]),

such that cg, span Ci, !.
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Step 4. Write each of the above column vectors of (?i as follows"

and define a p x )i matrix (j, el, j Gqi, as

The canonical form of the matrix C is

[II lql 21 2q2

END OF THE ALGORITHM.
Comment. From the definition ofi and Lemma 2.4, one .can see that dim (i)

_<_ qi. Hence the construction of C in Step 3 of the above algorithm is always
possible.

3. Transmission zeros of linear multivariable systems. In this section, we will
define a set of zeros, called transmission zeros, for any linear multivariable system
which is completely controllable. This set of zeros is an invariant for -equivalence,
hence it can be defined in terms of the -canonical form derived in 2.

Consider a given triple (A, B, C) X Using the algorithm in 2, we first
transform (A,B, C) into its canonical form (At, Be, ), where (Ac, B) is in the
Brunovsk canonical form. Let n1,..’, nm be the set of controllability indices of
(Ac, Bc). We define an n m polynomial matrix as follows:

M(s) block diag [mi(s)],

S

mi(s) hi, e m.

Sni-

Then we can calculate the product of (2 and M(s),

(3.1) N(s) =-- M(s).

Note that N(s) is a p m polynomial matrix which can be considered as the
numerator of the system (A, B, C) (see [6], [12]-[16]).
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Then we transform N(s) into its Smith canonical jbrm as follows, where U l(s)
and Uz(s) are polynomial matrices with nonzero constant determinants,

(3.2)

U ,(s) N(s) Uz(s) A(s)

[diag (e,(s))

diag (ei(s))

(m > p)

(m p)

(p > m).

DEFINITION 3.1. The polynomial I]i= ei(s), min (p, m), derived from the
Smith canonical form of N(s), is said to be the transmission polynomial of the given
system (A, B, C) e X1. The set of zeros of the transmission polynomial is said to be
the set of transmission zeros of (A, B, C)e X1.

The set of transmission zeros defined above has an interesting application in
the control of linear multivariable systems with disturbances.

We first state the following lemma.
LEMMA 3.1. Considera given triple (A, B, C) Xx and its numerator N(s) defined

in (6.1). Let 2 be any complex number. Then the following two conditions are equiva-
lent:

(i)
2I A BIrank n +c P’

(ii) rank N(2) p.

Proof. By transforming (A, B, C) into its -canonical form (Ac, Be, t2), one
can easily prove this lemma. The details are omitted.

LEMMA 3.2. Consider a controllable linear time-invariant system spec!fied by

(3.3) 2(0 Ax(t) + Bu(t) + w(t),

(3.4) y(t)- Cx(t),

where u(t) R is the input, x(t) e R" is the state, y(t) e Rp is the output, w(t) R" is
the disturbance whose components wi(t), en, satisfy a differential equation with
unstable characteristic roots 2, 2q. Then a necessary and sufficient condition
that there exists a linear controller (either feedback or feedforward) so that y(t) 0 as

o and such that the controlled system is controllable is that

,I A B](3.5) rank n + p, j q.

The proof of Lemma 3.2 and a detailed discussion on this subject can be found
in [17], [18].
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PROPOSITION 3.1. Consider the controllable system specified by (3.3), (3.4) and
its transmission zeros defined in Definition 3.1. Then condition (3.5) is equivalent to the
following:

(i) The set of the transmission zeros of (A, B, C) are disjoint from {2x, 2q},
and

(ii) m >__ p.
Proof. From Lemma 3.1, condition (3.5) is equivalent to the following:

(3.6) rank N(2j) p, j q.

In (3.2), since both U1 (s) and U2(S are matrices with nonzero constant determinants,
the condition (3.6) is equivalent to the condition that m p and

H e(2)
i=1

:0, l= min(p,m), jeq,

where 1-Iti ei(2) is the transmission polynomial of (A, B, C) in (3.3), (3.4). Q.E.D.
Remark 3.1. If a given system (A, B, C) is both completely controllable and

completely observable, then one can define the transmission polynomial of
(A, B, C) to be the product of the numerator polynomials in the Smith-McMillan
form of the transfer function H(s) C(sI A)- B (see [6]). But if a given system
(A,B, C) is not completely observable, the Smith-McMillan form only gives
transmission zeros corresponding to the controllable and observable part.

Remark 3.2. In the case that p m, Kwakernaak and Sivan [3] give a definition
of zeros of a system. Their definition can be shown to be equivalent to Definition
5.1 when p m. Recently, Morse [8] gave a definition of transmission polynomials
of a system (A, B, C). With the assumption of complete controllability, one can see
that Morse’s definition of transmission polynomials is closely related to ours via
Lemma 3.1.

4. Conclusions. The problem offinding canonical forms of linear multivariable
systems under state coordinate transformations has been investigated by many
authors 19]-[24]. It is worthwhile to investigate which of these forms is canonical
in the sense of Definition 1.2. In this paper, a precise definition of canonical forms is
given, and according to this definition, a set of canonical forms under input
coordinate transformations, state coordinate transformations and state feedback
transformations (-canonical forms) is derived in 2. Under different groups of
transformations, -canonical forms and *-canonical forms have also been
derived in [25].

An interesting set of invariants (which is not complete) for -equivalence,
called transmission zeros, is derived in 3. This set of zeros is seen to play an
important role in linear multivariable system theory, e.g., in the general servo-
mechanism problem.

Acknowledgment. The authors are grateful to Professor W. M.Wonham for his
many stimulating discussions.
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A FUNCTIONAL DIFFERENTIAL EQUATION APPROACH TO
SOLVING INFINITE GAMES*

R. G. UNDERWOOD’

Abstract. This paper develops a theoretical foundation for the numerical solution of two classes of
infinite zero sum games, namely continuous and L games. Our approach is to introduce a dynamical
model (a functional differential equation) for nondynamic L games and then to show that approximate
solutions to a symmetric L game can be obtained by examining the limiting behavior of the game’s
dynamical model. By viewing a continuous game as an L game, it is shown that exact solutions to a

symmetric continuous game can be found by examining the limiting behavior of the corresponding L
game dynamical model. Since the dynamical model is nonlinear, a proof of the existence and uniqueness
of its solutions is included. Finally a symmetrization is described for continuous and L games, and
thus the theory provides a general method for solving games of these classes.

1.1. Introduction. In this paper, two classes of infinite games, L and
continuous games, will be considered. The terms L and continuous conventionally
refer to the game kernel. Our objective is to develop a dynamic model for these
two classes of games and to study its stability. The dynamical model and associ-
ated theory provide a theoretical foundation for the numerical computation of
solutions to these games.

It is well known that approximate solutions to continuous games can be found
by first approximating the continuous kernel with a matrix and then solving the
matrix game. However, if the continuous kernel is irregular, the dimension of the
matrix game may need to be very large in order to obtain sufficient accuracy. The
techniques for solving matrix games (viz., the simplex method and fictitious play)
are generally not quick enough for handling games of large size [6]. The method
of fictitious play can also be applied directly to continuous games. This method
resembles a multistage learning process. At each stage, it is assumed that the
players choose a strategy that would yield the optimum result if employed against
the empirical distribution of all past choices of their opponents. For instance,
consider the game of matching pennies. Assume that player Pr wins if there is a
match and P wins if there is not a match. Now suppose in the first three plays P
has chosen "heads" once and "tails" twice, then the "fictitious" play for Pr is to
choose "tails".

The advantages of our procedure over the methods using a matrix game
approximation is that any continuous game can be solved numerically without
being removed from its original function space setting. By analyzing the problem
from this viewpoint, it is possible to exploit numerical methods which are directly
applicable to the function space setting. Whether our procedure compares more
favorably to that of fictitious play with respect to the relative rates of convergence
etc. is a question for further study. We offer it as an alternative.

Let us now briefly outline our approach. We will first analyze symmetric
games. For symmetric continuous games, we will show that a solution to the game
can be obtained by examining the limiting behavior of the game’s dynamic model.
In the case of L games, the stability is not as decisive. However, we will show

* Received by the editors July 12, 1974, and in revised form March 18, 1975.
f Department of Mathematics and Computer Science, University of South Carolina, Columbia,

South Carolina 29208.
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that by changing the game’s kernel on a set of arbitrarily small measure, we can
obtain e-optimal solutions to the game. Having analyzed the symmetric case, we
will then describe a symmetrization for L and continuous games; and thus the
theory will provide a general method for solving games of these classes.

1.2. Solving basic definitions. A two-player zero sum game can be thought ofas
a triple {X, Y, cU}, where X and Y are the strategy spaces of the two players
respectively and where o is the payoff functional defined on X x Y. In this paper,
cf will always be a bilinear functional which can be identified with a kernel
K(.,. ). Therefore, in order to define an L or continuous games, we shall first
need to define the game kernel and strategy spaces. Throughout this paper we
shall denote the interval [0, 1] by I.

Since the L kernel will be defined on I x I, we need to specify an appro-
priate measure space. Let M denote the collection of Lebesgue measurable sets on
I and/ Lebesgue measure. We will consider the measure space {I x I, M x M,
/ x /}. (In Lemma 2.3-1, the reason for choosing this measure space will become
apparent.) L(t x It) denotes the set of all essentially bounded (with respect to
/ x p) functions on I x I.

DEFINITION 1.2-1. A function K is an n x m L kernel if it is an n x m matrix
of real-valued function Kij defined on I x I, where each Ki. L(fl fl).

DEFINITION 1.2-2. An R" density functionf is a Lebesgue measurablefunction
mapping I into R", where

(1.2-1) f/(x) > 0 a.e., 1,..., n,

and

(1.2-2) i=1 f(x) dlt(x) 1.

Player l’s strategy space, , is the set of all R" density functions f and player 2’s
strategy space, N, is the set of all R" density functions g. The triple (, aj, K} is
called an L game, where the payoff functional is given by

o,U[f, g] f, d,(x) f, f(x) (K(x, y)g(y))du(y).

We shall now define a continuous game in an analogous manner.
DEFmO 1.2-3. A function K is an n x m continuous kernel if it is an n x m

matrix of continuous real-valued function Kj defined on I x I.
DEwzo 1.2M. An R" policy function is a function F mapping I into R",

where each F is a nondecreasing function and right continuous on (0, 1],

(1.2-3) F,(O)=O for i= 1,-..,n,

and

(1.2-4) i F(1)-- 1.
i=1

(Note" An R’" policy function can be given several conventional statistical interpre-
tations. For instance, by properly juxtaposing the n components, an R" policy
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function can be viewed as a cumulative distribution defined on the interval
[0, n] .) Player l’s strategy space, A, is defined to be the set of all R" policy functions
F, and player 2’s strategy space, F, is the set of all R policy functions G. The triple
{A, F, K} is called a continuous game, where K determines the payoff functional

f[F, G] dF(x). K(x, y)dG(y).

In these games, each player can be thought of as having n (or m) ordered
copies of the unit interval. He must decide how to allocate a certain fractional part
of his resources to each interval and how to distribute that fractional part over
the interval.

A game is symmetric when the roles of the two players are interchangeable.
In the case of the two classes of games described above, this property is equivalent
to the skew-symmetry of the kernel K (i.e., K(x, y) -KT(y, x)). Hence in sym-
metric games, m n, and the strategy spaces are identical. It can also be shown
that the value, if it exists, is zero.

1.3. The dynamic model and the associated Lyapunov functional. First we shall
discuss L games. Consider the symmetric L game {, f, K}. A solution to its
dynamical model described in this section will be a function g(x, s) mapping
0, 1] 0, ) into R", where g(., s) ff for all s [0, ) and (cg/c3s)(x, s) exists for
all x and s. Before proceeding directly to a description of the dynamical system,
some preliminary notation will be helpful. Let

(1.3-1) (Wg)(x, s) ft K(x, y)g(y, s) d/(y),

where K is the n n L kernel for the game {@, , K} being modeled and g is
as described above. We shall let (Wg)i denote the ith row of Wg, 4i[(Wg)]

max (0, (Wg)i), and let 4 represent the n-vector with components qi. Using this
notation, the dynamical model for {, if, K} is the vector equation,

(1.3-2) (x, s) 4(wg)(x, s)]
,- f,

with the initial condition g(x, 0)= go(x)a.e., where go ff. To investigate the
stability of (1.3-2), we will introduce the following associated Lyapunov functional"

(1.3-3)

To understand the relationship (for symmetric games) between and the
payoff functional oU, consider the following. Suppose for some s, g(., s) a and
(g(-, s)) 0. Then each i[(Wg)(x, s)] 0 for a.e. x, i.e., (Wg)i(x, s) <= 0 for a.e. x
and 1,..., n. But then from (1.3-1) we see that aug(f, g(., s)) __< 0 for all f
in a. Since the value of a symmetric game is zero (if it exists), g(., s) is a
solution to the game. In Theorem 1.3-3, we will show that the dynamical model
(1.3-2) steers W(g(., s)) to zero, and thereby achieve a means of approximating
solutions to the game.
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We shall now state the main results obtained for symmetric L games and
the dynamic model (1.3-2).

TEOREM 1.3-1. Suppose {, c, K} is an L game and let (1.3-2) be its dynamic
model. Then there exists a unique function g satisfying (1.3-2) and its initial condi-
tion on I [0, ), where g(., s) for each s [0, ).

Since the solution to L games, in general, will be only approximate, we will
need the concept of an e-optimal strategy.

DEVNITON 1.3--2. Suppose {@, , K} is an L game. A set of strategy pairs
{(f, g)} are e-optimal if there exists a real number 7 such that for each e > 0
there exists a (f:, g) for which

dlu(x) fif(x) (K(x, y)g(y))dlt(y)< 7 + e

for all f in and

f dla(x) f f(x) (K(x, y)g(y)) d(x) > 7 e.

for all g in

7 is called the value of the game. The theorem on the e-optimal solution for
symmetric L games can now be stated.

THEOREM 1.3-3. Suppose g is a solution to the dynamical model for the sym-
metric L game (6if, a, K} given by (1.3-2) and its initial condition. Let {(g(., s,,))}
be any sequence of strategies in c defined by the solution g. Then given any 6 > O,
there exists a set E6 I, where t(E6) < 6, such that if we set K(x, y) 0 for all
(x, y) E6 E6 (denote this new kernel by K6), thenfor any e > 0 and m sufficiently
large, {g(., Sin)} are e-optimal strategiesfor both players to the new symmetric game

Now we shall state the results for symmetric continuous games. Consider
the symmetric continuous game {F, F, K} and let {, a, K} be the L game with
the same game kernel. Let (1.3-2) be the model for the game {, , K}. Suppose g
is the solution to (1.3-2) guaranteed by Theorem 1.3-1 and define

(1.3-6) G(x, s) g(t, s) d(t).

Observe that G(., s) F for all s [0, v).
THEOREM 1.3-4. Suppose {F, F, K} is a symmetric continuous game and sup-

pose G is given by (1.3-6). Then there exists a sequence {G(., Sin)} and a function
G in F such thatfor each x in I at which G is continuous, lim.,,_ G(x, Sin) G(x).
Furthermore, G is a solution for both players to the game {F, F, K}.

Notice that here the solution is exact.

2.1. The existence of a unique a.e. solution to the dynamic model. We shall now
examine the dynamic model (1.3-2) in detail. In that the system is nonlinear, the
proof of existence and uniqueness is nontrivial. Our program will be the following.
First we shall prove the existence and uniqueness of a solution to (1.3-2) on
I , a +/] for arbitrary a and sufficiently small , and then we shall show how
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the dynamical system properly constrains its solutions on this rectangle. We will
conclude 2 with the proof of Theorem 1.3-1.

2.2. W(I, n) Banaeh spaces. The problems of existence and uniqueness will
be based upon the "contraction mapping" fixed point theorem. Consequently, our
first task will be to develop an appropriate metric space in which to analyze the
problem. Let I [0, 0 + fl].

DEFINITION 2.2--1. c(I, n) is the set of all real functions mapping I x I into
R" such that

(a) for all s e I, f(., s) is Lebesgue measurable
(b) for a.e. x e I, f(x, is continuous

and

(2.2-1) Ilfll f, suplfi(x,s)la (x)<o ,
i=1

wheref denotes the ith component off and/t is the Lebesgue measure defined on
the Lebesgue measurable sets of I.

For simplicity we shall study the case n 1 and then show how the results
can be extended for arbitrary n. Suppose n 1. The measurability of sup If(x, s)l
needed in (2.2-1) is verified by the following lemma.

LEMMA 2.2-2. Suppose f is a function mapping I x I into R with properties
(a) and (b) given in Definition 2.2-1. Then sup If(x, s)l is Lebesgue measurable.

The proof can be found in [7].
LEMMA 2.2--3. (, 1) is a real seminormed linear space.
The proof of this lemma is a simple application of the preceding lemma and

the triangle inequality.
The seminorm of Lemma 2.2-3 fails to be a norm since Ilfll 0 does not

imply that f is the zero vector of cg. Therefore, we regard two elements f and g as
equivalent if f gll 0. Let f denote the equivalent class containing f e cg and
cg(I}, 1) denote the collection of equivalent classes. With the vector space opera-
tion defined in the obvious manner and f If one can easily check that
becomes a normed linear space.

THEOREM 2.2-4. oK(I}, 1) is a Banach space.
The proof follows the structure of the classical proof of completeness of L’-

spaces. The details are given in [7].
COROLLARY 2.2--5. cg(I}, n) is a Banach space for arbitrary n.

2.3. The existence and uniqueness of a solution to (1.3-2) where the "s" vari-
able is sufficiently bounded. In this section, K will be assumed to be the kernel of the
L game {, c, K} being modeled. Let k suP(i,j) ess supt,,r)IKig(x, Y)I, where the
"ess sup" is with respect to the measure space {I x I,M x M,/z x /} (see the
paragraph preceding Definition 1.2-1). Define/ (10 nk)- . Recall n is the dimen-
sion of the game’s kernel. Throughout the section it will always be assumed that
e is an arbitrary real number.

LEMMA 2.3-1. Suppose K is an n x n L kernel whose elements Kij are
essentially bounded by k, and that g c(i, n). Then (Wg)(x,.) is continuous on I
for a.e. x I and (Wg)(., s) is measurable on I for all s I. Furthermore, recalling
the definition of, if f , then lg lh. Also for a.e. x and all s,



256 R.G. UNDERWOOD

(2.3-1) I(Wg)(x, s)l <- kllgl[, 1,... n.

For the proof of this Lemma, see [7].
LEMMA 2.3-2. Let g, h R a" u, v R" and denote i(u) max (0, ui). Then

(2.3-2)

and

(2.3-3)

I(u)- ,(v)[ <__ lu i= 1,...,b,

i-- i= i=1 i=1

The proof follows from the observation that max (0, ui)= ([ui[ + u)/2. Let
B(2) {gef"lIgll =< 2}.

LEMMA 2.3-3. Define (Tg)(x, s) by

(2.3-4)

for g e B(2). (Tg)(x,.)is continuous on I for a.e. x I and (Tg)(. ,s) is Lebesgue
measurable in x for all s I. Furthermore, T is Lipschitz continuous in B(2) with a
Lipschitz constant 7 5nk.

Proof Assume g eB(2). From Lemma 2.3-1, we see that [(Wg)(x,s)] is
measurable in x for each s in 1. Hence (Tg)(., s) is measurable for each s e 1.

We also see from Lemma 2.3-1 that [(Wg)(x, s)] is continuous in s for a.e. x
in 1, and that each cbi[(Wg)(x,s)] =< klIgll < oo for a.e. x and all s. Therefore, by
the Lebesgue dominated convergence theorem, for any sequence s,, --+ s,

(2.3-5) lim | 4[(Wg)(t, s,,)] d/.z(t) | b[(Wg)(t, s)] dlt(t).
0i

We conclude that for a.e. x, each term in (2.3-4) is continuous in s and thus
(Tg)(x,.) is continuous on 1} for a.e. x e 1.

We shall now show the Lipschitz continuity of T. Suppose g and h e B(2).
From the inequalities obtained in Lemma 2.3-2 and the linearity of W, we see that
for/= 1,-..,n,

(2.3-6)

I(Tg)i(x, s) (Th)i(x, s)l

+ Ihi(x, s)l k ; [W(g h)1(t, s)l did(t).
j=l



SOLVING INFINITE GAMES 257

Applying (2.3-1) to (2.3-6), we get for a.e. x and for any s, 1,..., n,

I(Tg)(x, s) (Th),(x, s)l kllg hll
(2.3-7) + nklgi(x S) hi(x, s)l Ilgll

/ nklh(x,s)l IIg- hll.

Taking the sup over s of the right-hand side of (2.3-7), then taking the sup over
the left-hand side of the resulting inequality, integrating on x, and finally sum-
ming, we obtain

(2.3-8) Tg Th <= nk{ + IIg -4-- hl g h

Since Ilgll 2 and Ilhll 2,’T is a Lipschitz continuous with a Lipschitz constant
of ? 5nk.

LEMMA 2.3-4. Suppose f maps I x [a, b] into R, where for each s in [a, hi,
f(., s) is Lebesgue measurable for all s in a, b], andf(x,. is continuous for a.e. x
in I. Then b f(x, s) ds is measurable.

The proof can be found in [7].
THEOREM 2.3--5. Let go be anyfunction in B(2) and let (1.3-2) be the dynamical

model for the symmetric L game {f#, f#, K} with initial function go. Then there
exists a unique Jhnction g B(2) satisfying (1.3-2) and g(x, 0) go(x) a.e.

Proof. Pick go ff and suppose g B(2). Let E denote the set of all x, where
(Tg)(x,.) is not continuous. Define

(2.3-9) (-g)(x, s)
(Tg)(x, r) d + go(x)

0

if (x, s) e (I E) x I,

if (x, s) e E x I.

We want to show that - is a contraction mapping B(2) into B(2).
By Lemma 2.3-4, we know for each s, (-g)(., s) is measurable. By the defini-

tion of E, (-g)(x,.) is differentiable (and continuous).
Since/(E) 0, from the Lipschitz condition on T shown in Lemma 2.3-3

we see that

(2.3-10)

But Ilgo/[ 1, fl (10nk)-1, and a 5nk and we conclude [[gll 2. Hence
maps B(2) into itself.
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(2.3-11)

Suppose g and h B(2). Following steps similar to (2.3-10), we have

-g -hl[ sp (Tg)i(x, a) (Th)i(x, a) do dlu(X)

i=1

Therefore, - is a contraction.
The contraction mapping theorem requires a complete metric space. Hence

we will have to define a map corresponding to - defined on B(2), the set of all
equivalence classes of B(2)./(2) is a closed subset of(I, n), and thus a complete
metric space. Using to denote the equivalence class of g, define - -g for
any g a. It can easily be verified using Lemma 2.3-1 that - is well-defined and
maps/(2) into/g’(2). Therefore, by the fixed point theorem for a contractive map-
ping, there exists a in/(2) such that - " and hence, for any g in a for a.e. x
and all s, (-g)(x, s) g(x, s). Let g denote the set where this equality fails. Let
g(x, s) 0 for (x, s) g I. Since #(g) 0, by the definition of - in (2.3-9),

(2.3-12) ?g(x, s) (Tg)(x, s).

If (x, s) (I d) I, then g(x, 0) go(x). Since/,(de) 0, g(x, 0) go(x) a.e.

2.4. The constraint condition on the solution to the dynamic model. We will
maintain the same hypotheses set forth at the beginning of 2.3.

THEOREM 2.4--1. Suppose g is the function in B(2) satisfying (1.3-2) with the
initial condition g(x, O) go(X) (5. Then for each s in I, g(., s)

Proof Suppose g is the solution to (1.3-2) and its initial condition. Let
(I)(s) ’i’= j’1 4i[(Wg)(x, s)] d(x). Then for a.e. x and all s,

g(x, s) exp (a) da go(x) + exp (co) de;

(2.4-1)
4)[(Wg)(x, a)] d

(Note" (Wg)i(x, need not be bounded on a set of measure zero, and hence equality
(2.4-1) is for a.e. x and all s.) The validity of (2.4-1) can be checked by differentiating
on s. From (2.4-1) and the definition of 4, it follows that if go(x) >- 0 a.e., then g(x, s)
>= 0 for a.e. x in I and all s in I.

Summing and integrating the components of (1.3-2), we get

(2.4-2)
i=1

-S(X, S) d(x) (I)(s) (I)(s) gi(x, S) dla(x).
i=1
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Suppose

a f,(2.4-3)
ds

g(x, s) dla(x) s(X, s) dla(x).
i=1 i=1

Then from (2.4-2) we obtain

(2.4-4)
ds

gi(x, s) dt(x) (s) gi(x, s) dlu(x
i=1 i=1

It follows from (2.4-4) that if initially

then
f, g(x, ) du(x) ,

i=1

f, g(x, s) du(x)
i=1

for all s in I.
All that remains to be shown is the validity of (2.4-3). From (1.3-2) and Lemma

2.3-1 we have, for a.e. x and all s,

(2.4-5) i=lc3gig-y/(x, s) =< kllg]l n + sup Igi(x, s)[
i=1

Since g B(2), the integral of the right-hand side of (2.4-5) is finite; (2.4-3) now
follows from an application of the mean value theorem and the Lebesgue domi-
nated convergence theorem [2, p. 60].

2.5. The proof of Theorem 1.3-1. This proof globalizes the local solution
established in Theorem 2.4-1. Consider the sequence of intervals {I
=[(n- 1)fi, nfl]} and {I,, [0, nfl]}, where fi (10nk) -1 as defined in 2.3. Let
go be the initial function given in the hypothesis of Theorem 1.3-2. Since a was
arbitrary, from Theorem 2.3-5 we know there exists a function g satisfying (1.3-2)
and gl(x,O) go(x)a.e, on I x 11. Furthermore, from Theorem 2.4-1, gl(" ,s)eff
for all s in 11 Applying the same theorems again, we see that there exists a unique
solution ’2 to (1.3-2) on I x I, where we select the initial function 2(x, fi)

g (x, fl) a.e.
Define

(2.5-1) g2(x,s) ={gl(x,s if sI1,

,2 if sI.
It can be easily verified that g2 satisfies (1.3-2) and gz(X, 0) go(X) a.e. on I 12.
Also g2(’, S) cff for all s I,,_ 1.

Now suppose g,,_ satisfies (1.3-2) and g,,_ l(x, 0) go(X) a.e. on I I,,_ and
that g,,_ 1(., s) c# for s I,,_ 1. Suppose ,, is the solution to (1.3-2) on I I
satisfying ,,,(x, (n 1)fi) g,,(x, (n 1)fi) a.e. Define, gn- 1(X, S) if s I,,_ 1,

(2.5-2) g,,(x, S)
,,,(x, s) if s I.



260 R.G. UNDERWOOD

Again it can be readily verified that g,, satisfies (1.3-2), g,,(x, 0)= g0(x)a.e., and
g,,(x, s) c5 for all s I,,. It now follows by induction that there exists a function
satisfying (1.3-2) and its initial condition on I 0, o), where g(., s) (5 for all
s in [0, ).

3. A method for solving symmetric L and continuous games using their
dynamic models. First we shall consider L games. Suppose that (1.3-2) is the
model for the symmetric L game {re, , K} and that g is its solution. Using a
differential inequality to be obtained in Lemma 3.3, we will show that P(g(., s))
decreases monotonically to zero. Then we will complete the proof of Theorem
1.3-3.

Next we shall consider continuous games. Suppose {F, F, K} is a symmetric
continuous game and let {c5, c5, K} be the L game corresponding to {F, 1-’, K}
with the same kernel. Suppose that (1.3-2) is the model for {c5, c5, K} and that g is
its solution. Define G(x, s) by (1.3-6) and denote

Define

rl
(WG)(x, s) J0

(Wg)(x, s).

K(x, y) dG(y, s)

K(x, y)g(y, s) dla(y)

(3.2) (G(. ,s))= ffi=1

4)?[(Wg)(x, s)] ax V(g(., s)),

where bi are defined as before. Observe that each i[(WG)(’, s)] is continuous for
any s in [0, ). As in the case of L games, (G(., s)) decreases monotonically to
zero, but here a weak convergence argument will prove the existence of a sequence
{G(., s,)} e F and a limit function Go e F such that lim.,,,_ ((. ,Sin)) (Go)

0. It will follow that Go is an optimal strategy to the game {F, F, K} for both
players, and thus Theorem 1.3-4 will be proven. This will conclude our analysis
of symmetric games.

We will need the following lemmas for the proofs of Theorems 1.3-3 and
1.3-4.

LEMMA 3.1. Suppose f is a differentiable function mapping [0, ) into R. Let
95 max (0, f). Then

b2(f(s)) df(s)
(3.3) d 2(p(f(s))

ds ds

The differentiability of ()2(f(s)) is possible because the squaring operation suffi-
ciently smoothes the composite function at points wheref(s) 0. The details are
in 7].
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LEMMA 3.2. Suppose {q, , K} is an L game and its dynamical model is given
by (1.3-2). Let g be the solution to the dynamical model. Then for a.e. x and all s,

c(Wg)(x, s) K(x, y)[(Wg)(, s)

(.4)

i--1
;I dp[(Wg)(y’s)]dla(Y)(Wg)(x’s)"

Proof It can be shown using the mean value theorem and the Lebesgue
dominated convergence theorem 2, p. 60] that for a.e. x, all s, and 1, ..., n,

c-(Wg)i(x, s) ss Kij(x, y)gj(y, s) dl2(y)
j=l

(3.5) ;, Ki(x, Y)sg(Y, s) da(Y).
=1

Substituting (1.3-2) into (3.5), we obtain for a.e. x and s, (3.4).
LEMMA 3.3. Supposeg is the solution to the dynamicalmodel ofthe symmetric L

game {(, qf, K} gven by (1.3-2). Then f k supi. ess sup.v[Ku(x, y)[ :# 0,

(3.6)
dW 2

(g(., s)) =< -.tWO(g(.,s)).
ds

Proof. Suppose g is the solution to (1.3-2). First we will show P is differentiable.
From Lemmas 3.1 and 3.2, it follows for a.e. x and all s that

42[(Wg)(x, s)] 24[(Wg)(x, s)]-(Wg)(x, s).
8s

It can be shown that for all s, 4[(Wg)(" ,s)](8/Ss)(Wg)(. ,s)is bounded uniformly
by an integrable function. Furthermore, we know for any s that b2[(Wg)( ,,s)] is
measurable. We can now conclude from the mean value theorem and the Lebesgue
dominated convergence theorem [2, p. 60] that

(3.7)

dW

ds
--(g(", S)) S il )/2[(Wg)(x, s)]

2 0[(Wg)(x, s)](Wg)(x, s) dla(X).

Substituting (3.4) into (3.7), we obtain

--(g(., s))=2 {4[-(Wg)(x, s)] f K(x, y)ck[(Wg)(y, s)] dt(y)} dl(x)

(3.8) -2 f i[(Wg)(x, s)] dfl(x)
i=1

fl 4[(Wg)(x, s)]. (Wg)(x, s)dl(x).
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The skew-symmetry of K makes the first term in (3.8) zero, and we get

(3.9)
ds

(g( s)) 2 ck,[(Wg)i(x, s)] dp(x),(g(., s)).
i=1

It can easily be verified that

i=l
(3.10)

k
i:1

f, i[(Wg)(x’ s)] dll(x).

Equation (3.6) now follows from (3.9) and (3.10).
Now we will prove Theorem 1.3-3.
Proof of Theorem 1.3-3. Suppose g is a solution to the dynamical model for

the symmetric L game {if, if, K}. If k sup(i.j)ess sup(x.y)lKi(x, y)] 0, then
the theorem follows trivially.

From the preceding lemma, if k - 0, then

(3.11) dO
d_(g(. s)) __< -;,(g(., s)).

Integrating both sides of this differential inequality gives us

(3 12) q(g(, s)) <
kq(g(.,O))

k -()i: 0))"
If ,(g(., s)) 0, then (3.11) implies it will remain zero and (3.13) is still valid. From
the definition of and the Schwarz inequality,

(3.13) d[(Wg)(x, s)] dl(x) =< O(g(’,s)), j 1,... n,

which along with (3.12) implies that each j’i ;[(Wg)(x,s)] dla(X)- 0 as s oc.
Let Sm or. Then

(3.14) fl Ickj[(Wg)(x, s,,)] O[ dt.t(x) - 0 as m ,
j 1,..., n. In other words, each {b;[(Wg)(., Sm)]} converges in the mean to the
zero function. Therefore, {4j[(Wg)(-, s,,)]} converges in measure to zero [2, p. 49].
Since the sequence converges in measure to zero, there is a subsequence {qS;[(Wg)
(.,s,,)]} which converges almost uniformly to the zero function [2, p. 36].
There is a subsequence {Sm} corresponding to each component; pick a subse-
quence {Sm} which is included in all of the subsequences. Almost uniform con-
vergence implies for any 6 > 0, there exists a measurable set E6 c 1 such that
#(E6) < 6 and for j 1,..., n, {dpj[(Wg)(., Sm)] converges uniformly to the zero
function on I E. Hence given any e > 0, for Sm sufficiently large,



SOLVING INFINITE GAMES 263

for all x e I Eo, j 1, ..., n. Therefore because of (3.15) and the definition of
qS, for any e, > 0 and all s, sufficiently large,

(3.16)

for all x e I Eo, j 1, ..., n. Suppose we set K(x, y)= 0 for (x, y)e Eo x E.
Then (3.16) implies

(3.17)

for every > 0 and all correspondingly large s,,k, 1, n. For anyf
if we multiply both sides of (3.17) by f, integrate on x, and sum on i, we see that
given > 0,

(3.18) fff(x).(K(x,y)g(y,Sm))d(y)d(x)
for Sm sufficiently large. Thus g(y, Sm) is an e-optimal strategy for player 2 if Sm
is sufficiently large. Since K is skew-symmetric, by changing the order of integra-
tion in (3.18), and taking the transpose of the integrand, we know for any c > 0,

(3.19) ftfg(X,Sm).K(x,y)f(y)d(y)d(x)>-.
for all f in . But N, and thus, g(x, Sm) is c-optimal for player if Sm is

sufficiently large. This completes the proof.
When the kernel for an L game is a constant matrix, then the R" density

functionsf and g may be taken to be vectors x and y in the usual game simplex in
R". Consequently, an L game with a constant matrix kernel reduces to a matrix

game and the dynamic model (1.3-2) reduces to an ordinary differential equation.
This differential equation is in agreement with Brown and von Neumann’s results
[1]. As was shown in their paper, in these games we have the weak convergence
needed to obtain an optimal solution for the symmetric matrix game being
modeled.

Proofof Theorem 1.3M. Suppose {F, F, K} is the given symmetric continuous
game. Let {N, N, K} be the L game with the same kernel and let (1.3-2) be the
dynamic model for {N N K}. By Theorem 1.3-1, there exists a solution g(x, s) to

(1.3-2). Define G(x, s) f g(t, s) d(t). Pick any sequence s . From Theorem
1.3-3 and the definition of G, we know that each member of the sequence G(., s)}
is in F. Since each component of G(x, s) is nondecreasing in x and right continuous
on (0, 1], it follows from Helly’s theorem [4, p. 291] that there exists a subsequence
{G(., s)} and G F such that for each x in [0, 1] at which G is continuous,

lim G(x, sm)= (G(x)). Sin K is a matrix of continuous functions, we

now have from the Helly-Bray theorem [4, p. 282], for all x in I and 1, ..., n,

lim (WG)i(x, Sm) lim Kij(x, y) dGj(y, Sm)
sink sink

(3.20) Kij(x, y) d(Goo)j(Y)
j=l

(w6)(x).
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As in the proof of Theorem 1.3-3, we have for 1,..., n,

(3.21) dp,[(WG)(x,s)] dx d?i[(Wg)(x,s)] dx 0

as s oo. Consequently, by the Lebesgue dominated convergence theorem and
(3.20), for/= 1,..., n,

(3.22) lim dpi[(WG)(x, Smk)] dx c/)i[(WGoo)(x)] dx O.
Srn

Observe that the uniform continuity of each Kij implies (WG)(x) is continuous,
and hence we conclude from (3.22) that each 4i[(WG)(x) is identically zero. In
other words, each (WG)i(x) 0 for all x in I. It now follows for any F in A F
that

f(x. (x,( 0.
o

Since { F, V, K} is symmetric, G is an optimal strategy for both players.

4. Symmetrieati f L a etis games. We will now describe a
method which transforms an arbitrary L or continuous game into a symmetric
L or continuous game. The method will show how to compute the solution of
the original game from the solution of the symmetrized game, and hence the
dynamic model for the symmetrized game can be used to solve the original game.
We will only prove the results for continuous games. In the case of L games, the
proof is very similar in format but because of the "weaker" e-optimal solution it
is technically involved.

Consider any arbitrary continuous game {A,F,K}. Let k sup.sup(.
IK(x, Y)I and k + , where is some positive real number. Define

0 K(x,y)+ -1

(4.1) A -Kr(y,x)- 0 +1

0+1 -1

Here e also denotes the n x m matrix, where each component equals . + 1" (or
"- 1") denote columns or rows of + l’s (or l’s) of the appropriate dimensions.
"0" denotes the matrix of 0’s with the appropriate dimensions. Let 7 be the set of
all R’’++t policy functions H. For any H in 7, denote the first n components by
F, the next m components by G, and the last component by A. The symmetric
continuous game {, 7, A} is the symmetrization of the original game {A, F, K}.

LgMMA 4.1. Suppose H (F, G,A) is an optimal strategy for {7,7, A}. If
2 G(1) > 0, then A(1) > 0.

Proo Suppose H is an optimal strategy for player 2. Since the game {7, 7, A}
is symmetric, the value is zero, and thus from (4.1), we observe that for all x in I,

((x, y + (y- A(yl 0, i= ,.--, n,(4.
o

where the subscript ""i" denotes the ith row.
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Assume "___ Gi(1) =/ > 0. If A(1) 0, then from (4.2) we have

(4.3) | Ki(x, y) dG(y) <= -olu, 1,
o

where Ki is the ith row of K. Denote (1//)G by G*. Since tt > 0, G* e F (i.e., is an
R policy function). From (4.3) and the definition of e,

(4.4) Ki(x, y) dG*(y) <= - -k 6, 1,..., n.

But (4.4) is impossible since -k <= Ki(x, y)dG*(y). We conclude that A(1) > 0.
THEOREM 4.2. Suppose H (F, G,A) is an optimal strategy for {7, 7, A}.

Then

(4.5) 5() 6()= > o.
i=1 j=l

Furthermore, F* (1//)F and G* (1//)G are optimal strategies jbr the game
A, F, K }, and the value of the game is

(4.6) v (I/it)A(1)

Proof Denote K K + e. Again since H is an optimal solution for the
symmetric game {7, 7, A} and since the game has value zero, it follows that

(4.7) Kj(x, y)daj(y) dA(y) < 0, i= 1, ..., n,
j=

(4.) (, s)5()+ A() 2 0, j ,...
i=l

and

,m,

(4.9) dFi(y dGj(y) <= O.
i=1 j=

Suppose 27= 1J’ dGj(y) 0. Then by (4.9), 2’=1 dFi(y) 0. But since the Fi(-)
are monotone, nondecreasing, and zero at y 0, each F(.) is identically zero.
But then from (4.8), j’o dA(y) 0, and thus,

(4.10) dfi(y) + dG,(y) + dA(y) 0,
i=1 j=

which contradicts the assumption that H is an R"+" + policy function. Therefore,

ZLI ()= > 0 and by our preceding lemma, I dA(y)= 2 > 0. Denote
(1/)G by G*e F. Integrating (4.7) with respect to F(x) and summing, we obtain

(4.11) j dF(x). K(x, y)dG(y)- 2 dV(y) O.
0 i=1

Similarly integrating (4.8) with respect to Gj(x) and summing yields

(4.12) j dG(x) (K)r(y, x) dF(y) + 2 dGj(y) O,
0
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or changing the order of integration of (4.12), we have

.1

fo nlf(4.) |, V(x). /(x, y)(y) +
d0 j=

Since 2 > 0, (4.11) and (4.13) imply

(4.14)

6j(y) <__ o.

dGj(y) <= -2 dF(x). K(x, y)dG(y)

<= dF(y).
j=l

Combining (4.14) and (4.9), we have

(4.15) dFi(y)
i=1

dGj(y) la > O.

Denote (1/p)F F*. Dividing both sides of (4.7) and (4.8) by p and recalling the
definitions of Ks, G*, and F*, we see that for all x in I,

(4.16) Kij(x, y)dGf(y) o, 1,..., n,
j= a

and for all y in I,

(4.17) Kij(x, y) dF.*, (x) >= o, j 1,... m.

(4.16) and (4.17) show that F* and G* are optimal strategies for players and 2,
respectively, and that the value of the game is v (2//0 .

5. The prospects for applications of the theory to the numerical solution of
games. In this paper we have shown how a solution to a symmetric L or continuous
game can be obtained as a limit from the dynamic model (1.3-2). To obtain a solu-
tion to an arbitrary L or continuous game, we apply our symmetrization
described in the previous section. An iterative procedure for numerically solving
the dynamical equation could be based upon the contractive map used in 2.3
to establish the existence of a unique solution. Alternatively, by viewing (1.3-2) as
an ordinary differential in a Banach space, the equation could be solved using
Runge-Kutta methods. The numerical analysis of such equations is a current
area of active research.

We shall now demonstrate an advantage of maintaining the original function
space setting. Consider the continuous game {F,F,K}, where K maps [0, 1]
x [0, 1] into R. Suppose we approximate {F, F, K} by the matrix game {S", S", A},
where A is given by aij K(i/n,j/n) i,j 1,..., n, and S" is the n-dimensional
simplex of mixed strategies. It can be easily shown that the dynamical model
(1.3-2) for S", S", A becomes

ds
(s) [Au(s)] di[(Au)(s)]u(s),

i=1
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where 1, n and u(s) S" for all s _> 0. Equation (5.1) is precisely the system
of differential equation used in [1] to study matrix games. Now suppose we ap-
proximate the integrals of the continuous kernel K in (1.3-2) by a first order
integration method. If the mesh size for the integration is l/n, then defining
ui(s) ng(i/n,s), it can be shown that (1.3-2) also reduces to (5.1). Thus in the
sense described above, a matrix game approximation of {F, F, K} is equivalent to
using first order integration methods in (1.3-2). By using higher order integration
methods, we should be able to improve on the matrix approximation. It should be
remarked that, in general, since (1.3-2) is nonlinear, explicit closed form solutions
cannot be found. Even for simple kernels such as K(x, y) x y, to obtain an
explicit solution requires lengthy analysis.

Also of interest in the numerical problem is the selection of the initial func-
tion for the dynamic model. Recall the only restriction was that it belongs to the
strategy space. In the case of continuous games, an exact solution Go to the sym-
metric game was obtained as a limit of sequence {G(., Sin)} (see Theorem 1.3-4).
Whether finding the appropriate sequence poses any difficulties when computing
G is a practical problem which needs to be studied.
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COMBINED PRIMAL-DUAL AND PENALTY METHODS
FOR CONVEX PROGRAMMING*

BARRY W. KORTf AND DIMITRI P. BERTSEKAS:

Abstract. In this paper we propose and analyze a class of combined primal-dual and penalty
methods for constrained minimization which generalizes the method of multipliers. We provide a

convergence and rate of convergence analysis for these methods for the case of a convex programming
problem. We prove global convergence in the presence of both exact and inexact unconstrained mini-
mization, and we show that the rate of convergence may be linear or superlinear with arbitrary Q-order
of convergence depending on the problem at hand and the form of the penalty function employed.

1. Introduction. In 1968, Powell [19] and Hestenes [10] independently
introduced a new algorithm for minimizing a nonlinear function subject to non-
linear equality constraints. Shortly thereafter, Haarhoff and Buys [9] produced
the third independent proposal of the same idea. The name "method of multi-
pliers" is due to Hestenes. The original papers offered limited interpretation or
analysis. Since 1968, however, a great deal of research has been conducted on the
subject (for a fairly complete account see [1], [12] and the survey papers [24],
[25]), and by now the behavior and properties of the method are fairly well under-
stood. In particular it has been shown analytically that the method is superior in
several ways to ordinary penalty methods [1]-[5].

In this paper we propose a class of methods which generalizes the method of
multipliers and contains as a special case the original method. These methods
correspond to different members of a class of penalty functions that we introduce.
The original method corresponds to a quadratic penalty function. There are
several reasons why such more general methods merit consideration. One reason
is that when applied to nonlinear programming problems for which Rockafellar’s
"quadratic growth condition" [23] is not satisfied, the original method of multi-
pliers may fail to solve the problem. The reason for this is that the associated
unconstrained minimization problems may fail to have a solution. This difficulty
can be avoided by using a suitable penalty function from the class that we introduce.
A second reason is that by choosing an appropriate penalty function within our
class it is possible to obtain twice differentiable augmented Lagrangians. This
feature, which may be helpful in applying superlinearly convergent methods for
unconstrained minimization, is not present in the original method. A third reason
is that different penalty functions among our class exhibit drastically different
behavior with respect to their convergence rate. Their speed of convergence may
be much faster or much slower than that of the original method depending on
the penalty function employed. This perhaps surprising feature, which is not

* Received by the editors September 14, 1973, and in final revised form March 28, 1975. This work
was conducted at Engineering-Economic Systems Dept., Stanford University, Bell Telephone Labora-
tories, Holmdel, New Jersey and Coordinated Science Laboratory, University of Illinois, Urbana,
Illinois, and supported by Bell Telephone Laboratories, Holmdel, New Jersey, the National Science
Foundation under Grant GK 32870, and Joint Services Electronics Program, Contract DAAB-07-C-
0259.

f Bell Telephone Laboratories, Holmdel, New Jersey 07733.

: Department of Electrical Engineering and Coordinated Science Laboratory, University of
Illinois, Urbana, Illinois 61801.
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present in ordinary penalty methods, raises the interesting question as to whether
it is more efficient for certain types of problems to use methods from our class
rather than the original method.

The present paper is an outgrowth of research which started in early 1972.
.Since then our results have been reported in several papers and reports [11]-[15].
With the exception of an unpublished report [-14] and the thesis of the first author
12], which contains some additional results, this is the first time that detailed
analysis and proofs are being provided. The main results reported here are the
global convergence results of 3 and the rate of convergence results of 4. Global
convergence of the (quadratic) method of multipliers for the case of a convex
programming problem was also proved independently by Rockafellar [22]. An
important difference between our convergence result for inexact minimization
and the one of Rockafellar is that our stopping rule is computationally implement-
able. The convergence rate results of 4 are new and have no counterpart in the
existing literature with the exception of a convergence rate analysis of the quad-
ratic method of multipliers 1 ], [2], which utilizes much stronger assumptions than
those of this paper.

Since we are concerned mainly with the convex programming case, we have
made extensive use of the theory of convex functions. The excellent book by
Rockafellar [20] has provided the foundation for much of our analysis, and the
reader will encounter frequent references to notions and theorems from [20]. It is
thus inevitable that some familiarity with [20] is required on the part of the reader.

2. A generalized class of multiplier methods. We consider the following
convex programming problem:

(1)
minimize fo(x)

subject to f/(x) =< 0, 1,... ,m,

where we make the following assumptions which will be in effect throughout this
paper:

A1. The function fo:R" (-v, +] is an extended real-valued closed
proper convex function on R" [20], and the functions f:R" (-, +),
i= 1, ..., m, are real-valued convex functions on R" (R" is n-dimensional
Euclidean space).

A2. Problem (1) has a nonempty and compact solution set denoted by X*,
and a nonempty and compact set of Lagrange multiplier vectors (or Kuhn-Tucker
vectors as defined in [20]) denoted by Y*.

Notice that no differentiability assumptions are imposed on the functions Jl-
Furthermore, set constraints of the form x X c R" may be incorporated into
the objective function fo by defining fo(x) + for x X. In order to simplify
the exposition and avoid overburdening the notation we do not consider equality
constraints. The presence of affine equality constraints does not alter the basic
nature of our results. For the corresponding treatment together with the associated
algorithms we refer to 11]-[ 15].

We now introduce the class P of two-parameter penalty functions p:R2 -- Rsatisfying the following properties:
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(a) p is continuous on R x [0, +oo), continuously differentiable on
R x (0, + c) and possesses for all e R the right partial derivative

p(t y) p(t; 0)
lim
y-*0 y

(The partial derivative with respect to the first argument is denoted by Vlp(. ;"
and the one with respect to the second argument by V2p(" ;" ).)

(b) p(t;. is concave on R for each fixed e R.
(c) For each fixed y e R, p(.; y) is convex on R and satisfies the following

strict convexity condition:

if (i) o > 0 and y >_ 0 or (ii) Vlp(to’y > 0, then

p(t y) p(t0; y) > (t to)V tp(to y) Vt 4= to.
For all y

(d) p(0; y) 0,
(e) Vp(0 y) y,
(f) lim,_ Vlp(t;y) O,
(g) lim,_, +
(h) inftn p(t y) >
Several properties of the functions in P which will be used later are given in

Proposition A.1 of the Appendix. In Fig. we show the shape of a typical function
in P. Note that p(.; 0) is the type of function used in many exterior penalty methods.
The predominant effect of the parameter y is to alter the slope as p(.; y) passes
through the origin (properties d and e). For near zero, p(t; y) yt, but elsewhere
the penalty effect dominates. The main consideration is that p(.; y) passes through
the origin with slope y. As oo, p(t;y) grows to infinity with unbounded slope.
As -oo, p(t;y) approaches or reaches a finite infimum which is less than or
equal to zero.

p(t: y)

slope

FG.

It is useful to be able to explicitly control the severity of the penalty effect. (In
pure penalty methods, that control is the essence.) For each p P we can actually
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generate a parametric family with a continuum on the severity of the penalty
behavior. For any scalar r > 0 we define

(2) pr(t" y) rp(t/r" y).

It is easy to verify that pr also satisfies properties (a)-(h). Figure 2 shows the effect of
the penalty parameter r. When r is large the penalty effect is small; as r approaches

p,(t. y)

rl

slope y

O<rl<r

FIG. 2

zero, the penalty behavior becomes increasingly
y6[O, +)

and

lim p(t y) yt

lim p(t y) "rO L C

ift =<0,

ift >0.

severe. Observe that for

Note also, as Fig. 2 illustrates, that

(3)

0 < rl < r2 :: p,,(t" y) >_ p2(t;y).
Example (quadratic).

yt + 1/2t2 > --y
p(t y)

_1/2y2 < y

Vxp(t;y) max [0, y + t].

This function has been proposed and analyzed by Rockafellar [21]-[22], and
also by Buys [8]. It undoubtedly is one of the best functions in the class P both in
terms of its convergence and rate of convergence properties, as will be seen later.
It grows quadratically as o, and this fact makes it unsuitable for certain
nonconvex problems in which Rockafellar’s quadratic growth condition [23] is
not satisfied. We attempted the solution of one such problem (the post office
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parcel problem [7], [8]) using this function, and the algorithm failed. Another dis-
advantage is that the function (3) is not twice differentiable at -y, a fact
which may adversely affect the performance of certain unconstrained minimiza-
tion methods, particularly for small values of the penalty parameter r, and also
for small values of Lagrange multipliers corresponding to active constraints.

Example 2 (p-order of growth, p > 2).

yt + 1/2t z + o O <= t,

p(t y) yt + 1/2t z -y < < O

1/2y2 < y

This function has properties similar to (3) but grows at a larger rate as , thus
bypassing the shortcoming mentioned in connection with (3).

Example 3 (twice differentiable).

yt + yt2 + -t3, >= O,
p(t; y)

yt/(1 t), <= O,

Vxp(t;y)
y + 2yt + 1/2t 2 > 0

y/(1 t)2, <_ 0,

632P( i
f 2y + t, __> 0,

t;y)=
2y/(1 t)3, <_ 0.

Example 4 (class P). This subclass of P is defined as the class of functions
p" R2 R of the form

yt + ok(t) if y + Vq(t) >__ 0,
(4) p(t; y)

min {yr + 4(r)} otherwise,

where b’R - R is a function satisfying"
(a) b is continuously differentiable and strictly convex on R,
(b) b(O) O, Vb(O) O,
(c) limt_ Vb(t) oo, lim + Vb(t) +

The class of functions q above is basic in the extension of our algorithms to
equality constraints as discussed in [11]-[15]. Notice that the corresponding class
PE contains the quadratic function of Example 1 (q(t) 1/2t2).

We mention that the class P may be further enlarged by the introduction of
"barriers" (i.e., vertical asymptotes) in p(. y). Then p would take on the value +
outside the barrier and in condition g the limit would be taken as a where
a e (0, + oo]. We refer the reader to 2] for a discussion of this modification.

The algorithms that we propose are based on exact or approximate uncon-
strained minimization of the augmented Lagrangian

L(x y) fo(x) + r p[fi(x)/r Yi]
(5)

i=,

fo(x) + pr[f(x);
i=1
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defined for each penalty parameter r > 0 and penalty function p from the class P.
ALGORI3:I-IM A (exact minimization). Select a penalty function p from the

class P, a scalar r > 0, and an initial estimate of the Lagrange multiplier vector
yO (y0,..., yO)with y_>_ 0, 1,..., m.

Step 1. Given yk, rk find an xk solving the problem

min L,.,,(x yk).
xR

Step 2. Set

(6) y/k+1 VlP[fi(xk)/rk’yf] for 1 m

Stop if yk+ yk. Otherwise select rk + > 0 and return to Step 1.
In practice, Step in the above algorithm should be carried out only ap-

proximately. Not only is this necessary in order for the algorithm to be implement-
able, but in addition it usually results in substantial computational savings. We
provide below an implementable version of the algorithm which employs inexact
minimization. Let us denote by sk:R" Rm, k 0, 1,..., the functions given by

(7) S(X) VlPfi(x)/rk" y] i= 1 rn

where sk (sk, skin).
Denote also by AxLr(x;y) the element of minimum Euclidean norm of the

subdifferential (with respect to x) t3xLr(x;y ([20, 23]) of Lr(x;y for every x, y
for which t3xLr(x;y is nonempty. We have

(8) IIAxL(x; y) min IIz
ZOxLr(x;y)

where [l" denotes the standard Euclidean norm. Note that AL,(x;y) is just the
ordinary gradient if L(. ;y) is differentiable at x.

ALGORI3:HM B (inexact minimization). Select a penalty function p from P,
scalars r > 0, r/ -> 0, and an initial estimate y0 with y _>_ 0, 1, ..., m.

Step 1. Given yk, rk, rlk, find an xk satisfying

(9) ]lAxL(x; yU)ll 2 _< rff {sf(xk)fi(x) rkp[fi(xk)/rk; yf]},
i=1

where sk and AL are defined in (7), (8).
Step 2. Set

(10) yk+l =VlP[fi(xk)/rk’y] fori= 1 m

Stop if yk+ yk. Otherwise select rk + > 0, qk+ 0 and return to Step 1.
It is easy to show (see Proposition A.1--Appendix) that the right-hand side

of the stopping criterion (9) is nonnegative. Since ordinarily we take the sequence
qk to be decreasing and convergent to zero, the inexact minimization is asymp-
totically exact. Notice that Algorithm B above is equivalent to Algorithm A if
r/k 0 for all k, and that both algorithms generate points with yk _>_ 0, 1, m.
When qk > 0, and yk is not a Lagrange multiplier vector we shall show in the next
section that the stopping criterion (9) will yield for many cases of interest a vector
x by means of a finite process. We will also show that Algorithm A is globally
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convergent if rk is bounded above while Algorithm B is globally convergent if, in
addition, r/k ---, 0 and a certain uniform convexity assumption is satisfied.

3. Convergence analysis. It is convenient to state and prove our results
simultaneously for both Algorithms A and B. In this way we avoid duplication of
arguments. We introduce the following uniform convexity assumption which is
necessary for the results concerning Algorithm B.

A3. (For Algorithm B.) There exists a positive scalar # such that for all
x’, x e R’, x* e t?fo(x),

I’2 X’ 2(11) fo(x’) >= fo(x) + (x*,x’ x) + ll xll
Every result for Algorithm A (r/k 0 for all k) assumes A1, A2 while every result
referring to Algorithm B (r/k > 0 for some k) assumes A1, A2 and A3.

Let us also introduce the ordinary Lagrangian

(12) L(x," y)
f(x) .at._ i=iZ Yifi(X) if y, => O,

oe otherwise,

the ordinary dualfunctional

// X’ 2Lrk(x’; yk) >= Lrk(x; yk) + (x*, x’ x) + -11

(13) g(y) inf L(x, y),

and for r > 0, the "penalized" dual functional
g(y) inf L(x, y).

The function gr above may be viewed as a dual functional corresponding to
appropriate perturbations in the convex programming problem (1) [12]. It is
easy to show that for every Lagrange multiplier vector y* of problem (1) we have

(14) g(y*) g(y*)= max g(y)= max g(y)
y y

and furthermore,

g(y*) gr(y*)= min fo(x)lf(x) <= O, i= 1,..., m}.

The following proposition shows that Step 1 in both Algorithms A and B can
be carried out.

PROPOSITION 1. For any rk > O, yk R", y >= O, 1, ..., m, the set of points
minimizing L(. yk) is nonempty and compact. Under A3 this set consists of a
single point yk Furthermore, if rl

k > O, yk is not a Lagrange multiplier vector of
problem (1), {zJ} is a sequence with z k and AxL,(zJ yk) O, then there exists
a vector xk {z 1, z2, .} satisfying the stopping criterion (9).

Proof. Since for every r > 0 and y Rm, y >= O, 1,..., m, L,(.; y) has
no directions of recession (see Proposition A.2 of the Appendix) it follows that
all the level sets of L(. ;y) are compact and the minimum set is nonempty, which
proves the first part. Now under A3 we have for all x, x’ e R" and x* cxL,(x; yk),
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from which uniqueness of the minimizing point ffk follows. If yk is not a Lagrange
multiplier, then it is easy to show using Proposition A.1 of the Appendix that

lim {sf(zJ)fi(zJ) -rkp[fi(ZJ)/rk; yf]}
joo i=

{s(ffk)f/(.k) rkplji(ffk)/rk; y]} > 0,
i=1

and the result follows using (9), r/k > 0 and the fact limj_o A,Lrk(zJ; yk) 0.
Q.E.D.

We turn now to proving that the points yk generated by Algorithms A, B
(eventually) ascend the ordinary dual functional g(.) of (13). This fact leads to
the interpretation of Algorithms A, B as primal-dual methods. Furthermore,
this fact is helpful in proving that {yk}, {Xk} are bounded sequences. To avoid
ambiguities we shall adopt the convention that if the algorithm stops at iteration k,
then yk+ yk for all k __> .

PROPOSITION 2. If {yk}, {Xk} are sequences generated by Algorithm A or
Algorithm B, then"

(a) For Algorithm A and all k,

(15) g(y) =< g(y) _<_ g(y+ )

with strict inequality if yk =/= yk+ 1.
(b) For Algorithm B and all k such that l

k < 2p,

(16) g(yk) < L(xk; yk) < L,.,,(xk; yk) <= g(yk+ 1)

with strict inequality

L(xk yk) < L(xk; yk) < g(yk+ 1)

if yk yk+ 1.
Proof. We shall prove part (b). A similar (but simpler) argument proves

part (a). It is easy to show that

(17) AxL,.,,(xk; yk) AxL(xk; yk + 1).

From A3 we have for all x, x* 8,,L(xk y+ )

(18) L(x; yk+l) L(xk; yk+l) + (x*,x xk) + llx xk][ 2,

from which, taking infima with respect to x, we find that

(19) g(yk+ 1) L(xk; yk+ 1) AxL(xk; yk+

The stopping rule (9) may also be written as

(20) AxL(x; y) 12 (L(x; y+ ) L(x; Y)}.
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Combining (17), (19), (20), we obtain

(21)

from which

L(Xk yk + 1) g(yk + 1) X---] AxE(Xk yk + 1)112

AxLrk(xk; yk)]2

k< {L(x" y+ ) Lrk(x’. y)}
2#

L(xk. y) < g(yk+ 1).
The remaining inequalities in (16) follow from the definition (13) and the fact
p(t; y) >= yt Vy, R. The strict inequality part of the proposition follows from
the properties of the penalty function p (see Appendix--Proposition A.1). Q.E.D.

COROLLARY 2.1. A sequence {y} generated by either Algorithm A or Algorithm B
is bounded, provided (in the case of Algorithm B) that there exists a k >= 0 such that
rl < 2# for all k >= .

Proof. In either case, by Proposition 2, y belongs to the level set {y]g(y)
>= g(y)} for all k >= ft. But this set is compact since the set of maximizing points Y*
of g is compact by A2 ([20, Corollary 8.7.1]). Q.E.D.

PROPOSITION 3. A sequence {x} generated by either Algorithm A or Algorithm B
is bounded, provided that there exists an f > 0 such that 0 < r <= for all k, and
(in the case ofAlgorithm B) that there exists a -> 0 such that q < 21a for all k .

Proof We show that for k __> the vectors x belong to a level set of a certain
closed, proper, convex function. This convex function has no directions of recession
and hence its level sets are compact. Using Corollary 2.1, let M be an upper bound
for {y}, i.e., 0 =< y __< M, for all i, k. Now we have from properties of p that

p,(t;y) >= pr(t; O) => pC(t; O) Vt _> O,

prk(t y) >= pdt; M) >-_ pe(t; M) >= infp(z;M) Vt < O.

Using the fact p(t; O) O, Vt < 0 and inf pe(:, M) =< O, we have for all i, k,

pdt; y) > p(t; O) + infp(; M) Vt R.

Hence

Lr(x; y) >= fo(x) + {pelfs(x); O] + inf p(-c M)}
i=1

Le(x; O) + m inf p(z M) Vx R".

Now the function Le(x; 0) has no directions of recession (Appendix--Proposition
A.2) and hence has bounded level sets. Furthermore, for k _>_ k by Proposition 2,
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we have that x belongs to the level set

{xlL(x; 0) _<_ max g(y) m inf pC(z; M)}.

Hence {xk} is bounded. Q.E.D.
We can now state our main convergence result.
PROPOSITION 4. Every limit point of a sequence {(xk; yk)} generated by either

Algorithm A or Algorithm B is an optimal solution-Lagrange multiplier pair for
problem (1) provided that for some > O, 0 < r < for all k and (in the case of
Algorithm B) there exists a >= 0 such that qk < 21a for all k >= ft. Furthermore,
at least one such limit point exists.

Proof. By Corollary 2.1 and Proposition 3 there exists a limit point (if; y).
Let {(xk; yk)}kr be a subsequence with limk_oo {(xk; yk)}k/ (2; y). We first show
that the point ff is feasible. Indeed, if f(ff) > 0 for some i, then for some 6 > 0,
f/(xk) > 5 > 0 for all k K, k =>/, where/ is sufficiently large. We then have by
Proposition A. of the Appendix, for all k >__ /, k K,

/(x; y) _/4x; y) __> p[f,(x); y] yf,(x)
prk[f/(xk); 0] p(6, O) > O.

But by the ascent property (16),

lim {Lrk(xk; yk) L(xk; yk)} O,

which contradicts the previous inequality. Hence ff is feasible. Also from the
ascent property we have

Pe[f(2); i] 2if/(N), 1,..., m,

which by the properties of p (Proposition A.1) implies

(22) P[f/(ff); Yi] Yif/(ff) 0, 1,..., m.

Now by the lower semicontinuity of fo, the ascent property (16) and (22),

max g(y) >= lim L(xk" y lim fo(xk) + y(xk)
y k-oo koo i=

keK kK

>_-- fo() + ,f(ff)= f0(ff).
i=1

Since ff is also feasible, it follows that equality holds throughout in the above
inequality. Hence, ff is optimal, and in view of (22) and the fact Yi => 0, l, ..., m,
the vector is a Lagrange multiplier. Q.E.D.

4. Rate of convergence analysis. This section considers the rate at which the
sequence {yk} of dual variables converges to the set Y* of Lagrange multipliers
of problem (1). We examine the convergence of yk to the set Y* in terms of the
distance

Yk y, min IlYk y,
y* Y*
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Specifically, assuming {yk} does not converge finitely (i.e., yk Y*Vk), we wish to
estimate

Ilyk+a
/ lim sup

-oo Ily- Y*ll
If 0 < fl < 1, we say that the convergence is linear with ratio ft. If 1 =</3 < ,
the convergence is order 1 but not linear. If/3 O, the convergence is superlinear
we then consider the set of scalars > 1 such that

Ilyk+ Y*IIlimsup
yk y. < "koo

The supremum of the set of such is called the (Q-) order of convergence [17].
We introduce the following new assumptions which are in addition to A1, A2

and A3 (the last of which is again in effect only for the results relating to Algorithm
B). We also assume throughout that for some ? > 0, 0 < rk -< ? for all k, and that
for some (when considering Algorithm B) 0 =< r/k < 2p for all k _> . In this way,
convergence of {yk} to Y* is guaranteed by Proposition 4.

A4. p P, where the class P is defined in Example 4 of 2.
A5. There exist scalars M2 >= M1 > 0 and p > such that for some open

interval No containing zero

(23) MlltlO_ < dq(t) < MzltlO_ V No,

where corresponds to p as in Example 4 of 2.
A6. There is a neighborhood B(Y*;6) of Y*, a scalar 7 > 0 and a scalar

q > such that the concave dual functional g satisfies

(24) g(y) sup g(y’) _<_ 7IIY Y* q, V y B(Y* 6).
y’

Assumptions A4, A5 and A6 will be assumed to hold throughout this section. On
occasion we will use the following assumption, in which case we will explicitly
so state. This assumption is a special case of A5 with pJ= 2 and A6 with q 2.

A7. q5 is twice differentiable on No and d2cD(O)/dt2 1. (In view of the role
of the penalty parameter r, there is no loss of generality in assuming that
d2d?(O)/dt2 rather than d2d(O)/dt2 > 0.) Furthermore, q 2 in A6.

Assumption A5 may be explained as a growth assumption on th. Roughly
speaking, it ztates that in a neighborhood of zero, 4(t) behaves like Itl p for some
p > 1. Similarly, A6 is a growth assumption on the dual g. It says that in a neighbor-
hood of the maximum set Y*, g(y) grows (downward) at least as fast as IlY Y*II q.
(This assumption is much weaker than typical regularity assumptions which
require g to be twice differentiable with negative definite Hessian at a unique
maximum. In fact, A6 does not require once differentiability of g or even finiteness
of g over the neighborhood B(Y*; 6).)

We first introduce some notation and conventions in the following remarks
R.1-R.4, and subsequently we prove a few lemmas which set the stage for the
proof of the main propositions.
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R.1. For each y Rm, we denote by .9 the unique projection of y on Y*

(25) y 11 y Y* min Ily y* II.
y*Y*

R.2. When considering results related to Algorithm B we use the notation

(26) vk= k=0, 1,....
2/t’

To simplify statements of results, we assume (without essential loss of generality)
that for some > 0, we have

(27) 0_< vk=<< 1, k=0,1,.-.

The results of all lemmas and propositions below where V and appear, hold also
with v 0 for the case of Algorithm A.

R.3. By A4, p has the form

yt + q(t), y + Vb(t) >= 0.,
(28) p(t;y)

min {yz + (z)}, y + Vq(t) < 0,

where b’R - R is a function satisfying the properties of Example 4 in 2. Let us
consider the conjugate convex function of p(. ;Yi) for each Yi >= 0;

(29) p*(s,; y,) sup {Siti p(t,; yi)}, Yi O.
t

It is easy to show that

4*(s y) r4)*(s y3, s,, y, > O,
(30) p* (s, Yi)

where 4r(t) __a rck(t/r).
In (30) b* i the convex conjugate of br, and b* is the convex conjugate of b.

Both q* and b* are real-valued convex functions. We denote for all (t l, "", t,,),
Y (Y1,’", Ym) with y => 0, 1, ".., m, and r > 0,

(31) h[t; y] , p(t, y,).
i=1

Then the conjugate convex function of h with respect to is given for each y with
yi>= O,i 1,...,mby

(32)

h* [s y] p* (si Yi)
i=1

s,- y,)= r *(s,- y,),

otherwise.
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R.4. In all the results that follow, {yk), {Xk} are assumed to be sequences
generated by either Algorithm A or Algorithm B. We denote by uk the m-vector

(33) U * k+ 1.Vxh,.ky

where Vlhr* denotes the vector of right partial derivatives of h with respect to
the first argument. Notice that these derivatives exist by (32) since * is everywhere
finite and differentiable by virtue of the strict convexity of tk and the fact
limt_,___ (dqb(t)/dt)= _+. Notice that by (32), (33) and well-known facts on
conjugacy 20], we have

(34) yf+l y-_ Vdp(uf/rk), i= 1,..., m.

LEMMA 1. For all y with Yi >-- O, 1,..., m, r > 0 and x, we have

(35) L(x; y) max {L(x; s) h*[s; y]}.

Furthermore, for all k,

(36) L,.,,(xk yk) L(xk yk + 1) h.[yk +1 yk]

(37) U tyL(xk yk+ 1),

where uk, h.*,[yk+ yk] are given by (32), (33).
Proof. By writing (35) as

(38) fo(x) + p[f(x); y] max {fo(x)+ sf(x) h*[s; y},
i=1 i=1

its validity becomes evident via (29), (32). Relations (36), (37) follow from the fact
y)+ Vlpf(xk);y], 1,..., m, (38), (33) and standard conjugacy results.

Q.E.D.
LEMMA 2. For all k sufficiently large, one has

(39) 0 <= 7 yk+ y, <__ h,rk[k, yk] (1 vk)h*ru[yk+ 1. yk]

where k is the projection of yk on Y* as in (25). In addition, [[yk+ yk[ O.
Proof. Using Lemma 1, we find that

L,.,,(x yk) L(xk yk + 1) h.,,[yk +1
(40)

=> L(xk; .9k) h*[.fk’yk >= sup g(y)-

By (36), (20), the stopping rule (9) may be written as

(41) iiAxC(x,; y,+ 1) 12 =< rlkh;[yk+ 1; yk],

and by using (21) we have

L(x yk+ 1) =< g(yk + 1) + P ]AxL(x yk+ 1)12
(42)

k , +1g(yk+ 1)
__

V hrk[y ;yk].

Equivalently, uk--max{fi(xk),zi}, --1, m, where r,k.--argmin{y,k.z + b,(z)}. (See
[12, 7]).
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Combining (40), (42) and (24) (which holds for sufficiently large k), we obtain

sup g(y) h*,,[.k; yk] + h,,,[yk + yk] <__ L(xk; yk + )
Y

<= sup g(y) 7 yk+ y, + vkh,rk[yk+ yk]
Y

from which (39) follows. Using (39), (32), it follows that

(1 vk) ,.k+l(, y)_-< E *(- y).
i=l i=l

Now v is bounded away from unity by assumption (27) and I1- yll 0,
so by the properties of *, y/k/ y/k _+ 0, 1, ..., m. Q.E.D.

LEMMA 3. There exists a scalar Mo such that for all k sufficiently large,

yk / yk <= Mo yk y,

Proof. From A5

MltlO_ < dcD(t) < MzltlO_ e Noclt

and by integration

MIItIP <= qb(t) < M2ItIP e No

Hence for any scalar s,

sup st---Itl >__ sup {st 4(t)} _>_ sup st-ltl
teNo P teNo tNo P

Let -a, a] No, a > 0. Then if Isl MaP- , the suprema are attained, and by
the definition of the conjugate convex function we obtain

1
(43)

aM- Isl *(s)
M- Isl’ Isl Ma-,

where a is the conjugate exponent of p:

p
-+-= 1, =.
a p p-1

Since yk+ yk 0(byLemma2) and yk pk O, for k suciently large,
lY+ YI and lY PI are less than Map- . Now apply Lemma 2, (32), (41).
We have:

rk
ly+ yl rk O*(y+ y)

M- i=l i=1

h[yk+ yk] kh[Pk; yk]

r

(1 vk)M{- i=
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Hence

I[Yk+l Ykll (M2/M1)I/P( v)I-P)/Pl Y
where I denotes the/-norm.

Passing to the/2-norm via the topological equivalence theorem for all norms
on R", we obtain for k sufficiently large and for some Mo > 0,

lyk+ ykll <= Mollk ykl.

(In fact the best Mo that we can obtain by the above analysis can be calculated
to be m11/2-1/PI(M2/M1)I/P(1 )1/- 1.) Q.E.D.

LEMMA 4. For all k sufficiently large,

M uk/rk o-x __< yk /X yk
(44)

<= ml-O/ZM21luk/rkllp-1 if p <__ 2,

and

m o/2M u/r o- < y+1 y
(45)

<= M2lluU/r,llP-1 if p >= 2,

where u is given by (33).
Proof. By (34) and since y+ y 0, we obtain Vck(u/r’) O. It follows

by the continuity and strict monotonicity of Vq that u/r’ O. Hence u/r No
for k sufficiently large. Applying A5, we have for k sufficiently large,

(46)
Malu/rlp-x IVqb(u/r)l lY +’ YI M21u/rUlp- ,

M2 lu/r,lz(,- 1) < ilyU+X y 12 M lu/rl =o-
i=1 i=1

Now it is easy to prove that if 0 < p __< 1,

lu/rl 2

i=

Hence (46) yields

Taking square roots, (44) follows. If 1 __< p 1, we have

m2-O lu/rl z

i=

and (46) yields

m2-,M2xllu,/r, 12o 1) y+l y, 12 <= Mzlluk/r, ]z,-1).

Again taking square roots, we .obtain (45). Q.E.D.
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(47)

LEMMA 5. For all k sufficiently large and all y* Y*,

u ily+ r*ll >_- yk+ y,[[q vkh,k[yk+ 1. yk],

(48) [lY+a Y* u/?[I [[Y+ Y*[I
7 yk+l y, h,,yk+l.yk+l y, ii2 + 7 l" 7 yk3"

Proof. Take k sufficiently large so that yk+l B(Y*; 6),where B(Y*; 6) is
the neighborhood defined in A6. Then by assumption A6, (19), (37), (17), (41)
and (26), we have

?[[yk+ y, ilo sup g g(yk+l)

)1

(uk, yk+ yk+) + AL,(xR; yk)ll2

{[ukll Y* yk+ 11i + vkh[yk+ 1; yk],

from which (47) follows. The inequality above yields also, for any y* Y*,

yk+l(yk+ y,, yk+X k+l> + ll r*l[

,F,k+l.< (y+ y* u/?, y+ + ) + ,, y].

Using in the above relation the fact

(yk+l__ y,,yk+ yk+a) yk+ y, 2,

we find that relation (48) follows. Q.E.D.
Convergence rate of Algorithm A (exact minimization).
PROPOSITION 5. Let (p 1)(q 1) 1. If (yk} is generated by Algorithm A,

the (Q-) order of convergence of [ly r*ll is at least 1/[(p 1)(q 1)].
Proof. Apply Lemmas 3 and 4 together with (47) (with vk= 0). For

sufficiently large k,

Mo yk_ y, ilyk+_yk M,x uk/rk P-1

where M’ M min {1, m-/}. Hence

y+ y,
lim.sup y L - =< (Mo/M’)(/7)/q- < ,

where 1/[(p 1)(q 1)] and lim sup r. Q.E.D.
Note that < 1/[(p- 1)(q- 1)] < when 1 < p < 1 + 1/(q- 1). Hence

for a given g, any order of convergence is obtainable by appropriate selection of
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p Pe. Notice also that for 1 < q < 2 the quadratic penalty function (p 2)
yields superlinear convergence rate and that as q --+ 1, the order tends to infinity.
This is consistent with a result of 6] which shows that for polyhedral convex pro-
grams where q can be taken as close to one as desired, the quadratic multiplier
method converges in a finite number of iterations (i.e., with order of convergence
infinity). The next proposition shows that linear convergence is obtained with
the quadratic penalty provided A6 holds with q 2.

PROPOSITION 6. Let A7 hold. If {yk} is generated by Algorithm A, then
{ Ily Y*[I converges linearly with convergence ratio

sup
yk+ Y,

<lim
k-o yk y,

where

lim sup r <_ .
k-+oo

Proof. By Taylor’s theorem,

Vbrk(t) V(t/rk) t/rk + o(t/rk),

where o(. denotes a function with lim_o [o()/0] O.
By (34)

yf+ y + V(uf/r) y + uf/ + o(u/r).
Hence

y+,

_
u/r= y- + o(u/r).

Using (48) (with vk 0, q 2) and the above equality, we find that

(49)
(1 + y/rk) yk +1 Y* <= yk + k blklrk

Y Y* + o(uk/rk)
But by Lemma 3 and (44),

Mo yk y,u/? _-<-11
so (49) yields

rk
yk+l y, <-

rk -k
Ellyt:- Y* + o( yk_ Y*II)-I

and

limsup IIft+* Y*ll <
#

Q.E.D.
u-oo lY- Y*II + "Note that r --+ 0 implies superlinear convergence (i.e., fi 0) under A7.

Interpretation of results. The last two propositions show that some classes
of penalty functions in Pe are more desirable than others. For example, for a fixed
q a choice of penalty with p < 1 + 1/(q 1) yields superlinear rate. Furthermore,
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when q > 2 it can be seen that the quadratic multiplier method may have poor
rate of convergence properties relative to a method where p < 1 + 1/(q- 1).
When q 2 it is necessary to use p < 2 (or p 2, r --+ 0) in order to achieve
superlinear convergence rate. On the other hand, it should be remembered that the
penalized Lagrangian Lr(.; y) becomes ill-conditioned if Vb changes too quickly.
This does occur when p < 2. As a result rapid convergence of {yk) is achieved at
the expense of ill-conditioning the unconstrained minimization. However, in
situations where one repeatedly solves the same basic problem with minor varia-
tions, one may be able to "fine tune" the algorithm by choosing {rk}, {rff} in a
near optimal fashion. Since good estimates of the solution are already known, the
ill-conditioning may not be a problem; then one can exploit the superior con-
vergence rate of the order p < 2 penalty without incurring undue cost in comput-
ing the unconstrained minima. It may be worth bringing to the attention of the
reader the fact that our results imply that the order p < 2 penalties lead to fast
convergence only after the method is near convergence. When far from the solution,
some geometric arguments indicate [12], [14] that convergence may be slow
unless the penalty function 4) contains, implicitly or explicitly, terms of the form
It[’ where p _>_ 2. For this reason penalty functions of the form qS(t) [tl p + Itl ’,
1 < p < 2,2 __< p, seem to be preferable to functions of the form b(t) [tl,
l<p<2.

Comparison to ordinary penalty method. We proceed now to demonstrate that
the rate of convergence of multiplier methods is in most cases superior to that of
the ordinary exterior penalty method. In the ordinary penalty method, one solves
the sequence of unconstrained minimizations

min Lrk(x;0) where r -, 0.
xR

The dual update is not used (i.e., yk 0 Vk), but the dual update formula is still
relevant since it provides a sequence {if} of estimates of the Lagrange multiplier.
That is,

and

y/ VlP,a[f/(xk) 0-],

ff Y*II-0.
For any y* Y*, using assumption A6 and equation (35), we have for all k

such that 37 B(Y*; 6),

sup g [y* 03 =< g(37k) [yk; 03

=< sup g- ,lly- Y* - [y; 03.
Hence

The sequence {37k} generated by the ordinary penalty method is bounded since g
has bounded level sets and g0>) _-> grk(0) => g(0), where r e (0, ]. Furthermore, by
(32), h*[y; 0] is equal to the real-valued function r ’= qS*(Yi) on the nonnegative
orthant and is hence Lipschitzian on bounded sets contained in this orthant. It
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follows from the above inequality that

,ly- Y*II=<rKI[;-y*[ Vy*Y*,

where K is the appropriate Lipschitz constant. Hence for all k sufficiently large,

(50) IIYk Y*II =< (rkg/v) x/(-

Convergence bounds similar to (50) with q 2 have been obtained for the
quadratic penalty method by Mifflin [16] and Polyak l 8] under different assump-
tions (including differentiability of f0,f). For nonquadratic exterior penalty
methods, (50) is the first result of its type. Notice that the scalar p does not enter
in the estimate (50), and the type of penalty selected does not seem to be material.
Recalling Proposition 6, we have that if, for example, p q 2, the rate of con-
vergence of the multiplier method is governed by

F
(51) yk+ Y*II <

r +
[yk__ y, + o( yk-

while Proposition 5 shows that if (p- 1)(q- 1)< 1, the rate is superlinear.
Comparing (51) to (50) with q 2 shows the superiority of the multiplier method.
This advantage in speed comes at negligible cost in computational complexity.
The dual iteration requires very little additional computer code and an insignifi-
cant amount of computer time to execute.

Convergence rate of Algorithm B (inexact minimization).
PROPOSITION 7. Let (p 1)(q 1) =< 1. If {yk} is generated by Algorithm B,

the (Q-) order of convergence of {[[yk Y*II} is at least p/[(p 1)q].
Proof By Lemma 4 [[yk+ ykll >__ m’l [luk/rk[ P- for sufficiently large k with

M’ M min {1, ma-p/2}. Applying (47), we can write

IlYk + yk >- uk/rkll

->- r
klyk+l y* q- vkh*[yk + yk]

rk yk+l_ y,

where a p/(p 1). But from (32), (43),

rkhr,[yk+a yk] b*(y +1 y/k)
i=1

aM-t lY/+’ yl
i=

for large k, where d max 1, ml-a/2}. Hence

llyk+l_yk 7 yk+l y, -1

d
yk + yk

aM,,_ f.

dvk y + yk
aMal [lyk+ y,[
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Equivalently,

(52)
TM-IlYk+ Y*II r yk+ Y*I yk+ yk

IM
dvkr

By Lemma 3 and the triangle inequality, we have

IlY’+ y’ll =< Molly Y*II,

Ily+- Y*II =< Ily+ -yll + Ily- Y*II -< (1 / Mo)lly- Y*[I.

Combining the above three inequalities, we obtain

dvkr
7Mx-[lyk+- Y*[[_<_ rk(1 + Mo)(MoMx/M’x)- 4-

Given that a p/(p 1), we have for k sufficiently large,

MTlllyk-- Y*II .
yk+ Y*II

yk y, o/t- M,

where M is some scalar, and the proposition is proved. Q.E.D.
Note from (52) that if r/k 0, the order of convergence may increase up to

1/[(p- 1)(q- 1)] (a- 1)/(q- 1). In particular, if {r/k/llYk+l- ykll-q/q- is
bounded, one may show that this increased order of convergence is achieved. To
see this fact, assume that for all k,

(53) rlk cllyk+ yk a,
where c > 0 and

o-q -(p- 1)(q- 1)
(54) a _>

-q-1 (p- 1)(q-1)

Then (52) together with Lemma 3 yields

(55) yk+ y, <=
where K1, K2 > 0 are some scalars. Assume that the order of convergence is
lower than (a 1)/(q 1) and as a result,

lyk+ y*

limkooSUp yk y, - x)/(q- 1) o.

Then for every M > 0, there exists a k such that

ilyk+l y, q-1 >= M yk_ y,

Using (54) and the above inequality in (55), we obtain

K1 yk+ y,IIyk/x r*l _-< - q + K2 ___) (tr+a)/(tr- 1)

yk+ y, q,
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and since M is arbitrarily large we obtain a contradiction. Now it is easy to imple-
ment the stopping rule (9) so as to guarantee that (53), (54) hold. Instead of select-
ing {r/k} a priori, simply generate it according to the formula

(56) qk= min {0k, el[sk(xk) yk[la

where

(57) a >= 1-(p- 1)(q- 1)
(p- 1)(q- 1)

{0k} denotes a preselected sequence with 0k 0, sk( is as defined in (7) and c is
an arbitrary positive scalar. The employment of this method for generating {r/k}
restores the order of convergence to 1/[(p 1)(q 1)].

COROLLARY 7.1. Let (p 1)(q 1) =< 1. If {yk} is generated by Algorithm B
and the stopping rule (9) is operated with qk chosen according to (56), then the order
of convergence of {llyk- Y*II} is at least 1/[(p- 1)(q- 1)].

PROPOSITION 8. Let A7 hold. If?O < 47#, then Ily-- Y*II converges linearly
with convergence ratio fl satisfying

(ss) fi _<

21q 7 __1
Pl-

where ? lim supk_ rk, 0 lim supk r/k and 0/2 < 1. If O, one has

Proof As in Proposition 6,

yk+l k Uk/rk yk k + O(Uk/rk).
Using (48), we see that

7 y + y, 2 h][y +

I+ u/?l[. 1[+ *
I- *. +_ , + o(lu/?[)+- *.

By Lemma 3 and (44),

Mo yk y,

Also we may bound h*yk+ " yk] using (39) to get

lq

y- Y*II" y+a- Y*II + ly+a- Y*llo(ly- Y*l).
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But from (43) and using the fact that cr p 2 under A7, we obtain

y y, :2

r
h;[gk yk] < 11

Thus

7 Ilyk+I Y*
rk vk 2M v

kllyk- Y*l[ 2

<=
Dividing through by Ily YII" [lyk/ YI, w can writ

7 1 [lyk+l_ y, v Yk- Y*ll o( yk_ Y’l)- rk Vk, yk y, 2M1 vk lYk + y, <= 1 /
lyk Y*

The above expression is quadratic in the ratio [[yk+ y,[[/[yk Y’l, and M1
can be chosen arbitrarily close to unity. Solving the quadratic yields (58) provided
9:#0. Ifg=0, onehasfl=0. Q.E.D.

The linear convergence bound (58) is less than one provided < 27/9 or equiva-
lently 90 < 47/t. Note that if r/k O, one has 0 and the bound (58) reduces to

/3 =< 9/(9 + 7) which is the same convergence ratio obtained under exact minimiza-
tion (Proposition 6).

The foregoing analysis shows that if r/k 0, then linear or superlinear con-
vergence rate holds for Algorithm B (inexact minimization) in every case where it
has been shown to hold for Algorithm A (exact minimization). However, the bound
obtained on the order of convergence (in the case of a superlinear convergence rate)
may be worse for Algorithm B than for Algorithm A. Nonetheless, when the
sequence {r/k} is chosen according to (56), then the two bounds on the order of
convergence are the same (1/[(p- 1)(q- 1)] for a p-order penalty with (p 1)
(q-- 1)=< 1).

$. Computational experience. A number of computer experiments were
carried out to test the algorithm under a variety of conditions. The best results
were obtained when Algorithm B was used. As expected, it was generally found to
be advantageous to take a decreasing sequence of the penalty parameter rk rather
than to keep it fixed. We also compared our algorithm with the ordinary penalty
method in which

The computer experiments were performed on the well-known test problem
of Rosen and Suzuki"

minfo(x) x + x22 + 2xZ + x]- 5x 5x2 21x + 7x
subject to"

f,(x)= 2x + x + x + 2xl x2 x, 5=<0,

f2(x)-- X -+- X22 -{- X -1- X42 q- X --X2 -t-" X 3 X4 8 0,

f3(x)=x2 +2x22+x+2x]-x1-x4- 10<__0.

The optimal solution is x*= (0, 1,2,- 1) with fo(x*)=-44. The Lagrange
multiplier is y* (2, 1, 0), and the first two constraints are active.
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Unconstrained minimization was carried out via the Davidon-Fletcher-
Powell method, available on the IBM 360 as Scientific Subroutine "FMFP".
Table 1 shows the results of a variety of experiments using the quadratic penalty
function (3). The initial conditions were x (0, 0, 0, 0), yO (0, 0, 0). The table
shows for each run the number of cycles of the algorithm (i.e., the number of un-
constrained minimizations carried out), the total number of line searches required
by the unconstrained minimizer and the total number of evaluations of the problem
functions. (One evaluation consists of computing fo, f/, Vfo, Vf/, i= 1,2, 3.)
Accuracy of x and y refer to the number of decimal places of accuracy to which x*
and y* were computed. Note that r/k 0 corresponds to exact minimization (which
in our case corresponds to setting the termination parameters of the FMFP to
10-6).

Run

2

3

4
5
6
7
8
9
10
11
12
13
14

Penalty

Constant

(.1)
(.)

(.)

(.)
(.2)
(.2)

TABLE
Quadratic’ penalty

(.2)
(.2)
(.2)
(.2)
(.4)
(.4)

Multiplier Method

Stop Rule # # #

Parameter Min Line Fcn

r/k Cycle Search Eval. Acc.

.1 (.1) 4 37 128 5
(.5) 4 36 130 5

(.4)k } 4 35 135 5
(.8)
0 4 49 156 5

.1 (.2) 5 43 117 6

.1 (.5) 5 42 115 6
(.4) 5 41 113 6
(.8) 5 39 114 6
1.0 5 40 105 6
0 5 60 148 6

(.4) 6 47 113 5
(.8) 6 39 104 5

.1 (.5) 7 47 121 5
0 7 68 174 5

Acc.

5
5

5

5
5
5
5
5
5
5
4
4
4
4

Penalty Method

Min Line Fcn

Cycle Search Eval. Acc. Acc.

7 66 186 6 5
8 83 209 6 4

7 68 166 6 5

7 92 223 6 5
9 82 207 6 5

11 93 232 6 5

11 87 218 6 4
11 90 225 6 5
9 102 257 6 5

12 79 210 5 4
12 89 282 4 3
16 156 438 5 4

Table 2 shows a number of computer runs using the order p - penalty

yt + qb(t) y + Vq(t) >__ 0,
p(t;y)

mint {yr + b(z)} y + Vq(t) < 0,

where qS(t) 1/2t 2 + -[t[ 3/2. This penalty is not twice differentiable at zero, so that
the penalized Lagrangian is ill-conditioned near the solution. The effects of the
ill-conditioning can be seen in Table 2--the amount of computation needed to
find the minimum varies considerably from one run to the next. As expected, this
penalty generally requires fewer minimization cycles (q 2 for this problem and
the order ofconvergence is 2) but the added difficulty of computing those minimiza-
tions may offset the advantage. However, if the algorithm is finely "tuned" by
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selecting appropriate sequences {rk} and {r/k}, the order p - penalty can out-
perform the quadratic (p 2) as demonstrated by runs 3-6 in Table 2.

TABLE 2
Order p penalty

Run

Penalty

Constant

.1 (.1)

.1 (.2)

(.1)

(.1)
(.1)
(.1)
(.2)
(.2)

Stop Rule

Parameter

.1 (.1)

.1 (.2)

2
(’4)a \
x

(.8)
5 x (.5)

0
(.4)
(.8)

# #

Min Line

Cycle Search

3 53
3 56

3 33

3 32
3 28
3 41
4 50
4 49

Multiplier Method

#

Fcn

Eval

181
185

77

75
81
97
149
146

Acc.

6
6

5

5
5
5
6
6

Acc.

The computer experiments confirm the superiority of the multiplier method
over the ordinary exterior penalty method. Table 1 also suggests that the multiplier
method is less sensitive to parameter selection than is the penalty method. Finally,
inexact minimization offers a significant reduction in computation over the al-
gorithm with exact minimization.

Appendix. This appendix contains proofs of some results which are important
for the proof of our main propositions. The first proposition lists some properties
of the functions p in P. Its proof is left to the reader (see also [12], [14]). The other
proposition relates to properties of the Lagrangian functions L and Lr.

PROPOSITION A. 1. Let p P. For all R and y >= O, there holds
1. Vzp(t y) >= t,
2. tVxp(t; y) >= p(t; y) >_ yVzp(t; y) >= yt,.
3. p(t; y) yt >= p(t 0).

Furthermore the following are equivalent"
4a. tVlp(t; y) p(t y),
4b. p(t y) yt,
4c. p(t; y) O,
4d. V lp(t y) y,
4e. N Oand yt O.
Let h’R" --, (- oe, + oe] be a closed, proper convex function. A vector z e R",

z 4= 0 determines a direction in R", namely the direction of the ray emanating
from the origin and passing through z. Fixing x e R", the one-dimensional func-
tion q(t) h(x + tz), R, is a cross section of h through x in the direction z.

The direction z is called a direction of recession of h if q(t) is nonincreasing over
the entire real line. It is known that every level set of h is nonempty and bounded
and its minimum set is compact if and only if h has no directions of recession
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([20, Cor. 8.7.1, Thm. 27.1(d)]). Consider the recessionfunction hO+ of h which may
be given as [20, Thm. 8.5, Cor. 8.5.2]

h(x + tz)- h(x)
(A.1) hO+(z) lim lim th(z/t).

t tO

The direction z is a direction of recession of h if and only if h0 / (z) 0. (In fact, this
last statement is usually taken as the definition [20, 8].)

PROPOSITION A.2. Under A1, A2 (of 2)for any r > O, y R with Yi 0,
1, ..., m the augmented Lagrangian Lr(.; y) has no directions of recession.

Proof We need to compute the recession function Lr0+(. y). By Theorem 9.3
of [20], we have

where hi is given by

(A.2)

LrO + (z y) foO + (z) + hiO + (z),
i=1

hi(x) Pr[f/(x); Yi]

Using (A. 1) we have

hiO +(z) lim
pr[f(x + tz); Yi] pr[f(x); Yi]

Suppose z is a direction of recession off. Then

f/(x + tz) <__ f/(x) /t >= 0.

We have for all _>_ 0,

< inf Pr(U; Yi) <= pr[fi(x + tz); Yi] <= pr[f(x);Yi].

It follows then that the limit in (A.2) is zero. Now suppose z is not a direction of
recession off/. By (A.1)

h,0 +(z) lim tp[ji(z/t); y,] lim tp[tfi(z/t)/t; y].
t,o to

SincefO+(z) lim,,o tf(z/t) > O, we have tf(/t) > O, 0 < <= to. Then

hiO + (2) >= lim tpr(/t Yi) prO +( Yi) +
t+o

Hence

hiO + (z) { 0 if z is a direction of recession off,

if z is not a direction of recession off.

Consequently

/o0+(z)
Lr0+(z;y)= +

if z is a direction of recession of eachf, 1,2,

if z is not a direction of recession of somef,
i= 1,2,...,m.

,m,
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But fo,f/, 1, 2, ..., m, have no common directions of recession by A2 (of 2).
That is, fo0 / (z) > 0 if z is a direction of recession of each f, 1,..., tn. Hence,
Lr0 /(z y) > 0 ’z 0, and Lr has no direction of recession. Q.E.D.

Notes added in proof.
Note 1. The results contained in this paper have been presented at the IEEE

Conference on Decision and Control, San Diego, California, December, 1973;
at the SIGMAP-UW Nonlinear Programming Symposium, Madison, Wisconsin,
April, 1974; and at the IFAC Sixth Triennial World Congress, Boston, Massa-
chusetts, August, 1975. They have also appeared (with some variations and without
proofs) in references [13] and [15] and in:
D. P. BERTSECAS, Multiplier Methods: A Survey, Preprints of IFAC Sixth Triennial World Congress,

Part IB, Boston, Mass., Aug. 1975.

Note 2. The class of penalty functions and the multiplier updating formulas
introduced in this paper may also be utilized in conjunction with several algorithms
of the multiplier type other than those proposed here. The class of penalty functons
introduced here finds additional application in algorithms such as those presented
in:
D. P. BERTSECAS, Nondifferentiable Optimization via Approximation, Proc. 12th Ann. Allerton Conf.

on Circuit and System Theory, Allerton Park, Ill., Oct. 1974, pp. 41-52; also in Mathematical

Programming Study 3, M. Balinski and P. Wolfe, eds., North-Holland, Amsterdam, to

appear.
,A General Methodfor Approximation Based on the Method of Multipliers, Proc. of 13th Ann.

Allerton Conf. on Circuit and System Theory, Allerton Park, Ill., Oct. 1975.
, Multiplier Methodsfor Two-sided Inequality Constraints and Related Algorithms, Coordinated

Science Laboratory Working Paper, Univ. of Illinois, Urbana, Ill., Aug. 1975.
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CONVERGENCE AND STABILITY PROPERTIES OF THE DISCRETE
RICCATI OPERATOR EQUATION AND THE ASSOCIATED

OPTIMAL CONTROL AND FILTERING PROBLEMS*

WILLIAM W. HAGERt AND LARRY L. HOROWITZ:

Abstract. The convergence properties for the solution of the discrete time Riccati matrix equation
are extended to Riccati operator equations such as arise in a gyroscope noise filtering problem. Stabiliz-
ability and detectability are shown to be necessary and sufficient conditions for the existence of a
positive semidefinite solution to the algebraic Riccati equation which has the following properties:
(i) it is the unique positive semidefinite solution to the algebraic Riccati equation, (ii) it is converged
to geometrically in the operator norm by the solution to the discrete Riccati equation from any positive
semidefinite initial condition, (iii) the associated closed loop system converges uniformly geometrically
to zero and solves the regulator problem, and (iv) the steady state Kalman-Bucy filter associated with
the solution to the algebraic Riccati equation is uniformly asymptotically stable in the large. These
stability results are then generalized to time-varying problems; also it is shown that even in infinite
dimensions, controllability implies stabilizability.

1. Introduction. The purpose of this paper is to prove that the convergence
and stability properties associated with the Riccati difference equation in finite
dimensions also hold for the Riccati operator equation in infinite dimensions.
Many of the finite-dimensional results already in the literature will also be
strengthened. The Riccati difference equation has been studied by Caines and
Mayne [2], Lee, Chow and Barr [9, and Zabczyk [10.

In finite dimensions, the first paper proved that if a stabilizability and an
observability assumption held, then the solution to the Riccati difference equation
converged to a positive definite matrix solving the algebraic Riccati equation,
and furthermore, the solution to the algrebraic equation was unique in the class
of positive semidefinite matrices. Their proof, however, required the Heine-Borel
theorem (a closed, bounded set of n x n matrices forms a compact set) so that
the proofs could not be extended to the Riccati operator equation.

The paper by Lee, Chow and Barr then showed that in a Hilbert space
environment, the solution to the quadratic cost control problem could be expressed
in feedback form in terms of the solution to the Riccati operator equation, and
when the system dynamics were stable, then there existed a solution to the algebraic
Riccati equation.

Zabczyk weakened this stability condition to stabilizability and then showed
that if the cost functional was positive definite in the state variable, then the
solution to the algebraic Riccati operator equation was unique in the class of
positive semidefinite operators and furthermore was the limit (in the operator
norm) of the solution to the Riccati equation from any positive semidefinite
initial condition.

This paper contains the results above as special cases. The observability
condition of Caines and Mayne and the positive definiteness of the cost functional
required by Zabczyk are weakened to deteztability. The positive definiteness of

* Received by the editors August 22, 1974, and in revised form March 11, 1975.
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the Riccati equation solution proved by Caines and Mayne is also proved in the
infinite-dimensional framework. Furthermore, it is shown that the solution to
the regulator problem associated with the Riccati equation is uniformly asymp-
totically stable in the large if a detectability condition is satisfied and there
exists a positive semidefinite solution to the algebraic Riccati equation.

The paper reaches its climax in 5, where it is proved that stabilizability
and detectability are necessary and sufficient conditions for the existence of a
positive semidefinite solution to the algebraic Riccati equation which has the
following properties: (i) it is the unique positive semidefinite solution to the
algebraic Riccati equation, (ii) it is converged to geometrically in the operator
norm by the solution to the discrete Riccati equation from any positive semi-
definite initial condition, and (iii) the associated closed loop system converges
uniformly geometrically to zero and solves the regulator problem.

The stability of the Kalman-Bucy filter for time-varying infinite-dimensional
systems under stabilizability and detectability is also treated in the Appendix.
This weakens the conditions of controllability, observability, and nonsingularity
of the transition operator that Deyst and Price 3] required in their proof of the
stability of the solution to the time-varying filtering problem in finite dimensions.

The paper concludes with an illustration of the use of the Riccati operator
equation in filtering the noise additively corrupting a gyroscope’s output signal.
In this example, the domain of the Riccati operator is an LZ-space.

2. Problem statement. Let K(S, T, i) denote the solution to the Riccati
operator equation given by

(1) K(i- 1)= A*(i){K(i)- K(i)B(i)[R(i)+ B*(i)K(i)B(i)]-’B*(i)K(i)}A(i)+ Q(i)

with boundary condition K(T) S, where is an integer, __< T, and the following
operators appearing in (1) are uniformly bounded linear mappings on Hilbert
spaces Y and U Q(i): Y Y, S: Y Y, A(i): Y --* Y, B(i): U Y, and R(i): U U.
(Throughout this paper, the term operator will mean a bounded linear ,operator.)
The inner products on both Hilbert spaces will be denoted by (.,.)--the inner
product being used should be clear from context. The norm of a vector y Y is
given by {[YI[ (Y, y)l/2 and the norm of a linear operator P: Y Y is given by
I[P[[ sup PY Y }. The operator P* denotes the adjoint of an operator P.
P is said to be positive if it is positive semidefinite and self-adjoint; i.e., P* P
and (y, Py) >_ 0 for all y Y. The operators Q(i), R(i), and S are assumed positive,
and furthermore, R(i) is assumed uniformly positive definite, i.e., (u, R(i)u) >_ a[[u[[ 2

for some a > 0 and for all u U, where "a" is independent of i. The notation

P1 => P2 and P1 > P2 means that P P2 is positive semidefinite and positive
definite respectively.

Associated with the Riccati equation is the control problem:

(2) Minimize
{,i)} I(Sy(T)

(3)

y(T)) + {(y(i), Q(i)y(i)) + (u(i), R(i)u(i))}
io

Subject to y(i + 1)= A(i)y(i) + B(i)u(i),

Y(io) Yo Y, u(i) U.
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Let J(S, T, io, Yo) denote the optimal value for the control problem above. As
shown in [1] for finite-dimensional spaces,

(4) J(S, T, io, Yo) (Yo, K(S, T, io)Yo),

and the optimal control in feedback form is given by

(5) u(i) -JR(i) + B*(i)K(S, T, + 1)B(i)]-1B*(i)K(S, T, + 1)A(i)y(i).

The extension of these results to Hilbert spaces is trivial as noted in [6], since the
dynamic programming argument used in the derivation of (4) and (5) does not
require finite-dimensionality and can be performed in a Hilbert space environment.

The cost function (2) is nonnegative, so (4) implies that K(S, T, i) >= 0 for all

=< T, and hence the inverse appearing in (1) and (5) exists and is bounded since
R(i) > 0. Thus K(S, T, i) is a positive operator for __< T.

When (1) is time-invariant (i.e., A(i) A, B(i) B, etc.), then also associated
with (1) is the algebraic Riccati equation (abbreviated ARE)"

(6) K A*[K- KB(R + B*KB)-1B*K]A + Q.

Similarly associated with the control problem when the system is time
invariant is the regulator problem

(7) Minimize (y(i), Qy(i)) + (u(i), Ru(i))
{u(i)} i= 0

(8)
Subject to y(i + 1)= Ay(i) + Bu(i),

y(O) Yo 6 Y, u(i) 6 U.

Let J(Yo) denote the optimal cost for the regulator problem above.
The estimation problem, or dual problem corresponding to the control

problem, is given in Appendix C.
For future reference, the following abbreviations are used throughout the

paper:
ARE algebraic Riccati equation
UASL uniformly asymptotically stable in the large
ST stabilizability
DT detectability
CT controllability
OB observability

3. The assumptions. The following stabilizability and detectability assumptions
will appear in the development. These conditions are first stated for time-invariant
problems:
(ST) There exists an integer r > 1, a constant q, and an operator L such that

(9) II(A.- BL)rll < q < 1.

(DT) There exist integers s, >= 0 and constants 0 <= d < 1, 0 < b < oo, such that
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whenever IA’y >: d lyl, then

(10) Y’
i:0

a*iQaiy) >: b(y, y).

When the problem is time varying, we replace L in (ST) by a sequence {L(i)}
of uniformly bounded linear operators and require

k+r-1

(ST’) 1-I (A(i)- B(i)L(i)) < q <
i=k

for k 0, r, 2r,
Similarly in (DT) we replace A by C(i + k,k), where C(i,k)= A(i- 1)

A(i- 2)... A(k) and C(i,i)= I, the identity operator, and require that for
all k _> O, whenever [[C(k + t,k)y[[ >= d[[y[[, then

(DT’) y, C(k + i, k)*Q(k + i)C(k + i, k)y] b(y y).
i=0

Special cases of (ST) and (DT) are the controllability and observability
conditions"

(CT) There exists an integer r _> 0 and a constant 0 < a < o such that

(11) Y’
i=0 ziBB*Z*iY) a(y, y)

for all y e Y.

(OB) There exists an integer s _> 0 and a constant 0 < b < such that

(12) (Y’ i=0 A*iQAiY) >--b(y’ y)

for all y e Y.
Note that (OB) is trivially a special case of (DT). At the end of 4, it will

also be shown that (CT) implies (ST).
Recall that in finite dimensions, the pair of matrices [A, B] are said to be

stabilizable if there exists a matrix L such that the spectral radius p(A BL)
is less than 1. (A, B, and L are assumed to be n x n, n x m, and m x n respectively.)
Similarly [C,A] is detectable if [A*, C*] is stabilizable. Note that it follows
immediately that (ST) is equivalent to the condition p(A BL) < 1 for some L
since p(P) limk_ IIPII 1/ (see [4, p. 567]).

In Appendix B, it is proved that in finite dimensions, (DT) is equivalent to the
condition that p(A* C’L) < for some L where Q C*C.

4. The main results. The first lemma gives a uniform bound for the solution
K(S, T, i) of the Riccati equation (1).

LEMMA 1. If (ST’) holds, then there exists a constant c independent of and T
such that K(S, T, i) < cI and J(y) < cllyll 2, where J(Yo) is the optimal cost for the
regulator problem (7).
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Proof. By the relation (4), the bound on K(S, T, i) will be proved if the
optimal cost in the control problem (2) can be bounded in terms of the initial
condition Yo. Since the operators A(. ), B(. ), and L(. are all uniformly bounded,
there exists a constant c such that

j+m

(13) I-I IlN(i) =< c
i=j

for all m satisfying 0 _< m < r, where N(i) A(i)- B(i)L(i). (Throughout this
paper, c will denote a generic constant whose value does not depend on T or
and whose value in different equations may change.)

Using the control u(i) L(i)y(i) in the system dynamics leads to the
estimates

(14) y(k / 1)1 IIN(k)y(k)ll I-I (N(i))yo <= cqk/" Yo
i=0

where the last inequality follows by grouping the operators N(i) into groups of
r factors and then applying the bound (ST’). Since u(i)= -L(i)y(i), then u(i)
obeys a similar estimate. Inserting these bounds on u(i) and y(i) into the cost
functional (2) leads to a bound on J(S, T, i, Yo) of the form c =o qZk/llYo 2.
Since q < 1, the geometric series is convergent and J(S, T,i, yo)< cllYol] 2 as
desired. Since c is independent of T and i, then the bound on J(y) also follows
immediately.

A sequence ofoperatorsP is said to converge strongly to P iflim_ (P P)Y
0 for all y e Y. An elementary property of operators is the following (see [4,

p. 925])" Suppose {P} is a sequence of uniformly bounded self-adjoint operators
satisfying Pk =< P+ for k >__ 0" then {P} converges strongly to a self-adjoint
operator P satisfying P =< P for all k _>_ 0. The sequence P converges weakly to P if
limk_ (z, (P P)y) 0 for all y, z e Y. It can be shown that this last condition is
equivalent to requiring lim_, (Y, (P P)Y) 0 for all y e Y.

For the remainder of this section, we will only be dealing with the time-
invariant Riccati equation and control problem. In Appendix A, the question
of stability for time varying systems is considered. Let K(T, i) denote the solution
to the time-invariant Riccati equation when the terminal condition vanishes
(s 0).

TI-IEORFM 1. If J(O, T, O, y) < c y 2 for some c independent of T, then K(T, i)
converges strongly as T--. o to a positive operator P that satisfies the ARE.

Proof. Since (4) holds, then K(T, i) < cI and hence K(T, i)[ is uniformly
bounded by c. Also, (y, K(T1, i)y) J(O, TI, i, y) >__ J(O, T2, i, y) (y, K(Tz, i)y)
whenever T __> T2 since increasing the terminal time cannot decrease the optimal
cost. Thus by the remarks preceding the theorem, K(T, i) ---, P strongly as T o.
If F(K) denotes the right-hand side of (6), then (1) can be written as K(T + 1, i)

K(T,i 1) F(K(T, i)), where the first equality follows since the equation is
time-invariant. Now K(T + 1, i)--, P strongly as T---, oc and furthermore by
[4, p. 922], F(K(T, i)) F(P)strongly as T . Thus P F(P)and hence P
solves the ARE.

Combining Lemma 1 and Theorem 1 yields the following.
COROLLARY 1. If (ST) holds, then K(T, i) P strongly as T--. , where P

solves the ARE.
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Later it will be shown that when (DT) holds and there exists a positive solution
to the (ARE), then (ST) holds.

The stability of the solution to the following system when P is a positive
solution to the ARE will now be studied"

(15) y(i + 1)= Ay(i) + Bu(i), y(O)= Yo, u(i)= Fy(i),

(16) F -[R + B*PB-B*PA.
The following system of inequalities and equalities plays an important role in
the development"

(17) -(u(i), B’PAy(i)) (u(i), [R + S*PS]u(i))

(18) (y(i), Py(i)) >= (y(i), Py(i)) (y(j), Py(j))
j-1

(19) (y(k), Py(k)) (y(k + 1), Py(k + 1))
k=i

j-1

(20) (y(k), Py(k) A’PAy(k)) (u(k), B’PAy(k))
k=i

(B’PAy(k), u(k)) (u(k), S*PSu(k))
j-1

(21) (y(k), Qy(k)) (u(k), S*PSu(k)) (u(k), B’PAy(k))
k=i

j-1

(22) (y(k), Qy(k)) + (u(k), nu(k)) >= O.
k=i

Above, j > and (17) follows by multiplying u(i)= Fy(i) by [R + B*PB] and
(18), (20), (21), and (22) follow by the positivity of P, (15), the ARE that P satisfies,
and (17), respectively.

THEOREM 2. J(0, T, 0, y) < c Yll 2 for some constant c independent of T if and
only if there exists a positive solution to the ARE.

Proof. The theorem in the forward direction was proved by Theorem 1.
Now suppose P is a positive solution to the ARE and let y(i) and u(i) be the state
and control generated by (15). Then by the relation (18),

T-1

(23) (Yo, nyo) >= (y(k), Qy(k)) + (u.(k), Ru(k)).
k=0

Since P is bounded, thenJ(0, T, 0, y)__< IIPI y e.
Recall that the dynamical system x(k + 1) f(x(k), k), x(io) Xo is said to

be uniformly asymptotically stable in the large (abbreviated UASL) with respect
to x* if the following holds [8"

(i) Given >0, there exists >0 such that x*-xo __< b implies that
x(k) x* _-< e for any k, o satisfying k => o.

(ii) Given 6 > 0, there exists e > 0 such that ]Ix* Xoll _-< implies
x(k) x* =< for any k, o satisfying k io.

(iii) Given 6, > 0, there exists T such that IIx(k) x* for all k, o, Xo
satisfying k _> T+ oand IlXo-X* _< .
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THEOREM 3. /f K(T, O) P strongly, P solves the ARE, and the system (15) is

UASL with respect to the origin, then P is the unique solution to the ARE in the
class of positive operators and K(S, T, i) converges strongly to P as T-, c jbr
any S >- O. Also the state and the control generated by (15) are the optimal solutions

for the regulator problem and (Yo, PYo) is the optimal cost.

Prooj: Let {y(i)} and {u.(i)} be generated by (15)using P. Then (18)implies
T-1

(24) (Yo, PYo) >= (y(k), Qy(k)) + (u(k), Ru(k)) >= (Yo, K(T, 0)yo) < J(Yo).
k=0

Since K(T, 0)--, P, then as T- oo, the => ’s in (24) become ’s, and the last =<
implies that {us(i)} must actually achieve the optimal cost in the regulator problem.
Since the cost function (7)is a strictly convex function of {u(i)}, then {u(i)} must
be the unique optimal control sequence and (Yo, PYo) is the optimal cost.

Now consider the following inequalities"

(25)
(Ys(T), Sys(T)) + (Yo, PYo)

T-1

>= (y.(T), Sys(T)) + [(Z(k), Qys(k)) + (us(k), Ru(k))]
k=O

(26) >= (Yo, K(S, T, O)yo) => (Yo, K(O, T, O)yo).

The second inequality above follows since (Yo, K(S, T, 0)yo) is the optimal cost
in the control problem (2) and the third inequality follows since the optimal cost
when S 0 is bounded by the optimal cost when a nonnegative terminal cost is
present. By assumption, the right side of (26) converges to (Y0, PYo) as T--, c,
and since the system (15) is UASL with respect to the origin, then ys(T)-, 0 as
T--, c. Thus all the inequalities in (25) become equalities as T c and hence
K(S, T, O) P weakly. An elementary application of the Schwarz inequality for
positive operators shows that weak convergence implies strong convergence
(see again [4, p. 925]).

If P is any positive solution to the ARE, then it is easy to see that K(P, T, O)
P for all T and since K(P, T,O) P, then P P. I3
Now it is shown that if (DT) holds, then the stability condition of Theorem 3

is satisfied.
THEOREM 4. Suppose P is a positive operator solving the ARE and (DT) holds"

then the solution to the system (15) is UASL with respect to the origin.

Proof. It is shown that [ly(k + i) <= C2 -i/u y(k) for some N, c > 0 inde-
pendent of k and i, so that the theorem follows immediately.

Step 1. Suppose thatjbr some i, [IAty(i)ll >= d y(i) where d was given in (DT);
then there exists a constant m > 0 independent of such that

(27) (y(i), Py(i))- (y(i + s + 1), Py(i + s + 1))>_ m y(i) 2.

Proof of Step 1. Let A2 denote the left side of (27) and let c again denote a
generic constant. By (18),

i+s i+s

(28) A2 >__ (u(k), Ru(k))>_ a lu(k) 2,
k=i k=i

where a satisfies R > al > O.
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Letting z(.) denote the solution to z(k + 1)= Az(k),z(k i)= y(i), then
the error e(k) y(k) z(k) satisfies, for =< k <= + s,

(29)

(30)

e(k + 1) <_ IIAII Ile(k) + [IBll u(k) -< [[AI-JIBIIlu(j)
j=i

__< c Ilu(j)ll < c lu(j)ll 2 _<_ cA,
j=i j=i

where the last set of inequalities follow by the Schwarz inequality and the bound
(28) on the control.

The relation (18) also yields
i+s i+s

(31) A2 __> (y(k), Qy(k)) (e(k) + z(k), Q(e(k) + z(k)))
k=i k=i

i+s

(32) >= (y(i), A*k-iQAk-iy(i))- 2lle(k)l111(211 IAk-iy(i)
k=i

(33) >_ b y(i) z cAlly(i)

where b was given in (10); the inequality (32) follows by the Schwarz inequality
and (33) follows by the bound on e(k) in (30). Completing the square in (33) leads
to Ily(i)ll 2 _< cA2, the desired result.

Step 2. Suppose that ]]A’y(i)]] <_ d]ly(i)ll for i= k,k + t,..., k + nt. Then
there exists a constant m independent of n and k such that I[y(i)[[ 2 _<_ m[ly(k)ll 2 for
k<i<_k+nt.

Proof of Step 2. For notational convenience, suppose k 0. First let j It
where 0 < < n. Then

(34)

IIY(j)
t-1

A’y(j- t) + AiBu(j- -i)
i=0

(35) dlly(j- t)[ + c
t-1

u(j-l-i)ll 2

i=0

-< d]ly(j- t)

1/2

t-1

Ilu(J- 1 i)[[
i=0

(36)
j-1

--< dilly(O)[ + c llu(i) ll2
i=0

where .’.he Schwarz inequality was used to derive (35) and the last inequality
follows by writing the solution to the difference inequality (35) as the convolution

2 /2 dof the forcing term c( o lu(j- 1-i)11 ) with and then applying the
Schwarz inequality to the convolution; since d < 1, then the d2i factor in the
Schwarz inequality is bounded. Now by (18),

j-1

(37) a Ilu(i)ll 2 IIPII Ily(0)l[ 2

i=0

where R > aI. Inserting this bound in (36) yields the desired estimate for j lt.
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For It < j < (l + 1)t, the relation y(k + 1)= Ay(k) + Bu(k) combined with the
bound (37) on the controls and the bound above on ly(lt)l[ proves the estimate.

Step 3. Suppose that sj+ >- sj, sj - oe as j and Isj sj+ 11 is bounded
independent of j. Then there exists a constant c independent of j such that
=< c y(sj)ll for sj < < sj+ and for all j.

i-1 Ai- 1Bu(k). Since liProof of Step 3. y(i)= Ai- Jy(s) + k=sj k-

=< IS+I SI is uniformly bounded, then the bound on y(i) follows immediately
from a bound of the form (37) on the controls where y(0) is replaced by y(s) and
the summation is from k sj to 1.

Let be the maximum constant given in Step 3 corresponding to those.
sequences of integers {sj} satisfying sj+ sj + s + 1. Now choose N1, N2, and
N3 large enough that the following conditions hold"

(38) P[ /mN1 < 1/4,

(39) dN21/2 + c(PII/aN3) 1/z < 1/2,

(40) where/ max {M, MDIIPII/m},

where m was given in (27), M appeared in Step 2, c is the same constant appearing
on the right side of (36), D appeared above at the end of Step 3, and d < is given
in (DT). Let N NINzM3 max (s + 1, t).

Step 4. There exists [k, k + N] such that I]Y(i)II < 1/2 y(k)ll for any k >= O.
Proof. For notational convenience, choose k 0. Construct a sequence

and {f} as follows" to 0;for j >= 0,

if A’y(tj)[I <= dlly(tj)ll, then tj+l tj + t, f 0,

if A’y(tj)l >d y(tj) thent+l =tj+s+ 1, fj= 1.

By (18), (y(tj), Py(tj)) (y(tj+ 1), Py(tj+ 1)) => 0, so combining this with (27) yields

(41) (y(tj), ey(tj)) (y(tj+ Py(t + >__ fmlly(tj) 2.

Let J be the first index with tj _> N. Adding the inequalities (41) for j 0, 1,...,
J- yields

(42)

J-I

Pll ly(0) (y(0), Py(O)) (y(tj), Py(ts)) + fjmlly(tj) 2

j=0

_-> f mlly(t )l
j=O

If at least N1 of the f do not vanish, then the sum on the right side of (42) is
bounded below by raN1 min I[y(tj) 2, where the min is over j such that f 1.
If j n achieves the minimum, then Ily(t,)ll z <= IIPII Ily(O)lle/mNx. Hence Step 4
would follow by (38).

Now if less than N1 of the f equal 1, then there is a sequence of N2N3 con-
secutivej’s with f 0 since N NN2N3 max (s + 1, t)and hence J >= N1N2N3.

Letkl tjbechosensuchthatf+i 0for0 <=iN N2N3 andeitherf_
or tj 0. Let k2 tl mark the end of this sequence of f’s that vanish. By Step 2,
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Ily(i)ll 2<_ Mlly(kl)ll 2 whenever kl <i=< k2. If f./_l 1, then the inequalities
Ily(k)ll2 < Dlly(tj-x)ll2<= DIIPII Ily(O)ll2/m follow by Step 3, the choice of D
above and (42). Combining these last two sets of inequalities yields ]ly(i)l] 2

<= MDIIPII Ily(O)ll2/m if k - 0 and Ily(i)ll 2 __< Mlly(0)ll 2 if kl 0. Thus Ily(i)ll 2

<= lly(0)l[ 2, where is given in (40).
Divide [k,k2] into subintervals of length N2t. Since Ikl- k21 => N2N3t,

then there are >= N3 Of these subintervals. By (37), one of these subintervals [r r2]
must satisfy

’2

(43) y,, ilu(i)ll 2 < IIPI ily(0)]12
i= r aN3

(i.e., the smallest sum of the form (43) is bounded by the average sum).
For j rl + N2t r2, the inequality (34) implies

(44) IlY(r)ll <-_ dllY(r)ll + c Ilu(i)

Inserting the bounds above on Ily(i)ll and (43) into (44) yields

(45) Ily(r=)ll _-< d=-/ + Cag3 y(0) < 1/211y(0)l,

where the last inequality follows by (39). This completes Step 4 and the geo-
metric convergence follows by combining Steps 3 and 4. !-1

COROtAR 2. If P is a positive solution to the ARE and (DT) holds, then P is
the unique solution to the ARE in thb class of positive operators and K(S, T, i) --, P
geometrically in the operator norm as T oe for any S >= O. Also the state and the
control generated by (15) are optimal solutions to the regulator problem and the
solution to the system (15) converges to zero uniformly and geometrically.

Proof. By Theorems 2 and 1, there exists a solution P to the ARE such that
K(T, i) P strongly as T --, oe. By Theorem 4, since (DT) holds, the system (15)
is UASL with respect to the origin and hence by Theorem 3, P P and (Yo, PYo)
is the optimal cost for the regulator problem.

Let y(T, i) denote the optimal solution to the control problem (2) in the
time-invariant case when S 0 and io 0. It can be shown that y(T, i)--, 0
uniformly and geometrically as T oe. This follows since (18) holds with (y(i), Py(i))
replaced by (y(T, i), K(T, i)y(T, i)), and hence all the steps of Theorem 4 are valid
with y(i) replaced by y(T, i) and P replaced by K(T, i). Note that the proof of
Theorem 4 required a bound on IIPII and hence will require a uniform bound on
IlK(T, i)ll for the finite terminal-time case; however, since (Yo, PY0) is the optimal
cost for the regulator problem by Theorem 3, then (Yo, PYo) >-- (Yo, K(T, i)yo) and
tlPII >_-IIK(r,i)ll. (Berberian [11] shows that if Z is a positive operator, then
Ilzll sup {(y, zyl" Ilyll }3

Now (Yo, PYo) <- (Yo, K(T, 0)yo) + (y(T, T), Py(T, T)).

Combining this with (25) yields

(y(r), sy(r) + (yo, eyo) >-_ (yo, I(s, r, 0tyo

->- (Yo, PYo) (y(T, T), Py(T, T)).
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Since there exist c, q satisfying IIy(T, T)II, IIy(T)I[ cqWl[yol and 0 < q < 1, then
I(Yo, PYo K(S, T, 0)yo)[ =< cq2llyoll2 for some c > 0. Hence Berberian’s theorem
can now be used to prove that liP K(S, T, 0)ll _-< CQ2L

The remaining results in this corollary follow from Theorems 3 and 4.
To summarize the previous results we have the following theorem.
THEOREM 5. If (ST) and (DT) hold, then K(S, T, i) converges geometrically in

the operator norm as T to a positive operator P that is the unique positive
solution to the ARE. Also, the control and state generated by (15) is UASL with
respect to the origin and is the unique solution to the regulator problem.

When the control problem is observable, then any positive solution to the
ARE is actually positive definite.

THEOREM 6. Suppose P is a positive solution to the ARE and (OB) holds. Then
P > 0 and is the unique solution to the ARE in the class of positive operators.

Proof. By Step 1 of Theorem 4, whenever (10) holds, then (27) holds. When
the control problem is observable, however, (10) holds all the time so (yo,PYo)
_> (y(s + 1),Py(s + 1)) + mllYoll 2 >= ml Yo 12 for some m > 0. The fact that P is
the unique positive solution to the ARE follows by Corollary 2.

Now cases, are presented where the converse of Corollary holds.
THEOREM 7. If there exists a .positive solution P of the ARE such that the

system (15) is UASL with respect to the origin, then (ST) holds.
Proof. Define G A B[R + B*PB]- 1B.PA and suppose Gk >_- for all

k >= 0. Then there exists Yk such that Ilakyll > 1/2 and Ilykll 1. This contradicts
condition (iii) in the definition of UASL and so there exists r _>_ 0 with IIGrll < 1.
Now (ST) holds for L [R + B*PB]-IB*PA.

COROLLARY 3. If there exists a positive solution P to the ARE and (DT) holds,
then (ST) holds.

Proof. This follows immediately by Theorems 4 and 7.
THEOREM 8. If (CT) holds, then (ST) holds.
Proof. The solution to the system equation (3) is

(46) y(r + 1)= Ar+yo + A’Bu(r- i)= A+xyo + M[u(0),..., u(r)],
i=0

where M is the linear operator on the controls appearing in the middle of (46).
Note that the range space of M contains the range space of MM* and furthermore
the operator MM* is precisely the operator appearing in (11). Thus MM* is
positive definite and hence there exists a solution to the equation -A+lyo
MM*y. Hence the control sequence M*y inserted in (46) yields y(r + 1) 0.

From the equation that satisfies and the positive definiteness of MM*, al].]] 2

<_ (y;, MM*) -(y;, A+ ly0) __< I]l A] +l[lyol or II.[I -< c Yoll, where "a" is
given in (11).

Now choose Q, R to be any positive operators satisfying R, Q > 0. Using the
control sequence M* for the controls {u(0), ..., u(r)} and u(j)= 0 for j > r
results in y(j) 0 for j > r and the cost function (2) is bounded by cllyoll 2 since
IlY _-< cllyoll and the first r + controls are given by M*.. By Theorem 1, there
exists a positive solution of the ARE and since Q > 0, then (DT) holds. Corollary 3
completes the proof, l-I
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Remark. It also follows that the steady state Kalman-Bucy filter for the dual
estimation problem corresponding to the control problem (2) in the time-invariant
case is uniformly asymptotically stable in the large with respect to the origin
when (DT) holds and P solves the ARE. The homogeneous part of the Kalman-
Bucy filter (presented in Appendix C) is given by

x(n+ 1In + 1)

(A*-PB[R + B*PB]-IB*A*)x(n[n)

(A*-PB[R + B*PB]-IB*A*)"+’x(OlO)

{A[A B(R + B*PB)-B*PA]"[I- B(R + B*PB)-’B*P]}*x(O[O),

where the last equation follows by taking the adjoint of the prior equation twice
and then regrouping terms. Theorems 4 and 7 imply that

][A- B(R + B*PB)-1S*nA]k]] <

for k large enough. Thus it is easy to see that the homogeneous part of the Kalman-
Bucy filter is UASL.

5. Necessary and sufficient conditions. The results of the previous section are
now tied together in the following theorem.

THEOREM 9. The following conditions are all equivalent"
(a) (ST) and (DT) hold.
(b) There exists a unique positive solution P to the ARE. For any S >= O,

K(S, T, i) P geometrically in the operator norm as T , and the solution to (15)
both solves the regulator problem and is UASL with respect to the origin.

(c) There exists a positive solution to the ARE and (DT) holds.
(d) (DT) holds and J(O, T, O, y) <= cllY[ 2 for some c independent of T.
Proof. By Theorem 2, (c) and (d) are equivalent. By Theorem 5, (a) implies (c)

and by Corollary (2), (c) implies (b). The proof will be complete when it is shown
that (b) implies (a).

If (b) holds, then by Theorem 7, (ST) holds. Now suppose (DT) is violated and
let P be as given in (b). Then given any e, T, t, there exists y(, T, t) such that
[[y(e, T,t) 1, IA’y(e, T,t)ll > 1/2, and (y(e, T,t), M(T)y(e, T,t)) <= e, where
M(T) -o’ A*iQA’"

Now fix and define F(P)= A- B[R + B*PB]-1B*PA. It is easy to see
that there exist constants c, 6 > 0 depending on P such that ]IF(P)-F(P’)]]
<= c IP P’]I whenever P P’I =< 5. Let y(e, T, t, i) and ys(e, T, t, i) denote the
solutions to y(i + 1) F(K(T,i + 1))y(i), y(0) y(e., T, t) and z(i + 1) F(P)z(i),
z(0) y(e, T, t) respectively.

The error e(e, T, t, i) ys(e, T, t, i) y(e, T, t, i) is the solution e(i) to the
equation

e(i + 1)= F(K(T, + 1))e(i)+ IF(P)- F(K(T, + 1))]y(, T, t, i)

F(K(T, k)) 6F(T, j)y(e, T, t, j),
j=0 k=j+2

where 6F(T, i) F(P) F(K(T, + 1)) and e(0) 0.
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Since the system (15) is UASL with respect to the origin, and lys(e, T, t, 0)1
[y(e, T, t)[[ 1, then lys(e, T, t, i)[ is bounded uniformly in e, T, t, and i. By

Theorem 3, (yo,PYo) is the optimal cost in the regulator problem and hence
P >= K(T, i) >_ 0 for =< T and K(T, i) is bounded uniformly in T and i. Also,
note that if a > 0 satisfies R > aI, then II[R + B*ZB]-111 <= 1/a for any positive
operator Z and hence IIF(K(T,i))II is uniformly bounded. Combining these
uniform bounds with the fact that is fixed and II6F(T, 1)ll IIF(K(T, i)) F(P)
<= c K(T, i) PII 0 as T , implies that for T sufficiently large, lie(e, T, t, t)ll
__< (independent of

Now hold T fixed and consider the following lemma.
LEMMA 2. Suppose (., is a continuous bilinear form on U x U satisfying

(u, u) >__ a[ u 2 for all u U and some a > 0 independent of u, and( is a bounded
linear operator. Then the problem to minimize J(u) (u, u) + (u) over u U has
a unique solution u* U and u u* 2 (J(u) J(u*))/a.

Proof of lemma. The existence and uniqueness of u* and the necessary
condition 2’(u u*, u*) + M(u u*) 0 for all u e U follows by [12]. If J(u) is
expanded about u* and the necessary condition is applied, then the following
holds" J(u) J(u*) (u u*, u u*) >= allu u*l 2. [[]

Note that the control problem (2) satisfies the conditions for the lemma since
(u(k), Ru(k)) >__ al u(k)ll 2 (where R > aI > 0), (y(k), Qy(k)) >= O, and the cost
functional is a quadratic in {u(i)} when {y(i)} is expressed in terms of {u(i)}. Thus
if J(e, T, t) denotes the optimal cost in (2) when the initial condition is y(0) y(e, T, t)
and S 0, and Jo(e, T, t) is the cost generated by the control sequence u(k) 0
for k > 0 starting from the same initial condition, then the relation e >= (y(e, T, t),
M(T)y(e, T, t)) Jo(e, T, t) >= J(e, T, t) >= 0 implies that /a >__ (Jo(e, T, t) J(e, T, t))/a
>= =--01 liu(e, T, t, i)[ 2, where u(e, T, t, i) is the optimal control sequence for the
control problem (2) corresponding to the initial condition y(0) y(e, T, t). (Recall
that the solution to y(i + 1)= F(K(T,i + 1))y(i), y(O)= y(e, T,t), which was
labeled y(e, T, t, i) above, is also the solution to the control problem (2) and so the
notation above for the optimal control is compatible with the notation for the
optimal state.)

Let yo(e, T, t, i) denote the solution to y(i + 1)= Ay(i), y(O) y(e, T, t).
Then the error e0(e, T, t, i) y(e, T, t, i) yo(e, T, t, i) satisfies the equation e(i + 1)

Ae(i) + Bu(e, T, t, i), e(0) 0. Using the above bound on the controls implies
that for e sufficiently small, [leo(e, T, t, t)ll

To summarize,

lY(, T, t, t) Yo(e, T, t, t) IIY(, T, t, t) y(, T, t, t)ll

+ Ily(e, T, t, t) yo(e, T, t, t)

By assumption, IlYo(, T, t, t)ll- IlAty(e, T, t)ll > 1/2. Thus for all t, it is possible
to choose T large enough and e small enough so that lys(e, T, t, t) > 1/4. However,
this violates the assumption that the system (15) is UASL with respect to the
origin (see condition (iii) in the definition of UASL). Hence (DT) must hold. I-]
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6. A gyroscope noise filtering problem. A practical problem motivating the
study of operator Riccati equations is the gyroscope noise filtering problem
which is described briefly below. The additive noise corrupting gyroscopic output
readings are observed experimentally to often possess a 1/f behavior in power
spectral density over a wide band of frequency. To model this noise as the output
of a linear system, a continuum of first order linear systems are used with time
constants, r, of the linear systems described by a probability density function p(r).
The filtering problem is equivalent via duality to solving the following operator
control problem.

The state y(k) Yis given by a pair [b(., k), a(k)], where a(k) is an m vector
and b(-, k) L2([-rl, r2]) i.e.,

f]2 b(r, k)2 dr < .
The limits r and r2 satisfy 0 < rl < r2 < cZ3. The inner product on Y is given by

(y, y)= b(t)b(t)dt + aa,

where y Ibm(. ), a] and y [ba(.), a]. The controls u(k)e U are scalars
and the inner product on U is simply multiplication. The operators A and B in
the system dynamics (3) are given by

A[b(. ), a] [e-/(’)b( ), ia],

B[u] [p(. )u, hu],

where p(. is bounded and measurable, A is an m x m matrix, h is an m x vector,
and z > 0.

The cost functional is

(Sy(T), y(T)) + Q(r)b(r, k)2 dr + a(k)*Qa(k) + u(h:)2d
k=0

where Q >= 0 is an m m matrix, Q(r) >= c > 0 is a bounded measurable function,
d > 0 is a scalar, and S __> 0 is a positive semidefinite operator.

Note that this problem is not controllable and, in fact, inserting the operators
A and B into the controllability condition (11) results in

p(r) e-zi/’b(r) dr >- a b(r)2 dr
i=0

for some a > 0 and for all b L2([rl, r23). This is clearly impossible (for example,
consider a sequence of functions {bj(. )} converging to a delta function). The L2

part of the system dynamics, however, trivially satisfies the stabilizability condition
with L 0 since e -z/r =< e -/r2 < 1 for rl <_ r =< r2 < . The L2 part of the
system dynamics is also observable for s 0 since Q(r) => c > 0. Thus if the linear

=- Y*Q2 ] > 0system a(k + 1) Aa(k) + hu(k) is stabilizable and the matrix [k= o
for some s, then all the theorems in 4 apply.

More details on the gyroscope problem are given in [6].
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Appendix A. Stability of the time varying Kalman-Bucy filter and control
problem solution. The stability result in Theorem 4 can be generalized to the time-
varying case, where

y(i + 1)= A(i)y(i) + B(i)u(i),

y(0) yoe Y,

u(i) F(S, T, i)y(i),

F(S, T, i) -JR(i) + B*(i)K(S, T,i + 1)B(i)]-1B*(i)K(S, T,i + 1)A(/).

Note that since K(S, T,. )is only defined on [-v, T], then y(.) is only defined on
[0, T], and hence it no longer makes sense to ask whether y(. is stable. However,
(ST’) and (DT’) are sufficient to prove the following properties for Y(Yo, T,. ),
the solution to the system above"

(i) Given e > 0, there exists 6 > 0 such that Yo __< 6implies that
lIT(To, T, 011 -< whenever T > __> 0 (6 independent of T).

(ii) Given 6 > 0, there exists e > 0 such that Y(Yo, T, i) < whenever
[Yol =< 6 and T >__ >= 0 (e independent of T).

(iii) Given e, 6 > 0, there exists T’ such that lIT(Y0, T, i)l[ =< whenever
IT(To, T,j)ll =< and T >= > j + T’ (T’ independent of T).

This is essentially the same as the definition of UASL except that the index
for y(. must be confined to the range 0 =< =< T. The proof of these results is
identical to the proof of Theorem 4. Note that the condition (18) holds with
(y(k), Py(k)) replaced by (y(k), K(S, T, k)y(k)). All the steps of Theorem 4 are valid
in the time-varying case with K(S, T, j) replacing P. Since a bound was required
on IP in various places in the proof, we must now require that K(S, T, j) be
bounded uniformly in T and j. Lemma 1, however, shows that when (ST’) holds,
[K(S, T, j) is bounded uniformly.

As in the remark at the end of 4, it follows that the Kalman-Bucy filter
for the dual estimation problem corresponding to the control problem is uniformly
asymptotically stable in the large with respect to the origin in the time-varying
case when (ST’) and (DT’) hold.

Appendix B. (DT) and detectability. We now show that in finite dimensions,
(DT) is equivalent to the condition p(A* C’L) < 1 for some L where Q C*C.
Hautas proves [5] that this last condition is equivalent to requiring that every
unstable eigenvector of A is observable, i.e., when e is an eigenvector of A corre-
sponding to the eigenvalue 2 and I,l >_- l, then Ce =/= O.

PrtOPOSITION B.1. Every unstable eigenvector of A is observable if and only if
(DT) holds for Q C*C.

Proof. If (DT) holds, Ae 2e, Ilell 1, and Il _-> 1, then IIAell _> Ilell and
hence by (10),

e,
i=o A*iC*CAie) i=o

121ZillCellZ >= b > O.

Thus Ce :/: O.
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Conversely, suppose every unstable eigenvector of A is observable. It is easy
to see that the nullspace of M(k) i=o A*iC*CAi is contained in the nullspace
of M(k 1). Thus the nullspace is a decreasing function of k and there exists some
integer s such that the nullspace is unchanged for k >__ s.

We only treat the case where there is a complete set of normalized eigenvectors
{ek} corresponding to the eigenva|ues {2j}. The changes necessary for defective
eigenvalues are summarized at the end of the proof.

If d is any constant satisfying 0 < d < 1, then the following result is now
proved"

(*) There exists an integer > 0 such that whenever [[A’yl[ dl[Yll, then the
expansion y a,e, has a 0 for some unstable eigenvector e.
Form the matrix N e1, e2, e,]. Since the {e} are independent, then

N- exists and hence if yll and x (al, a2, "-, a,)* is defined by x N-
then xl12= lal 2 __< IN-II 2. Define a IIN-I and choose large enough
so that if2k is a stable eigenvalue, then 12kl’ < d/(na). If Ily and IIA’y[ >= d, then
expanding y in terms of {ek} leads to IIAtyll I[At E akekll lie ak2kekllt >= d.
Suppose that ak vanishes for all the unstable eigenvectors. Then the bounds
]akl <= a and Ilekl imply that IIak2ek < ]kl’a < d, where the last
inequality follows since the previous sum is only over stable eigenvalues. This is
a contradiction, and hence ak cannot vanish for all the unstable eigenvectors.

Let f be any vector that minimizes (y, M(s)y) over all real vectors satisfying
Y and ]lAtyll => d, and suppose that the optimal value of this minimization
problem is zero. If it is not zero, then (DT) is immediately satisfied. Recall that
a positive semidefinite matrix can be expressed as DrD so that (f, M(s)f)= 0
if and only if M(s)f 0. Thus M(k)f 0 for k >_ s since the nullspace of M(k) is
invariant for k => s. Since Zf[ _>_ d, then aj - 0 for some unstable component in
the expansion f a,e,. Let 2j be the eigenvalue of the biggest modulus such
that aj -- 0, and first let us assume that 2j is real. Then lim_.oo 2f’A’f e, where
e is an unstable eigenvector (note that any nonzero linear combination of eigen-
vectors corresponding to a given eigenvalue is also an eigenvector corresponding
to the same eigenvalue). Thus lim,_,ool2il-2’(f,A*’C*CA’f)= Ilfell 2. Since
M(k)f 0 for k >= s, then CA’f 0 for k => s and hence Ce 0. This violates the
assumption that none of the unstable eigenvectors of A lies in the nullspace of C.

If 2j occurs in a complex conjugate pair, then 12jl-’CA’f --, C(ei’e +
where 0 is the complex conjugate of e. Since 0 4: 0, , then as k ---, oe ,we conclude
that two linearly independent combinations of 0 and e lie in the nullspace of C
(i.e., there exists a subsequence kj of the k’s that converges to a vector in the null-
space of C. Then consider k) kj + and extract another convergent subsequence).
Hence Ce CO 0 which is again impossible.

We now summarize the changes for the case of defective eigenvalues. Write
A in Jordan canonical form as A NDN-1, where D has eigenvalues on the
diagonal and either l’s or O’s on the upper subdiagonal. Let {e} denote the
columns of N. The proof above is almost unaltered until the point where it was
shown that Ce 0 which violated the condition that the unstable eigenvectors
cannot lie in the nullspace of A. Note now that e may no longer be an eigenvector
however, if ej is not an eigenvector, then one property of the Jordan decomposition
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above is that Aej 2jej + ej_ 1" Thus Akej for k large enough will have a component
which is an unstable eigenvector. The remainder of the proof (which is still very
complicated) involves looking at convergent subsequences as above in the case of a
complex conjugate pair of eigenvalues.

Appendix C. The estimation problem. The estimation problem corresponding
to the control problem (2) is now presented. Consider the following linear system
and observation sequence {z(i)}

x(i + 1)= A*(i)x(i) + w(i),

z(i) B*(i)x(i) + v(i),

where (i) w(i), x(i) Y, z{i), v(i) U, (ii) x(0 is a random variable with mean Xo
and covariance Zo satisfying E[(Fx(O))2] FZoF* for any F:Y--, R the real
numbers, (iii) {w(i)} and {v(i)} are zero mean white noise with covariances {Q(i)}
and {R(i)} satisfying E[(Fw(i))2] FQ(i)F* and E[(Gv(i))2] GR(i)G* for any
F’Y R and G’U R respectively. Also, x(0), {w(i)}, and {v(i)} are assumed
uncorrelated.

The estimation problem is to find a sequence of vectors {)2(ili)} that minimizes
E[((ili) x(i), 2(ili) x(i))], where the estimate 2(ili) is based on the observations
to time i. The Kalman-Bucy filter corresponding to the estimation problem is
given by

92(n + lln / 1)-- A*(n)2(nln) / Y(n + lln)B(n / 1)JR(n+ 1)+B*(n+ 1)

E(n + lln)B(n + 1)]-l[z(n / 1)- B*(n + 1)A*(n)2(nln)],

t(010) Xo,

where E(n + lln) is generated by

E(n / lln)-- A*(n)[Y(nln- 1)- (nln- 1)B(n)[R(n)/ B*(n)E(nln- 1)B(n)] -
B*(n)E(nln 1)]A(n) +

(o, ) o.
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EXTENSIONS OF RANK CONDITIONS FOR CONTROLLABILITY
AND OBSERVABILITY TO BANACH SPACES AND

UNBOUNDED OPERATORS*

ROBERTO TRIGGIANH"

Abstract. Generalizations of the familiar rank conditions for controllability and observability of
linear autonomous finite-dimensional systems to the general case when both the state space and the
control space are infinite-dimensional Banach spaces and the operator A acting on the state is only
assumed to generate a strongly continuous semigroup (group) are sought. It is shown that a suitable
version of the rank condition, although generally only sufficient for approximate controllability (obser:
vability), is however "essentially" necessary and sufficient in two important cases: (i) when A generates
an analytic semigroup, (ii) when A generates a group. Such generalization of the rank condition is then
used to derive, in turn, easy-to-check tests for approximate controllability (observability) for the im-
portant class of normal operators with compact resolvent. In the case of finite number of scalar controls
(observations), the tests are expressed by a sequence of rank conditions, using the complete set of
eigenvectors of A; moreover, they imply that the minimal number of scalar controls (scalar observations)
be not less than the highest multiplicity of the eigenvalues of A. Applications to heat equation as well
as wave equation types of systems in finite spatial do.mains are included. The case when A fails to have
a compact resolvent is also analyzed in two examples describing the heat equation in infinite spatial
domains, by employing a general procedure.

1. Introduction. Consider the abstract control system

"2 Ax + Bu m’2 Ax + biui, bi X, bi "--scalar
i=1

where both X and U are complex 1, separable Banach spaces and B e (U, X),
the Banach space of all bounded linear operators from U into X. Unless other-
wise stated, X is always intended infinite-dimensional. Am refers to the case when
dim U m or dimBU m, BU range of B. When rn 1, we shall write b
instead of b. The operator A is assumed throughout to satisfy the following
assumption H1.

H1. A is (closed, linear, with domain D(A) dense in X and range (A) in X
and) the infinitesimal generator of a strongly continuous semigroup or group (of
class Co)of bounded operators S(t) [3], [9], [10], [5].

If the control function u u(t),t > O, is (strongly) continuously differ-
entiable2, u CI0, T], U], then the Cauchy problem associated with 5 has a
unique solution given by

(1.1) x(t, Xo u) S(t)Xo 4- S( z)Bu(z) dz

For application of the results to the case when X and U are real, see remark in [8, p. 398] or in

[7, p. 694].
For other sufficient conditions on Bu(t) to ensure that (1.1) is the unique solution, perhaps a.e.,

of the Cauchy problem, see [1], [2, p. 103].
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with the initial point Xo D(A) [10, p. 486]. Notice that the solution x(T, Xo,U)
at the finite time T always lies in D(A) and hence (with A unbounded) cannot
exhaust all of X when u runs over all Ca[[0, T], U]-controls. In other words, the
above system 50 cannot be exactly controllable in finite time (with the state space
X infinite-dimensional and A unbounded). This fact also holds for the "mild
solutions" of 5, if B is compact [17, 3], [18]. Let Kt be the set of attainability
from the origin of 50, i.e., the totality of solution points x(t, O, u) as u runs over
Call0, t], U]. We then say that 50 is approximately controllable in [0, T], T < oe
(resp. in finite time) in case K’.T X (resp. o, Kt X). Within the context of
the present paper, the problem of approximate controllability was studied in the
fundamental work of Fattorini [8], [7] where the terminology "complete control-
lability" was used instead. Necessary and sufficient conditions for approximate
controllability in finite time of 50m (more specific than the general characterization
(1.3’) below) were given in [8] under the additional assumption that (X be a Hilbert
space and) A be a self-adjoint operator (or a normal operator satisfying some
further properties). Fattorini’s analysis uses the technical apparatus of the so-
called ordered representation theory of a Hilbert space for self-adjoint (normal)
operators [5, Chap. 12] and, moreover, his criterion requires the knowledge of
some ordered representation. The present paper originates from a somewhat
different viewpoint and employs, in particular, a less technical apparatus. It
intends to explore possible generalizations (or lack thereof) to infinite-dimensional
spaces of the familiar rank condition" rank [B, AB,..., A"-1B] n, for control-
lability when X R", U R (here approximate and exact controllability are the
same concept).

If the operator A is bounded on X, we have already shown that’(i) the
generalization of the rank condition is given by

(1.2) s---O {A"BU, n 0, 1,... } X for 50, BU range of B,

(1.2’) (resp. {A"bi, 1,..., m; n O, 1,... X for 50")

and characterizes approximate controllability (the length of the time interval is
immaterial) [17, Thm. 3.1.1]; (ii) moreover, with B compact (and X infinite-
dimensional) exact controllability in finite time for 50, even within the class of
locally Ll-controls, can never arise; this holds, in particular, for 50,. [17, 3.3]
(see also [18]).

The case when the operator A acting on the state is unbounded is known to
be theoretically reduced to the bounded operator case, via the introduction of an
associated system where the operator acting on the state is the (bounded!)
resolvent R(., A) [7, Prop. 2.3] (see Appendix A). (What is believed to be the first
example where approximate controllability of a system with unbounded operator
is characterized by studying the associated system via (1.2) is given in 17, Example
3.2.7].) In spite of this, we shall explore in 2 the possibility of extending (an
appropriate version of) (1.2) to the original system, in the general case when A
simply generates a strongly continuous semigroup, or group, S(t).

For simplicity of exposition, we summarize here only the results for 50,.,
leaving those for the system 50--as well as more precise statements--to the sec-
tions to follow. We shall basically see that (1.2’) is still a sufficient condition for
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approximate controllability of 50,,, but it is generally no more necessary. However,
in the two important cases when either S(t) is an analytic semigroup for > 0,
or else is a group, (1.2’) is necessary and sufficient at least for a class of vectors bi
dense in X. In 3.2, we shall then show, as an illustration, that for the important
class of normal operators with compact resolvent, such a characterization leads,
in turn, to easy-to-check tests, requiring knowledge of the complete sets of eigen-
vectors of A. Also, such tests revea! that the minimum number of scalar controls
required for approximate controllability is the highest multiplicity of the eigen-
values for A. In particular, the results for A self-adjoint with compact resolvent
are in agreement with Fattorini’s results [8]. These tests are checked and/or
refined by also using the characterization (1.3) below involving the semigroup or
the characterization in Appendix A involving R(., A). Examples covering heat-
equation in finite and infinite spatial domains, as well as wave-equation types of
systems, are presented in 3.1 and {}4. Section 5 introduces an observation equation
and treats the problem of observability, yielding results that closely parallel those
on approximate controllability. In particular, the tests for observability when A is
normal with compact resolvent generalize those of Sakawa [15], who treated just
a special case of a particular self-adjoint operator. The following consequence of
the Hahn-Banach theorem will be used throughout the paper.

PROr’OSIa’ION 1.1 [9, p. 31]. Let X be a normal linear space and E an arbitrary
set in X. Then {E} X if and only if the zero functional is the only bounded
linear functional that vanishes on E.

It follows easily, via (1.1) and the above proposition, that 5 is approximately
controllable in [0, T] (in finite time) if and only if

(1.3) x*(S(t)BU) O, 0 <= <= T, (0 t),

for all x* e X* (dual of X), implies x* 0; see also [8] for an equivalent formula-
tion. In particular for 50,,, the above condition becomes

(1.3’) x*(S(t)bi) O, 0 <__ < T, (0 <__ t), 1,..., m,

for all x*e X* implies x* 0.

2. A general result. Before stating the general result extending (1.2) to the
case when A is unbounded, we define D(A) f),_ D(A") and recall that, for A
satisfying HI, D(A) is a subspace and is still dense in X [3, p. 123. Also, we call3

a vector y X analytic for the semigroup (resp. group) S(t) in case the map:
S(t)y is analytic in for > 0 (resp. for - < < ). Let ria(A) denote the

totality of analytic vectors for the semigroup (group) generated by A. In the
applications that we have in mind, S(t) is either an analytic semigroup for > 0
or is a group. In the first case rio(A) X. In the second case, ria(A) is dense in X
[9, p. 310] [23, p. 592], and moreover, the above map is infinitely many times
differentiable if and only if y e D(A) (since S(t) carries D(A) into itself); hence
rio(A) c D(A) in the group case4. For an arbitrary semigroup ria(A) need not be
dense in X [23, p. 600].

Define U {u e U :Bu Do(A)}, U {u U ]Bu rio(A)} and Uao U

The author is indebted to Prof. S. K. Mitter for bringing to his attention reference [23].
b is analytic for the group S(t), if and only if (i) be Doo(A) and (ii) =o A"bt"/n! S(t)b.
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f-) Uo, i.e., U, Ua, Uaoe are the largest subspaces of U such that BUo c Do(A),
BU c rla(A),BUao Do(A) f’) r/a(A), respectively. We have: BUa BUoo
if S(t) is an analytic semigroup and BUao BU if S(t) is a group.

We also list here, for convenience, another hypothesis for A, to which we
shall refer in the sequel.

H2. The range of S(t) in X belongs to D(A) for each > 0 (differentiable semi-
group [28, p. 50]).

It is then known [3, p. 15], that, under assumptions H1 and H2, S(t) is n times
continuously differentiable in the uniform operator topology for 0 < < ov and
all integers n > 0, and d"S(t)/dt" A"S(t) (X). Assumption H2 is weaker than
analyticity of S(t) [3, p. 16].

The sought for generalization is provided by the following theorem, where,
unless otherwise stated, n runs as follows, n 0, 1, 2,

THEOREM 2.1. Let A satisfy HI. A sufficient conditionfor L’ to be approximately
controllable on [0, T] is given by

(2.1) s--- {A"BU} X

or, more generally, by

(2.1’) s-- {A"S(I)BUoo X, arbitrary in [0, T].

When A also satisfies H2, then (2.1’) can be relaxed as to replace BU by BU, with
arbitrary in (0, T].

Conversely, assume that BUa is dense in BU. Then a necessary condition for
L’ to be approximately controllable on [0, T] is given by

(2.2) s--- {AnS(I)BU,o} X, arbitrary > O.

If S(t) is an analytic semigroup for > 0, then (2.2) can be relaxed as to replace
BU, (= BU) by BU. Also, if S(t) is a group, in (2.2) can be any real number, in
particular O, and (2.2) simplifies, in this case, (BUa BUa), to

(2.2’) s- {AnBUa} X.

Remark 2.1. As stated below, A"S(t) S(t)A" on Do(A); moreover, if assump-
tion H2 also holds, then A"S(t) is a bounded operator on X for > 0 and so
coincides with the closure S(t)A".

The important case with a finite number of scalar controls is singled out in
the following corollary, where, unless otherwise stated, n and run as follows:
n=0,1,2...;i= 1,...,m.

COROLLARY 2.2. Let A satisfy H1. A sufficient condition for ’m to be approxi-
mately controllable on [0, T] is given by

(2.3) s- {A"b,} X, b, e D(A),
or, more generally, by

(2.3’) s-- {A"S()b,} X, bi e Do(A), arbitrary in [0, T].

When A also satisfies H2, then the bi’s in (2.3’) can be relaxed to be any vectors in
X with in (0, T].

Conversely, a necessary condition for m to be approximately controllable on
[0, T] is given by
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(2.4) s---{A"S([)bi} X, [arbitrary > 0, when bie rla(A) Doo(A).

If S(t) is an analytic semigroupJbr > O, then the bi’s in (2.4) can be’ relaxed to be
any vectors in X. Also, ifS(t) is a group, in (2.4) can be any real number, in particular

O, and (2.4) simplifies, in this case, to

(2.4’) s-- {A"bi} X when b rla(A ).

Proof of Theorem 2.1. First of all, we need the following facts. Let y Doo(A).
Then S(t)y can be differentiated infinitely many times in and from [3, (1.1.9),
Prop. 1.1.6, p. 11] it follows that

d"x*(S(t)y)
(2.5)

dt"
x*(S(t)A"y)= x*(A"S(t)y), >_ O, n O, 1,2,...

for x* X*. However, under assumption H2, we have for all > 0,

(2.5’)
d"S(t)

A"S(t) (X), n O, 1,

[3, pp. 15-16], and so A"S(t)can be applied on all of X.
In view of the characterization (1.3), we need only show that (2.1’) implies

(1.3)" conversely, (1.3) implies (2.2). (2.1’) (1.3). Suppose by contradiction that
*(S(t)BU) 0 and hence *(S(t)BU) =- O, 0 <= <= T, for some nonzero if* s X*.
Differentiate successively this last identity to show, by induction, using (2.5), that
*(A"S(t)BUo) =- *(S(t)A"BUo) 0, 0 _< _<_ T, n 0, 1, Set to get,
via Proposition 1.1 and the fact. that ,* is nonzero, a contradiction with (2.1’).
(2.1) is obtained for 0. The statement for A satisfying H2 is obtained similarly
using (2.5’) instead of (2.5). (1.3) (2.2)’ Suppose that (2.2) is false and so, by
Proposition 1.1, there is a nonzero *X* such that *(A"S()BUa O,
n 0, 1, .... By analyticity in of S(t)BUa, it follows, via (2.5), that *(S(t)B U,o)

0 in a neighborhood of , and hence for all >= 0. Since BUa is dense in BU, it
follows by continuity that *(S(t)BU) 0, >- 0, which contradicts (1.3). Q.E.D.

Remark 2.2. When A is bounded and so generates a uniformly continuous
analytic group S(t) exp (At), - < < , in the above theorem and corol-
lary can be taken to be zero. Hence S(t) S(0) ! (identity) and the conditions
(2.1)and (2.3) are necessary and sufficient, with Do(A) No(A) X, Uo U, U
and any b X. Theorem 2.1 reduces therefore to the condition (1.2).

The point is, however, that when S(t) is an analytic semigroup, > 0, in the
above necessary conditions can be taken to be zero, only when the generator A
is bounded, since analytic groups generated by unbounded operators do not exist.
The only place in the literature where we were able to find such an assertion is
[9, p. 278, also p. 477], as part of a sophisticated treatment on holomorphic semi-
groups. We therefore sketch here a quick proof of this fact, even under weaker
assumptions. Let S(t) be (i) a strongly continuous group of bounded operators on
X, (ii) differentiable for > z >= 0 (.. S(t)X S(A), for > r). Then its infinitesimal
generator A is a bounded operator on X. In fact, the closed operator AS(t) is well-
defined on X for > r and, by the closed graph theorem, is bounded on X. But
then the operator [AS(t)]S(-t) A is also bounded on X.
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Remark 2.3. For simplicity of notation, we limit our comments to 5om, the
extension to 5 being immediate.

(i) Let S(t) be a group" a characterization for approximate controllability
on [0, T] of 5O,," (A, (bl, brn)) is then given by {Anbi} X, at least for vec-
tors bg in the set r/,(A) dense in X.

(ii) Let S(t) be an analytic semigroup, > O" the same characterization is then
given by {A"S()bg} X, any bi X, arbitrary positive time. Also let Xo

(JotS(t)X (cD(A) [3, p. 11]), i.e., bi X0 in case b S(’ii(i, for some iX
and i > 0. Xo is dense in X [9, p. 208]. Now let bg Xo" then due to the arbitrariness
of in (ii) above (see also Remark 2.5)

sp {A"b,} g- {A"S(I)5,} X s-- {A"S(t)b,} X, and arbitrary > 0,

(A, (/ 1, "’",/,,)) approximately (A, (b 1, "’", b,,)) approximately
controllable on [0, T] controllable on [0, T}.

Hence, for a semigroup analytic for > 0, the condition g- {A’bi} X is neces-
sary and sufficient for approximate controllability on [0, T] of (A, (b l, "",

at least for vectors bi in the set Xo dense in X.
Generally speaking, however, even with S(t) analytic semigroup, (r/,(A) X),

(2.3) and (2.4) are not the same (see examples in Remark 2.4). Notice also that S(t)
is never a homeomorphism on X (one-to-one, onto) in the present case (which
would then imply the equivalence of (2.3) and (2.4))" this follows from [9, Thm.
16.7.5, p. 470] which is not applicable to an analytic semigroup generated by an
unbounded operator (see Remark 2.2) in which case we have 0 p(S(t)), > O.

Remark 2.4. The following example (heat equation in an infinite rod) shows
that, when A is an unbounded generator of a semigroup which is not a group,
condition (2.3) need not be necessary for approximate controllability, even in the
analytic case and with A self-adjoint if bi q X0 hence (2.3) and (2.4) are in general
not equivalent for S(t) analytic, > 0.

Let X L2[-o o],Af dZf/d2. (in the sense of distributions)with
D(A) {f:J’"/_.2--(30, OO]} as in Example in [8]. (Notice that in such a case
A is self-adjoint but does not have a compact resolvent and in fact a(A) (- , O-l,
[8], [5, p. 639]" compare with 3.2.) Using the ordered representation theory,
Fattorini showed that the minimum number of controls to make A approximately
controllable is two and this happens, for instance, when b 1() is different from zero
and has compact support and b2() b l( h), h :p 0. We shall rederive such a
result (actually its generalization) in 3.1, using our Corollary 2.2. Choose in
particular bl() to vanish identically outside a finite interval, and to be arbitrarily
smooth in the interval as to define a C-function on V-, o. Say" bl()

exp [(2 1)-1,_ < < 1, and 0 for I[ >= 1. Then bl(" and b2(. belong
to Do(A) and, moreover, they vanish identically together with all their derivatives
outside [-1, + h] for h > 0 ([-1 + h, 1] for h < 0). Hence, in this case with
m 2, the left-hand side of (2.3) is a proper subspace of L2[-o(3, o(3 and yet the
system defined by A, b 1, b2 is approximately controllable on [0, T]. Notice that
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biq Xo (see Remark 2.3(ii)). One can also verify directly that the necessary
condition (2.4) is, in this case, indeed satisfied, in agreement with Fattorini’s
result. See a more complete treatment of this example in 3.1. A similar counter-
example on the necessity of the condition (2.3) can be obtained by using the self-
adjoint operator A with no eigenvalues, defined in Example 3 in [8, p. 401, 2nd line
from the top].

Remark 2.5. The above proof of Theorem 2.1 also shows that the subspace
sp {A"S(t)BU,,} is independent on for -oo < < c if S(t) is a group, and for
> 0 if S(t) is only a semigroup. Similarly, if S(t) is an analytic semigroup, > 0,

the subspace s- {A"S(t)BU} is independent on for > 0.
Remark 2.6. One can obviously write (2.2) as (see Remark 2.1)
C1 sp {S()A"BU,,oo} C1S(I) sp {A"BU,} C1S(){C1 sp {A"BU,,}}

since S() is bounded. (Here the closure has been denoted by C1.) Now let S(t) be
analytic for > 0. In this case (BUao BUoo), if (2.1) and (2.2) both hold, then
the range of S(t) is necessarily dense in X and so 2 0 cannot belong to Ra(S()),
the residual spectrum of S().

Recalling Remark 2.3(ii) above, one concludes" when S(t) is analytic, > 0,
and (2.1) is equivalent to (2.2), then 2 0 is neither in the resolvent set nor in the
residual spectrum of S(t), > 0" conversely, if (2.1) holds and the range of S() is
dense in X, then (2.2) follows’this is the case, e.g., with A normal, to which we shall
turn in 3.2.

3. Illustrations. The present section deals with the application of the general
result of 2, the extension of the rank condition, to classes of examples of physical
interest. Our illustrations cover, in particular, all the self-adjoint examples treated
in [83, for which necessary and sufficient conditions were given, using the ordered
representations of Hilbert spaces, plus knowledge of such a representation in each
single case. We rederive such conditions using our Corollary 2.2. Moreover, our
illustrations include also hyperbolic systems.

3.1. Two seif-adjoint examples in infinite spatial domains.
Example 3.1 (heat equation in an infinite slab) I8, example 1, p. 399. Let

X L2[-oo ct), Af d2f/d2 with D(A) {fe X, Afe X}, where Afis under-
stood in the sense of distributions. A is self-adjoint, and so the associated semi-
group is self-adjoint and analytic for > 0 [9, p. 588]. We shall now use the
extension of the rank condition, Corollary 2.2 (see also Remark 2.3(ii)), to derive
that

(a) the minimal number of scalar controls which make A approximately
controllable is two;

(b) the pair A, (bl, b2)), bi X is approximately controllable if and only if

(A) bl((D)/2( (D b l( gO)/2)Z ((D) =/= 0 a.e. in co > 0,

Here
f(co) 1.i.m. (2rc)-1/2 | ei’f({) d

is the Fourier-Plancherel transform (isometric isomorphism of L2[-, onto

itself.) [21, Corollary VI.2, p. 1543. These results are in agreement with [8, where
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they were derived using instead the ordered representation theory of X with
respect to A. Our proof proceeds through the following steps. First let b i,

1,..., m, be arbitrary vectors in X and be an arbitrary positive time.
(i) We have the known fact that

](co) e-b,(o),
as it follows by solving the homogeneous equation by Fourier-Plancherel
transform.

(ii) Also, f D(A) if and only if o2f(o) L2[-, oo] and

[8, p. 399], [26, Chap. I, 1.7].
(iii) But S(t)X D(A), > 0, since S(t) is analytic for > 0 [3, pp. 15-16].

Hence

A"S(t)bi S(t/2)A"S(t/2)b D(A), > O.

(iv) Applying step (ii) repeatedly yields

(v) Since the Pourier-Plancherel transform defines an isometric isomorphism
of X onto itself [21, p. 154], we have that

if and only if

(A"S(Obi, g) 0, n 0, 1,..., 1,..., m, g X,

g=0

o,
=0

with (.,.) inner product on X.
(vi) We then have that

implies

(n)

n=0,1,..., i= 1,...,m,

a.e. in co > 0

[19, p. 62] [27, p. 107] (the value of is immaterial as long as > 0).
(vii) It is then easily seen that, for m 1, the identity (B) in (vi) does not

imply
Also, for m 2, the identity (B) in (vi) can be written as

b()
=0 a.e. in co > 0

b2(o) b2(-co (--a)
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and implies (co) 0 a.e. o < co < oe if and only if (A) holds. Claims (a) and (b)
are proved.

As remarked in [8], it is easy to check that (A) holds if bl() is different from
zero and has compact support and b2()-= b l( -h), with h 4: 0. This is the
special case we have used in Remark 2.4 (which of course can also be proved
through a direct use of the extension of the rank condition, i.e., first implication
in step (v), without introducing the Fourier-Plancherel transform.)

Notice that the same procedure used above, when applied to the space
Lz(Rr), r > 2, shows that the heat equation on Rr, r >= 2, is never approximately
controll,able, if it is acted upon only by a finite number (no matter how large)
of scalar controls, in agreement with [8, example 1]. For instance, for R3, the
analogs of steps (i) and (ii) above are now

[i](col’ 092’ 603) e-(++’)ibi(col’ CO2’ 0)3)

and

2)hill(CO 092 0)3,602 60 3 --(COl2 nt- CO -+- 093

respectively. However, the implication in step (vi) above now fails, since the
functions {(0921 + co + co)" e-’l+’2+’o)}, n 0, 1,2,..., are not complete in
Lz(R3+), R3+ being the positive 3-space.

Example 3.2 (heat equation in a semi-infinite slab) [8, example 2, p. 400].
Let X L2[0, ],Af= dZf/d2 with D(A)= {f, AfeX, f(O)= 0}. A is self-
adjoint [5, p. 1384], with a(A)= (-, 0] (so that A does not have a compact
resolvent) and generates a self-adjoint analytic semigroup for > 0 [9, pp. 588-
589]. We shall now use the extension of the rank condition, Corollary 2.2, (see
also Remark 2.3 (ii)), to derive that" the pair (A, b) is approximately controllable
if and only if

b(co) 4:0 a.e. in co >= 0.

Here

f(co) 1.i.m.N__,o (2/7)1/2 f (sin co)f()d

is the Fourier sine transform (isometric isomorphism of L2[0 0(3] onto itself
[5, p. 1388]). This same result was proved in [8], using instead the ordered repre-
sentation theory of X with respect to A.

Our proof follows the pattern used in the previous examples 3.1. Let b be an
arbitrary vector in X and be an arbitrary positive time. We have the known
fact that

[S([’-’-b] (co) e--’/(co)
(’- is the proportionality sign) as it follows by solving the homogeneous equation
by the Fourier-sine transform. Moreover, from

A"S(t)b S(t/2)A"S(t/2)b e D(A), t>0, n=0,1,...,

(implied by the analyticity of S(t) [3, pp. 15-16]) and from
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[5, p. 1388], it follows that

[AnS(f)b](co) coin e-2i(co), n=0,1,...

Also, since the Fourier-sine transform is an isometric isomorphism of X onto
itself, we have that

(A"S(?)b,g)=O, n=0,1,..., geX,

if and only if
=>g =0

(A"S(?)b, ,) O, n =0,1,...

where (.,.) is the inner product on X. Then

0 (A"S()b, ) co2, e-,2/(co)(co)dco

implies easily b(co)g(co) 0 a.e. in co _>_ 0 19, p. 62] [27, p. 107]. (The value of is
immaterial as long as is positive). This, in turn, implies ,(co) 0 a.e. in co >__ 0
if and only if/(co) =/= 0 a.e. in co >= 0. Our claim is proved.

It appears that the procedure followed in the above two examples is quite
general. Moreover, it shows that knowledge of S(?) is not necessarily needed in order
to apply the characterization -{A"S(t)bi} X,t > 0, for approximate con-
trollability on [0, T] in the analytic case. See also 3.2.

3.2. The case when A is a normal operator with compact resolvent. Throughout
the present section X will be specialized to be a Hilbert space and the operator A
is assumed to satisfy, in addition to H 1, one or both of the following assumptions.

H3. A is normal and R(/o, A) is compact as an operator on X for some t0

(this implies R(#, A) compact for all # in p(A) [10, p. 187])"
H4. the eigenvalues of A are contained in some sector {2" ]arg (2 a)l

< rt/2 + fi} a real, 0 < fl < /2. (This is automatically true, if A is self-adjoint and
satisfies H 1.)

The semigroup of A satisfying H1 and H3 is normal (self-adjoint, if A is
self-adjoint) and given explicitly below in (3.1)" it is analytic if and only if H4
also holds, in which case the domain of analyticity is the sector [arg 21 < ft. See
9, pp. 589-991, [21, pp. 254-9. So H4 implies H2, but not conversely. Under H2,
the spectrum of the generator is contained in a logarithmic sector [28, Thm. 4.9,
p. 57]. The class of operators satisfying H1 and H3 usually arises in classical
boundary problems [10, p. 187].

In this section, we shall purposely use the general results of 2 to derive
explicitly verifiable tests for approximate controllability on [0, T] for the class
of operators satisfying H 1, H3, H4, expressed solely in terms of the coordinates of
bi with respect to the natural basis of the eigenvectors of A. Such conditions agree
with those derived by Fattorini in [8, example 4] when A is self-adjoint using the
ordered representation theory or in [7, Cor. 3.3] using the theory of spectral sets.
Extensions and/or refinements of such tests, when H4 is removed as to cover the
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import case of unitary groups (wave equation) are also included using either the
characterization (1.3) based on S(t) or the characterization in Appendix A, based
on R(., A). In all cases, the obtained tests are a natural generalization to the present
situation of finite-dimensional facts, as explained in Remark 3.2.

In view of the assumption H3, the following holds [10, p. 277] (see also [13,
p. 487] [16, p. 343] [5, p. 1330]).

(a) There is an infinite sequence {2j.}, j 1, 2, ..., of distinct isolated eigen-
values of A, 12jl oo, j --+ oo, each with finite multiplicity rj equal to the dimen-
sionality of the corresponding eigenmanifold. In view of assumption H1, the
eigenvalues 2j have real parts uniformly bounded above; moreover the spectrum
o(A) of A consists only of the 2j’s (point spectrum).

(b) There is a correspondent complete orthonormal set {Xjk} of eigenvectors
ofA, k= 1,...,rj.

(c) From the (unique) expansion x 1 (x, Xjk)Xjk one gets

rj rj

Ax 2 (X, Xjk)Xjk forxD(A)= {x X [2j[ [(X, Xjk)[ <
j=l k=l j=l k=l

(d) for 2 not in a(A) and each y in X we have

R(2, A)y (2 A)- y (y, Xjk)Xjk.
j= 2- 2jk=

Such a resolvent is compact.
One then verifies that the semigroup S(t) is given by

rj

(.1) s(t)x Z e; Z (x, x)x, 0, x x.
j= k=

By induction, one finds from (c), that (n 0, 1, 2,... 1, ..., m)

(3.2)

(3.3)

Now let > 0. From (3.1) and (3.3) one gets

rj

(3.4) A"S(:)b, 2’j ea’ (bi, Xjk)Xjk, b e D(A),
j=l k=l

or any b X, if H2 (in particular, if H4) holds.
Remark 3.1. It follows directly from (3.1) that 2 0 Pa(S(t)), > 0. Hence

S-l(t) exists on(S(t)), 0, and in fact,
rj

s-l(t)y Z e-’t 2 (y, xjk)xjk, y e (S(t)), O,
j=l k=l

Conversely, if R(2, A) satisfies (d) with {Xjk} an orthonormal set and 1/12 2j[ 0, then R(2, A)
is normal and compact [19, p. 208], in particular, self-adjoint if 2 and 2 are real [16, p. 342].

Here read 2 0, if 2 0 for some j.
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as one can check directly. From the general theory [16, p. 251] one has C1 (Sq))
X. Notice that for A satisfying also H2, S-l(t), > 0, is unbounded since
Re 2 o as j o o. Hence 2 0 Ca(S(t)). (See Remark 2.6.)

In the following, we shall need to refer to the following definition" sup r _a___ r
=< i.e., r is the highest multiplicity (if r < ) of the eigenvalues of A. If r 1, we
simply write {xs} instead of {xjl Also, for each j and each m-tuple b of vectors

in X, we define the ro m matrix Bo as follows"

(bl Xjl), (bin, Xjl)
(bl, Xj2), (bin, x2)

(bl, x#), (b,,, x,)

and denote by BJ its transpose.
Remark 3.2. Before proving the results of this section, we shall illustrate them

in the finite-dimensional case, dim X n, within the framework of the classical
theory and linear algebra. Let A be a normal operator defined on R". Then a basis
of eigenvectors can be chosen, so that the matrix representing A (denoted with the
same symbol) is diagonal, with each diagonal element an eigenvalue A diag
[21, ..., 2,]. If b is a vector in R" with coordinates b 1, ..., b", then

det [b, Ab, A"-lb] b 1. b2 b". V(21,..., 2,),

where V(21, ..., 2,) is the Vandermonde determinant of the numbers 21, "’, 2,.
Therefore

(i) If/ 1, "’", ;, are distinct, it follows that the pair (A, b) is controllable ifand
only if: (*)b 0, 1, ..., n. So, in this case, A can be made controllable with
just one scalar control.

(ii) If 21, ..., 2, are not all distinct, one needs more than one scalar control
in order to make A controllable. More precisely, let 21,..., 2s be the distinct
eigenvalues of A with multiplicity r l, ".-, rs, rs n and r max rj. Denote by
{Xk} the basis of correspondent eigenvectors j 1,..., s; k 1,..., rj. Let
b l, "-., b,n be the column vectors of the n m matrix B and partition B in blocks
Bj of dimensions rs m, where Bj is defined as before. Then the matrix B and the
controllability matrix [B, AB,..., A"-IB] are given by

B1

B= B2

B

[B, AB, A"- B

B1 ,,IB1 /]--1B1
B2 ,,2B2 /],- 102

B 2rB 2rn-lB
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respectively, and the latter has full rank n if and only if: (**) rank Bj rj, j 1, ..., s.

(Such results (*) and (**) are believed to be known, although we could explicitly find
in the literature only (*) for A symmetric [12, p. 102] .) We now proceed to generalize
(*) and (**) to infinite-dimensional state spaces.

First, for vectors bi, 1, ..., m in X, consider the following condition:

(3.5) rank Bj rj, j 1,2, ...,
which in turn implies m _>_ r.

For m 1, (3.5) means that all the coordinates of b are nonzero"

(3.5’) (b,xj) - 0, j 1,2,

We start with a proposition in the case when A is a normal compact operator to
get a result which is of interest in itself and which will also be applied in the sequel
to the unbounded operator case.

PROPOSITION 3.1. Let A be a normal compact operatorfor which zero is not an
eigenvalue. Then 2’m" (A, (bl, b,,)) is approximately controllable on [0, T] if
and only if(3.5) holds.

Proof Denote by {laj} the eigenvalues of A of multiplicity r. The associated
eigenvectors {Xk},j 1, 2, ..-, k 1,..- r, form a basis for X and we have

rj

6)(3. A"bi= zj (bi,xJk xJk, n O, 1, i= 1, m,
j= =

in agreement with (d) above [19, pp. 207-208]. By (1.2), we must show that N
s-- {A"bi} is the whole space X if and only if (3.5) holds.
Only if: if, by contradiction, rank Bf < rj for some j (Bf transpose of Bj),

i.e., sp Bf Xj (X-eigenspace spanned by xl, -.., xr-); it then follows from (3.6)
that N X.

/f: let, instead, N X. N is invariant for A and so N +/- is invariant for the
normal compact operator A*, hence for(A*)* A [24, Thm. 7]. Hence [24, Thm. 1]
N- contains an eigenvector xj of A. Equation (3.6) then yields

0 (A"bi, xjr,) lay (bi, x)

with ltj 4: 0, 1, ..., m, and so rank B < r: a contradiction. Q.E.D.
COROLLARY 3.2. Let A be as in Proposition 3.1. Then :(A, b) is approxi-

mately controllable on [0, T] if and only if(3.5’) holds.
Actually, the above proof of Proposition 3.1 only requires that A be normal

and have a set of eigenvectors forming a basis, so that (3.6) holds and zero not be
an eigenvalue (e.g., A normal compact operator and identity).

We next apply the above results to the general unbounded case.
PROPOSITION 3.3. Let A satisfy HI, H3 and H4. Then sp {A"S()bi} X,

> O, bit X, if and only if(3.5) holds.
Proof Only !1’. If, instead, rank B < r for some j, then there is a nonzero

r-dimensional vector , with coordinates [*(Xl), ..., *(xjr)] for some nonzero

if* X*, ff*(xj) 0,j : j, k 1, ..., r, such thatB 0. Hence, (3.4) implies
*(A"S()bi) 0, n 0, 1,... 1,... m; > 0, and we have a contradiction,
via Proposition 1.1.
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/f (i) The bounded operator AS(t), > 0, is normal on (A) (A*), hence
on X, since S(t) and S*(t), as well as A and S*(t), A* and S(t), and A and A*
commute on (A). On (A), we then have ([10, p. 168] for the first step)

[AS(t)][AS(t)]* AS(t)S*(t)A*= S*(t)A*AS(t)= [AS(t)]*[AS(t)].

(ii) AS(t) is compact on X for > 0" this follows from the expansion (3.4)
with n coupled with the fact that 12j eZJtl 12j[ eRe jt 0 as j o for positive,
fixed but otherwise arbitrary [19, p. 207, also footnote 51.

(iii) Let > 0 and set b’i S()bi. Then (b, xjk) eX(b, xjk). If B denotes
the matrixB after Remark 3.1 for the vectors b’, then rank B rank Bj. Hence, by
Proposition 3.1 applied to AS(E), m - {[AS()]"b’}, n O, 1,..., 1,. m,
is all of X if and only if (3.5) holds.

(iv) By Remark 2.5, N s-- {A"S()b} -U {A"S(t)b,, for all > 0} and so
M c N. Finally, if N X, then M X and by the "if" part of (iii), (3.5) also
fails. Q.E.D.

Remark 3.3. For A satisfying H1, H3 and H4 the following results are con-
tained in the proof of Proposition 3.3 (here n=0, 1,-.-; j-1, 2, ...; i--1, ..., m)"

s- {[AS(t)]"b’i} X ., rank B) r. rank Bj rj . s- {A"S(t)b} X

with b’ S()bi and and arbitrary positive times.
Proposition 3.3 and Corollary 2.2 imply (see also Remark 2.3 (ii)) the following.
TI-mORWM 3.4. Let A satisfy HI, H3 and H4. Then m’(A, (bl, ..., b,,,)) is

approximately controllable on [0, T] ifand only if(3.5) holds.
Remark 3.4. It follows from Theorem 3.4 that the operator A can be made

approximately controllable with a finite number rn of scalar controls if and only if
r < c, in which case m >= r.

COROLLARY 3.5. Let A satisfy H1, H3 and H4. Then ql"(A, b) is approxi-
mately controllable on [0, T] ifand only if(3.5’) holds.

Theorem 3.4 was arrived at as an application of the general result in Corollary
2.2 to the present class of operators. We next complement Theorem 3.4. We remove
the assumption H4 of analyticity for the semigroup and so our conclusion refers to
approximate controllability in finite time (as opposed to approximate control-
lability on [0, T]), unless the vectors b are analytic vectors" b r/,(A).

THEOREM 3.6. Let A satisfy H1 and H3. Then ,,’(A,(bl, ..., bin)) is ap-
proximately controllable infinite time (on [0, T], ifb rla(A)) ifand only/f(3.5) holds.

COrtOAR 3.7. Let A satisfy H1 and H3. Then ’ "(A, b) is approximately
controllable infinite time (on [0, T] if b qa(A)) ifand only if(3.5’) holds.

ProofofTheorem 3.6 based on the explicit expression ofthe semigroup. We apply
the general characterization (1.3’) to the particular form (3.1) of the semigroup
generated by A. Hence, we need only show that (3.5) holds if and only if the con-
dition

(3.7) x*(S(t)bi) et (bi,xj,)x*(xj,) 0, 0, 1,..., m,
j=l k=l

for all x* X*, implies x* O. If" Suppose by contradiction that rank B < r for
some j. Then there is a nonzero r;dimensional vector , with coordinates
[2"(x1) 2*(x,)] for some nonzero * X*, ff*(x) O, j - , k 1,... r,
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such that B-j 0. Hence, in view of (3.7), it follows that .*(S(t)bi) =- O, >_ O,
i-- 1,..., m, and m is not approximately controllable, since * is nonzero.

Only/f: Suppose, by contradiction, that

(3.8) eJ’0qj 0, t>_0, i= 1,...,m,
j=l

for zij =l(bi, xjk)*(xjk) and 0- *e X*. We shall show below that (3.8)
implies zj 0, i= 1,..., m; j--1, 2,..., i.e., in compact form, Bj 0,
j 1, 2, with j [*(xj1), ", *(xr)]r. Since {xk} form a complete set in
X, and .* is nonzero, then fi is a nonzero vector for somej j, via Proposition 1.1.
Hence rank B)" < rj (which is automatically true if m < rj) and this is a contradic-
tion! It remains to show i 0.

For 2 with Re 2 > O0o we have from (3.8), [5, Thm. 11, p. 622] and (d) above,

fo "0 e- ’2*(S(t)b) dt ff*(R(2, A)b)
= 2 2

and by analytic continuation of the right-hand side we have

Oi + : 0 for all 2 - /],j*(R(2, A)b)=
2- 2 = 2- 2

(the series is (pointwise) unconditionally convergent, i.e., absolutely convergent at
each 2 4= 2i, since the expression (d) above for R(., A)y is independent on the order
of the index j).

Next, since the 2i’s are isolated, pick a circle F centered at 2 with sufficiently
small radius as to enclose only 2 and leave the other 2i’s outside. Multiply the
above identity by (2i)- and integrate over F. Using standard Cauchy’s theorems
we get" ai + 0 0, since the summation from j 2 is analytic within F. By
induction it follows that oij =_ O. Q.E.D.

Remark 3.5. When {Re 2} are isolated <Re 22 < Re 2a ;[Re 2j Re2i+k[
>= 6 > 0for eachj and k,--in particular when A is self-adjointa simpler argument
can be given to show zij _=_ 0. (i) Assume first that Re 2 < 0. Then (3.8) gives

-)i 0, _> 0. From here it follows 0, since the sum injO .qt_
2 e 2

is bounded above by e -a’=2lzjl, which goes to zero as -+ oo (the series of the
i[s is convergent since the expression (3.1) is independent of the order of the
irdex j). (ii) The general case Re 2 < C is reduced to the previous one (i), by
the translation 2 2j C and application of (i)to {2}. Q.E.D.

We give next another proof of Theorem 3.6 which makes use of the general
result on approximate controllability in finite time as explained in Appendix A.
Such a result reduces the unbounded operator case to the bounded operator case.

Proof of Theorem 3.6 based on the explicit expression of the resolvent R(2, A).
According to (A.1) in the Appendix we must show that" (3.5) holds if and only if
sp {R"(r/o, A)b} X, where r/o is a fixed point in the connected component of the
resolvent set of A containing Re 2 >= coo (e.g., r/o > Re 2i) and

1 r
n 0,1,2,...
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Application of Proposition 3.1 to the normal compact operator R(r/o, A) yields
the conclusion. Q.E.D.

We finally treat the case when the multiplicities rj of the eigenvalues 2j of A
tend to infinity as j- , (e.g., heat equation on the unit square 0 =< 1 _-< 1,
0 -- 2 in R2 [8, p. 402]" here a system of type m is never approximately
controllable, and an appropriate operator B with infinite-dimensional range is
needed).

We confine ourselves to giving the statement ofthe analogue ofthe most general
result for ,,, namely, Theorem 3.6. An analysis of its proof(s) and a geometric
interpretation of its statement shows that condition (3.5) for ,, is replaced, when
the system 5(’ is considered, by the more general condition

(3.9) PjBU =Xj, j= 1,2,..., BU=rangeofB,

where Xj is the rj-dimensional eigenspace associated with the eigenvalue 2j and
Pj is the orthogonal projection X Xs. We have the following.

THF,OREM 3.8. Let A satisfy H1 and H3. Then L"(A,B) is approximately
controllable infinite time ifand only if(3.9) holds.

Notice that (3.9) can always be achieved, by choosing B with (B) X, in
particular, for X Y, by choosing B 1.

Remark 3.6. For simplicity, the following considerations are given for the
system 1, the corresponding extensions to the systems L-m being obtained by
replacing (3.5’) by (3.5). Let b e Xo, i.e., b S()/ for some/ e X and > 0. (b, xs)

e(/, xj). Under the assumptions H1, H3 and H4, as in Proposition 3.3, one has
Xo O(A) and

sp A"b} X ., (, x) O c:, (b, xj) 0 ,-ff- A"S([)b} X

for b Xo and arbitrary > 0. On the other hand, if H4 is omitted and b e qa(A),
it follows from Corollary 2.2 and Corollary 3.7, that {A"b} X , (b, xj) 0:
the implication is valid in fact for any b D(A), as one realizes using the same
argument employed in the "only if" part of Proposition 3.1, when applied to the
expansion (3.3).

4. Examples for 3.2. The first two examples refer to a self-adjoint operator A
generating, therefore, a (self-adjoint) analytic semigroup for > 0 (heat equation
type of systems). The last two examples refer to a normal operator A of the form
A iF, with F self-adjoint, generating a unitary group (wave equation), in agree-
ment with Stone’s theorem [5, p. 1243]. For the first two examples Theorem 3.4
or Corollary 3.5 are adequate, while for the last two one must resort to Theorem
3.6 or Corollary 3.7. Since the heat equation in a rectangle of R" was already
treated in [8, Example 4], we start with the heat equation on a disk.

Example 4.1 (heat equation on a disk). Let X L_(S), where S is the unit disk
in R2, centered at the origin. Let A A, with D(A)consisting of all f X, with
Af X and f 0 on the boundary of S7. The eigenvalues and the nonnormalized
eigenfunctions of A are expressed in polar coordinates (p, 0) by [4, p. 304]

{2.,,,, k.2,.,} and {S,(k,,mp cos nO, J,(k,,mp) sin nO},
n=0,1,..., m= 1,2,...,

A is then self-adjoint with compact resolvent since S is bounded [5, p. 1330].
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where k,,m are the real zeros of the Bessel function J, J,,(k,,m) 0. Except for
n 0, all the eigenvalues are at least double, since they have associated the linearly
independent functions J, cos nO and J, sin nO. Actually all the nonzero k,,m are
distinct [20, pp. 484-5]. The highest multiplicity r in this case is clearly equal to
two.

Hence, by Theorem 3.4, at least two functions bl(p, 0), b2(p, O) in L2(S) are

needed to make A approximately controllable, and this happens if and only if

rank
f bl(p, O)J,,(k,,,,,,p) cos nO dp dO,

bl(p, O)J,,(k,,,,,p) sin nO dp dO,

and either

f b2(p, O)J,,(k,,,,,,p) cos nO dp dO

ff bz(p, O)J,(k,,,,,p) sin nO dp dO

n= 1,2,..., m= 1,2,-..

b (P, O)Jo(ko,,,,p) dp dO :/: O,

or

ff b2(p dO 4: O, 1,2,O)Jo(ko,,,,P) dp m

Here indicates the integral extended over S.
Example 4.2 (Sturm-Liouville operator). Let P(0, P’(0, q(0 and co() be

continuous real-valued functions on the finite interval [a, hi, and assume that
p() > 0 and co() > 0 on [a, b]. Let X be the complex Hilbert space

with inner product

(f, g) f(),()o() d.

Consider the Sturm-Liouville operator Af= [(pf’)’- qf]/co with domain D(A)
{fis C2 in X and satisfies (B.C.)}.

fllf(a) + 71f’(a)= O, fl2f(b) + 72f’(b)= O,

fli and i real constants and I/3l + I11 > 0, 1f121 + 1721 > 0. Then A is symmetric
[13, p. 499] and has a self-adjoint extension still denoted by A since its coefficients
are real [13, p. 536], [5, p. 1295]. Also, A has compact resolvent [13, p. 501],
eigenvalues 2j, j 1, 2, ..., bounded above [13, p. 502] and an orthonormal basis
of eigenvectors. See also [10, p. 274]. Each eigenvalue has at most multiplicity
two [13, p. 502] and hence at most two appropriate vectors bl and b2 in X (as in
Theorem 3.4) make A approximately controllable on [0, T]. Actually, except for
periodic boundary conditions, all the eigenvalues are simple [4, p. 293]: here then
only one appropriate vector b in X (as in Corollary 3.5) suffices to make A
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approximately controllable on [0, T]. For instance if 09 p 1, q _= 0" 1 2
0 321 3"2 a 0, b 1, the eigenvalu.es and the normalized eigenfunctions

are [5, p. 1383] -(jrc)2} and {cosjrc},j 0, 1,... ,respectively. By Corollary 3.5,
a vector b in X makes the correspondent operator A approximately controllable
if and only ifj’ b() cosjrt d 4: 0,j 0, 1, ....

Example 4.3. Let X L2[0, 2rt] and let Ff (1/i)f’, with D(F) given by all f
in X that are absolutely continuous on [0, 27z] and such that f’ is also in X and
f(0) =f(2t). Finally let A iF;see [5, p. 1381], 16, p. 269]. Then A is closed
[16, p. 176], F is self-adjoint with compact resolvent [-5, p. 1381], so that A is
normal with compact resolvent and the spectrum of A consists entirely of simple
eigenvalues 2j ij on the imaginary axis, with (normalized)eigenvectors xj(()
(1//)ei(j), j 0, _+ 1, _+ 2, forming a complete orthonormal set in X.

A generates the unitary group S(t)y Ej eiJt(y, xj)xj. Corollary 3.7 is applicable,
but not Corollary 3.5, and the necessary and sufficient condition for 5al "(A, b)
to be approximately controllable in finite time (in [0, T], if, moreover, b is an
analytic vector) is that" (#)’(b, x) .(g b()eij d 0. Actually, using directly
(1.3’), one gets the more refined result that (#) is in fact necessary and sufficient
for (A, b), b not an analytic vector, to be approximately controllable on [0, T],
T >__ 2ft. In fact, let, by contradiction, Ej e’ej O, 0 <= <= 2re, (b, x)*(xj),
0 - * e X* multiply both sides by ej’ and integrate in over [0, 2rt]. Since the
series is absolutely convergent as in Remark 3.6, we may interchange the integra-
tion with the infinite sum. We then get 3 0 and, by induction ej 0; hence
(b, xj) 0 for some , since * is nonzero, via Proposition 1.1. This is a contra-
diction. Q.E.D.

If X--L2[0,/-] the same argument shows that the minimum time for
approximate controllability is, in fact, I.

Example 4.4 (wave equation).8 Let X =/:/l(f) (R) L2(O), endowed with the
energy inner product. The operator A and the energy inner product are

0
and ([f,g] [fz,gz])x fta {Vfl .Vf2 + g "-2} d,A=

A 0

respectively, where is the spatial coordinate and f is some bounded sufficiently
smooth spatial domain in R". In this case, D(A) {He(O) VI/g/l(f)} 1(O) and
c--Ax represents the wave equation with homogeneous Dirichlet boundary
conditions. A is normal and, in fact, can be written as A iF, with F self-adjoint"

;o(F[fl, g], [fz, g2])x {V(-igx)" Vf2 iAfx"-} d

fo {(ig)" ATz + (iV/) Vg2 d ([fx, g,], F[f2, gz])x

as it follows by Green’s theorem and using the zero boundar conditions. More-
over A has compact resolvent, with eigenvalues 2j--w//],ja. and eigenvectors

A
xj [x,-/jx], where 2 and xj are the eigenvalues and the eigenvectors of A

For wave equation types of systems with control acting on the boundary--as opposed to the
distributed control considered here--Russell has shown, e.g., [14], that approximate controllability
can be achieved only after a critical minimal time.
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on L2( 25, Remark 2.2]. o-(A) consists of isolated eigenvalues on the imaginary
axis, and A generates a unitary group as in Example 4.3. For instance, if n
and (0, ), then 2 _j2, x() sinj,j 1, 2, Hence the eigenvalues
2 +_ ij of A are all simple. According to Corollary 3.7, one (suitable) function
b()--bl(),b2()] X is sufficient to make A approximately controllable in
finite time (in [0, T], if furthermore, b() is as in footnote 4), and this happens if
and only if

(4.1) (b,x)x-j {b’l()cosjib()sinj}d0, j= 1,2,....

Actually, with b(.) arbitrary, the above condition (4.1) is necessary and
sufficient for approximate controllability on [0, T], T >__ rc (in general, T >= l,
if f [0,/): see the argument at the end of the previous Example 4.3, which
still applies.

The wave equation cou Am + 7()u(t) can be written in the above frame-
work with b() 0 and b() 7(). In this case, the test (4.1) becomes

(7, X)L2 7() sin j d 0, j= 1,2,..-

which is precisely the same as the test for approximate controllability on an
arbitrary interval [0, T] of the heat equation oo, Aco + 7()u(t) on 0, z].
Finally, let us notice that (7, xj)L2 0 is precisely one of the two conditions in
[29J--namely condition (2.18), the other is condition (2.17)--required, according
to [29], to steer the initial state of the wave equation (initial position and initial
velocity) exactly to zero over the time interval [0, T], T _>_ 2/.

5. Observability. By observed process O(resp. 0,) we shall mean the complex
ofthe state equation 5, or 5,,, subject to assumption H 1, plus the output equation"
y Hx(resp. y [h,...,hp]x, hqX*, q 1,...,p) where H is a bounded
linear operator from the Banach space X (state space) into the normed linear
space Y (output space). 0 corresponds to the physically significant case of
Y R’, in which p sensors perform measurements on the system and reveal
data from the global spatial distribution of the state. For p 1, we write h instead
of h. We call 0, or 0, observable9 (resp. observable on [0, T], 0 < T < ) in
case the initial state can be recovered from knowledge of the input u(t) and output
y(t) for >_ 0 (resp. 0 =< _< T)" i.e., by linearity of c, in case the null output
y(t) HS(t)Xo =- O, >= 0(resp. 0 =< <_ T) implies Xo 0.

Remark 5.1. When A is bounded on X, observability of O(resp. O,) is inde-
pendent on the time interval length and, in particular, if the state space X is
reflexive, is equivalent to

sp {(A*)"H*Y*, n 0, 1,..-} X*,

(resp. sp {(A*)"hq,q 1,..., p n O, 1,...} X*).

See [6] for a definition of observabifity, to be called perhaps continuous observability, where the
map from the observed trajectories y(t), 0 <= <= T, as elements of some prescribed function space
into x(T) in X is required not only to be well-defined (as in our definition here) but also continuous.

In [6] interesting results for continuous observability for the one-dimensional heat equation, are deduced
using a very different approach from the one of the present paper. See also [15] and its references.
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See [17]. For finite-dimensional systems, X R", Y Rp, (5.1’) reduces to the
classical rank condition rank [H*,A*,. (A*)"-H*] n.

It is documented in Appendix B that, like for approximate controllability,
observability of O when the operator A acting on the state is unbounded is reduced
to, and is equivalent to, the observability of the associated system with the
(bounded !) resolvent R(., A) acting on the state. The same holds for observability
on [0, T] when, e.g., the semigroup is analytic or A and H commute.

Remark 5.2. The investigation of conditions for observability directly in terms
of the "coefficients" A and H of the null observed process will lead us to consider
semigroups on the dual space X*. Therefore, in order to simplify the exposition,
we make henceforth in this section the assumption that the Banach state space X
be reflexive. In this case" (i) if A is the infinitesimal generator of a strongly con-
tinuous semigroup (group) S(t) on X, then the dual operator A* is also (linear,
closed, with domain D(A*) strongly dense in X*) and the infinitesimal generator
of the strongly continuous semigroup (group) S*(t) on X* [3, Cor. 1.4.8, p. 52
with remark after Prop. 1.4.6, p. 50], [9, Thm. 14.4.1, p. 427 with Cor. p. 429 and
remark after definition 14.2.1, p. 422], (ii) moreover, S(t) is differentiable on X if
and only if S*(t) is differentiable on X*. This follows either from the equivalence
between the strong limit defining the generator and its weak form [28, Thm. 1.1,
p. 41] or from the characterization of a differentiable semigroup in terms of the
location of the spectrum of its generator in a logarithmic sector and the growth
condition of its resolvent operator [28, Thm. 4.3, p. 57]. These two conditions
hold for A if and only if they hold for A* [10, Thm. 6.22, p. 184]. So A satisfies
H2.on X if and only if A* satisfies H2 on X*, (iii) finally, if S(t) is analytic with holo-
morphic extension in the sector A {2"Re 2 > 0,-n/2 _< < arg 2 < fl <= n/2},
then S*(. is also analytic in A [3, p. 49], [9, 3.10]. If the state space X is not
reflexive, then D(A*) need not be strongly dense in X* [3, Prop. 1.4.2, p. 46],
[9, Thm. 2.11.9, p. 43]. However, in this case, a dual semigroup theory with the
desired continuity properties can be carried out on the strong closure of D(A*)"
see [3, 1.4] and 19, Chap. 14] for two different approaches. Our method for studying
observability still works by replacing X*, A*, T*(. with, respectively, X, A;,
T(. in I-3] or X, A, T( in [9]. See also [17, Remark 5.1.1] for the condition
of observability with X nonreflexive and A bounded.

As at the beginning of 2, we define Doo(A*) f-’l = D((A*)"), Y {y* Y*"
H’y* Doo(A*)}, rl,(A*) to be the set of all vectors in X* analytic for the semigroup
(group) S*(t) generated by A*, Y* {y*e Y*’H*y*e r/a(A*)}, Y* Y* f"l Y*oo,
and we simply remark that analogous comments apply. The generalization of (5.1)
is provided by the following theorem ("dual" of Theorem 2.1 for approximate
controllability), where unless otherwise stated n runs as follows" n 0, 1, 2,

THEOREM 5.1. Let X be a reflexive Banach space and let A satisfy H1. A
sufficient condition for 0 to be observable on [0, 73 is given by

(5.2)

or more generally, by

s-- {(A*)"H* Y*oo} X*,

s-- {(A*)"S*(I)H* Y*oo} X*, arbitrary in [-0, T].
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When A also satisfies H2, then (5.2’) can be relaxed as to replace H* Y* by H* Y*
with arbitrary in (0, T].

Conversely, assume H* Ya* dense in H* Y*. Then a necessary condition for 0
to be observable on [0, T] is given by

(5.3) s--- {(A*)"S*([)H*Y*,r} X*, arbitrary > O.

If S(t) is an analytic semigroup for > 0, then (5.3) can be relaxed as to replace
H* Y,,*.(= H* Y*) by H* Y*. Also ifS(t) is a group, in (5.3) can be any real number,
in particular, O, and (5.3) simplifies, in this case, to

s-- {(A*)"H* Y*a } X*.

In the next corollary, referring to Op, unless otherwise stated, n and q run as
follows’n 0, 1,2,..., q 1,..., p.

COrtOLLAR 5.2. Let X be reflexive and let A satisfy H 1. A sufficient condition
for 0, to be observable on [0, T] is given by

(5.4) s--- {(A*)"hq} X*, hq e Doo(A*),

or, more generally, by

{(A*)"S*()hq} X*, hq e D(A*), arbitrary in [0, T].

When A also satisfies H2, then the hq’s in (5.4’) can be relaxed to be any vectors

in X* with in (0, T].
Conversely, a necessary condition for Op to be observable on [0, T] is given by

(5.5) " {(A*)nS*([)hq} X*, [arbitrary > O, when [hqG rl,(A*) fl Do(A*).

If S(t) is an analytic semigroup for > 0, then the hq’s in (5.5) can be relaxed to be
any vectors in X*. Also, if S(t) is a group, in (5.5) can be any real number, in
particular O, and (5.5) simplifies, in this case, to

(5.5’) s-- {(A*)"hq} X* when hq rl,(A*).

Proof of Theorem 5.1. Using the reflexivity of X, one sees that HS(t)xo =- O,
>= 0 (resp. 0 __< __< T) implies xo 0 if and only if

H**S**(t)x** =_ x**(S*(t)H* Y*) 0,

>__ 0 (resp. 0 =< =< T) implies x** 0. This last implication is the counterpart
("dual") of (1.3) for approximate controllability. Since S*(t) is a semigroup (group)
on X*, the proof now proceeds exactly as in the proof of Theorem 2.1 except that
it is carried out on X* rather than X. Use the content of Remark 5.2. Q.E.D.

It is plain at this point, by comparing Theorem 2.1 with Theorem 5.1, that
all the remarks in 2 for approximate controllability can be rephrased in similar
remarks for observability. We write explicitly only the counterpart of Remark 2.3,
because it illustrates the generalization of the classical rank condition for observ-
ability.

Remark 5.3. For simplicity of notation we limit our comments only to Ov,
the extension to O being immediate.
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(i) Let S(t) be a group: a characterization for observability on [0, T] of O,:
{A, (hi,..., hp)) is then given by- {(A*)"hq} X*, at least for vectors hq in the
set qa(A*) dense in X*.

(ii) Let S(t) be an analytic semigroup, > 0:the same characterization is then
given by - {(A*)"s*(t)hq} X*, any hq X*, arbitrary positive time. Also let
X’ [,.Jo<tS*(t)X* ( Doo(A*)). X is dense in X* and for hq S*("q)q, q X*
and q > 0, we have that - {(A*)"hq} X*(.--{A*)"S*(tfq} X*, arbitrary
> 0) is necessary and sufficient for observability of O, on [0, T3.

Remark 5.4. More specific duality relations can be given. For instance, let
hq rla(A*), 0 1,..., p, if A generates a group or let hq X’ if A generates an

analytic semigroup for t> 0. Then" 2" A’x* + =ahu is approximately
controllable on [0, T] if and only if the null system 2 Ax, y [h, ..., h,]x is
observable on [0, T].

It is also evident that all the results given in 3.2 for approximate con-
trollability have a counterpart for observability. In fact, let X be a Hilbert space
(= X*): A is normal with compact resolvent if and only if the same holds for A*;
(R(2, A) is compact if and only if R*(2, A)= R(2, A*) is compact [10, p. 159;
p. 184]). Also, in this case, D(A) D(A*) [10, p. 276] and hence D(A) D(A*);
A and A* have the same eigenvectors {xj} and the eigenvalues of one are the
complex conjugates of the eigenvalues of the other with same multiplicity rj,
so A satisfies H4 if and only if A*- does also. We therefore confine ourselves to
report explicitly below only the counterpart of the main results of 3, namely
Theorems 3.6 and 3.8 and Corollary 3.7. For the rest of this section, X is a Hilbert
space. First, for vectors hi,.-., h, in X* X, define the following sequence of

r x p matrices:

(hi, xj), (h,, xg)

(hi, xj:), (h,, xj:)

(h, xj), (hp, xj,)

and consider the following condition

(5.6) rank rj,

j= 1,2,...,

j= 1,2,

which implies p _>_ r;in particular for p 1, we have

(5.6’) (h,xj) 0, j 1,2,....

In the statement of the next two results it must be noticed that ft,(A*) X*, if
A (hence A*) satisfies H4. The dual of Theorem 3.6 is the following.

THEOREM 5.3. Let A (i.e., A*) satisfy H1 and H3. Then 0," {A, (h,
is observable (observable on [0, T] if hq q,(A*), q 1,..., p) if and only if (5.6)
holds.

Hence the operator A can be made observable with a finite number p of
sensors if and only if r < oe, in which case p >= r. The case of p is dealt with
in the following corollary, dual of Corollary 3.7.
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CogoLLAg 5.4. Let A satisfy H1 and H3. Then 01"(A,h) is observable
(observable on [0, T]/f h r/a(A*))/f and only if (5.6’) holds.

Remark 5.5. Our Theorem 5.2 is the abstract version containing, in particular,
the special case treated by Sakawa [15, Thm. 13 of a particular self-adjoint operator
A with compact resolvent under even further assumptions for instance, we impose
no requirement on 1/(i 1)}, ,i eigenvalues of A, being in 12. See assumption
in [153. It is also plain that the examples discussed in 4 for approximate control-
lability can be used to generate observable systems, as well as approximately
controllable and observable systems.

When rj as j --, we get the following result dual of Theorem 3.8.
Consider the condition

(5.7) PjH* Y* X, H* Y* range of H* on X* X,

where X is the r-dimensional eigenspace associated with the eigenvalue , of
A and Pj is the orthogonal projection X --. X Equations (5.7) generalize (5.6).
Then we have the following.

THEOREM 5.5. Let A satisfy H1 and H3. Then O" (A,H) is observable if and
only if(5.7) holds.

Notice that (5.7) can always be achieved by choosing (H*)= X*= X
(:, H- exists and is continuous [16, p. 233]), in particular, for X U, by choosing
H=I.

Remark 5.6. It is an obvious matter to translate the results of the present
paper for approximate controllability on the state space X to analagous results
on the output space Y.

We do not insist. For the bounded operator case, see I17].

Appendix A. Associate with the original system 5 the system 5a,o’
R(rlo, A)x + Bu defined on the same spaces X and U. Here R(r/o, A) is the

(bounded) resolvent of A, r/o any point in the connected component po(A) of the
resolvent set p(A) of A containing Re 2 >= 09o. We have

C1 Kt(.q) C1 Kt(no C1Kr(no {g"(r/o, A)BC, n 0, 1,...},
0_<t< 0_<t<

where T is arbitrary but fixed, 0 < T < o. The first equality was shown in
[8, Prop. 2.3] and motivated the assumption of bounded operator in [17], where
the other equalities are proved. Therefore ’(resp.) is approximately con-
trollable in finite time if and only if

(A.1) sp {R(r/o, A)BU} X (resp. s- {R(r/o, A)bi} X, 1,..., m),

n=0,1,....

Appendix B. To the null observed system O of 5" Ax, y Hx, associate
the system O,o "2 R(/o, A)x, y Hx, with R0/o, A) as in Appendix A. Essentially
the argument employed by Fattorini for approximate controllability can be
adopted to show that O is observable if and only if 0,o is observable on [0, T],
thereby reducing the observability problem in the unbounded operator case to
the observability in the bounded operator case (see (5.1)). A concise proof of this
fact follows. We have to show that HS(t)xo 0, >__ 0, implies xo 0 if and only
if HeRO")txo =_ 0, => 0, implies Xo 0.
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If If, by contradiction, HS(t)Y.o =- 0, >= 0, for ,o : 0, then it follows, via

t"- e- z’S(t)x dtR"(2, A)x
(n 1)!

n= 1,2,..., Re2> w015, p. 623],

and HS(O)o Hff0, that HR"(2, A)ff0 0, n 0, 1,..-, for all 2 in po(A) (by
analytic continuation of R(2, A))" contradiction.

Only if. If by contradiction, HeRt"’a)to =--O,t >= O, and o 4: 0, then
HR"(qo, A).0 0, n 0, 1, Hence using the standard expansion [16, p. 260]
for R(2, A) in terms of R"+ 1(#, A) and analytic continuation of R(-, A), it follows
that HR(2, A)o =_ 0 for all 2 in po(A). Then by (B.1) with n and the unique-
ness of the Laplace transform [5, p. 626], via an arbitrary x* X*, one gets
HS(t)o O, _> O" contradiction. Q.E.D.

The above reduction result holds also true for "observability on [0, T]" of
5 if" (i) the semigroup S(t) is analytic, > 0; or if (ii) H and A commute (in the
sense of [10, p. 171] here we take Y X), so that H and S(t)commute (see below).
In both cases, in fact, HS(t)Xo =- O, 0 <= <_ T, implies HS(t)Xo =- O, >= O. Proof
of (ii)" H and R(2, A) commute for every 2 p(A) [10, p. 173]" hence, making use
of (B.1) for n 1, one gets j’ e-tx*(HS(t)x S(t)Hx)dt 0, Re 2 > 09o, and
hence HS(t)x S(t)Hx, >__ O. Q.E.D.

Appendix C. Corollary 3.2 allows one to make the following considerations
regarding the stabilizability of controllable systems under perturbation. In the
classical finite dimensional theory X R", U R’, it is well known that con-
trollable systems are open and dense in the totality of autonomous linear systems
I12, p. 100]. For infinite-dimensional systems, instead, we have already given an
example in [17 remark 3.2.1] involving a Volterra (compact) integral operator V
on a Hilbert space, where the openness property fails, even if V is left unperturbed
and [IVl[ < (hence lib- b’[I < e implies IIV"b- V"b’l[ < e, n 0, 1, 2,...); yet
(V, b) is an approximately controllable pair, while (V, b’) is not.

Another more illuminating counterexample to the openness property for
infinite-dimensional systems stems from Corollary 3.2 and is presented here.
Let A be a normal, compact operator on a Hilbert space X, with simple nonzero
eigenvalues. If xj} denote the associated eigenvectors (forming a complete
orthonormal basis), let b be a vector in X, b f= (b, xj)xj, satisfying (b, xj) 4: 0,
j --0, 1, Hence, the pair (A, b) is approximately controllable by Corollary
3.2. Now, given e > 0, there is an index J(e.) such that j I(b, xj)l 2 < e.. Define
then a vector b’ in X by

(b’, xj) (b,xj), j l, 2,... J(e)

and

(b’,xj) 0 for j_>_ J(e).

Then lib- b’ll < e, and yet (A, b’) is not an approximately controllable pair by
Corollary 3.2. Also, one can check that, with A left unperturbed, the denseness
property does hold (as for the Volterra operator V in [17, remark 3.2.1]).
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Note added in prooj After the present paper was submitted, the following
relevant work appeared: Y. Sakawa, Controllability for partial differential
equations of parabolic type, this Journal, 12 (1974), pp. 389-400, which is the
"dual" of [15] (see Remark 5.5). In Sakawa’s paper a particular self-adjoint
operator with compact resolvent is treated with finitely many controls. His
Theorem 3 in 3 is a special case of the abstract version given by our Theorem
3.4. Sakawa does not approach the problem from the viewpoint of extending the
rank conditions, as we do in the present paper.

The present paper was presented in a lecture at the Stefan Banach Inter-
national Mathematical Centre, Warsaw, Poland, in the Semester on Mathematical
Questions of Optimal Control, December, 1973.

Also, we remark that the proof of the general result in 2 exploits a quasi-
analyticity type of property rather than full analyticity.

REFERENCES

[1] A. V. BALAKRISHNAN, Optimal control problems in Banach spaces, this Journal, 3 (1965), pp. 152-
I80.

[2] Introduction to Optimization Theory in a Hilbert Space, Lecture Notes, Springer-Verlag,
Berlin, 1971.

[3] P. L. BUa’ZER AND H. BERrS, Semigroups of Operators and Approximations, Springer-Verlag,
Berlin, 1967.

[4] R. COtRAya" AYD D. HIIBRa’, Methods of Mathematical Physics, vol. 1, Interscience, New York,
1963.

[5] N. DtVORD AYI J. T. SCHWARTZ, Linear Operators, Parts and 2, Interscience, New York,
1959 and 1963:

[6] S. DotcII, Observationjbr the one-dimensional heat equation, Studia Math. 48 (1973), pp. 291-
305.

[7] H. O. FAa’a’ORIN, Some remarks on complete controllability, this Journal, 4 (1966), pp. 686-694.
[8] On complete controllability of linear systems, J. Differential Equations, 3 (1967), pp.

391-402.
[9] E. HLL Ayo R. S. PHILIIPS, Functional Analysis and Semigroups, American Mathematical

Society, Providence, R.I., 1958.
[10] T. KAa’o, Perturbation Theory of Linear Operators, Springer-Verlag, Berlin, 1966.
[11] G. E. LADAS AND V. LAKArIKANTHAM, Dfferential Equations in Abstract Spaces, Academic Press,

New York, 1972.
[12] E. B. LzE AyI L. MAnet,s, Foundation of Optimal Control Theory, John Wiley, New York, 1967.
[13] T. H. NAvIOR AYD G. R. Sz, Linear Operators in Engineering and Science, Holt, Rinehart and

Winston, New York, 1971.
14] D. L. RusstI, Boundary value control of the higher-dimensional wave equation, Parts and 2,

this Journal, 9 (1971), pp. 29-42 and 9 (1971), pp. 401-419.
[15] Y. SAKAWA, Observability and related problems jbr partial differential equations ofparabolic type,

this Journal, 13 (1975), pp. 14-27.
[16] A. E. TA’,’IOR, Introduction to Functional Analysis, John Wiley, New York, 1958.

[17] R. TRGGAYl, Controllability and observability in Banach space with bounded operators, this

Journal, 13 (1975), pp. 462-491.
18],On the lack ofexact controllabilityJbr mild solutions in Banach space, J. Math. Anal. Appl.,

50 (1975), pp. 438-446.
19] G. HIMBRG, Introduction to Spectral Theory in Hilbert Space, American Elsevier, New York,

1969.
[20] G. N. WAaa-soN, A Treatise on the Theory ofBessel Functions, 2nd ed., Cambridge University Press,

Cambridge, 1944.
[21] K. YosIA, Functional Analysis, Springer, Berlin-G6ttingen, 1965.



338 ROBERTO TRIGGIANI

[22] L. A. LIUSTERNIK AND V. J. SOBOLEV, Elements ofFunctional Analysis, Frederick Ungar, New York,
1961.

[23] E. NELSON, Analytic vectors, Ann. of Math., 70 (1959), pp. 572-615.
24] J. WERMER, On invariant subspaces of normal operators, Proc. Amer. Math. Soc., 3 (1959), pp.

270-277.
[25] M. SLEMlCOD, A note on complete controllability and stabilizability of linear control systems in

Hilbert space, this Journal, 12 (1974), pp. 500-508.
[26] L. HORMANDE, Linear Partial Differential Operators, Springer-Verlag, Berlin, 1964.
[27] G. SZEG6, Orthogonal Polynomials, Colloquium Publications, American Mathematical Society,

Providence, R.I., 1959.
[28] A. PAZY, Semigroups of linear operators and applications to partial differential equations, Dept.

of Mathematics Lecture Note 10, University of Maryland, College Park, Maryland, 1974.
[29] D. L. RUSSELL, Nonharmonic Fourier series in the control theory of distributed parameter systems,

J. Math. Anal. Appl., 18 (1967), pp. 542-559.



SIAM J. CONTROL OPTIMIZATION
Vol. 14, No..2, February 1976

ON SERIES AND PARALLEL COUPLING OF A CLASS OF
DISCRETE TIME INFINITE-DIMENSIONAL SYSTEMS*

PAUL A. FUHRMANN"

Abstract. Necessary and sufficient conditions for controllability and observability of series and
parallel coupling of a class of infinite-dimensional realizations are obtained in terms of factorizations of
the related transfer functions.

1. Introduction. In this paper we study the coupling in series and parallel of a
class of infinite-dimensional realizations. We shall be interested in the controll-
ability and observability of the coupled system and the conditions under which
these hold. The analytical tools for this study are mainly the study of ranges of
Hankel operators and certain related factorizations of operator-valued functions.
This paper extends the results obtained in 12] and generalizes the finite-dimensional
results obtained in [2], [11]. As a by-product of the analysis carried out in this
paper we get theorems about the similarity of certain operators to restricted shift
operators which are of intrinsic interest.

We shall now give a short survey of the main ideas of system theory used in
this paper. We shall restrict ourselves to the case of discrete time systems. Let A
be an operator-valued analytic function in a neighborhood of the origin. Thus A has
a Taylor expansion A(z) ,-o A,z". We assume A(z)’U Y where U and Y
are a pair of, usually finite-dimensional, Hilbert spaces. We call U the input space
and Y the output space. We consider the function A, a transfer function, as carrying
the information about the input/output properties of the system. By this we mean
that given a sequence of inputs {u,ln >= O, u, U} we obtain a sequence of outputs
{y,[ n _> 0, y, Y} where

n-1

(1.1) y, An_ i_ lUi
i=O

Relation (1.1) gives an external description of the system behavior without
giving insight into the internal mechanism that produces the input/output rela-
tions.

By an internal description of a system we mean a triple of bounded operators
{F, G,H} where F B(K,K),K being a Hilbert space to which we refer as the
state space, G B(U, K) and H B(K, Y). We do not restrict K to be finite-
dimensional but we do make that assumption about the input space U and the
output space Y. Thus in the general case we deal with finite input/finite output
infinite-dimensional systems. The triple {F, G,H} is taken to represent a set of
dynamical equations of the form

(1.2)
x,+l Fx,, + Gu,,

y, Hx,,
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with initial condition Xo e K. Clearly the solution of the system of equations (1.2) is
given by

(1.3) x,, Fnxo + F"- iGui
i=o

and hence,

(1.4) y,, HF"xo + HF"- -iGui.
i=0

Now if we assume that the initial condition x0 satisfies Xo 0, then the input/
output description (1.4) reduces to (1.1) with

(1.5) A, HF"G, n >= O.

Thus we say that {F, G, H} is a realization of the transfer function A if (1.5) is
satisfied. This is equivalent to the fact that for z in some neighborhood of the origin
we have

or

(1.6)

A(z) Z A,,z"= Z HF"Gz"= H Z (zF)"G
0 0 0

A(z) H(I zF)-IG.
The realization is finite-dimensional if the dimension ofK is finite. This clearly

implies the rationality of A. The transfer functions dealt with in this paper are
nonrational in the generic case.

It is easy to see that the characteristic function introduced and studied in
detail by Sz.-Nagy and Foias [20], [22] is nothing but the transfer function of a
special kind of system, called standard unitary system by Helton [14]. However, in
our formulation the operators G and H are much more loosely related to the
operator F than in the case of the characteristic operator-valued function.

Realization theory is concerned with producing internal description of the
form (1.2) starting from input/output descriptions of the form (1.1) as well as the
study of the relation between two different realizations of the same input/output
relation which satisfy some additional minimality conditions. To this end we
introduce the notions of controllability and observability. We reter to [15] for an
exhaustive treatment of these notions in the finite-dimensional context and which
contain some interesting notes on the development of the subject.

We say that a realization {F, G, H} is controllable if the set of vectors of the
form {Eni=oFiGuilui U,n >= 0} is dense in the state space. Thus the system
{F, G, H} is controllable if given any vector x in the state space K we can, .starting
with the initial condition x0 0,find a sequence ofcontrols {ui} such that for some
index x, is arbitrarily close to x. Clearly, using a standard density argument, the
controllability of the system is equivalent to the following condition:

(1.7) ker G’F*" {0}.
n--0



ON SERIES AND PARALLEL COUPLING 341

We recall that a vector g is a cyclic vector for an operator F if the set of all
linear combinations of the vectors F"g, n >= 0, is dense in the space. This is equiva-
lent to V ,= o F"M K where M is the one-dimensional subspace spanned by g.
Analogously a subspace M of K will be called a cyclic subspace for F if V ,,= 0

K. It follows that the system {F, G, H} is controllable if and only if range G is a
cyclic subspace for F. Hence controllability is but a simple generalization of the
notion of cyclicity.

We define the adjoint system of {F, G, H} to be the system {F*, H*, G*}. We
say that {F, G,H} is observable if the adjoint system is controllable. Thus the
observability of {F, G, H} is equivalent to

(1.8) ker HF" {0}.
n=0

A realization {F, G, H} is canonical if it is both controllable and observable.
In the sequel a stronger notion of controllability and observability will play an
important role. Following Helton [14] we define the controllability operator cg on
the dense set of finitely nonzero sequences in 12(0, " U) by

(1.9) ({u,}) F"Gu,.
n=0

There is no convergence problem as there are only a finite number of nonzero
elements in the sequence. If c has an extension to a bounded operator from
12(0, ’U) onto K we say that the system {F, G,H} is exactly controllable.
Essentially, exact controllability means that every vector in the state space can be
reached from the origin by a sequence of controls having finite energy where the
energy is defined by io [lui 2 <

In an analogous way we define the observability operator and the notion of
exact observability. Analytic criterias for controllability and observability and
their exact counterparts have been developed by the author for the case of shift
systems and we refer to [7], [8] for a full exposition.

Now suppose we are given two realizations {F, G,H} and {F2, G2,H2}
with input spaces Ui, output spaces Y and state spaces K, respectively. If U2 Y
we can define the series connection of the two systems by letting the state space K
be the direct sum K K2 and the dynamical equation be given by

(1.10)
(1)
n+l

v(2)
"n+

F 0

G2H1 F2
al

y.=(0

Similarly if U U2 and Y1 Y2, we let K K @ K2 and define the parallel
connection of the two realizations to be given by the set of equations

(1.11)

v(1)
n+

v(2)
"n+

F 0

o

Yn H2)
X(n2

G1
Url
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If A1 and A2 are the transfer functions of {F,, G l, H 1} and {F2, G2, H2}
respectively, then the series connection given by (1.10) has zA2A as transfer
function whereas the parallel connection given by (1.11) has A + A2 as transfer
function. It is clear that the realizations obtained by coupling canonical systems
in series or parallel need not be controllable nor observable. It is of interest to find
conditions under which the coupled systems are controllable or observable, and
this is the central issue of this paper. The finite-dimensional problem has been
solved recently [2], [10] by completely different methods. In the infinite-dimen-
sional case the problem cannot be solved in its full generality and we will have to
restrict ourselves to a special class of realizations, the shift realizations [6], [8], 14].
They will be introduced in the next section. For that case we have a natural
substitute for the dimension function which will be utilized extensively in the
sequel.

2. Hankel operators, left invariant subspaces and the shift realization. Let M, N
be separable complex Hilbert spaces. We denote by L2(N) the space of all (equiva-
lence classes) weakly measurable functions from the unit circle to N having finite
norm. The norm in LZ(N) is induced by the inner product

(f g) (f(ei’), g(eit))rv dt.

Functions in L2(N) have Fourier expansions of the form f(eit) Zn=- fn eint
with ,%- f,[[Zu < Or. The f, are the vectorial Fourier coefficients off and are
given through j (1/(2n))y2=0 f(ei’) e-i"’ dr. We let H2(N) denote the subspace of
LZ(N) of all functions whose negative indexed Fourier coefficients are zero, i.e.,
f, 0 for n < 0. We recall [13] that HZ(N) functions have analytic extensions to
the open unit disc from which they can be recaptured by radial limits almost every-
where. Thus if f e H2(N) and f(eit) n=o fn eint the analytic extension is given
simply by f(z) ,o f,z". We systematically use the same letter to denote both
the function of HZ(N) as defined on the unit circle as well as its analytic extension
to the open unit disc. By g we denote the identity function on the closed unit disc,
i.e., g(z)= z. We define the right shift S in Hz(N) by Sf ft. We note that its
adjoint S*, to which we refer as the left shift, is given by (S’f)(z) (f(z) f(O))/z.
The shift terminology comes from the way the actions of S and S* are reflected
in the sequence of Fourier, or Taylor, coefficients of the function f.

We let B(M, N) denote the space of all bounded linear operators from M to N,
and let L(B(M,N)) be the space of weakly measurable, essentially bounded
functions from the unit circle to B(M, N) equipped with the sup norm. Elements of
L(B(M, N)) have Fourier expansions [13] and we will denote by H(B(M, N)) the
functions in L(B(M,N)) whose negative indexed Fourier coefficients are all
zero. Functions in ,H(B(N, M)) have analytic extensions to the open unit disc
and can be recaptured as strong radial limits almost everywhere. For A in L(B(N,
M)) we let A(z) A()*.

A subspace of H2(N) will be called right invariant or left invariant according to
whether it is invariant under the right or left shift respectively. The structure of
right and left invariant subspaces of H2(N) is known. To describe it we need the
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notion of a partial isometry. An operator W in a Hilbert space H is a partial iso-
metry if for some subspace M of H we have

Wx Ilxll ifxm

and

Wx O if xeM+/-.

M is called the initial space of the partial isometry and WM its final space. An
operator W is an isometry if it is a partial isometry with the initial space coinciding
with H. W is unitary if it is an isometry and its final space coincides with H.

A subspace K of H2(N) is right invariant if and only if it has a representation
K pH2(N) for some P e H(B(N, N)) for which almost everywhere P(eit) is a
partial isometry with a fixed initial space. If P is almost everywhere unitary then P
is called inner. The invariant subspaces for which P is inner are called invariant
subspaces of full range [13]. For an inner function P in H(B(N, N)) we denote by
H(P) the left invariant subspace {PHZ(N)} +/-. Thus we have the following direct
sum decomposition"

(2.1) H2(N) H(P) pH2(N).

We let ProP) be the orthogonal projection of H2(N), and sometimes of L2(N),
onto H(P). We define an operator S(P)in H(P) by

(2.2) S(P)f Pm)Tf
for all fin H(P). S(P) is called the restricted right shift and we have S(P)* S*IH(P).
An inner function P in H(B(N, M)) is a left inner factor ofa function A in H(B(N,
M)) if A PA’ for some A’ in H(B(N, M)). Two functions A in H(B(M, N)) and
A in H(B(Ma, N)) are relatively left prime if A and A have no common trivial
left inner factor. We shall use (A, A a)L 1N to denote the left primeness ofA and A a.
We shall say that A and A are strongly relatively left prime if there exists a 6 > 0
such that for all z, Izl < 1,

(2.3) inf{ A(z)*[[ + Al(Z)* 1 M, [l[ 1} __> 6.

We shall use [A, A1]L It to denote the strong left primeness of A and A1.
Similarly, given A in tt(B(N, M)) and A1 in H(B(N, M 1)) we define right prime-
ness. We clearly have (A, A a)R IN if and only if (A, Aa)L IN and [A, A air IN
if and only if [A, Aa] IN. Thus [A, Aa]g IN is equivalent to the existence of a
6 > 0 such that for all z, Izl < 1,

(2.4) inf{llZ(z) / Z(z) IN, I1 1} >= .
If [A, Aa]L IN, then by a matrix version of the Carleson corona theorem [4] we
have the existence of functions B H(B(N, M)) and Ba H(B(N, M1)) such that

A(z)B(z) + A a(z)Ba(z) IN.

Thus A and A are left prime for any common left inner divisor of A and A1 would
be a left divisor of IN and hence necessarily a trivial divisor that is a constant
unitary matrix. Thus strong relative primeness implies left primeness and this
justifies the terminology.
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We define a map J in L2(N) by letting (Jf)(e’) f(e -’) for all f in L2(N).
For A in H(B(N, M)) we define the Hankel operator induced by it as the operator
HA from H2(N) into H2(M) given by HAf Pn{M)A(Jf). Here Pn is the ortho-
gonal projection of L2(M) onto H2(M). The range closure of HA, range Ha, is a
left invariant subspace of H2(M). We shall say that A is strictly noncyclic if {range
ttA} +/- is an invariant subspace of full range.

Let f be a domain in the complex plane, that is an open connected set.
A B(N, M)-valued function F is meromorphic of bounded type in if F G/g
where G is a bounded B(N, M)-valued analytic function in f and g is a bounded
scalar-valued analytic function in f. A principal tool in all that follows will be the
following theorem [9]. For simplicity we will assume from now that M and N are
finite-dimensional and hence the notion of determinant of inner functions is well
defined.

THEOREM 2.1. (a) The following statements are equivalent"
(i) A function A in H(B(N, M)) is strictly noncyclic.

(ii) A is a strong radial limit of a B(N, M)-valued meromorphic function of
bounded type in D {z[1 < [z[ =< o}.

(iii) On the unit circle A admits the factorizations

(2.5) A 2.PC*

which satisfy the primeness relations

(2.6) (n, C)R IM and

Here P in H(B(M, M)) and P1 in H(B(N, N)) are inner functions and C and
C are in H(B(M, N)).

(b) The inner functions P and P1 in the prime factorizations (2.5) are quasi-
equivalent [18], and in particular,

(2.7) det P det

holds.
In terms of the factorizations (2.5) we have range HA H(P) and ker HA

plH2(N) By results of [7] we have range HA H(P) if and only if the primeness
condition (P, C)R IM is replaced by the strong primeness condition [P, C]R
IM. The factorizations (2.5) are the generalization of writing a rational function as
the quotient of two relatively prime polynomials. They furthermore generalize
the polynomial matrix factorizations appearing in Rosenbrock’s theory of linear
systems [19].

For an inner function P in H(B(M, M)) we define two operators F(P) and
7(P) from M into H(P) by letting

(2.s)

and

(2.9)

(2.10)

r(P) PH(p).P

?(P) PH(P).
It is easy to check that

(r(p)O(z) ((P(z) P(O))O/z,
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(2.11) (7(P))(Z) (I P(z)P(O)*)

and

(2.12) 7(P)*/= f(0) for all f H(P).

For the inner function P we define a map -p’LZ(N) -+ L2()’V) by
(2.13) rpf 2P(Jf),
that is,

(2.14) (f)(ei’) e-i’p(e’)f(e-i’).
It has been proved in [4] that r is a unitary map of L(N) for which

(2.15) z(H(P)) H(P)

and

(2.6) s(P)* s(n).

The operators F(P) and 7(P) defined by (2.8) and (2.9) respectively are related
by

(2. 7)

and

(2.8) ,,(n) v(P).
These properties of the map make it extremely useful in the study of duality

properties of restricted shift operators and systems.
Given a function A in L(B(N, M)) we let MA’N H2(M) be defined by

(2.19) M, P,()(A,);
thus MA HA]N where N is embedded in H2(N) in a natural way.

Suppose now that A is a strictly noncyclic function in H(B(N, M)) admitting
the factorizations (2.5) on the unit circle which satisfy the relative primeness
conditions (2.6).

We consider now the system

(2.20) ZA {S(P)*, MA, 7(P)*}

in the state space H(P). An elementary calculation shows that this system is a
realization of A. Moreover, the controllability operator of this system coincides
with HA, whereas the observability operator (0 :HZ(M) > H(P) is given by (0

ProP) and hence by the characterization of exactly controllable and exactly observ-
able systems obtained in [8] we infer that the system (2.20) is controllable and
exactly observable. The system is exactly controllable if the condition (P, C)R IM
is replaced by the stronger condition [P, C]R It. We shall refer to the realization
(2.20) as the shift realization of A [14], [8]. If we assume A L(B(N, M)), then
the shift realization constructed is a realization of the analytic part of A.

Together with the shift realization of A it is convenient to consider a related
realization obtained as follows. Since is strictly noncyclic if and only if A is, then
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has also a shift realization given by the system

(2.21) {S(Pl)*, M, 7(P1)*

which acts in the state space H(Pa). As before this realization is controllable and
exactly observable. By passing to the adjoint system

(2.22) {S(Pa), 7(Pl), M},
we obtain a realization of A which is observable and exactly controllable. We
apply now the unitary map to, "H(Pa) --, H(Pa) which was defined by (2.12). Since

(2.23)

and the relations (2.16) and (2.17) hold, it follows that the system

(2.24) Z] {S(Pa)*, F(P,), M,}
acting in the state space H(Pa) is a realization of A which is observable and exactly
controllable. We refer to the realization Z] given by (2.24) as the *-shift realization
of A. The relation between the shift and *-shift realizations of A is important. In
fact from results of Moore [16] it follows that there exists a one-to-one operator W
with dense range which makes the diagram in (2.25) commutative. This in turn

(2.25)

H(P1)

S(P1)*
H(Pa)u,,,

,H(P)
S(P)*

.H(P)

M
implies that the two shifts S(P)* and S(Pa)* are quasi-similar and, by the work of
Moore and Nordgren [17], that the two inner functions P and P1 are quasi-
equivalent and thus have the same Jordan model associated with them. These
considerations play a central role in the proof of Theorem 2.1.

Since the state space H(P) in the shift realization of A is determined by the
inner function P, there must be a relation between the dimension of H(P) and P
itself. In fact p det P is a scalar inner function and P is a finite Blaschke product
if and only if H(P) is finite-dimensional. Moreover, dim H(P) in that case is equal to
the number of factors in p, multiplicities counted. The determinant of inner func-
tions will be used from here on as a multiplicative substitute for dimension and it
is the measure of size to which we referred in the Introduction. If P and R are two
inner functions in H(B(M, M)), then there exists an inner function Q, unique up
to a constant unitary factor on the right, for which QH2(M) pH2(M) (’1 RH2(M).
The relation det Ql(det P). (det R) is always satisfied with equality if and only if
(P, R)L IM. This later condition is equivalent to H(P) f’l H(R)= {0}, or H(Q)
is equal to the span of the two subspaces H(P) and H(R). H(Q) is actually equal to
the, nonorthogonal, direct sum of H(P) and H(R) if and only if [P, R]L IM.
From this point it is clear that det Q (det P). (det R) is really the multiplicative
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equivalent in the context of left invariant subspaces of the additive relation
dim (M1 + M2) dim M1 + dim M2 for the sum of two finite-dimensional
subspaces for which M f’) M2 {0}. From Theorem 1 it follows that the state
spaces H(P) and H(Px) of the shift and *-shift realizations satisfy det P det P,
i.e., an "equidimensionality" condition. The above discussion should be compared
with a proof of the resultant theorem of which it is a generalization.

3. On the shift realization of sums and products of transfer functions. This
section is devoted to the study of the shift realizations of sums and products of
strictly noncyclic functions. Since all the state spaces appearing are left invariant
subspaces which are associated with inner functions, we use the determinant of the
corresponding inner function as a measure of the "dimensionality" of the space.
We will be interested in: Under what conditions is the determinant of the inner
function associated with the shift realization of a product (or a sum) equal to the
product of the determinants of the inner functions associated with the shift
realizations of the individual factors in the product? This is closely related to the
series (or parallel) connection of systems and the representation of the state space
as a direct sum of the state spaces of the component systems. This problem is
deferred to 4. Intuitively the determinant condition referred to before fails to
hold if and only if there are some "zero-pole" cancellations. In terms of the
representation of rational functions as quotients of polynomials this is equivalent
to some polynomials having nontrivial common divisors. In the multivariable
finite-dimensional case the problem can be handled through the use of polynomial
matrix factorizations of matrix rational functions [19]. For the details we refer to

[2], [11]. In our approach the factorizations appearing in Theorem 2.1 will be
used. The results of this section have been derived in 10] where the full details can
be found. Since the state spaces appearing in shift realizations are range closures of
Hankel operators we will study these. We begin with products.

Let L, M, N be finite-dimensional Hilbert spaces and let A belong to H(B(N,
M)) and B to H(B(L,N)), and assume both are strictly noncyclic having the
following factorizations on the unit circle:

(3.1) A PC* C’P
and

(3.2) B .RD* D’R
where P, P, R and R are inner functions and C, C1, D and D1 bounded analytic.
Moreover, we shall assume that the primeness conditions

(3.3) (P, C)R 1M, (P, Ca) I
and

(3.4) (R, D)R Ii, (R1, D) I
are satisfied. Since both A and B are noncyclic so is the function zAB. The extra
appears for reasons which become clear in the next section. Applying Theorem 2.1
we see that the function zAB has the factorizations

(3.5) zAB QH* .H’Q
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satisfying

(3.6) (Q,H)R IM, (Q1,Hx)L I.
The analysis of the general case follows from the two special cases where B R
or B )D* respectively. In general we have range Hao, c range Ha c range HaR.
Thus multiplication on the right by an inner function R, which extends mero-
morphically to the exterior of the unit disc and has no zeros there, increases the
number of singularities and hence also the range of the corresponding Hankel
operator. On the other hand, D* extends analytically to the exterior of the unit disc
and this tends to decrease the singularities of the product as well as the range of
the Hankel operator. The precise conditions for the noncancellation of singularities
are given below.

THEOREM 3.1. Let A and B be strictly noncyclic functions in H(B(N, M)) and
H(B(L, N)) respectively which have the factorizations (3.1) and (3.2) satisfying the
primeness conditions (3.3) and (3.4). Let zAB have the factorization (3.5) satisfying
(3.6).

(a) A necessary and sufficient condition for
(3.7) det Q (det P). (det R)

to hold is that

(3.8) (C,R)= IN and (P1,D)R=IN

are satisfied.
(b) Assume the factorizations (3.1) and (3.2) satisfy

(3.9) [P, C]R I, [P1, C]L IN
and

(3.10) R,D]R IN, R,,D]c I
respectively. A necessary and sufficient condition for HzaB to have closed range H(Q)
with (3.7) satisfied is that

(3.11) C,R]= IN and [PI,D]R =IN
hold.

In terms of the shift realization described in the previous section the theorem
can be rewritten in the following form.

THEOREM 3.2. Let A and B be strictly noncyclic functions in H(B(N, M)) and
H(B(L, N)) respectively which have the prime factorizations (3.1) and (3.2). The
shift realization of zAB has a state space H(Q) with (3.7) satisfied if and only if the
primeness conditions (3.8) are satisfied. If the shift realizations of A and B are both
exactly controllable and exactly observable then the shift realization of zAB is
exactly controllable and exactly observable with (3.7) satisfied if and only if the
conditions (3.11) hold.

The additive results are presented next.
THEOREU 3.3. Let A and B be strictly noncyclic functions in H(B(N, M)) having

the prime factorizations (3.1) and (3.2). Let A + B, which is also strictly.noncyclic,
have the prime factorization
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(3.12) A + B zQH*

A necessary and sufficient condition for (3.7) to hold is that

(3.13) (P, R) I and (P /I)R Iu
are satisfied.

Again this can be interpreted in terms of the shift realization.
THEOREM 3.4. Let A and B be strictly noncyclicfunctions in H(B(N, M)) which

have the prime factorizations (3.1) and (3.2). The shift realization of A + B has a
state space H(Q) with (3.7) satisfied if and only if the primeness conditions (3.14) are

satisfied. If the shift realizations of A and B are both exactly controllable and exactly
observable, then the shift realization of A + B is exactly, controllable and exactly
observable with (3.7) satisfied if and only if the conditions (3.14) hold.

4. Series and parallel coupling of linear systems. We come now to the central
topic of this paper, the study of the series and parallel coupling of the shift realiza-
tions of two transfer functions. This will be achieved by comparing the coupled
systems with the shift realizations of the product and sum of the corresponding
transfer functions.

We shall begin by introducing some new concept and deriving some simple
results needed in the sequel.

DEFINITION 4.1. Let Z and Z1 be two realizations given by {F, G, H} and
{F1, G 1, H1} having the state space K and K1 respectively. Let X" K K1 be a
bounded operator for which the relations

(4.1) XF FIX, XG GI and H HX
hold. In that case we say that X intertwines Y and El. If only XF F1X and
XG GI we say that X intertwines {F, G} and {F, G1} and similarly for inter-
twining the observability part.

A bounded operator X’K - Ka will be called a quasi-affinity if X is one-to-
one and has dense range. This is a slight relaxation of the notion of invertibility.

DEFINITION 4.2. (a) The system E1 is a quasi-affine transform ofE if there exists a
quasi-similarity X that intertwines Z and Z.

(b) Two systems E and E1 are quasi-similar if each one is the quasi-affine
transform of the other.

(c) Two systems Z and Y are similar if there exists a boundedly invertible
operator X that intertwines Y: and Y;. (Then X-1 intertwines E1 and ;).

Whereas the quasi-similarity of two operators does not imply their similarity
[21] this is the case with controllable systems.

LEMMA 4.1. Let E {F, G,H} and -’1 {F, GI,H1} be two controllable
systems; then they are quasi-similar if and only if they are similar.

Proof. Of course similarity implies quasi-similarity. Let X’K K and

Y’K K be the two quasi-affinities that intertwine the two systems. From
relations (4.1) it follows that XF"G F]G and YF]G1 F"G and hence YXF"G

F"G and XYF]G, F]GI. Since the set of all vectors of the form EF"Gu,,
and ZF] G lU,, are, by the controllability assumption, dense in K and K respectively,
then clearly XY I, and YX I and hence the similarity. Of course the result
holds if the assumption of controllability is replaced by observability.
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The proof of the next two lemmas is equally simple but their use is central to
all that follows"

LEMMA 4.2. Let X’K ---} K intertwine the systems Z and 1.
(a) If X has dense range, then the controllability of , implies the controllability

of., IfX is onto and Z is exactly controllable, then Y. is exactly controllable.
(b) If X is one-to-one, then the observability of Y.a implies the observability of

Y. If X* is onto and E is exactly observable, then so is E.
Proof. (a) Let z e f),_>0_ ker ,a-rz**" then for all n we have G*F*z 0. From

(4.1) it follows that GF"= G*F*"X* and hence X*ze f)kerG*F*" {0}.
Since.X has dense range, X* is one-to-one and so z 0 and f] ker 1-1/J*7’* {0}
which shows the controllability of Z. If X is onto and C and C are the controll-
ability operators of Z and Z respectively, then C XC; and hence if C is onto
K, then Cx is onto K and E is exactly controllable. Part (b) follows from (a) by
duality.

LEMMA 4.3. Given two systems E {F,G,H} and E {Fa,G,Ha }, let
X’K--, Ka.

(a) IfX intertwines {F, G} and {Fa, G} and , is controllable, then X has dense
range. If Y.a is exactly controllable, X is onto.

(b) IfX intertwines {F,H} and {F, Hx} and E is observable, then X is one-to-one.

If Z is exactly observable, then X has a bounded left inverse.

Proof. Part (a) follows from the definitions. To prove (b) we note that H F]Xx
HF"x for each x in K. Thus Xx 0 implies x f),>_ 0 ker HF", and hence x 0

by the observability assumption.
From the above lemmas it is clear that the explicit construction of inter-

twining maps between realizations enables us to study a system in terms of its
relation to another system with known properties. Also knowledge of the systems
sheds light on the properties of intertwining maps. We begin by studying the series
coupling of two shift realizations.

Let L, N, M be three finite-dimensional complex Hilbert spaces. Let A e
H(B(N, M)) and B H(B(L, N)) be two strictly noncyclic functions, having the
prime factorizations (3.1) and (3.2) respectively. Their shift realizations have state
spaces H(P) and H(R) respectively and are given by

(4.2) ZA {S(P)*, MA, 7(P)* }
and

(4.3) E. {S(R)*, M,, 7(R)*}
respectively, where ZA and Z are defined as in (2.20).

Their series connection has H(R)O)H(P) as state space" and the coupled
system, which we will denote by EAZa, is given in terms of this direct sum by

(4.4) 2;2;
M7(R)* S(P)*’

(0-..

and has zAB as its transfer function.
Assume first that (C, R)c I which, by Theorem 2.1, implies the existence of

a function C’e H(B(M, N)) and an inner function R’e H(B(M, M)) for which



ON SERIES AND PARALLEL COUPLING 351

C*R R’C’*, (R’, C’)R It and det R det R’ are satisfied. Now from the
factorizations (3.1) and (3.2) ofA and B respectively it follows that gAB PC*RD*

fPR’C’*D* and this enables us to produce a shift realization of gAB. In fact if
we choose H(PR’) as the state space and consider the system ExAn given by

(4.5) Ezan {S(PR’)*, MxAB, 7(PR’)*},
then we obtain a realization of gAB. This realization is clearly exactly observable
but not necessarily controllable. Its controllability is equivalent to the equality
H(PR’) range HAn which in turn is equivalent to the relative primeness condi-
tion (P1, D1)R IN. We proceed now with a more detailed analysis of the realiza-
tion (4.5).

By a lemma of Ahern and Clark 1] which has an immediate generalization to
the vector-valued case the left invariant subspace H(PR’) has a direct sum de-
composition of the form

(4.6) H(PR’) H(P) PH(R’).

Hence we have an isometric isomorphism of H(PR’) onto H(R’) H(P) given by
f g + Ph h g. Here g + Ph is the unique decomposition of f in H(PR’)
with respect to the direct sum (4.6).

From the above representation of f H(PR’) we have

(f(z) f(O))/z (g(z) g(0))/z + (P(z)h(z) P(O)h(O))/z

--(g(z) g(0))/z + P(z)(h(z) h(O))/z + (P(z) P(O))h(O)/z,

and hence,

(4.7) S(PR’)f s(n)*g + ns(n’)*h + F(P)7(R’)*h.

Next we have f(0) g(0) + P(0)h(0) which implies

(4.8) 7(nR’)*f 7(P)*g + n(o)7(R’)*h.

Finally for 6 L let MxAB zAB g + Ph, with g H(P) and h H(R’).
Then we have

(4.9) h PH2(M)C*B-- PH2(M)C*MB
and

(4.10) g MxAB P. PH2(M)C*MB.
In conclusion relations (4.7)-(4.10) imply that with respect to the direct sum

H(R’) H(P) the shift realization of gAB is given by

(4.11)
F(P)7(R’)* S(P) Mxan P" Pn2(M)C*MnI’

We shall construct now a map

X’H(R) H(P) - H(R’) H(P)
which intertwines ZAZn and Zxan. A comparison of the generators in the system
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given by (4.4) and (4.11), both in lower triangular form, indicates that an inter-
twining operator X may exist of the form

(4.12) X
Z

where W: H(R) H(R’) and Z:H(R) H(P) are bounded. For the operator Wwe
have as a natural candidate the quasi-affinity that intertwines the *-shift and shift
realizations of the analytic part of the function E C*R 2R’C’*. These two
realizations, in the state spaces H(R) and H(R’), are given by

(4.13) Z {S(R)*, F(R), m}
and

(4.14) Z {S(R’)*, M, ?(R’)*}
respectively. From the commutativity of a diagram analogous to (2.25) we have
that

(4.15) WF(R) WPn,_tmR PntM)YC*R
and since

(4.16) WS(R)* S(R’)*W

holds, it follows that for each f H(R) we have

(4.17) Wf PmR’)C*f Pn2(M)C*f
and we take (4.17) to be the definition of W. The primeness conditions (R, C)L IN
and (R’, C’)R IM guarantee that W is indeed a quasi-affinity [5]. Clearly X
defined by (4.12) is a quasi-affinity if and only if Wis. X intertwines the two systems
ZaZB and 2AB if and only if the following relations hold:

WS(R)* S(R’)* W,

ZS(R)* + MAT(R)*= F(P)7(R’)*W + S(P)*Z,

(4.18)

(4.19)

(4.20)

(4.21)

and

(4.22)

P(0)y(R’)*W + 7(P)*Z 0,

WMB Pn2(M)C*MB

ZMB Mza p. PH2(M)C*MB.
Obviously (4.18) and (4.21) follow from the definition of W as given by (4.17). We
define Z’H(R) H(P) by

(4.23) Zf Pmp)PC*f for f e H(R)

which immediately implies (4.22).
Now P(O)7(R’)*Wf (e. PmR,)C*f)(O), and hence,

(P(0)7(R’)*W + 7(P)*Z)f (P. PH(,)C*f + PH(p)PC*f)(O)

(PC*f)(O)= (zAf)(O) O.



ON SERIES AND PARALLEL COUPLING 353

This proves (4.20) and it remains to prove (4.19). Let f e H(R); then

(ZS(R)* S(P)*Z)f PItpPC*PmtNff PmpPmpPC*f.
As A PC* is analytic in the unit disc PC*f belongs to H(PR’) and

PmpPC*f PC*f P. PmR’C*f PC*f PWf.
Therefore it follows that

PH(p)2PWf PH(P)PH-(M)PWf
Pmp){PS(R’)*Wf + F(P)?(R’)*f} F(P)7(R’)*f.

Moreover,

Pn(e)PC*Pn2(N)ff Pmp)PC*f Pn(t,)PC*(f f(0))- Pn(p).PC*f

Pme)PC*f(O) Af(O) MA?(R)*f

which proves (4.19).
To prove the necessity of the condition (R, C)c I for the observability of

the coupled system YAY:s we state first a simple lemma, omitting the proof.
LEMMA 4.4. Given two systems E {F, G, H} and Zx {F, G, H1}"
(a) If E is controllable, then if there exists a bounded operator intertwining E

and E then it is unique.
(b) /f Y is observable, then if there exists a bounded operator intertwining Z

and E then it is unique.
Assume now that the series coupling ZaZn is observable. The map X defined

by (4.12), (4.17) and (4.23) intertwines EAEn and EzAn and, since ZzAn is observable,
it follows from the previous lemma that this is the only intertwining map. Since

EaEn is assumed observable the intertwining map X, by Lemma 4.3(b), is neces-
sarily a one-to-one map. Now because of its special triangular structure X is one-
to-one if and only if W is one-to-one. Now for W as defined by (4.17) to be one-to-
one it is necessary that (R, C)L IN holds. In fact if R and C have a nontrivial
common left inner factor S, then R SR" and H(R) H(S) SH(R"). It is clear
that WIH(S) 0 and hence W in that case is not one-to-one.

The analysis carried out above can be translated, by way of duality considera-
tions, to the series connection of the *-shift realization of A and B. Let us denote
the *-shift realizations of A and B by E4 and E respectively. Since E] is, by the
construction in 2, unitarily equivalent to El, the adjoint of the shift realization of
A it follows that the series connection E4E of the *-shift realizations of A and B is
unitarily equivalent to (EE)*, the adjoint of the series connection of the shift
realizations of/ and . Hence controllability properties of E]E are equivalent
to observability properties of ZXi. The map X that intertwines EAZe and EzAe
has its analogue in a map X’ that intertwines Xzan and X4E. Moreover there is
always a quasi-affinity intertwining X4 and Ea and another intertwining E and En.
The direct sum of these quasi-affinities is a quasi-affinity E which intertwines
Z4X; and EAZn. Thus we have the following diagram"
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We note that X has dense range by construction and is one-to-one if (R, C)L
IN holds. X’ is one-to-one by construction and has dense range if (P1,
holds. X is boundedly invertible if (R, C)L IN is replaced by JR, C] Iu and X’
is boundedly invertible if (P1, D1)R IN is replaced by JR, C]L IN and X’ is
boundedly invertible if (P1, D1)R IN is replaced by [P1 ,D1]R
becomes boundedly invertible if and only if the quasi-affinities intertwining the
*-shift and the shift realizations of A and B respectively are actually boundedly
invertible. This is equivalent to the exact controllability and exact observability of
YA, YI, B and 2;. By results of [8] this is equivalent to replacing the primeness
conditions (3.3) and (3.4) by (3.9) and (3.10) respectively.

We summarize the above analysis in the following theorem.
TI4EOREM 4.1. Let L, M and N be finite-dimensional Hilbert spaces and let

A H(B(N, N)) and B H(B(L, N)) be two strictly noncyclic functions having the
prime factorization (3.1) and (3.2), respectively.

(al) The series coupling ZAZB of the shift realizations of A and B is observable
if and only if (R, C)L IN holds, and exactly observable if and only if JR, C]L
holds.

(a2) The series coupling Z4Z of the *-shift realizations of A and B is controll-
able if and only if (P1 ,D1)R IN holds, and exactly controllable if and only if
[P1, D1]R IN holds.

(bl) A sufficient condition for the controllability of -.,A.,B is (P1 ,D1)R IN.
This condition is also necessary if E is boundedly invertible. If "a and ZB are both
exactly controllable, then ,AZn is exactly controllable if and only if [Px, D X]R IN.

(b2) A sufficient condition for the observability of E’aZ’ is (R, C)L IN. This
condition is also necessary if is boundedly invertible. If Z’a and Z’ are both exactly
observable, then ZZ is exactly observable if and only if JR, C]L

We note in passing that in case of finite-dimensional systems the map E is
always boundedly invertible and that by application of the state space isomorphism
theorem the above results hold for the series connection of any two canonical
finite-dimensional systems.

We pass now on to the analysis of the parallel connection of two shift realiza-
tions. This problem is easier to handle as the parallel coupling of two shift systems
is also a shift system and hence the theorem in [8] characterizing analytically the
controllability and observability properties of these systems can be applied
directly. So let us assume now that A and B are two strictly noncyclic functions in
H(B(N,M)) having the prime factorizations (3.1) and (3.2), respectively. Their
shift realizations have state spaces H(P) and H(R) and are given by (4.2) and (4.3)
respectively.

We denote by YA + 22 the parallel connection of the shift realizations Za and
Z. By this we mean the system given by

(4.24) { s(P)* o
0 S(R)*

(7(P)* 7(R)*)}
acting in the state space H(P)O)H(R) which is a left invariant subspace of
H2(M O) M). The inner function associated with H(P) H(R) has a natural matrix
representation of the form
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By Theorem 3.4 in [7] the system ’A "t- ZB is observable if and only if

IM(R)M(4.26)
0 R IM

and it is exactly observable if and only if

(4.27) IM..
0

We shall show now that condition (4.26) is equivalent to

(4.28) (P, R) IM

whereas condition (4.27) is equivalent to

(4.29) [P, R] IM.
Let us prove first a simple lemma.
LZMMA 4.5. An inner function in H(B(M M, M M)) is a left factor of

I if and only if it has up to a constant unitary factor on the right, the form

IM+S
(4.30)

I-S I+
for some inner function S in H(B(M, M)).

Proof. Let S be inner; then clearly the function given by (4.30) is also inner, and
moreover, siBcc

(4.31)

it is a left inner factor of

To prove the converse we consider the constant unitary operator in M + M
which is defined through its matrix representation

(4.
I -I

U can be naturally extended to a unitary operator in H(M + M) and we have

Thus an inner function Q in H(B(M M,M M)) is a left factor of
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It It
if and only if UQ is a left factor of Now the left inner factors of are

0 0
those associated with right invariant subspaces of full range of HZ(M ( M) which
contain HZ(M) ( {0}. These subspaces are clearly of the form HZ(M) ( SHZ(M)
where S is inner in H(B(M, M)), and hence the corresponding inner functions
have the representation

Q--U*

(4.33)

From here it follows that

Since Q is unique up to multiplication on the right by a constant unitary matrix, by
right multiplying with U we obtain the representation (4.30).

LEMMA 4.6. The relative left primeness conditions (4.26) and (4.27) are equivalent
to conditions (4.28) and (4.29) respectively.

Proof Let S be a common left inner factor of P and R. Thus P SP1 and
R SR,. Since

0 R =- It-S IM+ --\S-IM It+S!
SP 0 ),0 SRa

then together with (4.31) it follows that the inner function given by (4.30) is a

It
nontrivial left inner factor of and

0 It
Conversely assume and have a common left factor. By Lemma

0
4.3 it must be of the form (4.30). Thus

IM- S It + C

and it follows that necessarily P S(A C) and R S(D B) which shows that
S is a common left factor of P and R.

Next we prove the equivalence of the strong relative primeness conditions.
By a generalization of the Carleson corona theorem [2] to the case of bounded
matrix-valued analytic functions [4] the condition [A, B]L IN is equivalent to the
existence of bounded analytic functions A and B1 for which AA, + BB, IN
holds. Thus if [P, R]L It it follows that there exist F and A in H(B(M, M))
such that PF + RA lt holds. This in turn implies that

0
(RA PF)=

which proves (4.27).
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Conversely assume (4.27) holds. Thus there exist bounded analytic functions

A

C DB) and(E F)forwhich

0 IM 0 IM

This implies the equality PA RC IM, and hence also, by another application
of the corona result, that (4.29) holds.

Applying the preceding analysis to the parallel connection of shift systems we
obtain the following.

THEOREM 4.2. Let A and B be strictly noncyclic functions in H(B(N, M)) having
the prime factorizations (3.1) and (3.2) respectively. The parallel connection Za + ER
of the two shift realizations ZA and Zn is observable if and only if the relative prime-
ness condition

(4.34) (P, R)L IM
holds, and it is exactly observable if and only if
(4.35) [P, R]L IM
holds.

Elementary duality considerations applied to Theorem 4.2 yield the next
theorem as a direct corollary. We will denote again by Z the *-shift realization of
A.

THEOREM 4.3. Let A and B be strictly noncyclic functions in H(B(N, M)) having
prime factorizations (3.1) and (3.2), respectively. The parallel connection Y’A + Z’ of
the two *-shift realizations of A and B is controllable if and only if
(4.36) (P1, R1)R I
holds, and it is exactly controllable if and only if
(4.37) [Px, R] I
holds.

Let us denote now by XA the map that intertwines the *-shift and shift realiza-
tions of A, i.e., the unique map that makes the diagram (2.25) commutative. Simi-
larly we define Xn. Both XA and Xn are quasi-affinities and hence the map XA ( Xn
is quasi-affinity from H(Pa) H(R1) into H(P) H(R) which intertwines E + E
and EA + En. Thus the controllability of E + E implies the controllability of
EA + En. If each of the systems EA and Zn is exactly controllable, then XA and XB
are boundedly invertible and so is XA Xs. In this caseE + E is controllable or
exactly controllable if and only if ZA + Z has these properties. Summarizing the
above discussion in a theorem we get the following.

THEOREM 4.4. Let A andB be strictly noncyclic in H(B(N, M)) having theprime
factorizations (3.1) and (3.2). A sufficient conditionfor the controllability of Za + En
is (4.36): If ZA and Zn are both exactly controllable, then condition (4.36) is also
necessary.
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This leaves open the question of the necessity of (4.3) when the exact controll-
ability assumption is violated. We note however that the finite-dimensional
problem is completely solved as in that case controllability and exact controll-
ability are equivalent.
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SINGULAR REGIMES IN CERTAIN CLASSES OF
RELAXED CONTROL PROBLEMS*

THOMAS E. CARTER"

Abstract. We present new necessary conditions for a relaxed minimum in optimal control problems
defined by certain classes of ordinary differential equations. These necessary conditions may be helpful
in computing singular extremal arcs, in determining when these arcs are "strictly relaxed", and in
defining regions of the state space that contain nonsingular extremal arcs only.

1. Introduction. Let T be a closed interval [to, l] in [, m and n positive
integers, R a convex compact set in E" and V an open set in En. We denote by q/

the collection of (Lebesgue) measurable functions u: T R and by 5’(En, E") the
set of real rn n matrices. We assume given functions g:T V ", B:T
([", E"), b:T V E with continuous second derivatives, a continuous
:R E, and shall consider the optimal control problem of minimizing yo(tl)

subject to the condition that u q/, and Yo and y are absolutely continuous solutions
of the differential equations

(1.1)
o(t) 4,(t, y(t)) + ,(u(t)),

(t) g(t, y(t)) + B(t)u(t)

a.e. in T and satisfy preassigned boundary restrictions.
As is well known, a problem of this kind (which we shall refer to as the original

problem) does not always admit a minimizing solution, but under fairly general
conditions, the corresponding relaxed problem does. We define this relaxed
problem as does Warga in [3] and [5]. (His two definitions are equivalent for our
problem). Specifically, we consider the space RP(R) of regular Radon probability
measur.es on R with the weak star topology of C(R)* (the dual of C(R)) and the set
5e of relaxed control functions, that is, of (Lebesgue) measurable functions
a" T RP(R). The set q/is embedded in 5e by identifying u k’ with the function

6,,), where 6, is the Dirac measure at r, For T and a we write (a(t))
(r)a(t)(dr)and s(t) ra(t)(dr).
The relaxed problem is defined by replacing (1.1) by

(1.2)
Po(t) ok(t, y(t)) + (a(t)),

p(t) g(t, y(t)) + B(t)s(t)

a.e. in T. Effectively, the inclusion of relaxed controls enlarges the set of admissible
values of (.90(0, ,9(0) to the set

((t, y(t)), g(t, y(t))) + {(O(r), B(t)r)lr R},

where -6 denotes the closed convex hull. A triplet (Y0, Y, ) is a minimizing relaxed

* Received by the editors October l, 1974, and in revised form March 9, 1975.
t Department of Mathematics, Nasson College, Springvale, Maine 04083. This paper is based on

the author’s Ph.D, dissertation, written under the supervision of Professor J. Warga and submitted to
the Department of Mathematics, Northeastern University, Boston, Massachusetts.
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solution if it yields the minimum of yo(tl) subject to the specified boundary condi-
tions.

It is our purpose in this paper to investigate the regime in which an extremal
of (1.2) is singular, and this is the case, in particular, when it is strictly relaxed,
that is, not locally equivalent to a solutio of (1.1) which we refer to as original.
For regimes of this kind, a necessary condition supplementing the Pontryagin
maximum principle was derived by Warga in [4, Thm. 5.1, p. 138]. (See also
[5, Thm. VI.2.5, pp. 365-366].) We shall study such regimes in greater detail for
the more specialized problems here defined, and we shall derive additional neces-
sary conditions. These conditions can be utilized to further specify the singular
optimal controls and to determine regions of the y-space in which all the relaxed
extremals are actually original.

As pointed out by the referee, some of the restrictions in our formulation are
unnecessary. For example, it is sufficient to assume that ff is lower semicontinuous
and R compact. However, our somewhat stronger assumptions enable us to apply
without modification Warga’s results in [5] and thus eliminate the need for
several technical lemmas.

Section 2 presents additional new necessary conditions and some examples,
primarily in the case where

(i) n 2,
but also with a much briefer discussion of the substantially simpler problems where

(ii) ff is concave and R a polyhedron,
(iii) q is separable (i.e., q(r) ’= qi(ri) where r (r 1, rm) R) and R is

the Cartesian product of closed intervals. Section 3 contains the proofs. In 4 we
also briefly consider the relaxed control version of the simplest one-dimensional
problem of the calculus of variations (to which (1.1) and (1.2) do not apply neces-
sarily).

If k, l, p are positive integers, A [k, and h :A , we define the derivatives
h’(a), h"(a),..., htP)(a) in the sense of Fr6chet but relative to A. Specifically, we
say that a linear function F:k l is the derivative of h at a (denoted by h’(a))
if a belongs to a convex subset of A with a nonempty interior and

lim Ix al- llh(x) h(a) F(x a)] 0 as x ---, a, x e A {a}.
(See [5, 11.3, p. 167ff. for details]). Since the functions that we encounter are not
defined on open sets, this definition enables us to obtain more general results.

We shall denote (tota!) derivatives with respect to by a dot, e.g., (t) or
(z(t)rB(t))", and partial derivatives with respect to a (one- or multidimensional)
variable by displaying the latter as a subscript, e.g., bt or qrl. In particular, the
partial derivative with respect to the second argument of 4) and g (which belongs
to V) will be denoted by b and go respectively. We denote the Borel-Lebesgue
measure by/z and use the terms "measure" and "measurable" to mean "/-measure"
and "-measurable." The superscript T will denote a row vector or the transpose
of a matrix, and components of a vector will be distinguished by superscripts, e.g.,
r (r 1, r2), r/(t) (r/l(t), r/z(t)), etc.

We shall constantly use the concept of an extremal, which is closely related
to the following necessary conditions for a minimizing solution of (1.2) that
follow directly from [4, Thm. 6.1, pp. 142, 143].
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LEMMA 1.1. Let (Yo, Y, tr) be a minimizing relaxed solution. Then there exist
constants c and zo >__ 0 and an absolutely continuous .function z" T- [n such that

Zo + Iz(t)l > Ofor each T, andfor almost all T,

(1.1.1) (t)r -Zov(t, y(t)) z(t)rgv(t, y(t)),

(1.1.2) ZoO(tr(t)) + z(t)rB(t)s(t)= min (ZoO(p) + z(t)rB(t)p),
peR

(1.1.3) Zo[q(t, y(t)) + k(tr(t))] + z(t)r[g(t, y(t)) + B(t)s(t)]

+ [Zoq,(z, y(z)) + z(z)r(g,(z, y(z)) +/(z)s(z))] dr c,

(1.1.4) [z(t)r[3(t) (dp(t, y(t)) + z(t)rg(t, y(t))B(t))](r s(t)) 0

for all r Jo(t) d=f {p R[zod/(p) + z(t)rB(t)p minoR (Zoq(P) + z(t)rB(t)p)}.
We shall refer to (Yo, Y, a, Zo, z) as a relaxed extremal if (1.2), (1.1.1) and (1.1.2)

are satisfied a.e. on T, whether (Yo, Y, tr) is a minimizing relaxed solution or not.
It is shown in the proof of [-4, Thm. 5.1, p. 138] that every relaxed extremal also
satisfies relations (1.1.3) and (1.1.4) a.e. on T.

A relaxed extremal is abnormal if Zo 0. The study of abnormal extremals
of equations (1.2) is considerably simpler than that of other extremals, and it
resembles the study of the case where @ is linear. For this reason we shall consider
only normal relaxed extremals (i.e., with zo 4: 0), and in this case we may assume
that Zo (because the relations (1.1.1)-(1.1.4) are homogeneous in (Zo,Z, c)).
The term extremal will be used to mean a "normal relaxed extremal" for the
remainder of this work. For a given extremal (Yo, Y, a, 1, z) of the relaxed problem,
we shall define c and Jo(t) as in Lemma 1.1.

Let

gr , {((r), r) [R"+ lr R},
(r) min {rl(r, r) e - (gr ,)}.

The function q is the convex envelope of .1 It can be verified that a function q*

is the convex envelope of ff if and only if q is a convex function, W(r) =< ,(r) for
each r e R and, if Y" is any other convex function having this property, then
q(r) >= r(r) for each r e R. We shall denote by q{P) the pth derivative of q (relative
to R), and set

R{p) {r RI R’tp) exists and is continuous in some neighborhood of r
relative to R}.

We define the closed tread associated with w e " as the convex set

g(w) {r e Rid(r) + wrr min (Ue(p) + wrp)}.2
peR

As shown by Kruskal [1], the function q need not be continuous even though @ is continuous.
thank the referee for drawing my attention to this fact.

In the notation of "Convex Analysis" (Rockafellar [2])’G(w) 0q*(-w) where *(w) max,
{w. ,(r)} and Oq* is the subgradient mapping associated with ,*. (Here q is defined for all e [m
but takes the value + oo outside of R). Furthermore, in this notation the function W is actually ,** and
q,* q,*.
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Any closed tread can be viewed as a projection of a closed face of gr W on R.
The term open tread or simply tread will be used to refer to the relative interior
of a closed tread G(w) in its affine hull and will be denoted G(w). The dimension
of G(w) or G(w) (written dim G(w)) is the dimension of its affine hull, and
denotes the diameter of the set G(w). We shall say that a closed or open tread is
nontrivial if its diameter (or, equivalently, its dimension) is nonzero.

For a given extremal (Yo,Y, o, 1, z), we define the set-valued mappings J
and J by

J(t) G(B(t)rz(t))= -Jo(t), J(t) G(B(t)Tz(t)).

We refer the reader to [5, 1.7, p. 146] for results pertaining to set-valued mappings
that we use here. The function J maps Tinto the set g( of nonempty closed subsets
of R with the topology of the Hausdorff metric, and J maps T into the set ’ of
nonempty subsets of R with the topology of the Hausdorff semimetric [5, 1.7,
p. 146]. We say that , (respectively J) is measurable if the set J-I(A) (respectively
J-I(A)) is measurable in T for each open A in (respectively ’). A function
’S - R is a selection of J (respectively J) if S

__
T and ?(t) J(t) (respectively J(t))

for each S.
We shall refer to an extremal (Yo, Y, o, 1,z) and the corresponding relaxed

control function o as singular at T if IJ(t)] > 0, as nonsingular at if it is not
singular at t, as original at if 0o(t), )(t)) exists and

(.9o(t), .9(t)) 6 (b(t, y(t)), g(t, y(t))) + {((r), B(t)r)[r R},

and as strictly relaxed at if (3o(t),)(t)) exists and it is not original at t. Clearly
a is strictly relaxed a.e. in the set where it is not original. (Observe that this defini-
tion of the term "original" does not mean that o(t) is a Dirac measure but only
that it can be replaced by one.) We refer to this extremal as nonsingular (respec-
tively original) if it is nonsingular (respectively original) at a.e. in T. For any
S
_

T, we define the singular and strictly relaxed regimes on S of this extremal as,
respectively, the sets

and

A(S) {t SI ]J(t)[ > 0) {t SI dim J(t) > 0},

m’(s) {t Sis(t) Jo(t)}.

It is easy to verify, using relations (1.2) and (1.1.2), that for almost all T, the
extremal is singular (respectively strictly relaxed) at if and only if ()o(t), 9(t))
exists and e A(T) (respectively A’(T)).

We now consider the optimal control problem that is defined by replacing
with in (1.2). We shall refer to it as the related problem. It is known that,

because of the convexity of , for every relaxed extremal of the related problem
there exists an equivalent original extremal. In fact, we shall prove in 3 the
following Lemma in which s(t) is defined as in (1.2).

LEMMA 1.2. The related problem admits (Yo, y,s, 1,z) as a normal original
extremal if the relaxed problem admits (Yo, Y, a, 1, z) as a normal extremal.
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It is clear that our extremal of the relaxed problem and the corresponding
original extremal of the related problem which is specified by Lemma 1.2 have
identical singular regimes on T because both extremals define the same set-valued
mapping J. Furthermore if, for the relaxed problem, a is strictly relaxed at a
point T then, for the related problem, s is singular at and

s(t) J(t) Jo(t) {r Rl(r) > W(r)} .](t) J(t).

We shall henceforth assume that (Yo, Y, a, 1, z) is a specific extremal for the
relaxed problem and shall focus our attention on it.

2. Necessary conditions and examples. We now present new necessary condi-
tions for a minimizing solution for several cases of the related problem. These
necessary conditions provide additional information about a normal extremal in
its singular regime on T and therefore apply also to the relaxed problem. The
information about a corresponding extremal of the relaxed problem in its strictly
relaxed regime on T is provided by the additional necessary condition for strict
relaxation, namely,

s(t) J(t) Jo(t), A’(T).

These results can also be used to define regions in the state space that can only
contain nonsingular extremal arcs (respectively, original extremal arcs) for the
relaxed problem. Such information will be presented in the form of corollaries to
the theorems which present the necessary conditions.

In the work to follow, we shall denote the columns of the matrix B(t) by
b l(t),.", b,,(t) " and, for all (t, v, w) T V ", we set

];l(t, V, W) v(t, V) + wTgv(t,

yz(t, v, w) dpv(t, v) 4- wTgov(t, V),

73(t, V, W) YX(t, V, W) Yz(t, V, w)g(t, V) yl,(t, V, W).

We might mention, for the sake of clarity, that a derivative such as b(t, v)
is represented by a row vector. Similarly, a second derivative such as bv(t, v) or
wTgv(t, V)= (wTg(t, V)) is an operator such that c,(t, v)x is a row vector for
x [". Computationally, if 4,,,(t, v) is represented by a square matrix M, then
dp,,(t, v)x is represented by xTM. For an extremal (Yo, Y, s, 1, z)ofthe related problem
corresponding to the extremal (Yo, Y, a, 1, z) of the relaxed problem, we shall write

i(t) 7i(t, y(t), z(t)), 1,2,3,

rl(t (rl’(t), rim(t))w z(t)r(t) /l(t)B(t) (z(t)WB(t))", t6 T,

and

i {t TIJ(t) R(i)}, 1,2,3.

Arbitrary closed and open treads are denoted by G and G, respectively. We set

Go {r 6 t](r) V(r)},
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and

i ( - RI GI > 0 and G Rt}, i-- 1,2, 3.

Thus J(t) q i if i and [ff(t)l > 0.
Our basic results (except for the one stated in 4) are presented below, and

are followed by illustrative examples.
THEOREM 2.1. Assume that R is a convex polyhedron in m, and that - is

continuous and convex. Let (Yo, Y, s, 1, z) be a normal extremal of the related problem.
Then, for almost all T, the expressions W(r) + z(t)TB(t)r, rl(t)r and fl(t)r are
constant in r over the set J(t).

COROLLARY. Assume that R is a convex polyhedron in m, and that - is

continuous and convex. Let S
_
T and Y

_
V be such that for each choice of

(t, v) S Y, a closed tread ; in R, r l, r2 G, r G and so ; Go - G, the
system of equations

q(r2) W(rl) + wrB(t)(r2 r) O,

[WTJ(t)- 7(t,v, w)B(t)](r2 rl)--O,

[wT/(t) 27 l(t, t, w)J(t) -4- T3(t, v, w) 72(t, v, w)B(t)So](r2 rl) 0

has no solution w ". Then any normal extremal (Yo, Y, a, 1, z) is original a.e. in
{t Sly(t) Y}. If the above is valid also for each So , then this extremal is also
nonsingular a.e. in {t Sly(t) Y}.

Remark. Note that if -q is strictly convex then G Go G.
THEOREM 2.2. Assume that R 11 ... x I where each 1 is a compact

interval in , i’Ii is continuous, and if(r)= ili(ri) for each
r (rX, rm) R. Then all the closed treads in R are rectangles and the conclu-
sion of Theorem 2.1 remains valid.

COROLLARY. Assume that R 11 x I, and for each 1,..., m, the
set I is a compact interval in , i is continuous, (r)= i=1 i(ri)
for each r (rX, W) R, and Cn’= (Wi(r) W,(r]))/(r r]) for distinct

i,r, r2 H where H is any component of {r I](r) > (r)}. Let Y V, and
S T be measurable. Iffor each Y, 1,2,..., m, so I H

I, eery component H, and almost all S, the system of equations
wTbi(t) + Cn’= O,

71(t, v, w)bi(t) + wTbi(t) O,

[72(t, v, w)B(t)So] [bi(t)] 73(t, v, w)bi(t + 271(t, v, w)bi(t) wr)i(t) 0

has no solution w, it follows that any extremal arc in Y is original a.e. on S.
THEOREM 2.3. Let V, R

_
[2, and for each point r (r 1, r2) Rt3) such that

W(r) # O, W(r) 4: O, let

K(r) [W,(r)/W,,,,(r)],/W,(r).

/f (Yo, y,s, 1, z) is an extremal of the related problem corresponding to the
extremal, Yo, Y, a, 1, z) of the relaxed problem, then for almost all T the expres-
sions W(r) + z(t)rB(t)r and rl(t)r are constant in r over Y(t). Furthermore, for almost
all either the expression fl(t)r is constant in r over J(t) or else
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(2.3.1) W’(r) + z(t)rB(t) O, r J(t);

and, if 93
(2.3.2) ql(t)Oz(t) qz(t)0 l(t) + 1/2K(r)ql(t)3 O, r J(t).

If the sets fx (respectively f3) are finite or denumerable, then O(t)r is constant
in r over J(t) for almost all 9x (respectively @3).

Ifdim R _< 1, then O(t)r is constant in r over J(t)for almost all T without any
assumptions about

Finally, the set A(T) (of all points T such that this extremal is singular at t),
and the set A’(T) (of all points T such that the corresponding extremal of the
relaxed problem is strictly relaxed at t), are both measurable.

Remark 1. It is well known (and easily verified) that relation (2.3.1) is valid
for all 91 for which J(t) is in the interior of R. However, our alternative remains
valid for all t 91 because we define g’(r) relative to R, and this derivative may
therefore exist for some points r on the boundary of R. Furthermore, if fl is finite or
denumerable, then Theorem 2.3 asserts that O(t)r is constant in r over J(t) whenever
P is not continuously differentiable on J(t).

Remark 2. Relation (2.3.2) of Theorem 2.3 may suggest the conjecture that
K(. is constant on every one-dimensional tread. The following counterexample
shows that this conjecture is false.

Let R [0, 1/212 C 2, and (r) (r) (r r2)2 e(l/2)(rl+r2)2. Along the
closed tread that has the equation r r2 we have K(r) 2rile2r)2. This clearly is
not constant.

COROLLARY. Assume that, for the relaxed problem, the set 1 (respectively 3)
is finite or denumeralle. Let S

_
T and Y

_
V be such that for each choice of

(t, v) S x Y, a nontrivial closed tread G
_

R, r r2 G, r G, and So G Go - G,
neither the system

(2.3.3)

(r2) P(rl) + wTB(t)(r2 rl) O,

[wT(t)- 7l(t, V, w)B(t)](r2 rl)= O,

[wr,(t) 27(t, v, w)B(t) + 7s(t, v, w)

72(t, v, w)B(t)So](r2 r) 0

nor the system

(2.3.4)
W,(r) + wrbi(t) O, 1,2,

[wr/)(t) yl(t, v, w)B(t)](r2 rl) 0

has a solution we 2. Then any extremal (Y0, Y, tr, 1, z) is original a.e. in
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{t S[y(t) Y}. If the above assumptions are also valid for each So , then this
extremal is both original and nonsingular a.e. in {t S[y(t) Y}.

Ifdim R _< 1, then the assumption that (2.3.3) has no solution w 2 is sufficient
without any assumptions about 1, 3 or (2.3.4).

Examples.
Example 1. Let R [0, 1]", ql, ..., q, e [, qi 4: 1, (i 1, ..., n) and

o(tt q((Ol- 2 (s(tlt,
i=1 i=1

(tt y(tl +

n(t) yn(t)2 + Sn(t)

For each 1,...
the corollary of Theorem 2.2 is

wi--1 =0,

2qvi+ 2vgwg 0,

(2sio 2(vi)2)w + 2qi(sio (vi)2) 0, 1,..., m.

Clearly there is no solution for this system (because q 4: for each i), therefore
the region Y of original extremal arcs is all of V. Note that if the set R is enlarged
to contain the origin as an interior point, then a nonoriginal extremal trajectory
(namely, y(t) 0 for almost all T) is possible.

Example 2. Let R be the compact circular disc centered at (1.1) with radius
1, V= [2, (r)= -f([(r1- 1)2 -+-(r2- 1)2] 1/2) where f’[0, 1]- [, f(0)= 0,
f(1) 1, and f is strictly convex, th(t, v) (vl)2 + (v2)2, g(t, v) 0, and B(t) is
the identity matrix ! on R2.

a.e. in T.

m, H (0, 1) and C/’ 1. The system of equations from

FIG. 1. The region R in Example 2 (r 1)2 qt_ (r 1)2 _(

The convex envelope of is

P(r) [(r 1)2 ..[_ (r2 1)211/2
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therefore the sets R1) and Rt3) are the deleted disc R {(1, 1)}. The nontrivial
closed treads are the closed rays from the center to the boundary and are clearly
one-dimensional. (See Fig. 1.)

For this problem 71(t, v, w) 2v, the matrix of 72(t, v, w) is 21 and 73(t, v, w)
=0. For each r- (1,1), Wrl(r)= (r- 1)/qS(r), Wr2(r)= (r2- l)/qJ(r), and
K(r) -2t(r)/(r2- 1)] 3.

We shall use Theorem 2.3 to describe all possible singular control values at
almost all T for a corresponding point y(t) [2 on an extremal trajectory of the
related problem. We denote by S the set of points in T where a given extremal is
singular. It follows from Theorem 2.3 that S is measurable, and for almost all

S, rl (1, 1) 3(t), and r2 r (r r2) G ,(t) {(1 1)}
(i) q(r) + z(t)(r 1) + z2(t)(r2 1) O,

(ii) y(t)(r 1) + y2(t)(r2 1) 0 and either
(iii) (r 1)sl(t) + (r2 1)s2(t) 0, or else
(iv) (r 1)/W(r) + zl(t) 0, (r2 1)/W(r) + z2(t) 0,
(v) y2(t)sl(t)- yl(t)s2(t) + K(r)(yl(t))3 O,

and, in addition to the above, we may set r s(t) where

(vi) (s(t)- 1)2 + (s2(t)- 1)2
because s(t) J(t).

Since r - (1, 1) the first alternative provides the simultaneous equations

yl(t)sl(t) + y2(t)s2(t)= y(t) + y2(t),

y2(t)s(t) y(t)s2(t) O,

which yield the solution

(vii) sl(t) (Y(t)2 + yl(t)y2(t))
s2(t)

Y(t)y2(t) + y2(t)2
yl(t)2 + y2(t)2 yl(t)2 + y2(t)2

We now consider the second alternative. It follows from (ii) that.

K(r) +/-2[(yl(t)2 + y2(t)2)/2/y(t)]3"

therefore we have the simultaneous equations

y(t)s(t) + y2(t)s2(t) y(t) + y2(t),

y2(t)s(t) y(t)s2(t) -T-2[yl(t)2 + y2(t)2]3/2

which yield the solution

(viii)

sl(t
yl(t)2 -k- y(t)y2(t) - 2y2(t)[y(t)2 + y2(t)213/2

yX(t)2 + y2(t)2

y(t)y2(t) + yz(t)2 + 2ya(t)[y(t)2 + y2(t)213/2
yl(t)2 + y2(t)2

Our singular extremal for this related problem has its control function
defined a.e. on S by either (vii) or (viii). For the relaxed problem, a corresponding
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extremal is strictly relaxed at e S if s(t) J(t) Jo(t); therefore the extremal con-
trols represented by (vii) and (viii) are strictly relaxed if

(ix) 0 < (s’(t)- 1) + (s2(t)- 1)2 < 1.

For this example the corollary of Theorem 2.3 can be used to define a set
y [2 which can contain only nonsingular extremal arcs. It can be verified that
for each nontrivial closed tread 6 R and So G (i.e., (So 1)2 + (s 1)2 <_ 1),
there are no solutions to the equations (2.3.3) if v is in the complement of the set

and there are no solutions to the equations (2.3.4) if v is in the complement of
the set

Y2 { U G 2 [(vl)2 + vlv2 2v2[(vl)2 +
(V2)2 112

+ vlv2 + (v2)2 2v[(v1)2 + (v2)213/2 J 2}(v)2 + (v

{VG2I[vl V2 2[(vl)2 + (U2)213/2] 2 }<1
(v) + (v:)

{ v : v’ v
[(v) + (v)]/ 2[(v) + (v)]

Therefore the set Y is the complement of the set Y Y2.
The corollary of Theorem 2.3 can also be used to define a set Y’ 2 which

can contain only original extremal arcs. This is the set of all points in z such
that for each nontrivial closed tread G R and So e G Go (i.e., 0 < (s l)z

+ (s l)z < 1), there are no solutions to equations (2.3.3) or (2.3.4). Thus Y’ is
defined as the complement of the set Y] O Y where

Y v eN0<(v) +(v) < {veNery Cv andvv >0}

and

Y= veN0<
(v)+(va)

<1

e0 < (( [/ ((v + (vF <

The sets Y and Y’ are presented respectively in Figs. 2 and 3. It should be
noted in Fig. 3 that the curve whose equation is

Iv v ((v) + (v)/]
=0

(vI + (v
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is part of the set Y’ which is obtained through the corollary of Theorem 2.3. This
curve corresponds to those singular points of an extremal where the extremal
control is supported at (1, 1). We shall verify that there is no loss in deleting this
curve from the figure.

/)2

(o,)

Y

FIG. 2. The region Y of only nonsingular arcs in Example 2

For any extremal (Yo, Y, , 1, z), let F {t A(T)ls(t) (1, 1), y(t) }A._By
differentiating y(. a.e. on F we see that either y(t)- 0 or y(t)= (+_2/2,
x/2) a.e. on F. Consequently #(F) 0 because s(t) (1, 1) on F.

Example 3. Let R be the square [-1, 1] 2, V-- 2,

R {r R[2r + 1 < r2 < 1},
RR {r RI- 2r + 1 < r < 1},

RM-- {re RI-1 < re < min (2r + 1,-2r + 1)},
and

Rn {re Rlr 1}.
Let O(r) (rl)r2, 4(t, v) (v}2 + (v2)2, g(t, v) v, and B(t) be the 2 x 2 identity
matrix I.
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/3

(o, )

FIG. 3. The region Y’ of only original arcs in Example 2

(-1,1)

(-1,-1) (1,-1)

FIG. 4. The region R in Example 3
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The convex envelope of is defined by

-1 + -(r2-t 1){I2
 e(r)

-1 / 1/2(r2 / 1)([2

)12 )r + 1
1 + 1 rst,r2+l

r2+ 1]
+ 1 1 rRR,

where 0/0 is defined as 1. It is easily verified that Rtl) R and Rt3) is the set R with
the exception of the two lines

r2-- / 2r + 1.

The nontrivial closed treads in R are the one-dimensional treads in K. and ’R
which emanate from the two lower corners of R, the lower edge RB of R and the
two-dimensional closed tread RM. Clearly 3 is finite consisting of the two one-
dimensional closed treads in R Rt3). (See Fig. 4.)

For this problem 71(t, v, w)= (2v + w)r, the matrix of 72(t,v, w) is 21 and
73(t, v, w) w. For each r KL, the number

rl+l
=r2+l

is the reciprocal of the slope of the tread containing r. For each r
4- 2, Wr2(r)= -202 / and K(r)= -1/2. Similarly, for each r /R, we

define the number

r 1
fl r2+l

and, in this region, Pl(r) 4fl + 2, P2(r) -2/32 + 1 and again K(r) -1/2.
We shall use Theorem 2.3 to describe all possible singular control values at

almost all T for a corresponding point y(t) 2 Oil an extremal trajectory of the
related problem. We denote by SL the set of points in T where an extremal control
of the related problem (also of the relaxed problem) is singular and supported on

R. It follows from Theorem 2.3 that S is measurable and, for almost all S
and r J(t) c RL,

(i) 22 2 / / zl(t) / za(t) 0,
(ii) 2yl(t) + 2yZ(t) + zl(t) / zZ(t) 0 and either

(iii) -2sl(t) 2sZ(t) + z(t) + z2(t)= 0 or else
(iv) 4- 2 + z(t)= 0,-22 / 1 / zZ(t)--0,
(v) (2y(t) + z(t))(z2(t) 2s2(t)) -(2y2(t) / z2(t))(za(t) 2s(t))

1/4(2ya(t) / zl(t))3 0,
and in addition to the above,

(vi) sl(t) esZ(t) e + 0, =< sZ(t) =< because s(t) J(t), and
(vii) 0 N e N 1/2 because Y(t) c I.

From relations (i) and (ii), we have for almost all S,
2 (1 / y(t)) / (1/2 yZ(t)) O.
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The roots of this equation are

(viii) 0{ 1/2(yl(t) + 1) + 1/2[(yl(t) + 1)2 + 4y2(t) 2] 1/2 a.e. on SL. Solving the
system (i), (ii), (iii) and (vi), and again solving the system (i), (ii), (iv), (v) and (vi)
for s(t) subject to the restrictions (vii) and (viii), we see that Ttieorem 2.3 implies
that either

__0{3 _11_ 0{2 q_ 1/20{ s2(t
--20{2 + 20{ 1/2

(ix) sl(t) 0{2 / 0{2 4- 1

or else

or else

(xiii)

whine -1 =< s2(t) < 1 and -1/2 <_ fl =< 0.

(xi)

and either

(xi) f13 f12 _[_ 1/2fl _[_ 1
s2(t --2fi2 2fl- 1/2SI(t)

f12
_

f12 ._ 1

sl(t)

s(t)

f13 2 _[_ 1/2 _[_ 2t- fl y fl 1)2

f12+l
--2fl2 2fl 1/2 + (yl(t)- fl 1)2

f12+l

Next we consider the case where SR is the set of all points in T where an ex-
tremal control is singular and supported on RR. The fact that T(r) + z(t)TB(t)r
and q(t)r are constant in r Rn yields

zl(t) O, yl(t) 0 a.e. on S,
and therefore

sl(t) 0 a.e. on S.
The additional fact that s(t) R for each e Sn yields

(xiv) sl(t) 0, s2(t) 1 a.e. on
Finally, if SM is the set of all points in T (SL U S U SR) where an extremal

control is singular and supported on RM, then relations tI(r2) tI(rl) -+- z(t)TB(t)
(r2 rl) 0, rl(t)(r2 rl) 0 are valid for two linearly independent values of

rz r consequently

zl(t) 0, z2(t) --1, yl(t) 0, yZ(t) 1/2 a.e. on SM,

$1(t) 0{2 +
(x)

s2(t
--(yl(t)- 20{ + 1) 20{2 + 20{- 1/2

0{2+1

for almost all t S where -1 =< s2(t) =< and 0 __< 0{ =< 1/2.
Similarly ifS is the set of all points in Twhere an extremal control is singular

and supported on K, then for almost all S we have

fl 1/2(yl(t)- 1) q- 1/2[(yl(t)- 1)2 + 4y2(t)- 2] 1/2
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and therefore

(xv) sl(t) 0, s2(t) -1/2 a.e. on SM.
The relations (viii)-(xv) provide a means of computing all possible values of a

singular extremal control at a point T corresponding to a point y(t) of the
trajectory for the related problem. For the relaxed problem, an extremal control
is strictly relaxed at if s(t) J(t) Jo(t). Therefore the extremal controls repre-
sented by (xiv) and (xv) are strictly relaxed, those represented by (ix) and (x) are
strictly relaxed if

0<_<1/2 and -1 <sZ(t)< 1,

and those represented by (xii) and (xiii) are strictly relaxed if

-1/2=<fl<0 and -1 <sZ(t)< 1.

For this example the corollary of Theorem 2.3 can easily be applied, without
computing s(t), to define a set Y c [2 which can contain only nonsingular ex-
tremals. It is easily verified that the first two equations of (2.3.3), and the first three
equations of (2.3.4) have no solutions for w if the relations

0 < 1/2, --1/2 0, /)1 0

are not satisfied. These restrictions define the following set which can contain
only nonsingular extremal arcs"

Y {ve n11/2(v + )+ 1/2[(v + 1)2 + 4v2- 211/2 q [o,1/2],1/2(v1- 1)

_+ 1/2[(v 1)2 + 4v2 211/2 [-1/2, 0], and v - 0}.

To compute a set Y’ c 2 which can contain only original extremals, we
find the set of all points in 2 such that the first two equations of (2.3.3) and the
first three equations of (2.3.4) have no solution if the relations

are not satisfied. This defines the following set which can contain only original
extremal arcs"

Y’= {re [21(vl + 1)_+ 1/2[(v + 1)z + 4v2- 2] 1/2 (0,1/2],v + 1)

_+ 1/2[(v 1) + 4v2 2] /2 [-1/2,0), and v 4: 0}.

The regions Y and Y’ are presented in Fig. 5. The two regions are identical
except for the line v2 1/2. This line is the set Y’,- Y. It represents a possible
singular extremal whose control is supported at the right or left edge of R.

3. Auxiliary lemmas and proofs of theorems. We begin with a proof of the
Lemma 1.2 which was stated in the Introduction.

ProofofLemma 1.2. Let e T and relations (1.2) and (1.1.1)-(1.1.4) be satisfied
at t. We define the function h’R --. [ by

h(r) (r) + z(t)B(t)r,
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FIG. 5. The region Y ofonly nonsingular arcs and the region Y’ of only original arcs in Example 3

and denote by H the convex envelope of h. As it is well known,

(h(r), r)o’(t)(dr) e co (gr h),

and if we let e(t)= h(r)e(t)(dr), then (e(t),s(t))eco(gr h) and therefore e(t)
>_ H(s(t)). Since e(t)= min h(r) by (1.1.2), and min h(r)= min H(r), we
have e(t) _<_ H(s(t)). It follows that e(t) H(s(t)); consequently,

(s(t)) + z(t)rB(Os(t)= min ((r) + z(t)rB(t)r),

and this relation corresponds to (1.1.2) with Zo for the relaxed problem. It is
clear that (1.1.1) is also true with zo for the related problem. Furthermore, s is
original at for the related problem, and (1.2) is replaced by

Yo(t) dp(t, y(t)) + W(s(t)),

))(t) g(t, y(t)) + B(t)s(t).

Therefore (Yo,y,s, 1, z) is a normal original extremal of the related problem.
Q.E.D.

Let T1 denote the set of the points of density 1 in the collection of all points in
Twhere the relations (1.2), (2.1.1)-(2.1.4)are satisfied. It is known that/(T1) =/(T)
and it is clear that the original extremal (Y0, Y, s, 1, z) of the related problem satisfies
the following relations for each e T

Yo(t) dp(t, y(t)) + tP(s(t)),

))(t) g(t, y(t))+ B(t)s(t),
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(t)r -ckv(t, y(t)) z(t)rgv(t, y(t)),

"t’(s(t)) + z(t)rB(t)s(t)= min (ZoO(p) + z(t)rB(t)p),
per

dp(t, y(t)) + W(s(t))+ z(t)T(g(t, y(t)) + B(t)s(t))

+ [4,(r, y(rtt + z(r/(,(r, ’(rlt + (rs(r] dr c,

(1.1.4’) [z(t)rB(t) (4v(t, y(t)) + z(t)rgv(t, y(t))B(t))](r s(t)) 0, r

Henceforth we shall consider the restrictions of the maps J, J, s, etc., to Tx without
changing the notation. For example, we write J" T1 - 3( instead of
Whenever the domain of a map is not specifically stated, it should be understood
that it is the set Tx.

For each e T, let

(3.1.1)

(3.1.2)

(3.1.3)

(3.1.4)

o(t) c (t, y(t)) z(t)rg(t, y(t))

[b,(z, y(z)) / z(z)r(g,(z, y(z)) / [3(z)s(z))] dz.

LEMMA 3.1. For each T r, r2, r J(t), and every selection ? of j, we have

(r) + z(t)B(t)r (t),

W(r2)- W(r) + z(t)B(t)(r2 rl)= 0,

(z(t)r(t) [(t, y(t)) + z(t)go(t,y(t))]B(t))(r2 rx) 0,

lim [V(?(z)) + z(z)B(z)?(z)] V(r) + z(t)rB(t)r.

Proof. Relation (3.1.1) follows from (1.1.2’), (1.1.3’), and the definitions of
and (t). Relation (3.1.2) is obtained by subtracting (3.1.1) evaluated at two points
r and r2 on J(t). Similarly relation (3.1.3) follows by subtracting (1.1.4’) evaluated
at two points r and r2 on J(t). Finally relation (3.1.4) is obtained from (3.1.1) and
the fact that is continuous. Q.E.D.

LEMMA 3.2. The mapping J’T is upper semicontinuous.
Proof We first show that the set-valued mapping Jo" Tx ’ which is defined

in (1.1.4) of Lemma 1.1 is upper semicontinuous.
Let {t} be any sequence in Tx that converges to e T, pe Jo(t) for each
1, 2,..., and Po any limit point of the sequence {p). There is a subsequence

{ti} {t} such that Po limk. p and, by the continuity of , z, and B,

lim [@(p)+ z(ti,)rB(ti)Pi,] (Po) + z(t)rB(t)po
k

Since for any selection ? of Jo the mapping

t (?(t)) + z(t)rB(t)?(t)= min ((p)+ z(t)rB(t)p)= (t)

is continuous on T, it follows that Po Jo(t). This shows that Jo is upper semi-
continuous.
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We know that ](t)= UdJo(t). It remains to show that for any e > 0 there
exists r/> 0 such that Ir- t[ < r/ implies J(z)c S(J(t),e,), where S(A,O

{r e RI It, A[ < e} for A e ’ and [r, AI inf,a Ir a[.
Given e>0 there exist e’>O and >0 such that Jo(r)

S(J(t), e/2) for 1 t[ < because Jo is upper semicontinuous and Jo(t) J(t).
Since J(t) is convex, S(J(t), e/2) is also convex, therefore

J(r) Jo(r) (Jo(t), e’) S(J(t), e/2) S(J(t),

forlt-rl<. Q.E.D.
It is well known [3, Lemma 1.7.5, p. 150] that , as an upper semicontinuous

mapping, must be #-measurable. Since J(t) is the closure of J(t) for all T1,
it follows that J is also -measurable (since the Hausdorff pseudodistance of J(t)
and J(t)is zero).

LEMMA 3.3. For each T and every selection of J, we have

lim[((r--((t))+z(t)TB(t)((r)--(t))]=O’tr
eT

Proof. Because relations (1.2’) and (1.1.1’) are true for each e T, it follows
that (t) exists for each e T. Therefore relation (3.1.1) of Lemma 3.1 implies
that

[ z(r)TB(r)(r)--z(t)TB(t)(t)]lim
W(P(r)) W(P(t)) + (t).

eT

Since R is bounded, this relation yields

lim [(P(z- (?(t))
+ z(t)TB(t)(P(z)- ?(t))

rT

+ ((t)TB(t) + Z(t)Tg(t))(Z) a(t)[ O.

We differentiate the expression for (t) using relations (1.1.1’) and (1.2’), and the
above relation becomes

lim_ [P((z))-.z-tP((t)) + z(t)TB(t)((z)z_t--(t))
rT

+ E(qS,(t, y(t)) + z(t)Tg(t, y(t))B(t)) z(t)Tg(t)](s(t) ())1 O.

Our conclusion now follows from Lemma 3.2 and relation (1.1.4’). Q.E.D.
LEMMA 3.4. Let {ti} be any sequence in T converging to a point T and {Pi}

a sequence converging to r J(t) f’l R(x) and such that Pi J(ti) for each 1, 2,
Then

lim
ti-*
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Proof. This lemma is an immediate consequence of Lemma 3.3 and the
assumption that r e R1). Q.E.D.

LEMMA 3.5. Let S be a measurable subset of T1. Then the sets A(S) and A’(S)
are measurable.

Proof. The functions s and J are measurable. Therefore it follows from
Lusin’s theorem that for every e > 0 there exists a closed set S

_
S such that

p(S S) __< e and both JIS and slS are continuous. Let

D {teS[ dim J(t) >= i}, O, 1,....

If D, then J(t) contains an/-simplex, and therefore, by the continuity of J[S,
J() will also contain an/-simplex for all in some neighborhood of in S. Thus
each D is relatively open in S, hence measurable. It follows that the sets

E {t 6 S]dim J(t) i} D D+1

are also measurable for i= 0, 1, 2,..., m. Since JIE and slE are continuous,
it follows that for each the set

G {t E[s(t) J(t)}
is relatively open in E and so is the set

6 {t sl(t)e J(t)} U .
i=O

We now choose e l, 1/2, 1/2,..., and conclude that there exist sets Z and Z’ of
measure zero such that

and

A(S) jU.=l D/‘/ U Z

A’(S) U G1/j UZ’.
./=1

Thus both A(S) and A’(S) are measurable. Q.E.D.
LEMMA 3.6. Let f {G1, G2,’" "} be a finite or denumerable collection of

nontrivial closed treads in R, and E {t A(T1)[J(t) f }. Then E is measurable and,
jbr almost all E and each r r2 J(t), we have

(z(t)’B(t))"(r2 rl) {z(t)g(t) [(t, y(t)) + z(t)g(t, y(t))]B(t)}’(r2 rl)-- O.

Proof Let E {t ElY(t)= Gi} for each i= 1,2,.... Since the singleton
{C,} is a closed subset of, its inverse image E under the measurable mapping J
is measurable. The set E is measurable because E U . Ei.

Now let j be an arbitrary positive integer and an arbitrary limit point of E‘/.
Our conclusion follows by choosing two fixed points r, r2 e (j and differentiating
relation (3.1.3) at the point t. Q.E.D.

Proof of Theorem 2.1. The statement that the first two expressions are constant
is a restatement of (3.1.2) and (3.1.3) of Lemma 3.1. We may, therefore, restrict our
attention to the third expression.
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Let w e [m, k minpR (O(P) + wrp), Go(w) {r e RI0(r) + wrr k}, and
be the smallest set of vertices of R such that Go(w)

_
-6-6 . The function r Off)

+ wrr’R --, is concave; therefore, it has a minimum at every point of . The
convex envelope of this function takes the value k at each point on , and is
strictly greater than k elsewhere. Therefore U is a closed tread. Since there are
finitely many vertices in R, there are therefore finitely many closed treads in R.
Thus the conclusion follows from Lemma 3.6. Q.E.D.

Proof of Theorem 2.2. Let w (w 1, w") e Nm, and for each 1, m
define

ri(w) ri e Iiltrti(ri -+- wir min (Wi(P’) / wipi)
pili )

which is clearly a compact subinterval of Ii. Since if(r) ,im__l i(ri), it follows
also that q(r) ’:1 qi(ri) and consequently each closed tread G(w) in R is of
the form Gl(w) x C,m(w) and therefore is rectangular.

The statement that the first two expressions are constant is a restatement of
(3.1.2) and (3.1.3) of Lemma 3.1. It follows from (3.1.3) that r/(t)(r2 rl) 0 for
each rl,r2sJ(t). Let el,’", em be standard unit vectors in [m and

side= {t Tlrl(t)ei 0} for each i= 1,..., m. It is easily verified that fl(t)ei 0
a.e. in Si. Since all treads are rectangular, for each r l, r2 s j(t), we may write

r2 rl as a linear combination of standard unit vectors parallel to J(t). Conse-
quently, (t)(r2 rl) 0 a.e. on the set where r/(t)(r2 rl) 0. Q.E.D.

The lemmas which follow are leading to the proof of Theorem 2.3. They all
refer to the extremal (Yo, Y, s, 1, z) of Theorem 2.3. When referring to points in 2,
we shall consider the second coordinate as vertical and the first as horizontal.
The slopes of nonvertical lines are defined accordingly.

LEMMA 3.7. Assume that dim R 2, and let e A(T1) and rl(t) (z(t)TB(t))" --/= O.
Then J(t) is one-dimensional. If r/2(t) (z(t)Tb2(t))" v O, then J(t) is nonvertical and
the slope m(t) of J(t) is given by

m(t) rl t)/rl2(t) (z(t)Tbl(t))"
(z(t)Tb2(t))"

Proof. If, for any tA(T1), J(t) is two-dimensional, then there exist
rl, r2, r3 J(t) such that r2 r and r3 rl are linearly independent, and relation
(3.1.3) implies that r/(t) is orthogonal to both of these and is therefore zero, con-
tradicting the assumption. Since J(t) is nontrivial (because A(T1)), it must be
one-dimensional.

If r/z(t) 0, then r/(t) 4:0 and, as we have just seen, J(t) is one-dimensional
and has the direction of r2 rl for any two distinct points r 1, r2 J(t). From
relation (3.1.3) we have

r/(t)(r2 r l)= rll(t)(r r) + r/2(t)(r22 rl2) O,

which shows that J(t) is nonvertical and the slope of J(t) is given by the formula in
the statement of the lemma. Q.E.D.
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LEMMA 3.8. Assume that dim R 2 and that S is a subset of T of positive
measure such that qx(t)4: 0, q2(t)- 0 and J(t) R(1) for each A(S). Let Zo

{t A(S)[il(t)(r2 rl) 0 for each rl,r2 J(t)}, Z (t A(S)[ relation (2.3.i)
is validfor each r J(t)} (i 1, 2). Then Zo and Z1 are measurable and, if J(t) c Rt3)

for each A(S), Z2 is also measurable.
Proof. We can replace the vector r2 r by the proportional vector (1, re(t)).

"Since the slope re(t) of J(t), as evaluated in Lemma 3.7, is a continuous function
of on S, it follows that Zo is measurable.

By Castaing’s theorem 5, Thm. 1.7.8, p. 152], there exists a denumerable set
{?1, 2,’" "} of measurable selections of J such that the set {(t), ?2(t),...} is dense
in J(t) for almost all T1. The set

Pi {t A(S)lW’ff(t)) -B(t)Tz(t)}
is measurable for each 1, 2, because P’ is continuous on Rtl) and i(t) R1)

for each t A(S) and i= 1,2,.... If J(t)c R3) for each tA(S), then the set

Qi {t A(S)lrll(t)lZ(t) rlz(t)fll(t) + 1/2K(Pi(t))rll(t)3 0}
is measurable for each 1, 2,... because K is continuous on its open domain
of definition. By continuity of tp, and K,

Z Pi and Z2 VI Qi. Q.E.D.
i=1 i=1

LEMMA 3.9. Let dim R 2, the sets S, Zo and Z be as described in Lemma 3.8,
and assume that

(A(S) (Zo U Z,)) > O.

Then there exist a closed set M A(S) (Zo U Z1) and an open rectangle P 2
such that J(t) P for each M, t(M) > O, and either

tP,,(r) + bx(t)rz(t) O, M, r J(t) f"l P,

or

W,(r) + b2(t)Wz(t) O, tM, r6J(t) P.

Proof. By Lusin’s theorem, there exists a closed subset N of A(S) (Zo U Z1)
such that (N) > 0 and J[N is continuous. Let be a density point of N (i.e,, a
point of density 1). Since : Z1, there exists p J() such that

’(p) + z()TB() :/: O.

It follows that we have

P,,(p) + z(z)rb(z) 4:0

for some i {1, 2}. Since tP,i is continuous in some neighborhood of p relative
to R (because p R1)) and both B and z are continuous, there exist an open
rectangle P c [2 and a closed neighborhood M of : in N such that

tP,i(r) + z(t)Wbi(t) :P O, rPR, tM.



380 THOMAS E. CARTER

We have t(M) > 0 because r is a density point of N and, since JIN is continuous,
we may choose M small enough so that J(t) fq P # for each e M. Q.E.D.

LEMMA 3.10. Assume that dim R 2, and let S, Zo and Z be as described in
Lemma 3.8. Then

(A(S)) (Zo U z).

Proof. Assume that this statement is false. Then, by Lemma 3.9, there exist
a closed set M of positive measure and a closed rectangle Q [2 such that
dim Q 2 and either

I. tP,,(r) + b(t)Wz(t) # O, M, r d(t) f] Q,

or

II. W,(r) + b2(t)Tz(t) :/: O, e M, r e J(t) Q.

It follows also from our assumptions about S and from Lemma 3.7 that the tread
J(t) is one-dimensional and neither horizontal nor vertical for each M. Let us
assume, for the sake of definiteness, that II holds. Our subsequent arguments would
be analogous in the other case.

Let V be any vertical line in 2 such that V f3 Q # , and define

B(V) {t MlJ(t) f-) V f-) Q # }.

The set B(V) is closed because, by Lemma 3.2, J is upper semicontinuous. Let
{V1, V2,..-} denote a countable collection of vertical lines in 2 such that

the set {Va f’l Q, V2 f’) Q," "} is dense in Q. By Lemma 3.7, the tread J(t) is, for
each e M, one-dimensional and nonvertical; therefore J(t) f) V f)Q # for
some v and consequently M U?=IB(V/). Since p(M)> 0, there exists
V such that #(B(V)) > O.

Let to B(V), c (c, c2) denote the point of intersection of J(to) and V, 6 > 0,

CR(6) {t e B(V)Ir c >= 6 for some r e j(t)},

and

CL(6) {t e B(V)lc r >= 6 for some r e ](t)}.
The sets C(6) and C,(6) are closed for each > 0 as a consequence of B(V)
being closed and J upper semicontinuous. By Lemma 3.7, the slope function m(.
is continuous and therefore bounded on the compact set M. Thus it is possible
to pick > 0 sufficiently small so that, for each e B(V), there exists a point
r e Y(t) such that either r c _>_ or c r >_ 6. Consequently B(V)

_
C,(6)

U C(6), and therefore at least one of the sets C,(6) or C(6) has positive measure.
Let M’ be the set of all limit points of either the closed set C,(6) or C(6)

(whichever has positive measure), and let Q’ be the corresponding closed rectangle

{r e QIc’ b < r’ <= c’} or{reOlc’ <= r <= c’ +6}.
It follows that each vertical line V = 2 that intersects Q’ also intersects J(t) for
each e M’. We next determine a closed rectangle P’ = Q’ of width 6/2 with neither
of its vertical sides coinciding with a side of Q’. This ensures that, for each e M’,
every vertical line V R that intersects P’ also intersects the nonvertical open
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tread J(t) at a unique point rv(t). The function rv:M’ V thus ,defined is con-
tinuous because J is upper scmicontinuous.

It follows from Lemma 3.4 that

lim I(tP’(rv(t)+ B(t)Tz(t)))(rv( rv(t)’

for each e M’ and each vertical line V that intersects P’; hence, by II,

III. lim lrv(-
M’

for each vertical line V that intersects P’ and each M’.
Now let V1 and V2 be two distinct vertical lines that intersect P’. It follows

from relation (3.1.3) of Lemma 3.1 that

IV. rl(t)(rvz(t rv,(t)) O, M’.

Since b and gv are differentiable, and B,/, y and z are differentiable on M’, the
function r/(-) is also differentiable on M’. Therefore, we may write

V. [r/(t) + (’ t)(O(t) + e(Q)](rv2(’c rv,(’c)) 0

for each :, M’, where lim,t,tM, [e(z)l 0. We subtract IV from V and divide
by to obtain

rl(t)[(rv2( rv2(t))
z rvl(t))] + (fl(t) + e(z))(rv2(z) rv’(z)) O

for distinct z, 6 M’. We let z approach in M’ and apply III for V V, V2.
This yields

VI. O(t)(rv2(t rv,(t)) O, 6 M’.

Now let 6 M’ and r r2 be distinct points of J(t). There is a nonzero real number
fl(t) such that

rye(t)- rv,(t)-- fl(t)(r2

therefore VI implies that

0(t)(r2 rl) 0.

This shows that M’_ Z0. This contradicts our original assumption and the
conclusion follows. Q.E.D.

LEMMA 3.11. Assume that dim R 2. If the slope m of any one-dimensional
tread G c R(2) is finite, then, for each r G, either

m2 tP,,(r)/=(r) or tP"(r)-- O.

Proof. The function is convex on R and its restriction to a closed tread G
is an affine function. We designate the endpoints of the one-dimensional closed
tread G by ro and r Then any point r G can be represented by r ro + a(rl ro)
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where 0 _< =< 1. Since G c R(2) and W restricted to G is affine, it follows that

d2
(r ro)TP"(r)(rl ro) -2 (ro + z(r ro) 0

for each r G. Since r ro is proportional to the vector (1, m), the above relation
can be written as

I. tPr2r2(r)m2 + 2Wrl2(r)m + rl,(r)= 0

for each r e G. Since m is real, the discriminant of this quadratic equation is non-
negative, but the convexity of W implies that W"(r) must be positive semidefinite,
so this discriminant is also nonpositive consequently,

II. Wr,r2(r)2 W,,r,(r)W,2(r) 0

for each r e G. If q’(r) # 0, then the root of the quadratic equation I is

m

This relation and II can be combined to produce the first alternative. If t’,(r) 0,
then II yields q’,,(r) 0 which, together with I, implies that

W(r) 0. Q.E.D.

LEMMA 3.12. Assume that dim R 2, and let S, Zo Z1 and Z2 be as defined in
Lemma 3.8. If J(t) R(z) for each A(S), then

(A(S)) (Zo U (Z Cl Z)).

Proof. We shall assume that the conclusion is false and argue by contradiction.
Since It(A(S)) t(Zo U Z) by Lemma 3.8, our assumption implies that/(Z) > 0
for Z Z (Z0 U Z2). Because of Lusin’s theorem there exists a closed set
M

__
Z such that kt(M) > 0 and JIM is continuous; furthermore, we may assume

that each point in M is a density point of M. Let M, r J(t) and Vbe the vertical
line through r. Since JIM is continuous, there exists a relatively open interval I
in M about such that J() intersects V at a unique point rv(r for each e I.
It follows from the definition of Z that

q’(r(t)) + b(t)z(t) O.

This relation and the assumption (about S) that

(z(t)rb2(t))"= r/2(t) # 0

imply that W,2.(rv(t)) # 0 (hence W"(rv(t)) # 0) and Irv(:) rv(t)l =/= 0 for all z in
some relatively open interval I’

_
I that contains t.

Thus it follows from Lemma 3.11 that

m(t)z r,(rv(t))/P22(rv(t)),

where re(t) represents the slope of J(t). It follows from Lemma 3.7 that m(t) # 0
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because O(t) # O" consequently, q’r,r,(rv(t)) 4= O, and we have

(re(t)- 2). 2(rl2(t)/rll(t)). 2(r/2(t)O l(t r/l(t)//2(t))
(z(t)rb2(t))" r/2(t) r/’(t)3

Since r(z) rZv(t) -# 0 for z I’, we may divide the numerator and the denominator
of the expression on the left by this term before passing to the limit as z t, z I’.
The expression on the left is therefore K(r) because rv(t) r J(t) Rt3). Thus
relation (2.3.2) holds for any point E M and r J(t), so M

_
Z2. This provides

the contradiction. Q.E.D.
Proof of Theorem 2.3. The assertions of the theorem are trivially true for all

T1 A(TI). We shall therefore restrict our attention to the set A(T).
The fact that t’(r) + z(t)rB(t)r and rl(t)r are constant in r over J(t) follows

from relations (3.1.2) and (3.1.3) of Lemma 3.1.
Next we assume that dim R 2, and first consider the case where oCa (res-

pectively o3) is finite or denumerable. Let

E, {t A(T)IJ(t)} A(Ta) i, 1,3.

It follows from Lemma 3.6 that Ei is measurable and O(t)(r2 r) 0 for almost
all Ei and each rl, r2 E J(t) if i is finite or denumerable (i 1, 3). Thus, for

1, 3, the set is measurable and fl(t)r is constant in r over J(t) for almost all
i if i is finite or denumerable.
To show that the theorem is valid on a N A(T), respectively, 3 n A(T),

whether or not or o3 is finite or denumerable, we consider the following
subsets of 1 N A(Ta)"

So {t 1 N A(T1)lrl(t) 0,,
Sj {t e N A(Ta) SolrlJ(t) 0}, j 1,2,

S {t N A(Ta)lrl(t) # O, r/2(t) 0}.
These sets are clearly measurable and form a partition of l n A(Ta).

The theorem is true a.e. on So because, for each limit point of So, O(t) 0,
which implies that fl(t)r is constant in r over J(t).

The theorem is also true a.e. on S because, for each limit point of S,
Lemma 3.7 implies that r r2 0 for each r l, r2 G,](t), and therefore

/(t)(r2 /’1) ol(t)(r r) O,

which shows that fl(t)r is constant in r over J(t). A similar argument shows that
the theorem is also true a.e. on $2.

It follows from Lemma 3.10 that, for almost all S, either (t)(r2 rl) 0
for each r, r2 J(t) or else relation (2.3.1) is valid for each r J(t). Furthermore,
Lemma 3.12 implies that, for almost all S n 93 71 A(T), either i(t)r is constant
in r over J(t) or else both relations (2.3.1) and (2.3.2) are valid for each r J(t).



384 THOMAS E. CARTER

Now we assume that dim R < 1. In that case there is at most a countable set
of nontrivial treads in R. Then Lemma 3.6 implies that O(t)r is constant in r over
J(t) for almost all 6 T.

Finally, the last statement of the theorem follows from Lemma 3.5. Q.E.D.

4. The simplest problem of the calculus of variations. The relaxed control
version of the simplest type of problem of the calculus of variations can be defined
as follows: Let T [to, l] and R [0, fl] be closed intervals in R, V an open
subset of R, f:T V R --, , and 5z the set of relaxed control functions which
map Tinto RP(R). For (t, v, a) T V , we write f(t, v, a(t)) f(t, v, r)a(t)(dr)
and s(t)= ra(t)(dr). We shall assume that f(t,v,.) is continuous for each
(t, v) T V and that f(-,., r) is continuously differentiable for each r R. The
problem is to minimize yo(tl) subject to the condition that a and Yo and y are
absolutely continuous solutions of the differential equations

(4.1)
))o(t) f(t, y(t), a(t)),

a.e. in T and satisfy preassigned boundary restrictions.
It follows from [4, Thm. 6.1, pp. 142, 143] that a relaxed normal extremal

(Yo, Y, a, 1, z) of this problem must satisfy the following conditions.
There exists a constant C such that, a.e. in T,

(4.2)

(4.3)

(4.4)

(t) -L(t, y(t), (t)),

f(t, y(t), a(t)) + z(t)s(t) l(t) ae____f min (f(t, y(t), p) + z(t)p),
per

f(t, y(t), a(t)) + z(t)s(t) + f(z, y(z), a(z)) dz C,

(4.5) ft(t, y(t), r) f(t, y(t), a(t)) + f(t, y(t), r)s(t) f(t, y(t), a(t))r 0

for each r Jo(t) ae__f {r R]f(t, y(t), r) + z(t)r -/(t)}.
We say that the above extremal is singular at a point T if Jo(t) contains

more than a single point, strictly relaxed at if s(t)-C Jo(t) Jo(t), nonsingular
at if it is not singular at and original at if it is not strictly relaxed at t.
We define the singular regime and strictly relaxed regime on a set S

_
T as in 1

and refer to these as A(S) and A’(S), respectively.
THEOREM 4.1. Let (Yo, Y, a, 1, z) be a normal extremal of the relaxed problem

defined by (4.1). Then for almost all A(T) and for distinct r 1, rE Jo(t), we have

fv(t, y(t), a(t)) [fv(t, y(t), r2) fo(t’ y(t)’

f(t, y(t), rz) f(t, y(t), r 1)+
r2 r

Proof We subtract the relation (4.5) evaluated at the distinct points r and
then divide by r2 r and solve forf(t, y(t), a(t)). Q.E.D.
COROLLARY. /f f(t, v, r) is independent of its first argument, (i.e., f(t, v, r)

f(v, r)), then a normal relaxed extremal (Yo, Y, a, 1, z) is singular at only if the
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graph of the function fv(y(t), is supported at two or more points by a line through
the origin.

Examples.
Example 1. Let f(t, v, r) q(v) + ,(r). This example is also a special case of

the relaxed problem defined by (1.2). It follows from either Theorem 2.2, from
relation (3.1.3) of Lemma 3.1, or from Theorem 4.1 that

dp’(y(t)) 0 a.e. in A(T).

If the roots of the equation

I. ’(v) 0

are isolated, then the absolute continuity of y(. on T implies that

s(t) 0 a.e. on A(T).

Conversely, if a region Y does not contain the roots of the equation I or if the
roots are isolated and 0 R, then any extremal trajectory in Y is nonsingular.

Example 2. Letf(t, v, r) a(v)r2 + b(v)r + c(v). We note first that, for A(T),
the function r f(t, y(t), r) + z(t)r has at least two minima on R; hence

a(y(t)) <= O.

We can also see that Jo(t) is either {e, fl} or [e, fl], and specifically that Jo(t)
{e, fl} if e A’(T). It follows, therefore, from Theorem 4.1, setting r e,

r2 fl, that

a’(y(t)) f rZa(t)(dr) + b’(y(t))s(t) + c’(y(t)) [(e + fl)a’(y(t)) + b’(y(t))]s(t)

a.e. on A(T). Furthermore, for A’(T), a(t) is of the form

(t) o(t) + ( o(t)) ,
where 0 < O(t) < and 3r is the Dirac measure at r. Therefore, a.e. in A’(T), we have

a’(y(t))[a2 + O(t)(fl2 a2)] + c’(y(t)) a’(y(t))(a + fl)[a + O(t)(fi a)],

where

Consequently,

We also have

0< 0(t)< 1.

c’(y(t)) afla’(y(t)) 0 a.e. on A’(T).

a(y)(t)) 0 a.e. on A(T) A’(T).

We may therefore draw the following conclusions.
If all the roots of the equation

I. c’(v) ea’(v) 0
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that are in the set {v e Via(v) < O} are isolated, then the absolute continuity of
y(. on Timplies that

s(t) 0 a.e. on A’(T).

If, moreover, all the roots of the equation

II. a(v) 0

are isolated, then also

s(t) 0 a.e. on A(T).

Conversely, if a region Y does not intersect the set {v e Via(v) <= O} orif it
does not contain any roots of I or II, or if these roots are isolated and 0 R, then
any extremal trajectory in Y is nonsingular. Furthermore, if a region Y’ does not
intersect the set {v e Via(v) < O} or if it contains no root of I or if these roots are
isolated and 0 R, then any extremal trajectory in Y’ is original.
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ERRATUM: CONTROLABILITE DES SYSTEMES
NON LINEAIRES*

C. LOBRYf

P. Stefan pointed out in 1] that Lemma 1.2.1 in the paper [2] of the author
was false. In [2], Lemma 1.2.1 was attributed to R. Hermann, but actually it was a
modification of Hermann’s result [3]. We refer the reader to [1] for a counter-
example and other comments.

However, Proposition 1.2.1 of [2], which is important for applications to
control theory, is true. A proof can be found in a paper of Nagano [4] which was
not known to the author at that time.

The results contained in [2] have been considerably improved, and we refer
the reader interested in those topics to [1], [5], [6], [7], [8].
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MODULE STRUCTURE OF
INFINITE-DIMENSIONAL SYSTEMS WITH
APPLICATIONS TO CONTROLLABILITY*

EDWARD W. KAMEN

Abstract. A theory of infinite-dimensional time-invariant continuous-time systems is developed
in terms of modules defined over a convolution ring of generalized functions. In particular,
input/output operators are formulated as module homomorphisms between free modules over the
convolution ring, and systems are defined in terms of a state module. Results are presented on causality
and the problem of realization. The module framework is then utilized to study the reachability and
controllability of states and outputs: New results are obtained on the smoothness of controls,
bounded-time controls, and minimal-time controls.

1. Introduction. The existing theory of infinite-dimensional systems is based
primarily on the elements of topology and analysis (e.g., Banach spaces, Hilbert
spaces, etc.). In contrast, in this paper the emphasis is on the application of
modern algebra to the study of infinite-dimensional time-invariant systems. The
objective here is to formulate a theory in terms of rings and modules which, yield
new results as a consequence of finiteness properties enjoyed by these algebraic
structures.

Here the rings and modules are convolution structures that come into play as
a result of the additional assumption of time invariance. In particular, as discussed
in .2, linear time-invariant input/output (i/o) operators can be formulated as
module homomorphisms between finitely-generated modules defined over a
convolution ring of functions. Although the convolution structure of these i/o
operators is well known, very little attention has been devoted to the relationship
between the i/o module framework and the internal system structure defined in
terms of the concept of state.

The first major work on the role of the convolution structure in a state space
setting was Kalman’s K[z]-module description of finite-dimensional discrete-
time systems 1 ]. Kalman was also the first one to consider a module structure over
a convolution ring of functions in the state space theory of continuous-time
systems (see Kalman and Hautus [2]). However, the theory of [2], which centers
on the problem of realization, does not apply to a very large class of infinite-
dimensional systems since it is assumed that for any positive integer n, the output
response resulting from the n th derivative of the Dirac distribution at {0} is
infinitely ditterentiable on (0, az). For example, this constraint prevents consider-
ation of systems having time delays. The extension of Kalman’s module
framework to a suitably large class of infinite-dimensional systems is carried out
here.

The convolution structure of the i/o description can be reflected in the
internal system structure in two ways, depending on the type of internal model

* Received by the editors August 17, 1972, and in revised form November 18, 1974.
I School of Electrical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332.

This research was supported by the U.S. Army Research Office, Durham, under Grant DA-ARO-D-
31-124-73-G171.
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used. On the one hand, the dynamical equations can be given by operational-
differential equations defined by convolution operators belonging to a Noetherian
ring. This approach is developed in [3] and will not be considered here. In the
second approach, which will be pursued here, systems are given in operational
form by module homomorphisms with the state space also possessing a (topologi-
cal) module structure over the convolution ring of functions.

The module structure on the state space provides a new approach to the study
of dynamical properties. For instance, as revealed in 5, 6 and 7, the concept of
the annihilator of a module plays a central role in controllability. Using this
concept, in 6 we obtain the surprising result that if the reachable states of a
system are controllable (to the zero state), then every reachable state can be
controlled within some fixed time period (bounded-time controllability). Exam-
ples of systems in which the reachable states are always controllable are given in
7.

In the following development, it is crucial that we work with a convolution
ring of functions which contains the identity 6o Dirac distribution at {0}. In other
words, we need to consider a convolution ring of distributions (generalized
functions). Then since we want the input function space and the output function
space to be modules over the convolution ring, these spaces must also be spaces of
distributions. The requirement .that the ring contain 6o is mainly for algebraic
reasons. For example, it is then possible to consider the operation of inversion
which, as we shall see, leads to the construction of control signals.

2. Input/output operators. Let denote the field of real numbers with the
usual topology. Let @ (resp. @_) denote the linear space of R-valued infinitely
differentiable functions defined on R with compact supports (resp., with supports
bounded on the right). With the Schwartz topology [4], @ and @_ are Hausdorff
locally convex linear topological spaces. Let @’ (resp. @) denote the dual of
(resp. @_) with the strong topology. Then @2 is the space of R-valued distributions
on R with support bounded on the left. The canonical injections @ --> @2-> @’ are
continuous and @ is dense in @2 (see [4]).

From the results of .Schwartz [4], with the operations of addition and
convolution @2 is a commutative (topological) ring with no divisors of zero. Given
u, v e @, the convolution of u and v, denoted by u * v, is defined by

(2.1) (u * v, q)=(u, (v, q(t+’))), all q@.

It is easily verified that, if u, v # 0, then supp (u v)
___

(supp u) + (supp v) where
supp denotes the support. The identity of the ring @ is the Dirac distribution 6o.
We also note that the linear structure on @2 is compatible with the ring structure
in that @2 is a convolution algebra over . To simplify the notation, from here on
we let V denote the ring @.

For any fixed positive integer n, let V" denote the n-fold direct sum of V with
the elements of V" written as column vectors. Then V" is a free n-dimensional
topological module over the ring V. Given v e V" and c V, we let c v denote
the operation of c on v in the V-module structure of

DEnNITON 2.1. Given fixed positive integers m and k, an input (i/o)
operator f is a R-linear continuous map f V" -> Vk.
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As usual, an i/o operator f:V"- V characterizes the correspondence
between input functions (in V’) and the resulting output functions (in Vk) for
some m-input terminal k-output terminal linear continuous-time system. There
are two main reasons for taking V= @ as the space of "admissible signals"
appearing at the input and output terminals. First, V is a convolution ring
containing 6o which, as mentioned in the Introduction, is necessary for the
algebraic constructions that follow. Second, the class of systems describable by an
i/o operator f V" - V is extremely large, including, for example, distributed-
parameter devices such as LC and RC transmission lines.

Unfortunately, the topology on V is not normable, and in some applications
it may be highly desirable to work with a convolution ring (with 6o) having a nice
topological structure, such as a Banach convolution algebra (Bensoussan and
Kamen [5]). However, most of the results that follow can be carried over to these
other rings.

In this paper, we restrict attention to i/o operators f having the property that
f(& * v) & * f(v), all - I, v V"; that is, f commutes with the shift operator &.
Such i/o operators are said to be time invariant or constant.

Letting Vx" denote the V-module of k x rn matrices over V, we have the
following result on the representation of i/o operators.

THEOREM 2.1. For each time-invariant i/o operator f V"- Vk, there exists
a unique W Vx" such that f(v)= W, v for all v V’. Conversely, given
W6 Vx’, the operator V" - V v - W * v is a time-invariant i/o operator.

Proof. The proof follows from the Schwartz kernel theorem [4] using the fact
that the canonical injections @ - V- @’ are continuous and is dense in V.

COROLLARY 2.1. With respect to the topological V-module structure on
and V, every time-invariant i/o operatorf V" - V is a (topological) V-module
homomorphism.

COROLLARY 2.2. For fixed positive integers rn and k, the V-module consisting
of all time-invariant i/o operators f V" - V is isomorphic to V’.

The matrix W whose existence is asserted in Theorem 2. l, is usually referred
to as the impulse response matrix. A major point here is that the existence of W is
directly connected to the fact that the i/o operator is a V-module homomorphism.
The basic idea of this work is to exploit the module structure. But before we begin
to do this, we need to consider the notion of causality in the space V.

DEFINITION 2.2. An i/o operator f: V V: v- w * v, w V, is causal if
whenever u[,....,= v](....,, u, v V, - [, then f(u)](....,= f(v)]....,, where
denotes restriction to the open interval (-oo, -) in the sense of distributions.

PROPOSITION 2.1. Given f V- V v- w * v, the following are equivalent:
(i) f is causal,
(ii) /f supp v

_
[, oo), v V, " , then supp f(v) c_ [-, c),

(iii) supp w
_

[0,
Proof. (i)=), (ii). Let v Vwith supp ,v c_[-, oo). Then since v[....)=0 and f is

causal, f(v)]....)=f(0)](....)=0. Thus suppf(v)c_[-,oo). (ii)(iii). Since
supp 3o {0}, by (ii) supp f(6o) c_ [0, oo). But f(3o) w 3o w. (iii) =), (i). Suppose
that ul....)= vl....). Then supp (u- v)_ [’, oo) and since supp w_ [0, oo),
supp[w ,(u-v)]c_[O, oo)+[-,oo)=[-,c). Therefore, suppf(u-v)c_[-,oo)
which implies that f(u)[t....)= f(v)]....)since f is additive.
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Even though supp w _[0, oo) for a causal operator, in general it is not
possible to construct the impulse response w from the restriction W lo,o). This
situation can occur when w is not regular on any neighborhood of the origin. (A
distribution v V is regular on an open set U if Vlu can be generated in the usual
manner from a locally integrable function on U.) For example, if w 6o + e-’H(t),
H(t)=Heaviside function, then W]o,) o,) which does not contain any
knowledge of the singular component 6o.

Many system problems, such as the problem of realization, involve the
restriction W[o,) of the impulse response w, assuming that w can be determined
uniquely from W[o,). A sufficient condition for the determination of w from
W]o,) is given in the following.

PROPOSITION 2.2. Let w V with supp w [0, ). If there exists an open
neighborhood U of the origin such that w]u is a regular distribution, then w can be
completely and uniquely determined from W]o,.

Proof. Suppose that w satisfies the hypothesis of the proposition. Let a be a
positive number belonging to U and write w+= W[o,,. Since w+ is regular on
(0, a), from w+ we can construct the following regular distribution on (-, a):

wo(t)={w+(t), 0<t<a,

0, t_-<0.

Then since w+ wa on (0, a), by the theorem on "piecing together distributions"
(Zemanian [6, p. 34]), from w+ and wa it is possible to construct one and only one
distribution 0 on such that 01....= w, and 01o,o w+. Further, 0 is clearly
independent of the value chosen for a. Now by construction, 0 w on (-oo, 0)
CI (0, oo). Hence 0 w on since the Lebesgue measure of {0} is zero and both w
and 0 are regular on the open neighborhood U.

DEFINITION 2.3. A causal i/o operator f with impulse response w is said to be
strictly causal if w]u is regular for some open neighborhood U of {0}.

The term strictly causal is taken from the work of Saeks [7]. Although Saek’s
formulation of causality is developed in terms of an abstract Hilbert space rather
than a space of distributions, his definition of strictly causal is similar to that given
here.

In many cases the impulse response w is an ordinary function (i.e., a regular
distribution) with supp w

_
[0, oo), and thus the i/o operator is strictly causal as

defined above. On the other hand, there exist important examples of systems
whose impulse responses are not regular and yet the corresponding i/o operators
are strictly causal. These systems are necessarily infinite-dimensional; that is, the
Laplace transform of the impulse response is not rational. A simple example is the
ideal delay line with impulse response &, -> 0.

An interesting class of causal operators which are not strictly causal is the
class of operators having supp w ---{0}. By a well-known theorem of distribution
theory (Zemanian [6, p. 98]), supp w {0} if and only if w is a finite -linear

" denote the n th derivative of 8o,combination of 8o and its derivatives. If we let ,o

then since 8o". v v"= nth derivative of v 6 V, for an i/o operator f with
supp w {0} the response f(v) is a finite linear combination of the input v and its
derivatives.
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Most causal operators of interest can be decomposed uniquely into the sum of
a strictly causal operator and an operator with impulse response concentrated at
the origin.

PROPOSITION 2.3. Given a causal operatorf" V V" v w v, if there exists
an a > 0 such that w I(o, a) is regular, then f can be decomposed uniquely into the sum
[ fc + fo, where fsc is strictly causal andfo" v - w,, v with Wo 0 or supp Wo {0}.

Proof. Let w satisfy the hypothesis. As in the proof of Proposition 2.2, from
w l(o, oo) we can construct a distribution 0 on such that 0 w on -{0} and the
operator fsc v -> 0 v is strictly causal. Now define Wo 0 + w. Then Wo 0 or
supp Wo {0} and f fsc + fo, where [o" v -> w,, v.

Uniqueness. Suppose that f fsc+ fo, where fsc is strictly causal and,, * v, o wo, o 0 or supp o {0}. Then since fsc + fo fsc + fo, fo- fo
f-fc. But this is impossible since the operator/sc-/sc is strictly causal and

supp (Wo- fro)= {0}.
The above results are easily extendable to the multi-input multi-output case.

In particular, the i/o operator f" V"-> V v--> W, v, W=(wj) V", is
strictly causal if for each i, j, there exists an open neighborhood Uj of {0} such that
wilt, is regular. In the remainder of this paper, we limit our study to strictly causal
i/o operators.

3. State in a module framework. In this section we formulate a definition of
systemswhich reflects the convolution module structure of the i/o representation.
In order to express the concept of state in terms of the convolution structure, we
need to define another type of i/o operator which is a module homomorphism
between modules defined over a proper subring of V @.

Let 1) denote the subring of V consisting of all distributions having compact
support contained in (-oe, 0]. With the induced topology, D, is a topological
subring of V, and the m-fold direct sum " is a free m-dimensional topological
module over the ring f. (Throughout this paper it is understood that the topology
of all modules considered is Hausdorff and locally convex.)

Let F denote the set {v],,,oo v V}. With the induced operations, F is a linear
subspace of @’ (0, oo), the space of all distributions defined on (0, oo). Further, it
follows from the discussion given by Treves [8, p. 246] that F is a proper subspace
of @’(0, oo). We give F the strongest topology such that the map

is continuous. Note that p is also an open mapping since a set U, is a neighborhood
of zero in F if and only if there is a neighborhood U2 of zero in V such that
o(U) U,.

PROPOSITION 3.1. F is a topological module with multiplication

(3.2)

where ,r/ V is any extension of y to V (i.e., /[(o,o 3’).
Proof. Multiplication (3.2) is independent of the extension considered. Let

y e F. Then by definition of F, y has at least one extension / V. Suppose that
and ,r/’ are two extensions of 3’ and let o)e f. Then

(3.3) (-r/, q) (-’ q), all q supp q c (0, oo).
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Now since supp w c (-oo, 0], for every r _-< 0,

(w, p(t + r))= 0, all q :supp q c (0, oo).

Thus viewed as a function of r, (w, q(t+r)) is an element of @ with support
contained in (0, oo). Then from (3.3), we have

(/, (w, q(t + r)))= (-r/’, (w, p(t + r))), all q :supp q c (0, oo).

From the definition of convolution (2.1), we get

(w ,r/, q) (w ,r/’, q), all q supp q (0, oo).

Thus (o, /)1o,)=(o, /’)1(o,), showing that multiplication (3.2) is properly
defined. The proof that F with (3.2) is a topological module follows from the fact
that O, given by (3.1), isopen and continuous. The straightforward details are
omitted.

COROLLARY 3.1. The k-fold direbt sum F is a (nonfinite) topological module
over the ring

Let I f"- V" denote the inclusion map and define the map P:V-
F (v,." ", v)v--(O(v),..., O(v))TM, where TR denotes the transpose.

THEOREM 3.1. Given a strictly causal i/o operatorf V" - V v W* v, let
f* denote the composition PfI. Then

(i) f* is a (topological) -module homomorphism,
(ii) f* is completely and uniquely determined by Wl(o,oo and vice versa,

(iii) f can be completely and uniquely constructed from *.
Pro@ (i) By definition of 1", the inclusion map I O" - V" is an l-module

homomorphism with V viewed as an f-module. It is also clear that P V - F is
an f-module homomorphism with V viewed as an O-module. Hence the
composition PfI f* 1"),"- F is an f-module homomorphism.

(ii) Let o f". Then o , w,, e,, where

e, =(0 0... 6,, 0... O)TM

’ ith place

Since f* is an ll-module homomorphism, f*(w) Y, o,f*(e,), and by definition of
f*, f*(e,)=(W* ei)]o,oo, where yi is the ith column of W. Hence
determines f* uniquely and conversely.

(iii) This follows from (ii) and Proposition 2.2.
The operator f* Pf! characterizes the input/output behavior relative to the

time reference 0. As will be done shortly, we can define the state space to be
some space through which f* is factored. The module structure comes into play by
requiring that the factorization consist of fl-module homomorphisms.

Let denote the map

(3.4) l" VN v--l(v)=
[in,f{tsupp V},

O, v 0.
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Since supp(u v)
_

(supp u) + (supp v), u, v V, u, v 0,

l(u * v) >= l(u) + l(v), all u, v 0.

Note that l(v)<-0 for any v . Finally, can be extended to V" by defining

(3.6) 1" (v,,..., v,,)T-min {/(v,)}.

DEFINITION 3.1. An m-input k-output strictly causal linear time-invariant
system E is a sextuple (12", X, Fk, , r/, q), where

(i) X is a topological )-module with multiplication denoted by 7r x, 7r 612,
xX;

(ii) f" - X and r/: X F are (topological) f-module homomorphisms
with the composition rt/x equal to P]7 for some strictly causal time-invariant i/o
operator );

(iii) is a map defined by

q f" X -X" (to, x, a)- 6a+l(to X +
where - {a " a < 0}.

In this definition, X is the module of states,/x (to) is the state at time 0 due
to input to f", and r/(x) is the output response on (0, ) resulting from state x at

0. The map 4’ is a state transition operator: 4’(to, x, a) is the state at 0 due to
input to and initial state x at time a + l(to) prior to the application of to. The
parameter a in the definition of 6 cannot be zero, in general, because the input to

may contain Dirac distributions at {/(to)}. Since the input (function) module
and the output (function) module F are fixed, we shall usually write

(x, , , q).
Note that since the composition r//,t equals PfI for some strictly causal

operator f, by Theorem 3.1, knowledge of rt is equivalent to knowledge of
Therefore f can be (and will be) taken as the i/o operator of the system

(x, , , q,).
Although the definition of a system is specified with respect to the time

reference 0, this does not result in any special restrictions, other than those
already given, since Z is time invariant. The time invariance of E is a consequence
of the fact that/ and r/are f-module homomorphisms.

The requirement that the state set X admit a module structure over the
convolution ring is actually a very natural condition since we are considering
systems whose input/output behavior is given by an )-module homomorphism.
Furthermore, as shown in the next section, every strictly causal i/o operator can
be realized by a system having an f-module structure.

One final point here is that since 1 can be viewed as a subring of f under the
embedding l)’a a6o, X is also a linear space over R. Thus the module
structure on X "contains" the usual linear space structure. A system E is
infinite-dimensional in the usual sense if X is infinite-dimensional as a linear space
over .

4. Realization ot input/output operators. Following the standard definitions,
we say that a system Y, (X,/x, r/, q) is completely reachable (resp. completely
observable) if/x is surjective (resp. rt is injective). In the first part of this section it



396 EDWARD W. KAMEN

is proved that every strictly causal i/o operator can be realized by a system that is
completely reachable and observable. Then we consider r.ealizations given, by
differential equations in the sense of distributions.

DEFINITION 4.1. A realization ol a strictly causal i/o operatorf V" - V is a
system (X,/, 7, q) with 7# P[I. A realization is said to be canonical if it is
completely reachable and observable.

THEOREI 4.1. Every strictly causal time-invariant i/o operator f has a
canonical realization.

Proof’. Given/, let f* P’I; since F is a Hausdorff space, {0} is a closed set in
F, and by the continuity of [*, ker 1* {to e D" f*(to) 0} is a closed set in ".
Hence the quotient space "/ker [* & {[w] - to + ker [* to 1)"} with the quo-
tient topology is a Hausdorff locally convex linear topological space. Further, it is
easily checked that O"/ker]’* is a topological O-module with multiplication
’. [to]- [r * to], r e , to e O’. Now take Xt l"/ker ’* to be the state module,
and define the following l-module homomorphisms:

m -X o[o],

n" X- r

Clearly,/t is surjective and 7t is injective. Given to 1",/-t(to) [to] is defined to
be the state at time 0 due to input to, and for every - <_- 0, It(& * to) & [to] is
the state at time 0 due to state [to] at time -. Therefore, if the input to " is
applied with initial state x [/3] at time a + l(to), a < 0, the state qq(to, x, a) at 0
is given by q#(to, x, a) 6+ x + t(to). Finally, since f* 7tlt, (Xt, tt, 7t, qt) is
a canonical realization of f.

Regarding the uniqueness of canonical realizations, we have the following.
PROPOSWION 4.1. If (X, I, 7, q) and f(, t2, 71, ) are two canonical realiza-

tions of an i/o operator f, then with respect to the algebraic structure there exists a
unique module isomorphism , X-X with , 12 and l, 7.

Proof. The proof follows from a standard isomorphism theorem.
COROLLARY 4.1. If the composition PfI is an open mapping, is a topological

l)-module isomorphism; that is, is also a homeomorphism.
Proof. Suppose that f*= PfI is open and let U be an open set in ’. Then

(f*12-)( U) is open in F since /2 is continuous. Since 7 is injective and /2 is
surjective and f*= ,)/2, (7-1f*/2-1)(U)= U(U) which is open in X because 7 is
continuous. Hence is continuous. A similar proof shows that -1 is continuous.

In many applications it is desirable to have a realization given by dynamical
differential equations. For example, with such a realization it would be possible to
apply the theory of differential equations to the study of optimal control. As we
now show, i/o operators can be realized by differential equations in the sense of
distributions.

Given the i/o operator f" V"- Vk, let ,E (X, , 7, q) denote the canonical
realization of f constructed in the proof of Theorem 4.1. Following Kalman and
Hautus [2], define the truncation operator 5’@"-O"’aa, where
(Sea)(t) 0, t>0, and (a)(t)=a(t), t<-O. For every toelm, define

x,o" X" q-[(q to)], q(t) q(- t).
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Note that since 7r * @, all 7r D., q @ (see [6]), x,, is properly defined. As
proved in [2], x is an X-valued distribution. The interpretation of x., is that it is
the generalized state trajectory resulting from the application of the input w.

Now define

G :N" X (al,’’ ", a,)TR[(al60,"" ", a,60)TR].

Then for all q @, x,o satisfies the differential equation

(4.1)
dxo q___) Fxo q + Gw q

dt

The proof follows from [2].
Hence we have an internal differential equation describing the realization.

However we do not have an output equation as constructed in [2] because here the
output response on (0, eo) may not be an ordinary function. Nevertheless, in most
cases it is possible to formulate an output equation as follows.

Let X {[o-] r ow(@m)} which is a linear subspace of X viewed as a linear
space over N..Suppose that for each o- ow(@m), f(r) is continuous on some
neighborhood of zero. Then since f(/3)= f(cr) on (0, ) for every/3 [o-], we can
define the operator

H" X-N [o’]-f(cr)(0)= lim f(o’)(t).

Let o e 11". Then for every q @, we have that

since f is a V-module homomorphism

since f is strictly causal

by definition of H.

Thus

(4.2) {f(w), qg)= Hxoo(qg), o) D.", q @.

Hence we have proved the following.
THEOREM 4.2. Given the i/o operator f V - V v- W * v, if for each

r 5e(@’), f(r) is continuous on some neighborhood of zero, then f has a canonical
realization which can be described by dynamical differential equations (given by
(4.1-4.2)).

Instead of working with dynamical differential equations, in the remainder of
this paper we consider only the operational form of .a system E as given in
Definition 3.1. The objective is to study dynamical properties by using the module
structure on 2, (X, , rt, 0).

5. Controllability in a module framework. In terms of the [-linear structure,
few algebraic results exist on the controllability of infinite systems simply because
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the state space is infinite-dimensional as a linear space. However, as a consequ-
ence ot finiteness properties of the module structure, it is possible to study control
from an algebraic standpoint. We shall do this here, setting up the theory in terms
ot a general tramework that includes state and output function controllability. In
the following development, the topological structure is not considered.

Let M be an l)-module, and let , f" --) M be an f-module homomorphism.
DEFINITION 5.1. An element x M is reachable if there exists an w

such that , (o) x. An element x M is controllable if there exist - < 0 and w
with/(w) > -, such that 6 x +,(o) 0. The element w is called a control for x
and -- is a control time.

Given a system Y. (X,/z, /, ), state controllability and a type of output
function controllability are particular cases of the above definition.

1. State controllability. Take M X and , =/z. Then x 6 X is reachable if
there exists an input in f" which sets up (from the zero state) the state x at time

0, and x is controllable if there exists an input in D." which drives the system to
the zero state at 0 starting from state x at some time " prior to the application
of the input.

2. Output function controllability. Take M F and Pfl f*, where ) is
the i/o operator of the system Z. Then an output function y F is reachable if
there exists an input in " which produces this response with zero initial state
prior to the application of the input. An element y F is controllable if there exist

" < 0, o f’, l(w) > ’, such that (y +]*(w) 0 which implies that

(5.1)

Therefore, viewing 3’ as an output response on (0, oo) due to an input and/or initial
state occurring in the time interval oo, 0], by (5.1) we have that the input 6_ o)

(applied during the interval (0,--]) drives the output response to zero on
(-,

The objective here is to study controllability in terms of the general
framework given in Definition 5.1. All of the following results specialize to state
and output function controllability by setting =/z or Pfl as done above. We
begin with the following basic definitions from module theory.

Given an f-module M, x M is said to be a free element if rx 0 for some
zr e f, then r 0. If there exists a nonzero rr e 1) such that zrx 0, x is called a
torsion (or nonfree) element. Since 1) is an integral domain (i.e., fl is a commuta-
tive ring with no divisors of zero), the set T(M) of torsion elements of M is a
submodule of M.

Let S be a subset of M. The annihilator of S, denoted by Ann (S), is the set of
elements r e f such that zrx 0 for all x e S. For any subset S c M, Ann (S) is an
ideal of the ring f. If S {x}, we write Ann (S)= Ann (x).

Given an f-module homomorphism f"--)M, let Mr denote the sub-
module of M consisting of all reachable elements; that is, Mr , (f"). Since f" is
a finitely-generated f-module, Mr is also finitely generated, inparticular,

Mr Y fqi, where qi , (ei), e (0 0. 8o 0. 0)TM.
=1

’ ith place
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It is easily verified that Ann (Mr)= f3, Ann (flq,)= f3i Ann (qi). Using this fact,
we can prove the following.

PROPOSITION 5.1. Suppose thatMr {0}. Then the following are equivalent:
(i) Ann (Mr)# {0},
(ii) Mr c T(M),
(iii) each nontrivial submodule q contains a nonzero torsion element.
Proof. Obviously, (i) (ii) and (ii) (iii).
(iii) =) (i). Suppose that for each q, 0, there exist. 0 : xi 6 fqi and 0 # vr D.

such that rx 0. Then since x, w,qi for some o 6 f, w # 0, we have that
rxi (r * o)qi 0. Hence 0 - r, * 6o, Ann (q) and the product l-I,(r, o) # 0
annihilates each q, 1, 2,..., m. Thus [-I,(ri * oi)6 f3 Ann (q,)= Ann (Mr).

The following result shows that if Mr {0} and any one of the equivalent
statements of Proposition 5.1 is not true, then for at least one such that q 0,
every nonzero state in Dq is uncontrollable.

PROPOSITION 5.2. If Mr {0} and for each such that q, 0, the submodule
lq contains a nonzero controllable element, then Ann (Mr) {0}.

Proof. Suppose that the hypothesis is satisfied. Then for each such that
qi 0, there exist 0 - xi w,q, ’ < 0, and u 6 f" with l(u) > ’i, such that

6., (w,q,) + (u,) (6., * w,)q, + A (u,) O.

Writing u Yj u,ej, u, f, with l(u,) > ’i, we have

Hence

(&, * o,)q, + u,qj O.

(5.2) (&, * w + u,)q, + Y uqq O.

Now for each such that q, 0, we have

(5.3) 6oqi O.

Let C denote the m x m matrix consisting of the coefficients of the q in equations
(5.2-3) such that the diagonal elements of C are 6,, wi+ u or 6o. Then (Lang [9,
p. 335]) the determinant of C, denoted by det C, annihilates each qi, and thus
det C 6 Ann (Mr). It must be shown that det C 0. By construction, det C is of the
form

det C (1-[ (&, * w,)) +r,.
where l(rr)> Y.i ’ since l(u,)> -. Hence the support of zr does not intersect the
support of the product 1-[ (&, * oo) and since l-L (&, w) # 0, det C # 0.

COROLLARY 5.1. If Mr contains a free element, then for at least one i, qi # 0
and every nonzero element ofq is uncontrollable.
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COROLLARY 5.2. If m 1 and T(M,) {0}, no nonzero element ofM is both
reachable and controllable.

PROPOSITION 5.3. Suppose that for some fixed i, qi is free and ql,’" ",

qi-, qi+, ", q,, have torsion. Then M, can be written as an internal direct sum

M, M)fqi, where M Y. D,q;

and every element x x + xi is uncontrollable, where x M1, x; fq;, x O.
Proof. Clearly, M, Ml+fq. Suppose that there exists an x #0 with

x e M1 f3 fqi. Then since Ann (M) is nontrivial by Proposition 5.1, there exists a
r e O,, r 0, such that rx 0. Now x toqi for some to e f, to 0, and thus
(r * to)q; 0, r * to 0, which is a contradiction if q is free.

Suppose that x x + x is controllable, where x e M and x; vrq; - 0. Then
there exist z<0, toef’, /(to)>z, such that 6,(x+rq)+h(to)=O. Writing
to Yj toe and since x Y.i ajq;, , we obtain

(& crj + to)qj +(6 r + to,)q, =0.
j#i

Multiplying both sides of this equation by some /3 Ann (M), /3 # 0, gives
/3 (6 + w)q, 0, which is a contradiction since q is free.

As seen from the following results, the condition Ann (M,)# {0} is also
related to the controllability of elements that are not necessarily reachable.

PROPOSITION 5.4. If Ann (M) is nontrivial, every controllable element ofM is
contained in T(M), the torsion submodule of M.

Proof. If x 6 M is controllable, there exist < 0, w 6 fl, l(w) > , such that
6,x=-A(w). Since A(w) M,, if Ann (M,) #{0}, there exists 6, #0, such
that ( 6,)x -A(w) 0. Hence x is a torsion element.

COROLLARY 5.3. If Ann (M,) {0}, every free element ofMis not controllable
and not reachable.

PROPOSITION 5.5. Suppose that for each i{1, 2,..., m} there exists a
nonzero torsion element ofMwhich is controllable with controlwe O, w . Then
Ann (M,) is nontrivial.

Proof. Let x, x2, ", x be nonzero torsion elements of M such that for each
i, there exist < 0, we # 0, l() > , with 6,x + A(we) 0. Then if ax, O,
a 0, (a, 6,)x -aA(we)= -(, w)q =0, and thus a * weAnn (q).
Therefore the product (a w) is a nonzero element of Ann (M,).

It follows from Corollary 5.1 that for every element of M, to be controllable,
it is necessary that Ann (M) be nontrivial. Whether or not the reachable states are
controllable is an important question, since for any x, x2 M, there exists a
control w fl which sets up x from x (i.e., 6,x + A(w) x for some < l(w)) if
and only if every element of M, is controllable. It is interesting to note that when
M, is finite-dimensional as a linear space over , every x e M, is controllable. The
easy proof is omitted.

In terms of the module structure, we now develop a necessary and sufficient
condition for controllability of M,. We begin with the following ring-theoretic
result.
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LEMMA 5.1. Let A be an ideal of the ring 12 and suppose that there exist < 0
and a , l(a) > , such that & + a A. Given to 1, let s >- 0 be an integer such
that (s+ l)(’-l(a))<l(to). Then &s+l, * to+TrA, where
l(Tr) > (s + 1)’, a ‘+l (s + 1 )-[old convolution of a.

Proofi Given - < 0, a 6 , l(a) > -, such that 6 + a A, by induction it is
easily verified that for any integer s ->_ 0,

i=0

Then since A is an ideal of f and & + a A, (&+l), + (- 1)a+l) to A for any
to6f. Now given a fixed tof,, we pick an integer s_->0 such that
(s+l)(--l(a))<l(to). Such an integer can always be found since --/(a)<0.
Then

(s+ 1)- < (s + 1)/(a) + l(to)

:ff(s + 1)- </(a+l) + l(to)

=>(s+ 1)-</(a+l * to)

: (s + 1)- </(Tr)

using (3.5)

again using (3.5)

by definition of 7r.

THEOREM 5.1. Every x Mr is controllable if and only if there exists
& + a 6 Ann (Mr) with l(a) > ’.

Proof. Recall that Mr ,=l lqq,. If every x 6 Mr is controllable, each qi is
controllable, and thus for each i, there exist ’i<0, u,D.", /(u,)>’,, with
&,q, + A (u,) 0. Using the construction given in the proof of Proposition 5.2, we
have that Ann (Mr) contains an element of the form &+Tr, l(Tr)>
Conversely, suppose that there exists & + a Ann (Mr), l(a)> ’, and let x
Then x=A(Y’.to,e,), toD.. Let s_->0 be an integer such that (s+l)(--/(a))
</(to,), i=1,2,...,m. Then by Lemma 5.1., for each i,
6Ann (Mr),/(Tri) > (s + 1)-, 7r (-1)a+ * to,. Hence

(6(,+1) * to + 7r,)q, 0, i- 1, 2," ", m,

Y (&+,. * to, + r)q, 0

6+lx + "rrq, O.

Since l(r.) > (s + 1)’, all i, the element -e, 6" is a control for x.
COROLLARY 5.4. Every x Mr is controllable ifand only ifeach generatorq is

controllable.
Examples for which the condition in Theorem 5.1. is satisfied will be given in

7.

6. Bounded nd minimal time controllability. Given an l-module
homomorphism ,k "-> M, the submodule Mr & (1’) is said to be reachable
(resp. controllable) in bounded time N if for each x 6 Mr, there exists an to 61"
with/(to)> -N, such that x A(to) (resp. 6_ux + A(to)= 0). In the first part of this
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section, we prove that if every element of Mr is controllable, then Mr is reachable
and controllable in bounded time. Then we consider the determination of the
smallest time period during which all the elements of Mr can be controlled. In the
last part of the section, results are given on the smoothness of the controls
constructed’ here.

Let A be an ideal of the ring D and let I)/A denote the residue class ring ot
by A. The elements of /A will be denoted by [to] to + A, to 1). Recall that is
a subring of V @, the ring of distributions with support bounded on the left. We
also note that for any ,6 V, q @, the multiplication yq by q is defined by
(/q, X)= (% qX), where 0X is the usual pointwise multiplication of functions.

LEMMA 6.1. Let A be an ideal o] 1) and suppose that there exists a A
having an inverse - V. Let " < I(). Then for each [to]6 /A, there exists an
c 6 [to] such that 1(c) > -.

Proof. Assume that there exists/3 A with/3- V, and fix -< 1(/3). Given
[to] /A, if l(to)> - there is nothing to prove. Therefore assume that l(to)<-_ -.
Now /3 (/3 -’ to) to, and thus l(to) >- l()- l(- to). Since l(to) _-< - and
< 1(/),

l(t-’ * o) -<- l(/) < 0.

Choose a, a2, bl, b26 such that -c<a2<a<l(-,to)and --/(/3)<b,
< b2 < 0. By a well-known result of distribution theory (see [6, p. 31 ]), there exists
a q@ such that q(t) 1 on [a, b], q(t) 0 on -[a2, b2], and 0_-< q(t)--- 1, all
t6. Then supp [(/3-’ to)q]

_
[/(/3 -1 to), b2], which implies that (/3-Now define a=-/3,[(/3-,to)0-/3-1*to]. Then c=-/3,[(/3-*to)q]+to

6[to]. It is claimed that /(a)>-. By construction, (/3-, to)q=/3-* to on
(-, bl), and thus supp [-(/3-’ to)0 +/3- * to]c [bl, ). Then by definition of
c, supp c

___
[b + 1(/3), 0]. Therefore l(c) _-> b + 1(/3), but by definition of b,- < bl + 1(/3), and hence l(c) > -.

Using Lemma 6.1, we obtain the following sufficient condition for Mr to be
reachable and controllable in bounded time.

THEOREM 6.1. Given Mr A (lm), if Ann (Mr) contains an element3 having
an inverse fl-’ V, for any a >0 and xl, x2 Mr, there exists a control to

with l(to) > l()-a such that 6x + A(to)= x.
Proof. Let/3 satisfy the hypothesis, fix a > 0, and set - 1(/3) a. Then given

x, toq and x rq, by Lemma 6.1 (taking A Ann (Mr)), for each there
exists an a(,,to,-r)+Ann(Mr), with /(a)>-. Hence 6x-x2=cq,
which proves that x2 can be set up from x by control - ae.

COROLLARY 6.1. If there exists a 6Ann (Mr) with fl-6 V, then Mr is
reachable and controllable in bounded time -l()+ a, where a is an arbitrarily
small positive number.

Referring back to Theorem 5.1, we had that every element of M is controlla-
ble if and only if there exists + a 6 Ann (Mr) with l(c) > -. As we shall see, this
condition implies that Ann (Mr) contains a/3 with/3-’ V, giving the following
surprising result.

THEORE 6.2. Mr is reachable and controllable in bounded time if and only if
every element of Mr is controllable.

The proof of Theorem 6.2 follows from Lemma 6.2.
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LEMMA 6.2. Any elementoftheform6, + a , l(a) > ’, has an inverse in V.
Proof. Given (5, + a f, l(a) > ’, consider 6_,(6, + a) 60 + 6_,c, which is an

element of V. It will be shown that 6o + 6_,c has a (unique) inverse in V. Viewing
(6o+6_,a)-1 as an element in the quotient field of V, we can expand by long
division giving

(6.1) (6o+6_c)-’= Z (-6_c1".

Let tTi} denote the sequence of partial sums obtained from the sum (6.1). Now
since /(6_,c)= a, some a>0, l((6_,a)")>=na. Then given <,o6@, since q has
compact support there exist an integer io and a constant K such that 7i(o) K, all
-> io. Hence {7i(q)} converges in , proving that {7i} converges in V. Therefore

(6o+6_a)-1 is a distribution with support contained in [0, oo), and since
(6- " 0/)-1 6---((0"- ---O)-1, (- + O has an inverse in V.

If M, is controllable in bounded time, the question then arises as to what is the
smallest time interval during which all the elements of Mr can be controlled. This
minimal control time, denoted by Nmin, is defined to be the infinum over all N such
that Mr is controllable in time N. We have the following results on the magnitude
of Nmin.

Let ker A denote the submodule {to 11m" h(to)= 0} 11m, and define

$1 {to (to, ., to,,)TR ker A to- V, 1,2," ", m},

$2 {to (to, ., to,,)TR $1 to, Ann (q,), 1, 2,. ., m}.

In terms of $1 and S_, we have the following bounds on Nmin.
TIEOrtEM 6.3. If Mr is controllable in bounded time, then

inf {-/(to)}’-Nmin <: inf
totES S

Proof. If Mr is controllable in time N, for each 1, 2,..., m, there exists
u, f’, l(u,) > N, such that _uq, + A (u,) 0. Thus 6_Ne, + u, ker , all i, which
implies that (6_ue,+u,)6ker. Since l(u,)>-N all i, ,(&ue+u)
=,(8_u+)e for some with l(,)>-N, all i. By Lemma 6.2, each
6_ + , has an inverse in V, and thus i (--Nei + Ui) S1. Therefore Nmin

infers,{ -/(w)}.
Now $2 is not empty since Ann (M,) # {0}. Let w S. Then it follows from

Lemma 6.1 that M, is controllable in bounded time -l(w)+ a, any a >0. Hence
Nm,n infers2 {--/(w)}.

When m 1, ker A Ann (M) and S S2, so we have the following.
CorollAry 6.2. Ifm 1 and each x M is controllable, M is controllable in

minimal time Nmin inf {- l() Ann (M), - V}.
In the next section, we shall use this result to compute minimal control times

for delay-differential systems.
Given Ann (M) with -6 V, by Theorem 6.1. every xM can be

controlled in bounded time-r for any r < l(fl). In particular, if x w,q,, by the
construction given in the proof of Lemma 6.1, a control u 6 for x is

(6.2) u=u,e,, whereu,=-*[(-*6,*to,)q,]+&*to,, -r </(/3).
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However the control u may be so "rough" that it is not possible to generate an
actual.signal which isa good approximation to u. For example, this is the case if u
contains derivatives of the Dirac distribution. Therefore some indication of the
smoothness of the control (6.2) is very desirable. We now consider this by using
the concept of the order of a distribution.

Let 3" @’ and let U be an open set contained in . The order of 3’ on U,
denoted by ord 3’1 t,, is the smallest integer r such that 3" h,r on U, where h is the
rth derivative of some continuous function h on U. If no such positive integer r
exists, 3’ is said to be of infinite order on U. If 3’ is infinitely ditterentiable on U, we
write ord 3’]t, -oe. The order of any distribution on a bounded set U is finite or
-oo and so is the order of any distribution on having compact support (see [6, p.
95]). It is easily verified that.for any u, v @’ having order < +oo, ord (u * v)
_-< (ord u) + (ord v).

Now given x oq,, consider the control (6.2). We have the following upper
bound on the order of the components of u.

THEOREM 6.4. ord (u,)=<ord
Pro.o]’. Given u -/3 [(fl- 6, to,)q]+ 6, to, since supp u, (’, 0) and

supp (& to,) c__ [- +/(to,), -], u, -/3 [(/3-’ 6, to,)q,] on (-, 0), u, 0, other-
wise. Thus

ord (u,)= ord fl
ord (ui)_<-ord/3 +ord

ord(u,)<-ordfl+ord(fl-’. & to,)l(,,o since q ,
ord (ui)_-< ord fl +ord (fl-1 .
ord (u,)_-<ord fl +ord to, +ord fl-l(o,-,-,0 since supp w, ___[/(to,), 0].

COROLLARY 6.3. If fl-’ is infinitely differentiable on (0, oo), every element of
Mr has a control whose components are infinitely differentiable.

Proof. In this case, ord fl-l(o. -oo, so that by the theorem, ord (u) -oo,
implying that u is infinitely differentiable.

As will be seen in the next section, there exist controls that are infinitely
ditterentiable when M is finite-dimensional as a linear space over

7. Role of the impulse response matrix in controllability. The results of the
preceding two sections reveal that the annihilating ideal Ann (M) plays a crucial
role in the controllability of M (’). Given a system Z (X, Ix, rt, 0), for the
special cases ) =ix and ) rtix =f*, we now investigate the properties of
Ann (M) by relating it to the impulse response matrix W of the system . Here we
obtain particular results on output function and state controllability, expressed in
terms of the properties of W.

For the system Y_, (X, Ix, r/, q0, let Xr Ix(D,") and (Fk)r f*(l)’) denote the
finitely-generated submodules of reachable states and reachable outputs, respec-
tively. Letting {el, ", e,,} denote the standard basis of 1)" as before, we have that
Xr is generated by g, a__ Ix(e,), 1, 2,. ., m, and (Fk)r is generated by h, a__ f*(e,),
i= 1,2,..., m.
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Since f* is equal to the composition rHx, (F), rt(X), and thus Ann (X)
Ann (F). However, in general, Ann (X): Ann (F). A necessary and suffi-

cient condition for equality is given in the following.
PnOPOSITION 7.1. Ann (X)- Ann (F) ifand only if the restriction of rt to the

submodule fg is injective for each such that g, O.
The proof of this result is straightforward, and therefore will not be given.
Recalling that the system is completely observable if rt is injective, we have

the following.
COROLLARY. 7.1. if Z is completely observable, Ann (Xr) Ann (Fk)r
Now let W= (w) denote the impulse response matrix of the system Z. For

each 1, 2, ., k and j 1, 2, ., m, define A {Tr .O," w * 7r fi}. EachA
is an ideal of the ring f. In terms of the A, the following result establishes a direct
relationship between the impulse response matrix and the annihilating ideal of
(r).

PROPOSITION 7.2. Ann (Fk)r 71 i,j Aij.
Proof. Let r6Ann (Fk)r. Then rh =0, ]= 1, 2," ", m, h =/*(e). Hence

(wi * r)lo. oo 0, 1, 2, ., k, ] 1, 2, ., m, which implies that w, r 12, all
i, ]. Thus r 6 71 . Aq. Conversely, let r (’1 ,. A,. Then (w0 * r)[o. 0, all i, ].
Thus f*(ere) 0, j 1, 2," ", m :ff 7rhj 0, all j =), 7r Ann (F).

From the results of 6, the reachable states and outputs are controllable if
and only if each ideal, Ann (X) and Ann (F). contains an element that is
invertible in V @. Since Ann (X)__ Ann (F")r f3 ,. Ai, controllability is
therefore connected to the existence of invertible elements in VI . A, which we
now consider. The approach given below is developed in terms of fields and rings
of fractions.

Since V (resp. 12) is an integral domain, the smallest field in which V(D) can
be embedded is its quotient field, denoted by O(V) (O(O)). Let " V
O(V)’v--v/6o denote the embedding of V in O(V). Note that since

f V, O(f) is a subfield of Q(V).
POPOSTION 7.3. Given a system E with impulse response matrix W,

f-I ,.jA {0} if and only if (w) O(f), all i, j.
Proof. The proof is clear.
From Corollary 5.1, we have the following.
COROLLARY 7.2. If any one of the elements of W cannot be embedded in

O(O), there exist at least one g, 0 and h 0 such that every nonzero state in fg, is
uncontrollable and every nonzero output in fth is uncontrollable.

As we now show, a condition for controllability is that the elements of W
belong to a ring of fractions of tq. Let D {Tr e 1" zr- V}, which is clearly a
multiplicative subset of the ring f. Let D-O denote the ring of fractions of f
defined by D. Note that D-O can be viewed as a subring of V under tlae

embedding D-12 V" o)/Tr- zr- ,o. Then combining Theorems 6.1-6.2 and
Propositions 7.1-7.2, we have the following.

TIqEOREM 7.1. Given a system Z (X, Ix, rl, q) with impulse response matrix
W, the following are equivalent:

(i) wij D-lf, all i, j;
(ii) every reachable output is controllable;
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(iii) the submodule of reachable outputs is reachable and controllable in
bounded time.
Furthermore, ]’or the reachable states to be controllable (or controllable in bounded
time) it is necessary that one of these conditions be true.

THEOREM 7.2. If the restriction of r on each nontrivial submodule gi is
in]ective or i Y is completely observable, the following are equivalent"

(i) wq e D-f, all i, j;
(ii) every reachable state is controllable;

(iii) the submodule of reachable states is reachable and controllable in
bounded time.

Some important consequences of Theorem 7.2 are given as follows.
COROLLARY 7.3. If (X,/x, r/, ) is completely reachable and observable,

then X is completely controllable (or controllable in bounded time) if and only if
wq D-, all i, j.

COROLLARY 7.4. A strictly causal i/o operatorf" V" - V v W * v has a
canonical realization (X,/x, r/, ) with X completely controllable if and only if W is
over D-1

These results show that controllability properties of the systems considered
here are nice if the impulse response matrix is over D-f. There exist systems for
which this is not the case. For example, consider a single-input single-output
system with impulse response w(t)=e-’H(t), where H(t) is the Heaviside
function. Because e-"-) contains the factor e )-’, it follows that there does not exist
a/3 f with/3- V, such that/3 w f. The details are rather involved and will
not be given.

Examples of classes of systems having impulse response matrix defined over
D-f can be generated in the following manner. Let K be a multiplicative subset
of f with K

___
D. Let if{ denote the class of all strictly causal systems (Definition

3.1) whose impulse response matrix is over K-lf
_
D-D,.

Example 1. Let I[p]={__,, a,p’a,, n->O}, where p denotes the ith
derivative of o. Clearly, I[p] is a subring of ,. Further, it is well known (see [6])
that every nonzero element of l[p] has an inverse in V which is infinitely
differentiable on (0, 0o). Thus we can take K [p]- {0}. The resulting class J{ of
systems includes all finite-dimensional systems. Let E be a system in this class.
Since for any /3 K, /(/3)=0 and /3 - is infinitely differentiable on (0, oo), by
Theorem 6.1 and Corollary 6;3 every reachable state and every reachable output
of Z can be controlled in an arbitrarily small time interval by a control whose
components are infinitely ditterentiable.

Example 2. Let [[d, ., d, p] denote the smallest subring of containing
d, 6,,, a, < 0, p 6d ), and b6o, all b . Any/3 [d, ., d, p] can be written as
a finite sum

,8= E c,,....,j,.+,d’*’"*d"*Pj’+’,
j,...,j,.+.

where the are nonnegative integers, C,.’".jr+, , and d th-fold convolution of
di.

From the results of Kamen [3], every nonzero element of [d, ., d, p] has
an inverse in V, so that we can take K [d,, ., d, p]-{0}. In this case, the class
,Y[ consists of systems having time delays equal to multiples of a, 1, 2, ., r
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(di= 6a). In particular, 9’{" contains a subclass of delay-differential systems, i.e.,
systems whose inputs and outputs are related by delay-differential equations. By
Theorems 7.1-7.2 we have the interesting result that for systems with time delays
(as defined here), the submodules of reachable states and outputs are reachable
and controllable in bounded time.

For the case K=[d,,..., dr, p]-{0}, in many instances we can readily
compute the minimal control time Nmi,: Let Y (X,/x, /, q,) be a single-input
single-output completely reachable and observable system belonging to the class
Y{. Then the impulse response w is given by w =/3- 7r, some/3 K, r , and
Ann (X)= {or :w * a 6 }. Suppose that/31 + rr . Then we claim that
Ann (X)=/3, that is, Ann (X) is a principal ideal. Let a Ann (X). Then
/3-’ * 7r * a r, some cr , 7r * a =/3 * r/317r c (i.e.,/3 divides 7r * cr in
). Now/3 * /+ 7r * : 6o some /, : , and since/317r * a * : and/31/3 * 7 *
/3[(/3 y+ rr * s)a ::>/31or. Hence Ann (X) /3, while it is clear that
cAnn(X). Now by definition of K, l(u* v)l(u) for any u, vK. Thus
l(a) _-< I(/3) for any a /3), and by Corollary 6.2, Nmi. -1(/3). For example, let
K [6_,, p] and suppose that the impulse response of the system is

wI) z (n- t)
e-"-")H(t n).

,=o n

Using the operational calculus given in [3], we have (6_ * p + 8_, + 6o) * w
so that we can take/3 8_, p + 6_ + 60 and 7r 6_. Since/3 -(p + 60) * 7r

/3+7r=, and thus Nmi. -/(/3)= 1. In words, every state of :2 can be
controlled to zero within a minimal time period of one second.

8. Discussion o results. In this work, the internal (state) definition of a
system is given in terms of a module framework that reflects the convolution
module structure of the i/o representation. The module setup can be viewed as an
extension of the usual [-linear setting in the sense that the field of scalars () of the
latter is extended to a ring of convolution operators (11) in the former. (Recall that
we have the embedding -l):aa6o.) In other words, with the module
structure we can operate on states and input, output functions using convolution
operators, rather than just elements of . The question immediately arises as to
why this extension of the scalar multiplication is worth considering.

In the first place, important subspaces of the state space and output function
space may be finitely generated as D-modules, but infinite-dimensional as -linear spaces. For example, the submodules of reachable states and output
functions are always finitely generated (because the input function module is
finitely generated). This finiteness can yield computational procedures involving
operations in the convolution ring (see, for example, the method of constructing
controls given in the proofs of Theorems 5.1 and 6.1). Computable results can
then be obtained since convolution operations in f can be performed by a variety
of techniques (e.g., transform calculus), even though 1) is infinite-dimensional as a
linear space over I. For an illustration of this latter point, see the example given
after Example 2, in which convolution operations are used to compute the
minimal control time.

Another motivation for considering the convolution module structure is that
certain dynamical properties are nicely characterizable in this framework. This is
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illustrated by the results in 5 and 6 connecting controllability to the properties
of the annihilating ideal of the submodule of reachable elements. The practicabil-
ity of these results stems primarily from the relationship (established in 7)
between the annihilating ideals of the submodules of reachable states and output
functions and the properties of the impulse response matrix W. In particular, as a
consequence of this relationship in 7 a fairly computable criterion, given in terms
of W, is obtained for determining when the reachable states and outputs are
controllable to zero..The module-theoretic results of 5 and 6 can also be used to
obtain information on minimal control time.

In contrast to the algebraic techniques used here, existing results on the
controllability of systems with infinite state space are obtained by using
functional-analytical methods (see, for example, the papers by Falb [10] and
Delfour-Mitter [11]). In addition, computable .(algebraic) criteria have been
obtained for various types of controllability of hereditary systems which evolve in
n-dimensional space (e.g., delay-differential systems). Some of this work is
referenced by Banks and Manitius in their survey paper [12].

It is clear that the module structure considered here arises as a consequence
of the assumptions of linearity and time invariance. Hence it is not directly
extendable to the time-varying case. However, as a result of recent work [13]
showing that a modified version of Kalman’s K[z]-module structure can be
applied to time-varying systems, it now appears that module-theoretic techniques
can be utilized to study infinite-dimensional time-varying systems. Although this
may be true, what is of prime importance here is that the module approach can be
used to "reduce" infinite-dimensional problems to computable finite-dimensional
problems involving convolution operators.
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NESTED DECOMPOSITION OF
MULTISTAGE CONVEX PROGRAMS*

RICHARD P. O’NEILL,

Abstract. The multistage or staircase structure appears naturally in many models with time
horizons. This paper presents and discusses a method for decomposition when the problem functions
are convex. Among the techniques which can be used to solve the subproblems are the Dantzig-Wolfe
convex .programming algorithm and Bender’s decomposition. Furthermore, when the nature of the
problem presents certain structural forms, the decomposition allows for the introduction of more
efficient techniques.

1. Introduction. The Multistage Convex Program (MSCP) can be stated as
follows:

T

max Z c,(x,),
t=l

AI(X,) 0,

B,_,(x,_,)+A,(x,)<-O, t=2,...,T,

x,S,, t= 1,..., T.

Dantzig and Wolfe [1] addressed the problem in linear form. Because of its
appearance when written in a tableau form, it is also said to have staircase
structure. Problems with multistage structure occur in optimal control, dynamic
multisector economic models and various other engineering and business prob-
lems.

The problem in its linear form has also been studied by Dantzig and Wolfe
[2], Glassey [9], and Ho and Manne 11 ]. In this paper, a decomposition structure
for MSCP will be given creating a master problem and a sequence of problems
which can be considered both subproblems and master problems. It will then be
shown that the solution to the decomposed problem can be used to solve MSCP.
Finally, some approaches to solving the subproblems will be given.
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as
2. The multistage convex program (MSCP). In tableau form, MSCP appears

max c(x) + c2(x2) +

Al(X)

B(Xl)+A2(x2)

+ c,(x,) + +c.(x.)

B,_(x,_)+A,(x,)

B,(x,)+A,+(x/)

<-_0,

BT-(Xr-) + AT(XT) <- O,

where x, S, for 1, 2, ., T, x, is a vector with dimension n,, and

c," S,->R, t=l,’",T,
A, S,-->R "’, t= 1,"’, T,
B, S,->R "’/’, t-- 1,’’’, T-1.

Define S= S1 X""" X ST, X:(Xl,""" ,XT), and c(x)=Y’f=, c,(x,). Let c* be the
optimal value of MSCP and x* be an optimal solution to MSCP. Also for
convenience, define

Bo(. )= Br(. )= O.

It will be assumed that c, is concave, that A, and B, are convex, and that all
functions are continuous for 1,..., T. Further, we will assume S, is compact
and convex.

3. The dual of MSCP. Throughout this paper, it will be assumed there is a
point x which satisfies the Slater condition. That is, x is strictly interi)r to all
inequality constraints.

By defining

T

(1) L(x, u)= Z {c,(x,)-u,[B,_,(x,_,)+A,(x,)]}, u=(u,, UT),
t=l

and

(2)
h(u) max L(x, u),

the dual of MSCP can be defined as

(3) Dual min h(u), u >-0.
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The Slater condition implies the existence of an optimal solution to the dual with
the optimal values of MSCP and the dual being equal (see Geoffrion [7, Chap. 2]
or Mangasarian [12, Chap. 8]). It is a simple exercise to show that a feasible
solution to the dual is an upper bound on the optimal value of MSCP. It should be
observed that the dual is separable, in that the summation on and the
maximization can be interchanged.

4. The decomposition of MSCP. The decomposition creates T generalized
linear programs coupled in one direction by the multipliers of the preceeding
program and in the other direction by column generation (i.e., the columns are
sent "up" to higher number programs and the multipliers are sent "down" to
lower numbered programs). At each cycle (indexed by k) of the algorithm a
sequence of T programs (denoted by SP, for 1, , T) are solved. First, SPis
solved forx r, A r, rrand rr. Then for T- 1, 2, SP, using r,+ is solved for

h,, rr, and o, Finally, SPx,, using r2 is solved for x and rr,. Then p,+l and Q,
for 2, , T are defined by the inclusion of p, and q,, and the cycle is repeated.

The algorithm is initiated by" setting k 1 and

p=c,(x?),

p, =c,-,(x PT-,-1)+ 1, 3, T

qO_ B,_,(x o,_,), t= 2,..., T.

At the k th cycle the algorithm appears as

SP" z (Xr) + WTAr’-- max CT T,

Ar(xr)+

ear 1,

IT C ST,

ArgO.

SP," z, max c,(x,)- r,+,B,(x,) +

A,(x,) + O, ;, <- O,

eA, 1,

xt St,

for T- 1,. ., 2.

Spk z max c(xl)- B(xl),

A,(xl)<-O,

X St,
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where

x,, A, is an optimal solution to SP, and

or, and.o-, are the corresponding multipliers.

SP can be considered the master problem, but SP, for T- 1,. , 2 can
be considered both master problems (to the programs with a smaller value) and
subproblems (to the programs with a larger value). SP is considered just a
subproblem. For ease of reference, the term subproblem will refer to any SP for

1,..., T. Each subproblem is smaller than MSCP in that it has fewer con-
straints and fewer nonlinear variables.

The assumption that x" satisfies the Slater condition guarantees a feasible
solution for SP, 1,. , T. The algorithm terminates if after a complete cycle,
each subproblem remains unchanged (i.e., the next cycle Would produce the same
solution).

LEMMA 1. Iffor any
(4) c,(x)- )+lBt(x) + eA >

then the column generated by x will enter the basis of SP,+, and, barring
o,+ will increase.degeneracy, the optimal value of

Proof. Rearranging terms in (4), we get

c,(x)+P-,+,B,(xf)-+, >0.

Since +, +, are the multipliers for SP+, (4) indicates the column (p, q, 1)’
will enter the basis of SPF on the next cycle and in the absence of degeneracy,
Sp+,

,+, > SP+, for t= 1,..., T-1.
It will now be shown that a feasible solution is available at each cycle. Define
(x,,..-, g) as

T= XT

T= AT,

2 X+,, t= T- 1,. , 1,

,+1 T, T-2, 1,

where Xf= (x,. , xf-’) dimensioned n, x k and Af (A’,, Af) dimensioned
k x k (Af is an upper triangular matrix).
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LEMMA 2. Y is a feasible solution of MSCP.
Proof.

k-I

=0

By convexity of

AT(r)+B-I XT-,A =A(T)+Br-,(T-,)<--O.

Therefore kT and kT_ satisfy the first set of constraints. Now,
j-1

AT-(XT--’) + E BT-(xr-2IA ’T-,=<0.
=0

By convexity of BT-2,

Therefore,

)l,j O.AT-I(XJT-,)-k-BT-2 XT-2ttT-i

AT_I(XiT_,) -i- BT-2 XtT_2At_I A T
j=O "/=0

By convexity of AT-1 and BT-2,

j-) j-)

-kAT--,(YT-,)+ BT-2(X T-2) -< 0.

Therefore,

_
and -2 satisfy the second set of constraints. Continuing recur-

sively, we see that 2 T-2, ,21 satisfy the remaining constraints. Finally, since ,
is a convex combination of points in S,, , S,. [-]

LEMMA 3. At any cycle k the following inequalities hold

(5)

Proof.
(6)

z<- c() <= c* < L(x, r).

z= c(x) +e; T,

(7) PrA k-F’--" [CT--I(XOT-1) CT-I(X k-1 k--1 k-1T_,)]A r+ (p-l, P-,A T-l,""" ,PT-1AT-1 T.

From the first term on the right-hand side of (7) and since CT- is concave,
o (xk-(8) [CT--I(XT-1),’’ CT-1 T--1)]CT-I(X-I):CT--I(-.,)

Expanding the second term on the right-hand side of (7), we obtain

(9) [c_(xL), , -lc_(x_)]A_,a
+(p_, p_a, -l -lPT-ZAT-Z3T-AT.T--2
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From the first term in (9) and since CT-2 is concave (note" A_,A

(10) 0 T_2)]/j, T_ <CT__2(XT_2Ij, 1) CT_2(. kz_2)[C7--2(X7-2) CT-2(X k-1
T--

Continuing in the same manner, we have

(11) [C,(X?), C,(Xkt-1)].Jkt+l c,(Xktlkt+,)=
for t- T-3, , 1.

The second inequality is established by observing that is a feasible solution to
MSCP, and the third inequality is established by observing that (x , r) is dual
feasible. [-]

LEMMA 4. For t- 2," , T,

(12) o.-r,A,(x) P,I,.

Proof. Consider the following linear program:

max P
Oh,<=-A,(x),

eh, 1,

A, >=0,

where x, is fixed. A, is an optimal solution to the above program, with the dual
variables, r and o.,. By duality,

P,A o.,-r,A,(x).

THEOREM 1. Any cluster point of {} is an optimal solution to MSCP.
Proof. S is compact since each S, is compact; therefore {x } has a cluster point.

Since 6 S, {} must have a cluster point. From the continuity of problems
functions and the Slater condition, {zr} and {o.,} for 1, , T are contained in
a compact set and therefore have a cluster point. Let x, r, o., be a cluster
point. For any q _-> k + 1, the following inequalities must hold"

(13) fort= 1,..., T-l,

since they are the reduced costs for the columns of SPL, for 1,..., T-1,
respectively. Adding (12) and (13), observing that ,n-A,(x;) 0, and adding c7(xf)
to both sides of the inequality, one obtains

(14)
T 7

[Ct(X)- 37"(Bt-l(Xl)-- A,(xf))]<--cT(xr)+ PA 7+ Z (o7- o’).
t=l t=2

Passing to the limit on k (subsequentially if necessary), the last term on the
right-hand side of (14) vanishes, giving

(15)
T

E [c,(x7)- r, (B,_,(x,_,)- A,(xT))] _-< cT(x 7) + PTA 7 z 7.

t=l
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By passing to the limit on k in (5) we obtain

T T

(16) z <- E c,(7) <--_ E c,(x*, <- L(x,
t=l

Combining (i 5) and (16), it is observed that the right- and left-hand sides of the
ineqaalities are equal, and therefore, oo is optimal to MSCP.

If the algorithm is terminated prenaturely, a feasible solution is avaiiaNe,
and a bound can be placed on its nearness to the optimal value.

THEOREM 2. If the algorithm is terminated at cycle k, and if (5) does not hold
as an equality, then yk is feasible and within

/3 min L(xj, z/)-c(i)
l<--jk

of the optimal walue.
Proof. From Lemma 3, ) is feasible and c(Y) <-c*. Since (x, r/) is dual

feasible, c *<_ L(x, ri) for j 1,..., k. Therefore

O<=c*-c(i)<-_ rain L(xj, z/)-c(g). [-]
ljzk

With an additional assumption, the calculation of becomes unnecessary.
THEOreM 3. IlL(x, zr) is strictly concave as a function ofx in a neighborhood

of x, then x is an optimal solution to MSCP.
Proof. Since strictly concave functions have a unique optimal solution, the

max L(x, r), x S,

has a unique optimal solution, x. From Theorem 1,

c*= L(x, r).

Since x maximizes L(x, r),

L(x*, "n") <-_ L(x,
where x* is an optimal solution to MSCP.

Since x* is feasible,

U,_(x*-l)+A,(x*)<=O

Therefore,

Therefore,

T

L(x* zr) c*- Y rT[B,-l(x*,-)+A,(x*,)]>L(x, r)

and since x is unique, x= x*. 1-]

The assumption of strict concavity does not appear to be a serious restriction,
since it is only necessary that c(x) be strictly concave or that one constraint with a
positive multiplier be strictly convex at x.

for t= 1,..., T.

L(x*, "rr) L(x,
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5. Methods for solving subproblems. Although any method that produces
optimal multipliers can be used to solve the subproblems, two methods that seem
to be easily adapted to this situation will be discussed. The subscript and
superscript k in SP, will be omitted in this section since they are not necessary for
the discussion (i.e., SP, becomes SP).

SP z max f (x) + PA,

A(x)+QA <=0,

eA =1,

x S, h->_O,
where

f (x) c(x)- Tr,+,B(x).

A method for solving SP that appears to be natural since it also is a column
generation method, is the Dantzig-Wolfe convex programming algorithm (see
Dantzig[ 1, Chap. 24]). The subproblem becomes

l--I

RMSP max f(x)a + P"A,
j=O

A (x)a + Oh <-.0,
j=O

eA=l,
l--I

Y c 1,
j=O

a; >=0, h >=0.

Let a , h be an optimal solution to RMSP. The subproblem for RMSP is

SUBSP max f (x)- yA (x), x S,

where y are the dual variables from the/th cycle of RMSP and x is an optimal
solution to SUBSP.

We must now show that this infinite process does not disturb the convergence
demonstrated in Theorem 1.

Define
1--1

=0

THEOREM 4. {, A t} has a cluster point, (, :), that is optimal to SP, and {y}
has a clusterpoint, , that is an optimal solution to the dual of RMSP, and no duality
gap exists.

Proof. By straightforward application of the Dantzig-Wolfe proof 1, Chap.
24], (, A) is optimal to SP. To demonstrate that there is no duality gap and that
{y} has a cluster point which is optimal to the dual of SP it is sufficient to show that
RMSP is a consistent program as defined by Duffin and Karlovitz [4] and has a
finite value. By the method defined to generate columns for RMSP, the algorithm
either terminates or the new column is pivoted into the basis and a feasible



MULTISTAGE CONVEX PROGRAMS 417

solution is calculated; hence the program is consistent. The Slater condition is
sufficient to bound the optimal value; this completes the proof.

When this technique is employed to solve each subproblem, the decomposi-
tion creates T- 1 linear programs and T nonlinear optimizations.

Another method for solving SP is Bender’s decomposition. The presentation
will closely follow that given by Geottrion [7, p. 50]. SP can be rewritten as

(17) max {/(x)+max [PA s.t. OA <--A(x), eA 1]}.
S A__>0

In the inner maximization of (17), -A (x) is the right-hand side of a linear program
parametrized by x and the dual of this program can be written as

(18) BD min y’(-A (x)) + y/,
(19) y’O + y,,+, ->_ P,

(20) y=>0.

Letting , ", be the extreme points of (19) and (20), equations (18),
Y,+ y+

(19) and (20) can be rewritten as

(21) min {(y’)’(-A(x))+ y+,}.
]=l,’’’,q

Therefore, (17) can be rewritten as

(22)

max f (x) + z,

(y’)(-A (x)+ y+t) => z, j=l,...,q.

Note (22) is a convex program since yJ => 0. Instead of generating all yJ at once, an
iterative scheme can be established in the following way.

Step 1. Solve (22) letting the optimal solution be (, ).
Step 2. If $ is optimal to BD, $ along with the optimal dual variables to BD

solve (17).
If 2 is not optimal to BD, reoptimize and add the new extreme point as
a constraint in (22). Go to Step 1.

Now if

(3)
the colutnn added will enter the basis of the (t + 1)st subprogram. Since theoreti-
cally BD can become a semi-infinite program, it must be shown that there is no
duality gap. In a manner analogous to Theorem 4 it can be shown that BD is a
regular program, which is all that is necessary.

6. Discussion. In the decomposition of MSCP, the direction in which the
decomposition is started is arbitrary. That is, the master problem could start with

1 and the last subproblem would have T. If this were the case the columns
would be generated from the A functions instead of the B functions. However,
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the order in which the master and subproblems are solved is important. If the
master problem is not solved first with the subproblems following in order, an
upper bound in the form of a dual feasible solution will not be available. If the
subproblems were solved in numerical order (i.e., 1,..-, T), the solution
would be found but no upper bound would be available.

Special structure in formulation of MSCP can be an advantage in the solution
of the subproblems. For example if either the A or the B functions are linear, the
subproblems can be formulated so that the explicit constraints are linear in each
subprob!em. Further, if either the A or B functions are linear and the others are
quadratic, the subproblems can be formulated so that the subproblems are
quadratic.

In each master problem it is usually necessary to generate an infinite number
of. columns to attain theoretical convergence. From a computational standpoint
storage and execution time can be considerable. Fortunately, all but the basic
columns of each subproblem may be dropped at each cycle if z > z- (see Eaves
and Za.gwill [5] and Mumhy 13]). Fox [6] has suggested a hueristic acceleration
device accomplished by introducing columns corresponding to if into the master
programs. It requires relatively little computation and does not disturb the
convergence properties as long as it is done o.nly a finite number of times at each
cycle.

The assumption of compactness of S can be relaxed to include the admission
of extreme rays (see Dantzig and Van Slyke [3] and Geoffrion [8]).

7o Ackow!elgnent. The author would like to thank R. T. Rockafe!lar for
his he!.oful suggestions and criticisms of an earlier version of the paper.
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LINEAR OUADRATIC OPTIMAL STOCHASTIC CONTROL
W!T,!t RANDOM COEF!C![ENTS*

JEAN-MICHEL BISMUTh

Abstract. The purpose of this paper is to apply the methods developed in and [2] to solve the
problem of optimal stochastic control for a linear quadratic system.

After proving some 0relimiary existence reslts on stochastic differential equations, we show the
existence of an optimal control..

The introdvction of an adjoint variable enables us to derive extremality conditions" the control is
thus obtained in random "feedback" form. By using a method close to the one used by Lions in [4] for
the control of partial differential equatiors, a priori majoratiops are obtained.

A forma! Riccati eouation is then written down, and the eistence of its solution is proved under
rather genera! assemptions.

For a more detailed treatment of some examples, the reader is referred to [1].

laoduction. Let us consider the linear stochastic differential equation"

dx (Ax + Cu +f dt + (Bx + Du + g) dw,
()

x(O) x,

where w is an m-dimensional Brownian motion and where all the coecients are
suooosed to be observable by the controller, who controls function u.

We want to mioimize the crite6a:

(2) I(u) E ,l ,x,I dt + (N,u,, u,) dt + [M,x]

where N, is a fam.ily of self-adjoint ositive operators, aod where again all the
coe.cieots are observable by the controller.

This problem has a classical form. However, we allow in addition the
coefficieots in (1) and (2) to be ra_.n..dom. Moreover, we accept that the noise term
(Bz + Du + g). dw depends exolicidy on co,trol u.

The purpose of this Daper is to derive an existence result for an optimal
control aod to find the optimal cortrol in a random feedback form.

This reoreseots an imoortant extension of the results given in [3] and [8]. The
methods, however, are very different.

[xle wi!! use, fuoctioo, al analysis techniques to solve this problem. These
methods are very similar to the methods already used by Lions [4, Chap. 3]. Lions
was then solving the problem of the control of a linear parabolic partial differential
equation. with. uadratic criterion. Although our prob!em i.s entirely different, the
methods used to solve both problems will be identical; basically the functional
analysis framework is the same in both cases.

I 1, we deft,he the ootation.s used in the paper. We refer to various
probability theory tools. The reader unfamiliar with martir.gale theory can
supoose that all coecie.ts are deterministic, and that 11 martingales are

* Received by the editors December 4, 1972, and in revised form January 11, 1975.
? Marseille, France.
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stochastic integrals relative to the Brownian motion, in order to have a simpler
view of the functional analysis methods used here.

In 2, we show that under very general conditions, (1) has a unique solution.
Moreover, we prove an existence result for some backward stochastic differential
equations.

In 3, the problem is rigorously defined. The function l(u) is proved to be
convex and coercive on a given Hilbert space. An optimal control is then shown to
exist.

The function I is proved to be differentiable. Condition

(3) r(u)=O

is then expressed through a dual variable p, which is the unique solution of a
backward stochastic differential equation.

In 4, the control is found in feedback form through the use of processes P,
and r,, which are formal solutions of a system of stochastic differential equations.
In particular, P, solves an equation which extends the classical Riccati equation.

In 5, the previous equations are shown to have unique solutions when the
various coefficients appearing in (I) and (2) on one hand, and the Brownian
motion on the other hand are assumed to be independent. A priori majorations
found in the previous parts allow us to solve some deterministic differential
equations with singular terms.

The method appears to be quite powerful and unifies the whole theory of
linear quadratic problems in a very general framework. The usefulness of duality
methods in optimal stochastic control, given for the first time in [2], is exhibited
here quite clearly.

1. Notations.
(f, , P) is a complete probability space.
{,,),,R+ is an increasing sequence of complete sub o--fields of which has the

following properties:
(a) It is right-continuous. [5, IV-30];
(b) It has no time of discontinuity [5, VII-D39].

This last assumption is not strictly necessary, but we make it to simplify the results.- is the o--field of D [0, +[ of the well-measurable sets [5, VIII-D 14]. *
is its completion for the measure dP (R) dt.’

V is an n-dimensional vector space (n >= 1).
w is an m-dimensional Brownian motion on (1), , P), nonanticipating

relative to {,},R+. w may be defined equivalently as a square-integrable a.s.
continuous martingale on (, , P) with values in R such that, by writing
w (w, , w,,), one has (with the notations of [6])

(1.1) d(w,, wj)= 6odt.

This definition is correct by the result of P. Levy [6, p. 110]. Moreover, we extend
the definitions for m -0 by taking w as the one-dimensional null process.

For our purpose if- could simply have been the o--field of nonanticipating sets.
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Since w has continuous paths, (1.1) and the results of [6] show that it is
possible to define unambiguously the stochastic integral of a * class of --measurable processes H such that. for any t, one has

(.2 Ig, ds<

For any stopping time r, L is the space of square-integrable -measurable
random variables, with values in V.

T is a strictly positive constant.
LI iS the space of the dP @ dt classes u of *-measurable functions with

values in V, such that

(.3) ,lu’d <+.

We define then a norm on L by

Lz is the space of the dP @ dt classes x of *-measurable functions with
values in V such that

(1.5) E(sup ess [x,I 2) < +oo.
()-<tT

We define then a norm on L2o by

(1.6) Ilxll {E(sup ess Ix, J2)} ’/2.
O<tNT

L2 is the space of the dP (R) dt classes H of -*-measurable functions with
values in V such that

T

(1.7) E [H,] dt < +oo.

We define then a norm on L22 by

IlHlI22-- (E I,IH, dO
1/2

By convention, we assume that the elements of L21, L2o and L22 are equal to 0
for > T.

Duality brackets are then defined:
(a) between L and L by the standard scalar product,

Two *-measurable functions u and u’ are said to be dP (R) dt equivalent if they differ on a
dP (R) dt negligible set. This defines an equivalence relation on *-measurable functions, and then
equivalence classes for this relation.
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(1.9)

(b) between L21 and L2o by

E (u,, y,) dt;

(c) between L22 and L22 by
T

(1.10) U (H,, H:) dt._
s the space ot sq-aare-integrat)le rnartingaies with values in V stoppecl a T,

null at 0._L can be identified to a closed subspace of L2, on which we put the
inciuce0 topology.

W is the su0space of b_ generated by the stochastic in:egais reiadve co v of
eiiements of L2. W is a stable space, in the sense of [6, rio. 4, p. 80]. Let W be the
ortnogonai of W in _L_ in the sese of [6, Thin. 5, p. 81]. In particular, if {07,},n+ is
the family of c-fields generated by w, a result of Ito [6, p. 135] shows that
w={0}.

Paovosn’o 1.1. Let (Xo, 2, H, M) and (po, D, H’, M") be wo elements of
L Wx L2 x L22 x Then, ifone defines the right-continuous processes x andp Oy

x, xo + ic. ds + H dw, + M,,

P, po + p. ds + H’. dw + M’,,

then the process N, defined by

(1.12)
I I

(/-/;, H’s) ds-(M,,

is a martingale, null at the origin.
Proof. This simple result is proved in [2].

2. Linear stochastic differential equations. We give here some resaits on
linear stochastic differential equations. These results will be very useful in proving
the,existence of a dual variable in the problem of stochastic control which we solve
in the rernainder. We already know that in deterministic comro|, the dual variable
is a solution of a deterministic backward equation. In stochastic control, it is tten
quite natural to think that the dual variable will be a solution of a stochastic
differential equation with a stochastic terminal condition. We wiil prove that,
under some simple assumptions, these backward equations have unique solutions.

Let A and (B,),:,...,, be a family of functions defined on f x[0, +oo[ with
values in V (R) V which are bounded and 3-*-rneasurable.
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that
Cff is the space of right-continuous processes x adapted to {,},R+ and such

E( sup Ix,] 2) < +00.
OtT

A norm is defined on C[ by

(2.2) Ilxll {E( sup Ix,12)} 1/2.
()N T

THEOREM 2.1. For (Zo, u, v, M) in L L21 L22 W, the equation

dZ (AZ+ u) dt + (BZ+ v). dw + dM,
(2.3)

Z(0) Zo,

has one and only one solution with right-continuous paths. Moreover, these paths
have no oscillatory discontinuities [5, IV-20].

Z is then in Cr2, and the linear mapping defined on L x Lzl x L22 x W with
values in C[ by

(Zo, u, v,M)Z

is continuous.

Prooi The proof is merely technical, and follows from a fixed point theorem.
The proof is given in the Appendix.

o WLet be the operator which associates to (Zo, v, M) in L2 x L). x Zr in
Lf through the equation

dZ AZ dt + v + BZ) dw + dM,
(2.a)

z(0) Zo.
Let be the operator which associates to (po, v’, M’) in LxLx W pr in I_,
through the equation

dp -(A*p + B* v’) dt + v" dw + dM’,
(2.5)

p(0) po.

THEONEM 2.2. and q, are both continuous one-to-one operators, and one has

(2.6) q (q*)-’.

Proof. If v’ is in L22, B*v’ is in L22 and then in L21. One then applies
Proposition 1.1 to the processes Z and p defined in (2.4) and (2.5):

IoE<pr, ZT> E<p), Z0>-]- E <pt, A,Z,) dt

(2.7) + (-A*,p, *-B,v,,Z,)dt

T

+ E (v’,, v, + B,Z,) dt + E(M’r, MT).
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Then (2.7) can be written

(2.8) E(pr, ZT) E(po, Zo) + E v:, v,) dt + E(M’, MT).

From (2.8) one deduces necessarily that if Z 0, then

(2.9) (Zo, v, M)= (0, 0, 0).

q is then an injection.
Let us prove that for any Zr in L, one can find (Zo, v, M) such that

(2.10) q(Z,,, v, M) Z.
We define Z, by

(2.11) d,=A2dt, ,(T) Z.
Since A is bounded, it is easily proved that

(2.12) E( sup I,,1 =) _-< kEIZl.
()<-t<= T

Let Z, be the process E’,. One then has

(2.13) Z, E*’,o+E’ As, ds.

A is bounded and -*-measurable, and SUpO<_,<__T[,] is integrable.
Then, for ’-> t,

Io Io’ I,"(2.14) E’ As(L-Z,) ds=E’ As(--Zs) ds+E’ As(L-Zs) ds.

But for s => t,

(2.15) E,E. E,L.

From (2.14) we find that

is a martingale.

E:’ As(Zs Zs) ds

Z,- AsZs ds

is then a martingale. Let us prove that this martingale is square-integrable, or
equivalently that

(2.16) E Zr AZ ds < +oo.

We know that Zr Zr. Moreover,
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T T

k’ EI2I ds,(2.17) E AsZ ds

and (2.17) may be written, using (2.12),

(2.18) E AZ ds < +oo.

(2.16) is then proved.
By [6, Thm. 5, p. 81], one can find (Zo, H, M) in L x L= x W such that

(2.19) Z, Zo+ AZ ds + H dws + M,.

This equality can be written

dZ AZ dt +H dw + dM,
(2.20)

Z(0) Zo.
Theorem 2.1 proves that

(2.21) E( sup Iz, 2) < +oo.

Since B is bounded, BZ is in L22. If we define v by

(2.22) v=H-BZ,

v is in L22, and moreover, one has

(2.23)
dZ AZ dt + (v + BZ) dw + dM,

z(0) Zo,

with Z(T)= Zr.
This is equivalent to

(2.24) q(Zo, v, M)= Zr.
q is then a continuous one-to-one operator. Since all the considered spaces

are Banach spaces, ( has a continuous inverse.
But the relation (2.8) can be written:

(2.25) (qt(po, v’, M’), ZT) ((po, V’, M’), q-’(ZT)).

This proves necessarily that

(2.26) 0 q*-. I-1

3. The-problem of control. In this section, we define in very general terms the
problem of linear quadratic control, i.e., the problem of control of a linear
stochastic differential equation with bounded and "observable" coefficients. Then
by using the results established in 2 on backward stochastic differential equa-
tions, we are able to prove the existence of an optimal control and to find
necessary and sufficient conditions for a given control to be optimal.

H and U are two new finite-dimensional vector spaces.
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A, (/i)i=l,...,m is a family of functions defined on 12 x [0, +o0[ with values in
V (R) V which are bouncied and -*-measurable.

C, (Di)i=l,...,,, is a family oi functions defined on f/x [0, +o0[ with values in
U (g) V which are 190un0eci ancl O-*-neasurable.

M is a function defined on fx[0, +o0[ with values in V(g)H which is
bounded and ,-*-measurable.

N is a function defined on f[0, +o01- witia values in U(g)U which is
bounded and -*-measurable and such that one can find a A > 0 for which one has:
for any u in U,

(3.1) (Nu, u)=>A[ul dP(R) dt a.s.

M is a function defined on ,O with values in V (g)H, bounded and or-
measurable.

f is an elenent of
g is an element of L=.
DEZNTION 3.1. L2 is the set of dP (R) dt ciasses of functions u definecl on

f x [0, T] with values in U which are -*-measurable, and are such that

E [u,It<+.

A norm is defined on L2 by

T }1/2
L is tiaen a Hilbert space.

DEWN,’rON 3.2. The proOlem of linear quaaratic conUol (LQC) consists in the
minimization of the criteria defined on L2 by

(3.2) u E IM,x,I dt+ (N,u,, u,)at +ElM,x[2,
dO

x being given by

(3.3)
dx (Ax + Cu + f) dt + (Bx + Du + g) dw,

x(O) xo,

with Xo in L2.-0
THEOREM 3.1. 7he problem LQC has one umque sotution.

Proof. The result is proved according to classical metlaocls. By Theorem 2.1,
the mapping ux is affine and continuous from L in C (here x is a.s.
continuous). This proves easily that I is continuous and convex.

Moreover, when Ilul[- +o, I(u)- +o by (3.1). L2 is a Hilbert space. This
implies that when a is large enough, {u; I(u) <= a} is convex and weakly compact. I
then iaas an optimum. Since I is strictly convex, this optimum is unique, l-]

We are now going to write the condition I’(u)=0 with the use of a new
process p.
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THEOREM 3.2. A necessary and sufficient condition for u to be optimal is: ifp is
the unique solution of

dp (M*Mx A*p B’H) dt + H. dw + dM,
(3.4)

pr -M* Mlxr,

with (po, H, M) in L L22 W+/-, then

(3.5) Nu C*p + D*H.

Proof. The proof can be done very rapidly by using the general duality results
of [2]. We give here a direct proof.

It is easily shown that I is differentiable. Since I is convex, u is a solution to
the problem LQC iff l’(u)= O.

One has

(I’(u), v u) 2 E (M*, M,xT, x7- xT) dt + E (N,u,, v,- u,) dt

(3.6) + E(M*Mlx, Xr- x)}.
Let us prove that the system:

dp (M*Mx" A *p B’H) dt +H dw + dM,
(3.7)

M*Mpr X,
has a unique solution with (po, H, M) in L xL x W.

Let q be the unique solution of

(3.8)
dq (M*Mx" A*q) dt,

qo O.

TheOrem 2.1 .shows that qr is in L because x" is in C[. It is then equivalent to
prove that the system

(3.9)
dq’=(-A*q’-B*H)dt+H" dw+dM,

q!r -M*M,xr-qT,

has a unique solution, with (q,’, H, M) in L" W+/-.X L22 x But Theorem 2.2 says
precisely that (3.9) has a unique solution.

By applying Proposition 1.1, one has

E MM x r, x r- x r) E I (M*Mx" A*p B’H, xr- x) dt

T

+ E (p,, A,(xY- xP) + C,(v,- u,)) dt

T

+ E (H,, B,(xr- x7) + D,(v,- u,)) dt.
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(3.10) may be written
T

E (M*,M,x, x-x) dt + E(M*Mlx-, Xrr- xr)

T

-E (C*,p, + D*,H,, v,- u,) dt.

From (3.6) and (3.10), the relation I’(u)= 0 is equivalent to

(3.11) Nu C*p + D*H.

4. The "teedbaek" problem. The purpose of this part is to find the dual
variable in feedback form. The method is very similar to the method used by Lions
[4, Chap. 3]. Practically, we solve the problem LQC, but instead of starting at time
0, we start at any time s (0-< s <- T). We then use a priori majorations derived in
the Appendix to write the dual variable p in stochastic feedback form. Some of the
proofs proceed exactly as in [4, Chap. 3]. To avoid unnecessary repetitions, we
refer to this work when necessary.

PROPOSITION 4.1. For any s in [0, T] and h in L, the system

dq (Aq + CN-IC*d/ + CN-D*x +f) dt

+(Bq +DN-C*O +DN-D*x + g) dw,
(4.1)

dq (M*Mp-A*q-B*x) dt +x dw + dM,

with (X, M) in L_2 W+/-;

(4.1’)
q(s) h,

q(T) -M* M, qg( T),

has a unique solution.
Proof. By using the methods of [4, Chap. 3, Lemma 4.1 and.Theorem 3.1. It

is easily proved that q and q are respectively the optimal state variable and the
dual variable of the problem LQC starting at time _s with the "value" h.

PROPOSITION 4.2. The mapping h {q, } defined in Proposition 4.1 is
continuous and affine from L_ into Cx Cr2.

Proof. The proof proceeds exactly as the proof of [4, Chap. 3, Lemma 4.2].
One proves that the given mapping is continuous from L_ in C Cf, this last
space having its weak topology. All the spaces considered being Banach spaces,
the closed graph theorem proves that the affine mapping which is considered is
necessarily continuous from L_ into Cx C2r. I-I

COROLLARY. The mapping h q(s) is continuous and affinefromL into L_.

Proof. Since h {q, q} is continuous from L into C C2, and {qg, q}- q(s)
is continuous from C2Cinto L, the result is proved.

PROPOSITION 4.3. One can findP and r which are -measurable such that"

(a) P(to) ( V, V),

(4.2) (b) r,(w) 6 V,

(c) qs -(Psh + r,).



LINEAR QUADRATIC OPTIMAL STOCHASTIC CONTROL 429

Ps and rs are then determined in a unique way. Moreover, Ps is essentially bounded
and rs is in L. Ph is determined by the solution of (4.1) with f and g null, and rs is
determined by the solution of (4.1) with h null.

Proof. By the existence and uniqueness of the solution of (4.1), one checks
immediately that if A is ,-measurable, and if h and h’ are two elements of L,
then

(4.3) {q, q}(lah + lcah’)= la{q, O}(h) + lca{q, q}(h’).

We consider then two cases.
Case 1. f O, g O. If e,. ., e, is a basis of V, the continuity of the mapping

h qs proves that’

(4.4) A E((qs(la e,),

defines an additive measure on (f, ;,P) which is absolutely continous with
respect to P. By the theorem of Radon-Nikodym, one can find p, which is
s-measurable and integrable such that

(4.5) w,(A) P, dP.

Let P(o)) be the operator defined by (Pij(o)). If h is a step function which is
-measurable, the relation (4.5) proves that

(4.6) q,(h) -Ph.
Moreover, the mapping h G(h) being continuous, one can find a k > 0 such

that

(4.7) EIP,hl2<=k2EIhl2.

The mapping h Ph can then be extended in a unique way to a continuous
mapping from L into itself, because the step functions are dense in L;. One
deduces that for any h in L

(4.8) (h) -Ph.

Moreover, the relation (4.7) proves that P, is essentially bounded.
Case 2. In the general case, G(h) + P,h is a random variable rs which does not

depend on h. Since r is equal to G(0), r, is square-integrable. 1-1
PROPOSITION 4.4. Ps is a.s. a self-ad]oint positive operator. One can find a

C2 > 0 such that ]:or any s, and [or any h of V,

(4.9) IPhl <= Glhl a.s.

Proof. Let h and h’ be two elements of L. Let (0, q) (resp. (q’, /)) be the
solutions of (4.1) for h (resp. q’= h’). u, (resp. u’,) is the corresponding
control, f and g are supposed to be null.

Let G(h, h’) be the expression defined by

(4.10) F(h, h’) E (M,q,, M,q’,) dt + E (N,u,, u’,} dt + E(M,qr, Mq’r).

G(h, h’) is symmetric in (h, h’). By the same technique already used in the
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previous sections, and by a method comparable to,the method used in [4, Chap. 3,
Lemma 4.4], one proves that

(4.11) F(h,h’)=E(Ph,h’).

Equation (4.11) shows that Ps is a.s. self-adjoint. Moreover, Fs(h, h’)>= O.
Then Ps is a.s. positive. But the expression of Fs(h, h) is precisely the minimal
value of the criteria for the problem LOC starting at s from h.

If Xh is the solution of

(4.12)

one has

dxh AXh dt + BXh dw,

Xh(s)=h,

T

(4.13) F(h, h)<=E IMxh, dt+EIM,xh]

It is proved in the Appendix (Remark A. 1) that the mapping

h - x
is continuous from L; into Cr and, moreover, one can find a Co > 0 such that for
any s in [0, T],

(4.14) c0.
From (4.11), (4.13) and (4.14), one deduces that one can find C >()such that

for any s in [0, T] and for any h in L, one has

(4.15) E(P,h, h) ClZlhl2.

Since P, is self-adjoint and positive, one deduces that one can find C: such that

(4.16) EIPhIN GE/h]2.

This implies that sup ess ]Ps(" )l is bounded by a constant independent of
s.

THEOREM 4. l. The solution p of the system (3.4) is such thatfor any s, one has

(4.17) ps -(Px + r,) a.s.

Proof. This is obvious from the previous results.
Remark. The previous theorem says nothing on the trajectories of P.

5. e Riccati equation: A formal approach. A natural idea is to write
formally that P, can be decomposed in the following way:

(5.1) E=Po+ ds+ . dws+,,

with = (,..., m) being such that

I1as<+
and being in W.
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The purpose of this section is to find the formal stochastic differential
equation, whose solution is precisely P. P will be proved to satisfy a generalized
Riccati equation. The same method is used for r.

PROPOSITION 5.1. The formal Riccati equation determining P is

dP+{PA +A*P+B*PB +B*Y(+ Y(B-(B*PD+PC+

(5.2) (N+ D*PD)-(D*PB + C*P+ D* Y() +M’M} dt- 9f dw dJ/l O,

P M* M,
where = (gift,..., ,,) is a family of self-adjoint operators depending on (oo, t)
and "*-measurable, where is a martingale of self-adjoint operators belonging to
W, and with the conventions

B*PB E B*PB,, B= Y B,,
i=1 i=1

and the corresponding conventions for all the other terms.

Proof. In (5.1), if we write that P is self-adjoint, necessarily/5, and are
self-adjoint, by the uniqueness of the decomposition (5.1).

If we consider the system (3.3), (3.4), with f and g null, we have

(5.3)

dx (Ax + Cu) dt + (Bx + Du) dw,

x(0)=xo,

dp (M*Mx B’H- A’p) dt +H dw + dM,

pr -M*Mxr,

Nu C*p + D*H.

But by Theorem 4.1, one has, for any s,

(5.4) ps -Px.
Moreover, if we assume that P can be written in the form (5.1), (5.4) implies

that the right-continuous processes p and -Px are equal. If we replace p, by
-P,x in (5.3), one gets

(5.5) -{dPx + P dx + Y(. (Bx + Du) dt}
=(M*Mx-B*H+A*Px) dt+H. dw+dM.

(5.5) can be written

-{Px + P(Ax + Cu) + Y (Bx + Du)} M*Mx B*H+A*Px,
(5.6)

-{x + P(B,x + D,u)} H, i= 1,..., m.

From (5.3) and (5.6), one gets

(5.7) (N+ D*PD)u -(D*PB + C*P+ D*Yg)x.

Since P is positive, N+D*PD is positive definite. One can write, from (5.7),

u -(N+ D*PD)-(D*PB + C*P+ D*
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By replacing u and H by their values, one gets

{[’ + PA +A*P+B*PB + B’Y(+ Y(B -(B*PD +PC+ D)
(5.8)

(N+ D*PD)-’(D*PB + C*P+ D*9) +M*M}x O.

Since the above holds for any x, (5.2) follows. !-]

Let us now find the formal equation for r.
PROPOSITION 5.2. r is the formal solution of

dr {(PC+ B*PD + D)(N+ D*PD)-’ C* A*}r dt

+[{(PC+ B*PD + (D)(N+ D*PD)-’D* B;}
(Pg + h) Pf g,] at + h dw + aM’,

rT O,

with (h, M’) in L22 W1.
Proof. We write in the same way

i io io(5.10) r, ro + ds + hs dw + dM’,

with (h, M’) in L2 W1.

(55.11)

One then gets

We now take the complete system (3.3), (3.4), and we know here that

p -(Psx + r).

-{Px + P(Ax + Cu +f + Off. (Bx + Du + g) + i}

M*Mx -B’H+A*Px + A’r,
(5.12)

-{x +P(B,x +D,u + g)+ h}= H,

dM’ + dMx dM.

One then has for u,

(5.13) u=-(N+D*PD)-{C*r+(C*P+D*PB+D*gf)x+D*Pg+D*h}.

One then gets

i {(PC+ B*PD + Y(D)(N+ D*PD)-1 C* A*}r
(5.14)

+{(PC+B*PD + Y(D)(N+ D*PD)-ID*-B*}(Pg + h)-pf y(g.

COROLLARY. The formal expression of the optimal control is

(5.15) u=-(N+D*PD)-{(C*P+D*PB+D*Y()x+C*r+D*(Pg+h)}.

6. The Rieeati equation: Existence of the solution. We have no proof of
existence and uniqueness of the solution of equation (5.2) in the general case. We
will prove existence and uniqueness in a particular case, which applies especially
when the coefficients of the equation, the coefficients of the criteria on the one
hand and the Brownian motion on the other hand, are independent.
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THEOREM 6.1. The Riccati equation

dP+{PA +A’P+B*PB-(B*PD + PC)(N+ D*PD)-
(6.1) (D*PB+C*P)+M*M} dt-d= 0,

P M*M,
where act is a square-integrable martingale of linear operators, has a unique solution
in the space of adapted a.s. right-continuous processes P with values in (V, V)
such that one can find C’ > 0 with

sup ess sup I/5,1 _--< C’,
Ot<=T

(6.2)

sup ess II(N + D*PD)-lll <- C’.
(o,t)

rill is then a martingale of self-adjoint operators, and P is a process of
sel[-adjoint positive operators.

Proof. For P in (V, V), let 0,(P) be formally defined by:

o,(P) -{PA, +A P+ B*, PB, (B*, PD, + PC,)
(6.3)

(N, + D*, PD,)-’(D*, PB, + C*, P) + M*, M,}

We want to solve the equation

dP q P, d + drill,
(6.4)

Pr M* M.
Let P’ be a self-adjoint positive operator. Then if P is a linear operator such

that

(6.5) IIP-P’ll < 2 sup ess IIDll’
N+D*PD has dP (R) dt a.s. an inverse, and moreover:

(6.6) II(N + D*PD)-’II <= 2.
To prove the first part of this assertion, since N+D*P’D has an inverse

dP (R) dt a.s., one needs only to prove that, under (6.5),

(6.7) !ID*(P- P’)DII < II(N + D*P’D)-III-’.

But one has necessarily

(6.8) N+ D*P’D >- N.

Then

(6.9) II(N + D*P’D)-IIt IIN-’II.
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From (6.9) one gets

(6.10)

If P satisfies (6.5), then

(6.11)

and A being strictly positive,

II(N+ D*P’D)-’I[-’ IIN-’[I-’ >=A.

IID*(P-P’)D[I<-a/2,

(6.12) A/2<A.

(6.7) follows from (6.11), (6.12) and (6.10). Then necessarily:

II(N+ D*PD)-IlI<--II(N + D*P’D)-tIJ/(1

(6.13)
<=2/A.

(6.6) is also proved.
We notice that the different majorations are related only to the fact the P’ is

self-adjoint and positive.
Let R be defined by

(6.14)
2 sup ess lID[["

For a > 0, and for P a function which is o,-measurable and a.s. bounded with
values in ( V, V), let g be the set of right-continuous adapted processes defined
on T-a, T], with values in (V, V) such that

(6.5)

We put on the distance defined by:

(6.16) d(P, P’) sup ess sup
T--a<=tT

Then if has self-adjoint positive values, the relations (6.5), (6.14) and (6.6)
prove that one can find a positive finite number M() such that, if P is in , then

(6.17) IIm,(P,)l]<-M() dP (R) dt a.s.

Moreover, if C2 is the constant defined in (4.9), the same relation will prove that

(6.18) sup M() < M< +oo.
self-adjointO

In the same way, the calculation of the derivative in P of re, will prove that one
can find k > 0 such that if P and P’ are in u, with self-adjoint, positive, and with
I[[l_-< C2, then

(6.19) II,(P,) ,(P’,)[I kI[P, P’,II dP @ dl a.s.
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Let us notice finally that x is a memzaOle complete space. We take here

(6.20) M’M,.

From (4.9), one has necessarily

(6.2 l) ]IM?,II G.
We take for a the value:

(6.22) a=R/M.

Let G be the mapping which to/T, in x; associates 0 via

(6.23) 0, E’ - q.(/5) ds

Then we prove ttiat O is in . Qt is a right-continuous process 0ecause one
can write

(6.24) , Eg - .,.(fi) as + ,() ds,

RMo(6.25) supess su0 IIO,-E’’II" "()<R.
T--tT

For and ’ in x, let us calculate

One has

(6.27) (G(/) G(P’)), E’ q). (/2i2) ds qs(Ps) ds

3hen, y (6.19), one has

From (6.28), one deduces

(6.29)

But (6.29) can be written

(6.30) ]l(a()- az(’)),ll E d II 211 as.

From (6.30), one deduces

(6.31) d(G2(t6) G2(p’)) k2c2 d(, P’).
2
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In the same way, one will have

(6.32) d(G"(15), G"(.’)) k"a"<-_. d(P, P’).

For n large enough,

(6.33) k,a"/n < 1.

From [7, II, 12, Remark 2], one deduces that G has a unique fixed point in
the metrizable complete space , which we call P.

Let then (, o,,/5) be the space of continuous functions defined on [0, +oo[
with values in R" on which one has put the Brownian measure/5 relative to a
m-dimensional Brownian motion w starting from 0 at time 0.

Let (D.’, ’,, P’) be the probability space

(6.34) (1 x (, o% (R) o,_r+, P 0/5),
with _-> T-a.

Then on this space, the process defined for >- T-a by

(6.5 =, M*M- q.(e s

J’t’’ },T-ot this follows from the independence ofis a martingale relative to t ,, t-T+, and ,-T+. Moreover, (J//,--MT-) is a martingale which is orthogonal to w,
because M,--MT- and w are independent variables. P is then a solution on
[T-a, T] of

dP qL(Ps) ds + d,
(6.36) pr= M.M
and ,-r- is in W-.

If we come back to the problem of control, we check now that P, is precisely
the operator defined in Proposition 4.3.

To prove this property, we need only to prove that for any s in T- a, T] and
any h in L, if x is a solution of

dx {A C(N+ D*PD)-(C*P + D*PB)}x dt

(6.37) +{B D(N+ D*PD)-’(C*P + D*PB)}x dw,

xs h,

then (x,-Px) is the solution of the system (4.1) with f and g null.
We prove first that (6.37) has a solution. This is obvious, because all the linear

operators appearing in (6.37) are bounded (this follows in particular from (6.6)).
One then applies Theorem 2.1.

By doing the same calculations as are in the proof of Proposition 5.1, we find
easily that (x, -Px) corresponds to (q, O) in (4.1) with

X -P{B D(N+ D*PD)-’(D*PB + C*P)}x,
(6.38)

M,=- (ds, x),
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x being C, X is necessarily in L22. Moreover, by Proposition 1.1, one has

Xs dws + (d, x)

(6.39)
P,x,- Pr-xr- qs(P)x., ds Ps2. ds,

Then, as P is bounded, one has

E( sup
r-rNt--r

(6.40)
E(r_su=p,__

r 12 )qs(P)xsds" <=kE( sup [Xsl 2) < --" 00,

E sup P2 ds <= k’E( sup
T--otNt=T T--a=sNT

(6.40) proves that the local martingale M is a square-integrable martingale.
(x,-Px) is then the unique solution of the system (4.1), (4, 1’). One then applies
Proposition 4.4: a.s., for any s in [T-a, T], P is self-adjoint positive, and

(6.41) ]P[<=C.
In particular,

(6.42)

One can then start again the procedure from time T-a, and in a finite
number of steps reach 0.

Uniqueness is easily proved under the given assumption: if P’ is a second
solution of (6.1) on [0, T), right-continuous and bounded, one will have

( i(6.43) P’, E:, M*I M, qs(P) ds

with q(P) uniformly bounded by a constant M’. Then if >-_ T-R/M’, one has

(6.44) IP- E.’M’M,] <= R.
We define then a’ by

R
0 OAM’"

’ P’ is then equal to P onP’ is necessarily a fixed point of G on
T- a’, T], because G has a unique fixed point. One iterates the procedure a finite
number of steps to reach 0. El

Remark 1. The general equation given in (5.2) can not be solved by this
method. We were able to solve it, in the case when can be taken to be 0 and
where the martingale dd is necessarily orthogonal to w. In the general case, we
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could try to use the following technique" we define a mapping (P, o) --> (0, ’) by

O E"’ (15 f
T

q P. fs ds)
where qs(/5, o) is the natural extension of qs(.P). O, can then be written as

O, O + q.(15. .) ds + dw +,.
Unfortunately, fixed point techniques are difficult to use in this case, because,

apparently, Y( cannot be taken to vary in a sufficiently regular space.
Remark 2. In the case where all the coefficients are deterministic, the

restriction on the boundedness of P and of q(P) is unnecessary to prove the
uniqueness of the solution. To prove this point, one needs only to see that--.P
converging necessarily to M*,M when t--> T, for close enough to T--one has

The deterministic differential equation defined by (6.1) with // 0 then has a
unique solution.

THEOraEM 6.2. Under the assumption of Theorem 6.1, the equation

(6.45)

dr {(PC+ B*PD)(N+ D*PD)-’C* A *}r dt

+ [{(PC + B*PD)(N+ D*PD)-’D* B*}(Pg + h) Pf] dt

+h dw+dM’,

T=O,

has a unique solution with (h, M’) in--,22X ’V+/-.
Proo,f. Owe must solve an equation of the type

dr -(M* r +*h + 1 dt) + h + 2) dw + dM’,
(6.46)

t’T O,

with M and bounded a,d (@1, @2) in L2, x L22. Let rl be the solution of

dr, -(M* r + 01) dt + q2 dw,
(6.47)

rl(O] O.

By Theorem 1. r(T), is in L2.T Oe needs to find the solution of

dr -(*r2 + *h) dt + h dw + dM’,
(6.48)

r( -r,().

One applies Theorem 2.2. [7]
Example 1. U x U2. All the operators are supposed to be constant, w is

1-dimensioral. We suppose

(c, o) (o,
o )C=

\ {} N2"/



LINEAR QUADRATIC OPTIMAL STOCHASTIC CON’i-’ROL 439

The Riccati equation is then

dP
dt--PA +A*P+ B*PB PCN? C’P-B’PD

(6.49)

The optimal control is given 0y

(N + D*PD)-’D*PB + M*M O,

u -N’C*Px,
(.50)

r, -(N + D*PD)-IDPBx.

Uxampie 2. We consiaer tlae equadon

dx (Ax + Cu) dt + Bx dWl -t- Du dw,

x(O) x,,,

with the cntecion

(6.51) E I)vi-,x,I dt + E iV,u,, u,) at + ElM,x,12.

We suppose that the operators ace constant. Then P is a solution of

dP
+PA +A*P + B*PB PC(N+ D*PD)-1C*P + M*iVi 0,dt(6.52)
PT MM1.

u is given by

u -(N+ D*PD)-" C*Px.

q"nese formulas aie the saine as the oiies given oy Wonham 18].
Uxampie 3. We take the generaii case with

f 0,

B or D # 0 := g 0.

Then the so1tion of (6.45) is c 0. The "random" feedback has no "constant"
tem.

Example 4. Let (A1, CI, MI, N1) a[1O (A2, C, ivi’2, lye) De two families of
constant opeaots Oavmg te properties given in 3.

Let 7 be a positive random variable defied on R having density A e -’ dr
Let {,},+ be the family of -aigebras defined on R by

Then by the results of [5, VII, 54b], {o},, is a right-continuous family of
o--aigebras, with no times of discontinuity, and 3’ is a totally inaccessible stopping
time.
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Let T be a positive constant, yr the stopping time T ^ T. We consider the
system

dx l{,<}(Ax + Bu) dt + l{,>__}(A2x + B2u) dr,
(6.54)

x(0) xo.

One wants to minimize
T

E { lt,<}(IM, xtl + (N, u,, u,))
(6.55)

+ 1,,__>}(IM2x,] dt + (Nzu,, u,))} dt.

One must solve (6.1).
One has necessarily:

(6.56) , E,.
But on < TT, a simple calculation done in [5, VII, 54b] proves that

(6.57) d h(-) ds.

Moreover, (6.1) proves that

(6.58) P P A .
Let P2 be the solution of

dP
-I-PA_+AP2- P2C2N1C2P* + M*M O,

(6.59) dt

P_ O.

P is then self-adjoint and positive. Let P be the solution of

dP
d---t-+ PIA + A* P-P1CIN C*P +M*M + h (P2-P)= O,

(6.60)
PT O.

(6.60) has a solution, because it can be written

P, A1-- + A*I P1- P1 C,N- C*P, + M*M, + hP: O,

(6.61)
PT O,

and MM, + AP2 is self-adjoint and positive. Then one will check that P is the
process

(6.62) P, I{,<}P,, + l{,>=v}P2

Appendix. The purpose of this Appendix is to prove some very general
results on linear differential stochastic equations. Assumptions and notations are
taken from 1 and 2.
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Let A and (Bi)i=l,...,,,, be a family of functions defined on D. [0, +00[ with
values in R"(R)R", which we suppose to be bounded and -*-measurable.

THEOREM. Let Zo L, u L21, v (vl, , v,,) L22 and M L. Then the
equation

dZ (AZ + u) dt + (BZ + v) dw + dM,
(A. 1)

Z(0) Zo,

has one and only one solution, whose trajectories are a.s. right-continuous,
For any T >= O, one has

(A.2) E(sup Iz, +oo.
OtT

Proof. We prove existence and uniqueness on any interval [0, T].
Existence. We consider the space of stochastic processes {X,},R+ such that for

any t, X, is o%,-measurable, and such that"

sup EIX, < +oo.
Ot<=T

Let Br be the quotient of this space by the subspace of the processes
equivalent to the zero process (i.e., for any t, X, 0 a.s.).

Br is then a Banach space with

(A.3) sup EIX,
otT

as a norm.
We consider now the space Cfdefined.in 2 with a norm defined in (2.2).

is then also a Banach space. There is a continuous injection from Cf into B"
--if X, C and if for any t, X, 0 a.s., then X, is the zero process in C2;
--if X, C2, then

(A.4) sup EIx, sup IX,[.
()NtNT

Let be the function defined on C2 with values in C" such that if Z
(Z) is the process Z’:

io i(A.5) Z’, Zo + (AZ + u) dt + (BZ + v) dw + M,.

Z’, has necessarily right-continuous trajectories. Moreover,

(A.6) IZ:l kl (AZ+ u) ds + (BZ + v) dw + IM, + IZol

K, ( 0 fot(AZ+ u) ds 2 AZ ds + u ds

(A.7, 2(,[IAII ds yoTlZsl ds + (ITIu’
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Since A is bounded, necessarily

(A.8) sup
O__<_- t_<__ T

I)’ (AZ+u) ds A., IX]2ds+ lulds

In tbe same way, by Doob’s ioeoua!ity on m.rtioga!es (see [5, VI, Remark
2]), we have

Moreover,

BZ+v dw

T

=4E IIBZ+ 112 ds.

(A.1. O) [IBZ + 112 ds /,2.E 1!ll2!Z] + Ilvll

Since B is bounded, we then have

E [ IIr z + vii ds <= E IZI ds + E I.Ivll dt
3o

Finally,

(A. 2) F,( sup !M,I 2) -< 4EIMrl2.
() "._<:-_ T

From (A.8), (A.9), (A.11) and (A.12), wefid that

E( sup I/;[2) A. + 3.’E Ill ds 5-_ a + .’T sup EIZ, 2.
()_--<.. ’ T 0_- tT

q is then an affi.ne contin.os mapping from C2T it, to C2T, the first space having the
topology india.ted by

Since C is a Baoach space, cao theo be defined ir a unique way on the
closure of Cfio. Be,. which we call C2.I with values._ in Cf._ For Z in .r_.o_, 0. _Z) i, then
we!l-defined.

CT" g and Z’Let Z, and Z < 2 are defi,ed by

Ineaua!ity (A 13) when .oolied with Zo 0 u 0, v 0, ,/t 0 Droves that
T

E( s|lp IZ;[2)_/tE IZl ds.
()t..<__T

If ..2, ", ,07)n are the powers of , then

a" [2sup El... (/2)l--n(Z’l)t sup EIZg,-Z,,I2.
O -<_- T lq,, O ._<___ T
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Relation (A.16) is also necessarily true when Z is in C]I When n is large
enough, (A’T)"/n! < 1. then has a unique fixed point, by the result given in [7,
Chap. II, 12]. For any Z in Cf, (Z) is in Cf. The fixed point is then recessarily
ir Cf.

Uniqueness. We prove that if Z" is a right-continuous process such that

dZ"= AZ" dt + BZ" dw,
(A.17)

z"(0) 0,

then Z" is the zero process.
From (A. 17), Z" is a continuous process. Let T, be the stopping time defined

by

(A. 18) T, =inf {t"

Then the process Z’,’^ T. is a solution of the equation

dZ I{,<T(AZ dt + BZ dw),
(A.19)

z(o) 0,

and moreover,

(A.20) E( sup
OtT

Z" is then in C.
The previously proved uniqueness of the fixed point implies then that Z" is

the null process.
COROLLARY A.1. If Z is the unique solution of (A.1) with (Zo, u, v, M)

Lx L21 x L22 L, then the mapping (Zo, u, v, M)- Z is continuous from
L L2, L22 L into Cf.

Proof. From (A.8), (A.9), (A.10) and (A.12), we have

(A.21)
T

E(sup [N,[2)k(IIZII2,.m+IluI[X,+IIII=+IIMI[=O+A’E Izl2ds.
(IN t5 T

Let b be defined by

(A.22)

Then

(A.23)

This implies

(A.24)

and similarly

(A.25)

b k (llzllu + Ilu II., + [Ivl[ + IIMII[O.

T

E( sup 12,12) b + A’E IZI ds.
()tT

T

EIZI2_-<b+’E IZl

EIZ, I=_-< b +,,’E IZl as.
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This implies, by Gronwall’s lemma,

(A.26) ElZ,12<=be
From (A.23) and (A.26), we find

(A.27) E( sup Iz, 2) b e’.
()tT

The corollary follows from inequality (A.27). I-]

Remark A. 1. For s -< T, and h L;, let Xh be the solution of:

d.h Ah dt + BXh dw

xh(s)=h.

Then by (A.8)-(A. 12) and (A.27), it is easily seen that the norm of the mapping s:
h Xh defined on L with values in C[ (x, is supposed to be null for < s) can be
bounded by a constant independent of s.

COROLLARY A.2. Under the assumptions of Corollary 1, the mapping
o(Zo, u, v, M)-- Zr is linear and continuous from L2 X L21 x L22 X L into L.

Proof. ZZr is continuous from C2 into L2. The result follows from
Corollary 1.
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A GENERAL UNIQUENESS THEOREM FOR
,SOLUTIONS OF STOCHASTIC DIFFERENTIAL EQUATIONS*

THOMAS C. GARDt

Abstract. We give a Lyapunov-type comparison theorem to obtain pathwise uniqueness for
solutions of Ito stochastic differential equations in one dimension. This theorem contains basic criteria
which generalize Ito’s result, in which f and g satisfy Lipschitz conditions in the second variable. In the
case of t-dependent moduli of continuity, we obtain as a corollary some new uniqueness results.

1. Introduction. The main result of this paper is an attempt to unify what is
already known and facilitate the extension of the theory of the pathwise unique-
ness property for the Ito equation

(1) X, Xo+ f (s, X) ds + g(s, X) d,

where/3r is a Brownian motion process, and the integrals in (1) are mean-square
and Ito integrals, respectively.

Watanabe and Yamada [10] have shown that the pathwise uniqueness
property implies both uniqueness in the law sense (solutions have the same
distributions) and that solutions are measurable functions of the initial condition
and the Brownian motion process. It is this fact that motivates the study of
pathwise uniqueness. An example, attributed to Tanaka, is given in [10] to show
that pathwise uniqueness and law uniqueness are not equivalent.

Ito’s result [7] shows that (1) has the pathwise uniqueness property if f and g
satisfy two-sided Lipschitz conditions in the second variable. However, Skorohod
[9] has demonstrated the existence of a solution of (1) given that f and g are
continuous. Thus it is appropriate to consider the question of uniqueness, apart
from existence.

The theorem given here contains as special cases the results of Conway [2]
and Watanabe and Yamada [10] both of which generalize Ito’s criterion [7].
Conway assumes that f and g satisfy one-sided and two-sided Lipschitz conditions
in the second variable, respectively, while Watanabe and Yamada assume f and g
satisfy two-sided moduli of continuity conditions in the second variable weaker
than the Lipschitz condition. It has not been shown, as yet, that the theorem
represents a complete unification of the theory of this property for (1). For
example, the criterion established by Skorohod [9], which removes moduli of
continuity conditions of f at the expense of requiring positivity of g, thus far has
eluded inclusion. However, an important special case of Skorohod’s result and
some new results assuming t-dependent modulus of continuity conditions are
given as corollaries of the theorem.

*Received by the editors December 18, 1974, and in revised form March 24, 1975.

" Department of Mathematics, University of Georgia, Athens, Georgia 30602. This work is part
of the author’s dissertion under the direction of J. W. Heidel at the University of Tennessee and was
supported in part by a National Science Foundation traineeship.
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Although Ito’s result as well as sone of the abovementioned results are
known for the case in which the random functions in (1) are vector-valued and
recently, for the Ito’s result at least, more generally operator-valued [8], for
simplicity, only the scalar case will be discussed here.

2. Preliminaries. Definitions 1 and 2. Let (t, , P) be a probability space,
and {, [0, T]} a nondecreasing sequence of sub-o--algebras of -;i.e., if s < t,
then s C ,. Assume/3, is a Brownian motion process adapted to o,; i.e.,/3, is a
continuous , martingale satisfying

(i) 1o-= 0,
(ii) for each s, and > s, E{(/J,-s)2/,} cr2(t-s) for some constant 0-.

Assume f(t, x) and g(t, x) me real-valued functions defined in [0, T]x R and
Borel measurable in (t, x). By a solution of the Ito stochastic equation (1) is meant
any a.s. sample continuous process Z, adapted to , satisfying a.s.

Z, Z,,+ f (s, Z) ds + g(s, Zs) ds, O=< t_-< 7;

where the second integral is understood as the Ito’stochastic integral.
Equation (1) has the pathwise uniqueness property if any pair of solutions

and Y, agreeing initially have a.s. identical sample paths, i.e.,

Xo Yo a.s.=),P{X, Y,, 0_--<t_--< T}= 1.

The principal tool used in the proof of the main theorem is the following
special case of a result due to Ito [6, p. 187] which allows integration of smooth
functions of solution processes.

ITO’S LEMMA. Let M>0 and F be a real-valued [unction on [0, T]x
[-M, M] x [-M, M] which is C in x and y and C in t. Assume fi(t, oo) and gi(t,
are Borel measurable real-valued functions defined on [0, T] x f, with f(t, and
&(t, being also o,-measurable, i= 1, 2. If

X,(0) X,(0) + f(s, oo) ds + gl(S, m) dfls,

Y(w) (0)+ f(s, ) ds + g(s, ) d

satisfy X,[ M and Yt M, 0 T, a.s., then

F(t, X,, Y,)= F(O, Xo, Yo)

+ Xs, x,,

O2F ]+g(s, X, Y,)+goy
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3. A general uniqueness theorem.
LEMMA 1. Suppose F(t) is a continuous nonnegative function on [0, T] with

F(O) O. Assume there exists a scalar function w(t, u)= 4)(t)O(u) satisfying
(i) b is continuous and nonnegative on (0, T],
(ii) p is continuous nondecreasing on [0, oo) and (0) O,
(iii) w(s, F(s)) - 0+, as s 0+,
(iv) the only solution u(t) of

(3) u’=. w(t, u)

on any interval such that u(t)/tO as tO is u(t) 0.

(4) F(t) <- w(s, F(s)) ds, 0 < <- T,

then F( t) 0 on [0, T].
Proof. Define W(t) to w(s, F(s)) ds, 0 <= <-_ T. W(t) >= 0 on [0, T]. Since w is

continuous in both variables, and F is continuous, w(t, F(t)) is continuous in t;
thus W is differentiable and

W’(t) w(t, F(t))= &(t)O(F(t))<=&(t)O(W(t)) w(t, W(t)),

the inequality following by (4), the fact that q is nondecreasing and the fact that 4
is nonnegative. Also

W(t) <-_ t[ sup w(s, F(s))].

So by (iii), W(t)/tO as t0/.
Now assume W(to)> 0 for some to (0, T]. Let u(t) be the minimal solution of

(3) such that U(to) W(to) existing on some interval to the left of to (such a solution
will exist by Hartman [4, p. 25]). If u(tl) 0 for some tl (0, to), then u(t) can be
continued to the entire interval (0, to] as a solution of (3) by setting u(t)= 0 for
0 < < tl, since by (ii), u(t) 0 is a solution of (3). This would contradict (iv) as u(t)
would be a nontrivial (U(to) >0) solution of (3) satisfying u(t)/t O/t 0 as -.0/.
Thus u(t) > 0 as far as u(t) exists to the left of to. Now since u(t) is the minimal
solution of (3), U(to) W(to), and W’(t) <= w(t, W(t)) on (0, to], it can be concluded
that 0< u(t)-< W(t) as far as u(t) exists to the left of to (see, for example, Hartman
[4, p. 27-1, and make a time substitution). This means u(t) can be continued to the
entire interval (0, to] as a solution of (3) and 0<u(t) _-< W(t). Furthermore, since
O<u(t)/t < W(t)/t and u(t) is a nontrivial solution of (3), this contradicts (iv).

Thus no such to can exist. The conclusion is that W(t), and hence F(t) must
vanish identically on [0, T].

Remark. This lemma generalizes Hille’s theorem 1.5.3 [5, p. 16].
Remark. The following lemma is an easy consequence of the bounded

convergence theorem.
LEMMA 2. LetX, and Y, be a.s. sample continuousprocesses on [0, T]. Assume

there is a constant M> 0 such that Ix, <- M and [Y,[ <-_ M, 0 -<__- <- T, a.s. Then if
V(t, x, y) is a real-valued continuous function on [0, T]x[-M, M]x[-M, M],
E{V(t, Xt, Yt)} is a continuous function on [0, T].
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Remark. Note that in the previous two lemmas all expectations exist and are
finite because the expressions being averaged are bounded in each case.

DEFINITION 3. A scalar function w(t, u) &(t)O(u) is admissible if w satisfies
conditions (i), (ii) and (iv) of Lemma 1, and is concave.

THEOREM. Suppose there exist scalar functions V(t, x, y), w(t, u), and a
sequence of scalar functions { V, (t, x, y)} such that

(i) V is continuous and nonnegative on [0, T] x
(ii) V(t,x, y)=O gandonly gx=y;
(iii) w(t, u) is admissible, and satisfies condition (iii) of Lemma 1 with

F(t)=U{V(t,X,, Y,)} for any pair of solutions of (1) with Xo Yo a.s., and
[x,l M, I[ M, 0 T, a.s., where M is some positive constant;

(iv) for each n, V, is nonnegative, C in x and y, and C in on [0, T] x R 2,
and V,(t, x, y)=0 if x y;

(v) for each 6[0, T], V,(t, x, y) V(t, x, y) in R.
If there is a sequence ,} of functions such that f, 0 in L [0, T] and, for

suciently large n,

ov. w(t, v)+.,
Ot

hold on (0, T]x R 2, where D is the differential operator

) 0 0 1 0
+ f (t, y) +--+-g2(t, x)+ gZ(t, )+ g(t, x)g(t, y),f (t, x

Ox Ot 2 Ox Y Oy OxOy

then (1) has the pathwise uniqueness property.
Proof. Let X, and Y, be a pair of solutions of (1). Fix M> 0. Let r and % be

the first exit stopping times of the processes X, and , respectively, relative to M.
Then =x ry, the minimum of and y is a stopping time, and the
corresponding stopped processes , X,, and Y, Y,, satisfy

(5) Z, Z,+ (s, Z,) ds + (s, Z,) dfl,

where (t, Z,)= I,<[(t, Z,) and (t, Z,)= I,<rg(t, Z,).
Now Ito’s lemma can be applied to V.(t, ,, ,), taking, in (2), f, f2, gl and g2

to be f(t, X,(o)), f(t, ()), (t, X,(o)) and (t, (w)), respectively, to obtain for
OtST.

v.(t, 2,, ,)= (s,

+ ?(s, )(s,,
av.
+(s, ,

at

11 O:V"(s,(6)
+g(,) ax
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+ (, ,)(, 9,)-7(s, ,&) d

=I+I,

say (noting that o 9oa.s. V,(0, o, go)=0a.s.). Since V, has bounded
partial derivatives on the compact set [0, T] x I-M, M] x I-M, M], and f and g
are bounded, E{ V,}, E{II} and E{I2} are finite, and E{I,} O.

Now an estimate is obtained for E{I2} involving the function w. Fix w e .
Suppose s < r(w). Then, denoting by OV,(s, , ) the integrand in 12,

av,

3V, 1 32Vn

1 82V.
+g(, )(,,Oy2

+g(s,.)g(s, Y,)(s, , E)

w(s, V(s, , E))+f,(s) a.s.

On the other hand, if s r(w), f and vanish a.s., so

(the inequalities follow by assumptions on V,, V, w and f,).
Thus, taking expectation in (6),

(7)

E{V.(t,f(,, .zt)}=E{I2}<=E IV(S, V(s,f(. [,))ds+ f.(s) ds

E w(s, V(s, 2,, ,)) ds + f,(s) ds.

But;

w(s, V(s, f(,, .)) ds= &(s)q(V(s, 2s, )) ds.

E{ V (s,)s, ,)} < oo, since V is bounded on [0, T] I-M, M] [-M, M]. Thus by
Jensen’s inequality, using concavity of

(8) E{O(V(s, 2,, ,))}<=q(E{V(s, 2.,

So &(s)E{q,(V(s,, ,))} is an integrable function of s, noting that
&(s)q,(E{V(s, 52,, 17,)})--> 0 as s -->0 by (iii). Also 5(; &(s)O(V(s, f(,, "9,)) ds is an
integrable function of to as ch(s)q,(E{V(s, ,, 3>,)})- 0 as s -+0 and (4)imply that
&(s)g,(V(s, 52, ,))->0 a.s. as s->0+. Hence Fubini’s theorem and (8) can be
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applied to (7) to yield

E{V.(t, 2. "1,)}--< ch(s)E{k(V(s, 2s, s)} ds+ f.(s) ds

(9)

J()

applyin Fatou’s lemma,

(0 {v(, 2,, ,t (s({V(s, 2,, l s.

Set F(t) E{ V(t, ,, ,)}. By Lemma 2, F(t) is continuous on [0, r]. Since V
is nonnegative, F is nonnegative. F(0)= 0, as o o a.s. and V satisfies (ii).
Assumption (iii) gives that (iii) of Lemma 1 holds. Noting that (10) is the final
hypothesis needed in Lemma 1, this result can be applied to yield

{(, 2,, ,l (tl 0 on [0, r].

By nonnegativity of V, this means V(t, 2,, )= 0 a.s. thus by (ii), , , a.s., for
each t [0, T]. Since the processes 2,, , are a.s. sample continuous,

(see Yeh 11, p. 2]). Finally, since M was arbitrary, and the processes X,, Y, are a.s.
sample continuous, then

{ x,( Y,(l, 0t r}= ,
completing the proof.

Remark. If nonnegativity of V is replaced by V(t, x, y)N V(t, x, y), the
result is obtained by application of the Lebesgue dominated convergence theorem
instead of Fatou’s lemma.

CoaoAa 1 (Conway [2]). Assume there are positive constants K and L
such that

(i) (t,x)-f(t, y)NK(x-y),-< y<x <,
(ii) Ig(, x)- g(t, Y)I glx Yl, x, y R.

Then (1) has the pathwise uniqueness property.
Pro@ The Theorem is applied with

V(t,x, y) =(x-y) exp [-2g-La]t,

g(t, x, y)= g(t, x, y), all n,

w(t,u)O and (t)0, all n.

Clearly, conditions (i)-(v) of the Theorem are satisfied. It remains to verify the
differential inequalities

( --OVO
Ot
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OV OV OV 1 02V
f (t, X)x +f (t, y)-y +--+ g2(t, x)

Ot - Ox
(12)

1 V ozv
g2 02---2-+ g(t, xlg(t, y)+’ (t, y)OY XOy’-- 0

in order to apply the theorem. To do this, the following partial derivatives are
computed:

0__v_ -K- (x
at - y exp [-2g-L2]t,

OV OV
Ox-(X y)exp[-2K L2]t

Oy

0 V O V O V
OX 0Y

exp [-2K L2]t
OxOy

These computations show that (11) is satisfied, and that the left-hand side of (12)
can be written

(13)
[(f(t,x)-f(t, y))(x-y)+(-K-L2/2)(x-y)

+1/2(g(t, x)-g(t, y))2]exp[-2K-L2]t.

Now (i) is equivalent to

(i’) (f (t, x)- f (t, y))(x y) <- K(x y)2, x, y R,

and squaring both sides of (ii) yields

(ii’) (g(t,x)-g(t, y))2<=L2(x-y)2, x, yeR.

Conditions (i’) and (ii’) imply that the first factor of (13) is nonpositive, and so (12)
is valid.

COROLIAR 2 (Watanabe and Yamada [10]). Suppose there exist positive
and nondecreasing functions X and O defined on (0, oo) with X concave and

Io O-2(u) du +oo= Io+ X-I(u) du

such that, for x, y R,
(i) If(t, x)-f(t, Y)I--< h’(Ix Yl),
(ii) [g(t, x)- g(t, Y)I -< p(Ix Yl).

Then (1) has the pathwise uniqueness property.
Proof. Watanabe and Yamada [10] demonstrate the existence of a sequence

{h,} of nonnegative C-functions on R satisfying

(14) h,,(O) h’. (0) h’,,’(O)= O,

(15) h,(u)-+lu],

(16) Ih’,(u)[_-<1 and Ih’.’(u)l2o-(lu[),- u
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The Theorem is applied with

V(t, x, y)= lx- y], V,(t, x, y)= h,(x y),

w(t, u)= x(u) and f,(t)= l/n.

Clearly, conditions (i), (ii), (iv) and (v) of the Theorem are satisfied. Since X is
concave on (0, oe), -X is convex, and hence continuous (see, for example, [1, p.
28]) andso X is continuous. Since ,,+ 1/X(u) du +oe, X(u)-O, as u 0, so that t’
can be continuously extended to [0, oe) by defining 1"(0)=0. Also, since
E{]X, Y,[} - 0 by Lemma 2 as 0+, for any pair of bounded solutions of (1) with
Xo Yo a.s., 1"(E{[X,- Y,I}) - 0 as t- 0+. To complete the verification of condi-
tion (iii) of the Theorem for the function 1", condition (iv) of Lemma 1 must be
shown to hold. To this end, let u(t) be any solution of the differential equation
u’=1"(u) such that u(t)-.O as t0+. (Certainly, if it is shown that any such
solution must be trivial, then (iv) of Lemma 1 will hold, as u(t)/tO as t-0
implies that u(t)-O, as t0+.) Assume u(t)O. Let h>0 such that u(h)>0.
(Since t’ is defined only on [0, oe), u(t)->-0.) Let

=/sup{t’0<t--<t and u(t)=0},
to

[ O, if u(t) O, for all (0, t,].

By continuity and the assumption that u(h)> O, to < t. Now if to < < t, then

u(t) 1
(17)

(,) X(u)
dU t,

since u(t) is a solution of u’=1"(u). Letting t to, the right-hand side of (17)
approaches t- to, while the left-hand side of (17) approaches +oo by assumption
on 1". This contradiction means that u(t)--O, and so (iii) of the Theorem is finally
verified.

Once again, it remains to verify the differential inequalities

(18) OV’<=x(V)+-,
Ot n

1
(19) DV. <-1"(V)+

in order to apply the theorem.
Since O V,/Ot =-O, for each n, (18) is satisfied, noting that 1" is nonnegative.

SinCe F, is a function of x- y, then

ov, ov, av, ov,
and

Ox Oy Ox 0y OXOy

Using these simplifications, and the estimates in (16),

(20)

OV, 1
DV, (f(t, x)-f(t, y))x+(g(t, x)-g(t, y))20x

1
)2

2
<-_lf(t,x)-f(t, y)l+-(g(t,x)-g(t, y) "-0-([x-Yl)’n
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By assumptions (i) and (ii) applied to (20),

1 1pro

verifying (19), and so the Theorem can be applied to give the desired result.
Remark. Recall that in the proof of the Theorem, stopping times were

introduced essentially in order to limit the analysis to bounded solutions. The
differential inequalities assumed were only needed on compact sets containing the
ranges of thes solutions. It suffices, therefore, for the conditions (i) and (ii) in
Corollary ! and Corollary 2, which imply the validity of the differential inequality
conditions of the Theorem to hold locally.

COROLLARY 3. Suppose f(t, x) f(x) is continuous and bounded and
g(t, x) g(x) > c >0 is bounded and satisfies a local Holder continuity condition of

1.order c >= , i.e., given constantM> O, there exist constants L > 0 and c >- such that

Ig(x,)- g(x:)l <= LIx, x:l, Ix,I, Ix=l <-- M.
Then, (1) has the pathwise uniqueness property.

Proof. Let

h(x)= exp -2 _f (z) dz dy.
g(z)

Since f and g are continuous, h is a C:-function on R. Because of the positivity of
the exponential function, h is 1-1. Furthermore, h--’ is a C’-function:

h’(x)=exp -2
(z)

dZ >0,

so h- is differentiable and (h-1)’(h(x)) 1/h’(x); from this formula and the
continuity of the functions h- and h’, continuity of (h-) can be concluded.

Now let X, be a solution of (1). Since h and its derivatives are bounded, Ito’s
lemma can be applied to h(X,). (The form of Ito’s lemma given here requires
boundedness of the processes, but this was just to insure that the relevant
functions of the processes would be bounded.)

h(X,)= h(Xo)+ [f(Xs)h’(X,)+1/2g2(Xs)h"(Xs)] ds

(21)
+ h’(X)g(X,) d.

By computing the derivatives h’ and h", it is easy to see that

(22) f (x)h’(x) +ga(x)h"(x) O.

Setting Y, h(X,), and making use of (22), equation (21) can be written

(23) Y, Yo + G(Y) dB,

where G(y)= h’(h-(y)) g(h-’(y)).
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The properties of h imply that Y, is an a.s. sample continuous stochastic
process on [0, T] adapted to the same sequence of sub-(r-algebras as X,, and that
the pathwise uniqueness for (1) is equivalent to that for (23).

Since h’ and h-1 are C1-functions, they satisfy local Lipschitz conditions; i.e.,
for each M> 0, and N> 0, there are LM > 0 and LN > 0 such that

(24) Ih’(xl)- h’(x2)l LM[x,- x21, Ix,l, Ix l M,

(25) Ih-l(yl)- h-l(y2)l g,ly YI, ly], [YI g.

It is now asserted that G is locally H61der continuous, because g is locally H61der
continuous. The proof of this assertion follows"

]G(yl)- G(y2)] [h’(h-l(y)) g(h-l(y)) h’(h-l(y))) g(h-(y2))]

<-Ih’(h-l(y,))[ Ig(h-(y,))

+ [g(h-’(yd)l Ih’(h-l(Yl))- h’(h-(yd)l.

Now, assume y, y2e [-N, N]. Then h-l[-N, N]C_[-M, M] for some M>0. By
continuity and the H61der continuous property of g, there are constants M, M)_,
and L such that

___1]h’(x)l<=M, [g(x)l<-M2, andforsomea>,

Ig(x,)- g(x2)l--< Llxl- x21 for x, x,, x2 e [- M, M].

Using these estimates, and (24) and (25),

IG(yl)- G(yd] =< M,LIh-I(yl)- h-l(y2)l + M2lh’(h-l(yl)) h’(h-l(y2))[
<-_ M,LLIY Y21 + M2LMLNIy, Y2I
<-[M,LL+2M2LLN-"]Iy,- y2[,

verifying the assertion.
Pathwise uniqueness for (23) follows, since the function p(u)= Ku, for any

positive constant K, and a >_-1/2 satisfies the assumptions in Corollary 2.
Remark. The transformation h made use of in the proof of the preceding

corollary is given in Gihman and Skorohod [3, p. 34].
Remark. The following result is well known.
LEMMA 3. LetX, and Y be solutions of (1), with Xo Yo a.s., and assume there

is a constant M> 0 such that ]X,] <- M and ]Y,] <-_ M, 0 <- <-_ T, a.s.
(a) If f and g are bounded and Borel measurable, then

E{IX,- v,I} O(t’/2)
(b) If f and g are continuous, then

as t-O.

E{IX, g,]} o(t /2) as O.
COROLLARY 4. Suppose there are constants A >0, a >-, a nonnegative

function )t (t), continuous and square integrable on (0, T], and a function p(u) as in
Corollary 2 such that

(i) ]f(t,x)-f(t, y)l<-(n/t)[x-y[,
(ii) [g(t,x)-g(t, y)[<=A(t)o([x-y[)

for all x, y R, (0, T].
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If f and g are also continuous in both variables, then (1) has the pathwise
uniqueness property.

Proof. The Theorem is applied with V(t, x, y) Ix y[, V,(t, x, y) h,(x y),
where {h,} is as in Corollary 2, w(t, u)=A/t u, and f(t)=(1/n)A2(t). Condi-
tions (i), (ii), (iv) and (v) of the Theorem are satisfied. It is clear that w(t, u)
satisfies (i) and (ii) of Lemma 1 and that O(u) u is concave. Thus to verify that w
is admissible, it remains to demonstrate (iv) of Lemma 1. But this follows from the
fact that nontrivial solutions of the differential equation u’= w(t, u) have the form

1’
u(t)=Kexp l_at

for K constant. Thus no nontrivial solution u(t) can satisfy u(t)-. 0 as t- 0+. So
w(t, u) is admissible. Also, since by Lemma 3(b), for any pair X,, Y, of bounded
solutions of (1) with Xo Yo a.s., E{IX,- Y,I}=o(t /2) as t-.O, w(t,E{IX,- Y,[})
A/t. E{]X,-Y,[} 0 as t- 0 since a->_ . So (iii) of the Theorem is com-

pletely verified.
It remains to verify the differential inequalities

1
(26) OV"<=A/t. V+-A,

Ot n

(27) DV. <=A/t. V+ 1A2
Since 0 V,/Ot 0, for each n, (26) is satisfied. As in the proof of Corollary 2, it

can be shown that

(28) DV, <=If(t, x)-f(t, y)l+1/2(g(t, x)-g(t, y))22p-2(Ix-y{).
Applying assumptions (i) and (ii) to (28), the following estimate is obtained:

A 1
DV Ix- yl/-A(t)’n

i.e., (27) is verified.
Remark. Continuity of f and g was used only in the application of Lemma 3 to

verify that

A
w(t,E{lX,- y,I})-F E{IX,- Y,I}-*0 as t0/.

If f and g are assumed to be bounded and Borel measurable, Lemma 3(a) can be
applied to give the required result, provided < .

COROLLARY 5. Assume there are constants A > 0 and B > 0 with A + B/2
such that for (0, T],

(i) f(t,x)-f(t, y)N(A/t)(x-y), -<y<x<,
(ii) ]g(t, x)-g(t, y)l(B/t/2)]x-y],x, yR.

Iff and g are also continuous in both variables, then (1) has the pathwise uniqueness
property.
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Proof. The Theorem is applied with V(t,x,y)=1/2(x-y)2, V,(t,x,y)
V(t, x, y), all n, w(t, u)= ut, and f, --0, all n.
Once again, it is clear that conditions (i), (ii), (iv) and (v) of the Theorem are

satisfied, that w satisfies (i) and (ii) of Lemma 1, and that q(u)- u is concave.
Now, nontrivial solutions u(t) of the differential equation u’= w(t, u) are of

the form

u(t)=Kt

for K constant. Thus w is admissible, since no nontrivial solution u(t) of this form
can satisfy u(t)/t-O as t-0+.

Furthermore, it is shown in proving Lemma 3 that E((X,-Y)2}-o(t) as
*t- 0, for any pair of bounded solutions X, and Y of (2) with Xo Yo a.s. Thus

w(t,E{(X,- Y)))- lit. E{(X,- Y)2}-O as t-0+,
and so (iii) is completely verified.

Finally, it remains to verify the differential inequalities

(29) 0V_ _1. V,
0t

(30) DV-I. V.

Since 0 V/Ot =-0, (29) is satisfied. Because V is a function of x- y,

3V+ 1 O2V
DV= (f (t, x)-f (l, y))0x -(g(t,x)-g(t, y))20X

(31)
(f (t, x)- f (t, y))(x y) +1/2(g(t, x)- g(t, y))2,

as 0 V/Ox x- y, and 02 V/Ox2= 1. Now applying the assumptions (i) and (ii) to
(21), noting that (i) is equivalent to

(i’) (f(t,x)-f(t, y))(x-y)<=(A/t)(x-y)2, x, yR,

the following estimate is obtained"

DV<---(xt y +---- (X-- y)2= 7 A + (x y

Thus since A + B2/2 _-<, (30) is verified.
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AN EXISTENCE THEOREM FOR A GENERAL BOLZA PROBLEM*

A. D. IOFFE"

Abstract. An existence theorem is proved for a general Bolza problem covering various types of
constrained optimal control problems. This theorem seems to be the most general; it covers some well-
known results of Cesari, Olech, Rockafellar and certain others. The proof of the theorem is based upon
a new growth condition which is a combination of those of Cinquini and the author on the one hand
and those of Olech and Rockafellar on the other hand. Under this condi,tion, the integrand of the
Bolza problem is allowed to decrease arbitrarily fast in the state variable, but the decrease in the state
variable and the increase in the control variable must be consistent in some sense.

1. Introduction. We consider here the problem of minimizing of the functional

(1.1) I(T,x(.)) L(t,x(t),+/-(t))dt + l(r,x(O),x(r))

over the set of all pairs (T, x(. )), where T > 0 and x(. is an absolutely con-
tinuous mapping from [0, T] into R". Here L and are extended-real-valued
functions (that is, they may assume infinite values as well as real values). We put
aside the justification of the problem, referring the reader to [5], [7]. We note
only that this problem covers, in particular, optimal control problems with
various constraints.

In what follows, we suppose that L and satisfy the following assumptions:
(i) the integrand L(t, x, y) is convex in y for all x and almost all

(ii) the integrand L is lower semicontinuous in (x, y) for almost all
(iii) the integrand L is o (R) -measurable, that is, measurable with respect

to the a-algebra generated in [0, c) x R" x R" by products of Lebesgue measur-
able subsets of [0, o) and Borel subsets of R" x

(iv) the terminal function l(t, x, z) is lower semicontinuous.
These assumptions are not restrictive at all. They are present in practically

every existence theorem, usually in even more rigid forms. In fact, the assumptions
(i), (ii) and (iv) ensure in essence the lower semicontinuity of the functional
(cf. [5] and [8]), while the measurability assumption (iii) ensures in particular
the Lebesgue measurability of certain functions, for example, the function

(1.2) - L(t, x(t), y(t))

for any measurable x(. and z(. ).
To establish the existence of a solution to (1.1), it is sufficient to prove that I

is lower semicontinuous and has nonempty and compact level sets in some
appropriate topology in . As we have already mentioned, lower semicontinuity
of I is essentially connected with the convexity assumption (i) and the semi-
continuity assumptions (ii) and (iv). The main differences between existence
theorems lie in the criteria which guarantee compactness, though such criteria
are always connected with so-called growth conditions. Here we suggest a new
compactness criterion which seems to be the most general and covers many of

* Received by the editors February 10, 1975.

" Profsojunznaja ul., 97.k.1, kv.203, Moscow B-279, USSR.
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the known results. In this way, a very general existence theorem is established.
We indicate now two known results which are special cases of our theorem.
In quoting these results, we confine ourselves for simplicity to the fixed-time
problem, where

Let

f l(x Z)
l(t, x, z)

if t= T0,

otherwise.

(1.3) H(t, x, p) sp ((p, y) L(t, x, y))

(here (.,.) denotes the scalar product in R").
Then under the assumptions (i)-(iv) and under the assumption that I(T0, x(. ))

< oc for at least one (To, x(. )) e , the existence of a solution of (1.1) is guaranteed
by either of the two following conditions (we shall refer to the corresponding
results as Theorem and Theorem II, respectively):

I. g(t, x, p) <= (t, IPl)/ Ixl (o(t) / p(t)lpl),

(1.4)
l(x, z) >= lo(x + 11(z),

where or(t), p(t) and/l(t, v) are finite and summable as functions of (for any v >__ 0)
a(t) >= O, p(t) >= O, lo and 11 are everywhere >- o and

(1.5) lim inf
l(x) l(z)

I,1-.oo - co, limlzl_.inf- > .
(1.6) II. L(t, x, y)>= qg(lyl)- O([xl)+ a(t),

J’0 ifx Xo, z
(1.7) l(x Z)

oe otherwise,

where q) and , are finite, nonnegative and nondecreasing functions on [0, ), q9 is
convex, a(t) is a summable function on [0, To] and

(1.8) lim r- q)(r) ,
(1.9) lim q0 O(r + max(lxol,lxll)) .

The first result is proved by Rockafellar [8] and generalizes well-known
theorems of Olech [63, who in turn was inspired by Cesari’s works [1]. The second
result is contained in the author’s paper [4], though a very similar result for a
classical variational problem was proved much earlier by Cinquini [2], as was
pointed out in [3].

It is easy to see that the two quoted results are different. Many problems can
be found to which one ofthe results can suitably be applied but not the other.
Indeed, in the situation considered in Theorem I, the integrand L cannot decrease
in x (for and y fixed) faster than a linear function. Theorem II cannot be applied
to the Bolza problem, and in addition it imposes rather rigid requirements on the
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behavior of L as a function of t, though L is allowed to decrease in x at an arbitrary
rate.

In 4, we show how these results follow from our main theorem, proved in
3. The general growth condition used in our theorem may be regarded, to some

degree, as a combination of the growth conditions used by Cinquini and the
author on the one hand and by Olech and Rockafellar on the other hand.

2. Definition and auxiliary results. Let (T, x(. )) . We shall usually extend
x(t) outside of [0, T] as follows"

(2.1) x(t) x(T), if > T.

Thus x(.) is absolutely continuous on the whole half-line R+ [0, ). We
denote by H].I(T) the Banach space of all absolutely continuous mappings from
[0, T] into R" with the norm

(2.2) x(. )[ 1,1 Ix(0)[ -+- [(t)[ dr,

where Ix[ denotes the Euclidean norm of x. The Banach space of all continuous
mappings x(.) 0, T] R" with the usual uniform norm

x(.)[c max Ix(t)[
O<t<T

is denoted by C"(T).
Now we shall define convergence in . We say that the sequence {(Tk, x(. ))}
converges to (T, x(. )) if Tk T and x(. )- x(. weakly in H"1,1(T)

(xk(") being extended according to (2.1)).
Let T* be the upper bound of those >= 0 which satisfy

(2.3) inf l(t, x, z) <

It is reasonable to postulate that T* > 0.
We say, following Rockafellar 8], that the integrand L satisfies the basic

growth condition if, for any bounded S c R" and any p R", there exists a measur-
able function Cp(t) defined on 0, oo) summable on every finite interval and satisfy-
ing

(2.4) H(t, x, p) <= p(t)
for all x S and almost all 0, T*].

Let

I I(T, X(" )) L(t, x(t), c(t)) dr.

PROPOSITION 1. Let L satisfy the assumptions (i)-(ii) and the basic growth
condition. Thenfor every real z and positive T* and r the set

(, r, )= {(T,x(.))IT , x(’)llc r, II(T,x(’)) <-_ }

is sequentially compact with respect to the convergence in .
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Proof. Let

H(t, x, p) max (0, H(t, x, p)),

L(t, x, y) sup ((p, y) H(t, x, p)).
p

Then obviously satisfies properties (i)-(iii) and also satisfies the basic growth
condition, with tp(t) max (0, p(t)). Moreover, for all (t, x, y), one has

(2.5) (t, x, y) <= L(t, x, y)

and

(2.6) L(t, x, O) <_ O.

For any pair (T, x(. )) (r, r, 00, we have from (2.5), (2.6), that

L(t, x(t), +/-(t)) dt L(t, x(t), +/-(t)) dt + L(t, x(T), O) dt

<= L(t, x(t), 2(0) dt <__ .
Making use of the semicontinuity theorem proved in [8, we get that the set

x(.)e H" x(.)[[c1,(r) L(t x(t),Sc(t))clt < , < r

is compact in the weak topology of H].l(r). In HI,l, weak compactness implies
sequential weak compactness. (Indeed, any weak compact set in H’i,l(r) is also
norm compact in C"(r); and if xk(" )- x(. in the norm topology of C"(r) and
[xk(. )[ll,a _-< N < oo for all k, then k(. converges weakly to x(. in L, and
hence x(. x(. weakly in H’I,(z).)

If now (T, x(. )) (r, r, 00 (k 1, 2, ), then there exists a subsequence
(, x(. )) such that To and x(. Xo(" weakly in H],(. ). Obviously
Xo(. )l[c r, To r, and Xo(t)is constant outside of [0, T0].

Choose p(t) according to the basic growth condition and let S {x R"I Ix[
r}. Then, in particular,

(2.7) L(t,x,y) -o(t) ifxS, t[0, To], yR".

If To 0, then there is nothing to prove, inasmuch as

lim inf I (, xd" )) lim 0o(t)) dt O.

If To > 0, then for any e > 0, x(. Xo(" weakly in H,I(To e), and because
of lower semicontinuity of the integral functional,

x( L(t, x(t), Yc(t)) dt

with respect to the weak topology of Hq,(To e.) (see, for instance, the same
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semicontinuity theorem in [8]) we have

e => lim inf L(t, x(t), %()) dt

>__ lim inf L(t, Xk(t), YOke(t)) dt lim /o(t) dt

>= o-
L(t, Xo(t), :o(t)) dt /o(t) at.

0

Since @o(" is summable, it follows that
TO

>_ lim L(t,Xo(t),2o(t))dt I(To,xo(. )),
0

and hence (To, Xo(" )) e (r, r, e). This completes the proof.
Let g(t,r,w) be an extended-real-valued function on R/ x R/ x R/

(R/ [0, or)). We set

G(T, r, w) g(t, r, w) dt (if this exists),

G*(T, r, v) sup (wv G(T, r, v)),
w>_O

F(t, r, v) min {G*(T, r, v min (Ix[, Iz[)) + l(T, x, z)l

x, z e R" max (Ixl Izl) < v}

We say that the functional I(T, x(. )) satisfies the general growth condition if there
exists an extended-real-valued function g(t, r, w) on R+ x R+ x R+ and a non-
negative function p(t) on R+ such that (00 g is (R) M measurable; for every
fixed r __> 0, w __> 0, the function --, g(t, r, w), as well as p(t), is summable on every
finite interval;

H(t, x, p) <= g(t, [xl, [p[) + p(t)lxl [p[ if 0 =< T*, x, p arbitrary;()

()

()

where

g(t, r, w) is nondecreasing in r;

F(T, r,2(T)r)---, ov as T---, o r ,

2(T)=exp p(t) dt

PROPOSITION 2. Let L(t, x, y) be L# (2)M-measurable. Then the basic growth
condition holds if and only if there exist g(t, r, w) and p(t) satisfying assumptions
(00-(7) of the general growth condition.

Proof Let (e)-(7) be satisfied. Then given a bounded set S R", we set

/p(t) g(t, r, ]p[) + p(t)lp[,

where r sup {ix] Ix e S}.
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Conversely, let the basic growth condition hold. Then (see [8, Prop. 5]) the
function

h(t, r, w) sup {H(t, x, P)I Ix[ -< r, IP[ =< w}
is 58 (R) -measurable, nondeqreasing in (r, w), convex in w, lower semicontinuous
in (r, w), and satisfies

ro
h (t,r,w) < oo r >= O, w >= O, < oo, <=dt for all T T T*.

Let g(t, r, w) max (0, h(t, r, w)). Then, as may easily be seen, ()-(),) holds.

3. Min theorem. Let I satisfy properties (i)-(iv) stated in 1. Assume
fu?ther that I satisfies the general growth condition. Then the level sets of I are

weakly sequentially compact in . In particular, if I(T, x(. )) < oo for at least one
pair T, x(. )) , then the problem (1.1) has a solution.

Proof Inasmuch as F(T, r, 2(T)r)--. as T oo and r for any given
e R, there exist T and r such that T =< T, r < r, whenever F(T, r, 2(T)v) =< .

We shall show that the inequalities

(3.1) T =< T, x(.) c --< r,
hold for every pair (T, x(. )) such that I(T, x(. )) <_ . The inequalities (3.1),
along with Proposition 1, imply weak sequential compactness of all the level sets

lev I {(T, x(. )) e II(T, x(. )) <= ).
Let o be the infimum of I on . According to the hypothesis, % < . Hence for
every > o, the level set lev I is nonempty and

levo I f"l levo+(/)I - ,K=I

as the intersection of a decreasing countable family of nonempty sequentially
compact sets. Each element of levo I is a solution of the problem, by definition.
Therefore, it remains only to establish (3.1).

Let (T, x(. )) and I(T, x(. )) =< . Let r IIx(" )llc. We have

L(t, x(t), k(t)) dt sup ((p, c(t)) H(t, x(t), p)) dt
p

sup [(p, (t)) g(t, Ix(t)l, IPl) p(t)lx(t)] Ipl] dt
p

(in view of (,))

sup [IPl(l&(t)[ p(t)lx(t)l) g(t, r, Ipl)] dt.
p

Let

co(t) max (0, ]&(t)l p(t)lx(t)l).
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Then

(3.2) Jo L(t, x(t), (t)) dt > sup [woo(t) g(t, r, w)] dt G*
w>_ 0

T, r, co(t) dt

It follows from the proof of the second existence theorem in I8] that

Similarly,

that is,

T

co(t)at __> (T)- Ix(0)l.
0

o
6O(t) dt >= 2(T)r Ix(T)[,

co(t)dt >= 2(T)r min ([x(0)[, [x(T)l).
0

The function v ---, G*(T, r, v) is nondecreasing in v. Indeed, if v’ => v => 0, then

(3.4)
G*(T, r, v’) sup (wv’ G( T, r, w))

w>0

sup (wv G(T, r, w)) G*(T, r, v).
w>O

Making use of (3.2)-(3.4), weget

>__ L(t, x(t), +/-(t)) dt + l(T, x(O), x(T))

>= G*(T, r, 2(r)r min (Ix(0)], Ix(l)])) + I(T, x(O), x(r))

which implies (3.1).

4. Applications. We show here how the results stated in the Introduction
can be deduced from our main theorem.

Proof of Theorem 1. Let
g(t, r, w) ll(t, w) + rc(t).

Then (00-(7) are obviously satisfied. Let

M(T, w) p(t, w) dr, m*(t, v) sup (wv M(T, w)).
w>_O

Since M is everywhere finite,

(4.1) lim v- lM*(r, v)

We have

G( T, r, w) M(T, w) + rk( T),
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where

k(T) tr(t) dr,

G*(T, r, v) M*(T, v) rk(T).

It follows from (1.2) that F can be finite only if T To. We have

F(r, v) F(To, r, v) min {M*(To, v min (Ixl, Izl)) / lo(X) / lx(z)l

x, z e R", max (Ixl, Izl) -<_ } rk(T).

Suppose that the minimum is attained in (x,, zv), and let 2 2(To). We have
2 > 0 and

2F(r, 20 >_- M*(To, 2r -Ixrl (2r -Ixl)--l,

[ k(T)]+ 2t,()- I1-Z-
If r , then either 2r -Ixl or Ixl . In the first case, the first

member of the sum tends to (because of (4.1)) while the other remains bounded
below (because of(1.5) and (4.1)). Analogously, in the second case, the second mem-
ber of the sum tends to , while the other remains bounded below. In either case,
F(r, 2r) , and hence the last requirement (b) of the general growth condition
is satisfied. It remains only to apply the main theorem.

Proof of Theorem II. This proof is not so direct, because of the coecient 2
in (1.9). Let us consider two auxiliary problems:

f2ro/2(P;) minimize l’(x( )) L(t, x(t), 2(t)) dt

subject to

and

subject to

x(O) Xo, x(To/2) z;

(P) minimize l"(x( )) L(t, x(t), (t)) dt
0/2

x(To/2) z, x(To) xl.

We shall actually deal only with the first of these. The second is treated in the
same manner.
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Let
g(t, r, w)= q*(w) + O(r) a(t),

where 09* is the Fenchel conjugate to 99. Then g(t, r, w) is summable for all (r, w)
by virtue of (1.8), and

where
G(r, w) (To/2)(q)*(w) + O(r)) a’,

To/2

a’ a(t) dr,
0

G*(r,v) (To/2) (p O(r) +

It follows from (1.6) and (1.3) that

H(t, x, p) <= g(t, Ix[, [Pl);

hence ()-() are satisfied with p(t)= 0 and 2(To/2)= 1. Since min(lxol,lzl)
_<_ max (Ixol, Ixll), it follows from (1.9) that the expression

F(r, r) q (r min ([Xo[, [z[)) 0(r) + a’

tends to eo as r- ee. Hence for any z, (P’z) has a solution by the theorem. The
same arguments show that (P’) has a solution as well. Let x’(. and x(. be solu-
tions of (P’:) and (P;’), respectively. Since the level sets of I’ and I" are compact
by the theorem, there exists zo such that

(4.2) I’(x’zo( )) + I"(X’o(. )) min (i’(x’(. )) + I"(x’=’(. ))).

Let
X’zo(t) if 0 <= <= To

Xo(t)
Xzot) ifTo/2<t< To

Then (4.2) shows that Xo(t) is a solution to the original problem.
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THE CLASSIFICATION OF LINEAR STATE VARIABLE
CONTROL LAWS*

BRADLEY W. DICKINSON,

Abstract. Two fundamental classes of control laws for linear time-invariant systems were
introduced by Kalman [4]. Purely feed-forward control laws do not alter the open loop eigenvalues and
purely feedback control laws do not alter the cyclic structure of the open loop system matrix. Here the
decomposition of an arbitrary control law into the sum of three laws, two from one of the classes and
one from the other, is obtained. The uniqueness of the decomposition is studied. The notion of a
covariant control law is introduced to give a decomposition of control laws related to the invariant
description of reachable linear systems given by Popov [9]. Two applications of covariant control laws
are illustrated, including their use in obtaining maximally unobservable canonical forms for linear
multivariable systems under an equivalence relation induced by control laws and state-space basis
transformations.

1. Introduction. Let (A, B) be a linear time-invariant system representation
defined over an arbitrary field k, described by a set of difference equations

(1.1) xt+ Axt + But,

where x k is the state vector, u k" is the control vector, and Z, the integers.
Thus A and B are n n and n m k-matrices respectively.

Frequently, the input in (1.1) is chosen as a linear function of the state

(1.2) u, Kxt,

where K is an m n k-matrix; we call such a matrix K a linear state variable control
law, or more simply a control law, for (A, B). To facilitate the study of (A, B)
subjected to a control law K, we will assume that (A, B) is a reachable system; that
is, we assume the matrix [B, AB, , A "-IB] has rank n. For notational simplic-
ity, the matrix B is assumed to have rank m.

This paper explores the structure of linear state variable control laws.
Rosenbrock’s control structure theorem is reviewed as the principal tool for
establishing existence of certain control laws. Some important classes of control
laws, each preserving various structural properties of (A, B), are defined. Some of
these classes of control laws were originally studied by Kalman [4], although we
have refined some definitions in order to obtain stronger results. A new class of
control laws, called covariant control laws, is introduced to study the interaction of
control laws and state-space basis transformations; this idea is rooted in the work
of Popov [9] on invariant descriptions of reachable systems. Our structural results
in 3 describe thedecomposition of an arbitrary control law into constituent parts
from various classes of control laws.

* Received by the editors October 8, 1974, and in revised form April 29, 1975.
t Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08540.
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In 4 we give two examples to illustrate these results. Two applications of the
class of covariant control laws are discussed in 5. We show that arbitrary pole
assignment can always be accomplished with a covariant control law. Finally, we
consider an equivalence relation on the set of reachable linear systems induced by
control laws and state-space basis transformations. Covariant control laws are
used to transform a particular set of canonical forms to a second set of maximally
unobservable canonical forms.

2. Control laws and invariant factors. We first review Rosenbrock’s control
structure theorem [10, pp. 190-192]. The theorem describes how the open loop
system matrix, A, can be modified by a control law K. Let bl(z), , bq(z) be the
invariant [actors of the closed loop system matrix A + BK. That is, they are the
nonunit invariant polynomials of the polynomial matrix zI-A- BK, ordered so
that

(2.1) 4i+(z) bi(z), 1 =<i =<q- 1,

(reading bi+l(z) divides b(z)). See [5] for further discussion of the significance of
the invariant factors. In addition, there is an ordered list of positive integers
’1 => ’2 ->’’" -> ’,,, whose sum is n, that can be uniquely associated with (A
+ BK, B), and this list of controllability indices is independent of the choice of
K[1], [17]. Rosenbrock’s theorem shows that the controllability indices provide
bounds on the degrees of the invariant factors of the closed loop system matrix.

THEOREM 2.1. Let (A, B) be a reachable system with controllability indices
>-_ >-. >-_ t,,. Let {4(z), thq (z)} be- any set of monic polynomials in k[z]

satisfying the divisibility properties in (2.1), and let q <- m. Then there is a control law
K such that the given polynomials are the invariantfactors ofA + BK ifand only if

(2.2) deg cbi(z) >- ,, l <-r<-_q.
i=l i=l

This slight modification of Rosenbrock’s statement [10, p. 192] follows from the
ordering of the controllability indices and the fact

(2.3) Y, deg b(z)= n Y, ,.
i=1 i=1

Some further discussion of this result can be found in [2] and [4].
Kalman made the first observations on the classification of control laws that

will be examined here. Certain control laws preserve key properties of the system
matrices of the open and closed loop systems.

DEFINITIONS 2.1 (Kalman [4]). A control law J is called purely feedforward
(relative to (A, B)) if the open and closed.!oop system matrices, in this case A and
A + BJ, respectively, have the same characteristic polynomial. A control law L is
called purely feedback (relative to (A, B)) if the ordered list of degrees of the
invariant factors of the open and closed loop system matrices are the same. A
control law M is called neutral if it is both purely feedf0rward and purely
feedback.

In short, purely feedforward control laws preserve eigenvalues. The control
theoretic significance 0f purely feedback control laws is less obvious. Certainly the
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degrees of the minimal polynomials of the open and closed loop system matrices
are equal when a purely feedback control law is used. More generally, the
dimensions of the cyclic components of the underlying state module [5] remain
fixed.

A natural question that arises at this point concerns the decomposition of an
arbitrary control law into component parts. Kalman’s simple additive decomposi-
tion [4] is not generally valid. For a simple counterexample, illustrated in 4, the
system (A, B) is taken over the field Q of rational numbers, with n 6, m 2. The
controllability indices are chosen to be ’1 =/2 3, and the invariant factors are
chosen to be bl(z)= bz(Z) z 3 +2. By Theorem 2.1, there is a control law K
giving a closed loop system matrix with invariant factors l(z)=(z2+ 1)2 and
2(z) z 2 + 1. Because the roots of 42(z) and 2(z) are algebraically independent
over Q, there can be no simple decomposition K J+L, where J is purely
feedforward and L is purely feedback.

The Appendix discusses a counterexample for the case of any field that is not
algebraically closed; this includes the real number field and all finite fields which
are the cases of most practical significance.

3. Decompositions of control laws. There are two natural decompositions of
a control law that each involve three summands. It is interesting to note that
Kalman actually used one of these when assuming that certain eigenvalues were
normalized to zero [4], but then neglected to account for it in his decomposition.
An additional definition facilitates a sharp description of the uniqueness of the
decomposition.

DEFINITION 3.1. A control law N is called strongly neutral (relative to (A, B))
if the invariant factors of A and A +BN are identical.

TIaEOREM 3.1. Let (A, B) be a reachable system and let K be any control law.
Then

(a) K L1 + J- L2, where L is purely feedback relative to (A, B), A + BLI is
nilpotent, J is purely feed[orward relative to (A + BLI, 13) and L2 is purely feedback
relative to (A + BK, B);

(b) K J + L- J2, where J is purely feed[orward relative to (A, B), A +
is cyclic, L is purely feedback relative to (A + BJ, B), and J2 is purely [eed]’orward
relative to (A + BK, B). All the component laws are unique up to an appropriate
strongly neutral law.

Proof. For (a), let L be a control law shifting all closed loop eigenvalues to
zero and preserving the degrees of the invariant factors. Then let J be a control law
that preserves the characteristic polynomial of A +BL while giving invariant
factors whose degrees are equal to those of A +BK. Then the control law

L2 L +J-K is purely feedback relative to (A + BK, B) as required. For (b), let

J be a control law that preserves the characteristic polynomial of A and makes
A +BJ cyclic; that is, its characteristic polynomial is its only invariant factor. Let
L be a control law that preserves cyclicity and makes the characteristic polynomial
of A + BJ + BL equal to that of A / BK. Then J2 J1 / L K is purely feedfor-
ward relative to (A + BK, B) as required. Clearly each law is only unique up to an
appropriate strongly neutral law. The existence of all the control laws in these
decompositions follows from Theorem 2.1. [-1
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Let N be a strongly neutral control law relative to (A, B). Because A and
A +BN have the same invariant factors, there is a nonsingular matrix T so-that

(3.1) T-AT A + BN.

It may also be the case that

(3.2) T-1B=B;

(see the example in 4). When this is true, the closed loop and open loop systems
differ only by a change in state-space basis. This remarkable situation indicates
that a closer examination of control laws and their interaction with basis changes
in the underlying state-space of a reachable system (A, B) is warranted.

One approach to this topic follows Popov’s results [9] on a complete set of
independent invariants for the set of reachable systems (A, B) acted on by the
group of state-space basis transformations.

DEFINITION 3.2. Two systems, (A1, B1) and (Az, B2), are said to be state
equivalent, or similar, if there is a nonsingular matrix T such that

(3.3) T-A1T=A2, T-1B1--B2

By reachability, the matrix T in (3.3) is unique; see [18].
Popov [9] describes a complete set of independent invariants for this equival-

ence relation. His result can be used to construct various sets of canonical forms
for systems under similarity, each set containing one representative system from
each similarity equivalence class [13].

One particular set of canonical forms, here called s-canonical forms,, is
obtained by using a procedure of Popov [9, Thm. 2]. The s-canonical form of a
system (A, B) is defined as (T-1AT, T-1B), where the matrix T (Popov’s matrix
M) is uniquely determined by (A, B). The columns of T are particular linear
combinations of the first set of linearly independent columns obtained by examin-
ing, in lexicographic order, the columns of the matrix [B, AB,. , An-IB]. By
reachability, we see that a system (A, B) is in s-canonical form if and only if the
corresponding matrix T is the identity matrix.

We will briefly examine the structure of the s-canonical forms. If (A, B) is in
s-canonical form, then there is a permutation 7r(" of the first m positive integers
defining a reordered set of controllability indices nl, rt2," ", rtm, where

(3.4) ni

and, furthermore,

(3.5) A B

A.I"’’A.,

where Aq is ni x nj and Bi is ni x m. Using "x" to denote a possibly nonzero entry,
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the blocks have the forms

O1 0

Ai
1

XX X

x,x...xO...O

(3.6)

For i , the last row of Aq can have possibly nonzero entries only in the first
min (ni, nj)-columns. The matrix B has all zero entries except that in row ni it has
a 1 in column and an "x" in every column j > for which

Some observations, following generally from Popov [9, Thms. 2 and 3],
should also be made. If (fi,,/) is the s-canonical form of (A, B) and if (fi2,/2) is
the s-canonical form of (A + BK, B), then/ =/2. Thus control laws preserve the
canonical form of the input matrix. Similarly, the ordering of the indices {n} is
preserved. If (A, B) is in s-canonical form, a control law K can be chosen to place
any desired elements of k in the entries denoted by "x" in (3.6). However, some
control laws will not leave the resulting closed loop system in s-canonical form
because they alter some "sacred zeros" in one or more of the blocks Aq for # j.
We give a name to the special class of control laws that preserve s-canonical form.

DEFINITION 3.3. Let (A, B) be a reachable system and let (T-AT, T-B) be
its s-canonical form. A control law Kc is called covariant (relative to (A, B)) if
(T-(A + BK)T, T-B) is in s-canonical form.

The name covariant is chosen to indicate that changes occur in the control law
when the basis is changed in the state-space of the system. For example, if (A 1, B)
and (m2, B2) are given by (3.3) and K is covariant relative to (A

(3.7) K2-- K1T

is covariant relative to (A2, B2). Notice that when all the controllability indices are
equal, every control law is covariant because there are no "sacred zeros" to alter.

The corresponding decomposition of an arbitrary control law can now be
given.

THEOREM 3.2. Let (A, B) be a reachable system and let K be any control law.
Then K Kc N, where K is covariant relative to (A, B) and N is strongly neutral
relative to (A + BK, B). The decomposition is unique up to a law that is both
covariant and strongly neutral.

Proof. Let (T-1AT, T-B) be in s-canonical form and let (,/) be the
s-canonical form of (A + BK, B). Then T-1B =/ and T-XAT+ T-BK for
some control law/ that is covariant relative to (T-1AT, T-1B). Thus K =/T1

is covariant relative to (A, B). Let N K-K. Since the systems (A + BKo B)
and (A +BK, B) have the same s-canonical form, A +BKc and A + BK are
similar and so have the same set of invariant factors. Thus N is strongly neutral
relative to (A + BK, B). Since a control law may be both covariant and strongly
neutral, as an example in 4 shows, the uniqueness result follows directly. I-!
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4. Examples. We first consider the system defined over Q, the rational
numbers, used in the counterexample of 2:

0
0 0

-2 0
0 0
0 0
0 0

0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 ()

0 0 0 1
0 -2 0 0

B=

The control law K,

K=
-1 0 -1 2 -1 0

gives a closed loop system matrix with invariant factors (z2+ 1)2 and (z2+ 1). Its
decompositions are

(a) K=[2 0 0 0 0 ;] [0 0
0 0 0 2 0

+
0 0 -1 0 0

1 0 0 0 1 LI+J L2,

(b)
K=

-4 0 0 -2 0 0
+

3 0 -3 2 -3

0 -2 -2 -2 J1 -+-L-J2.

As an example of nonuniqueness, notice that in (a), J may be replaced by any
nonzero multiple, of J with L2 then being modified accordingly.

As a second example, consider a system defined over the real number field:

A -2 -3 B
0 0

Notice that (A, B) is in s-canonical form.
The control law K,

K=
3 k

k#0,

is not covariant, but it is strongly neutral. Thus it has the trivial decomposition
K =0+K.

However, we also have

3 0 0 -k
=K-N,
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where K. is both strongly neutral and covariant. Now the s-canonical form of
(A + BK, B)is (A,/),

A -2 -3 /
3(1- k) 0

so that when k 1, (A +BK, B) and (A,B) are similar; that is, there is a
nonsingular matrix T so that

T-I(A +BK)T= A,

T-IB =B.

5. Applications. The classes of control laws introduced by Kalman [4] are
significant because of the conrrol theoretic interpretations that apply (see the
remarks after Definitions 2.1) to these particular sets of control laws. The
significance of covariant control laws will be illustrated with two examples from
control theory.

For a practical application, we will consider a generalization of the familiar
pole assignment problem 16].

DEFINITION 5.1. Two control laws, K1 and K2, for (A, B) are indifferent if
A + BK1 and A + BK2 are similar matrices.

This is a definition of convenience because we see that K and K2 are
indifferent if and only if K2-K is strongly neutral relative to (A +BK1, B).
However, we can now give a corollary to Theorem 3.2.

COROLLARY 5.1. Let (A, B) be a reachable system and let K be an arbitrary
control law. Then there is a covariant control lawK (relative to (A, B)) such thatK
and K. are indifferent.

Proof. The covariant law K constructed in the proof of Theorem 3.2
suffices. [3

Thus, in the case that any member of a particular set of indifferent control
laws is a satisfactory solution to a particular control problem, there will always be
at least one covariant solution. A common example is the use of a control law to
determine the invariant factors of the closed loop system matrix (usually the
closed loop system matrix is chosen to be cyclic); recall Theorem 2.1. This
application indicates that covariant control laws form a large enough class to be
useful in meaningful control problems.

We now turn to a theoretical application. Here we will need to demonstrate
existence of a suitable covariant control law because we want to preserve
s-canonical form while satisfying a certain objective.

Let (A, B, C) be a linear time-invariant system representation defined by the
equations

(5.1) x,+ Ax, + But,

(5.2) Yt Cxt;

y kp is an output vector and C is a p x n k-matrix, with (5.1) identical to (1.1).
Thus we have added an output equationto our previous system representation.
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We say (A, B, C) is reachable if and only if (A, B) in (5.1) is reachable as defined in
1, and this will continue to be a standing assumption.

DEFINITION 5.2. Two systems (A,B, C) and (A2, B2, C2) are control
equivalent, or c-equivalent, if there is a nonsingular matrix T and a control law K
such that

(5.3) T-(A +BK)T= A2,

(5.4) T-B1 B2,

(5.5) C, T= Ca.
A slight modification of the proof of Theorem 3.2 shows that (A, B, 0), here

0 is the p x rn matrix of zeros, and (A2, B, 0) are c-equivalent if and only if
(A + B1K, B) is similar to (a2, B2) for some covariant control law K relative to
(A, B). Popov [9] noted that a set of canonical forms for reachable systems
(A, B) (here imbedded as systems (A, B, 0)) under c-equivalence can be obtained
by choosing the s-canonical forms, (3.4)-(3.6), and setting every element denoted
by "x" in (3.6) equal to zero.

Clearly every c-equivalence class of systems (A, B, C) contains some systems
with (A, B) in s-canonical form. It is thus natural to seek a set composed of one
representative system from each c-equivalence class; that is, a set of c-canonical
forms, requiring in addition that each c-canonical form, say (A*, B*, C*), has
(A*, B*) in s-canonical form. One construction for a set Y_, of c-canonical forms
has been given by Wang and Davison 12]. If (A*, B*, C*) Y_,, then (A*, B*) is in
s-canonical form with every "x" in (3.6) set equal to zero. We will construct a
second set, Y_,+, of c-canonical forms that exhibit additional structural properties;
the basic step in this construction is the application of an appropriate covariant
control law to each element of

A system (A, B, C) is called observable if the matrix

(5.6) (a, C)=[C’,A’C’, (a’)"-’C’]’

(prime denotes transpose) has rank n. It is well known that the ranks of 0(A
+ BK, C) and 0(A, C) may differ; in other words, linear state variable control
laws can affect the observability of a system. We say that a system (A, B, C) is
maximally unobservable, see [8], if

(5.7) rank 0(A, C)_-< rank (A + BK, C)

for all control laws K. As pointed out by Silverman and Payne 11 ], if (A, B, C) is
maximally unobservable, then the nullspace of 0(A, C) is the largest (A, B)-
invariant .subspace contained in the nullspace of C. (Recall that a subspace is
(A, B)-invariant if it is (A + BK)-invariant for some control law K; see Morse and
Wonham [7] and references therein.)

There are many applications of these concepts to problems of system
inversion, disturbance isolation, and decoupling; Silverman and Payne [11] and
Morse and Wonham [7] are representative references. We will show that every
c-equivalence class contains a maximally unobservable system (A, B, C) with
(A, B) in s-canonical form.
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THEOREM 5.1. Let (A, B, C) be a system with (A, B) in s-canonical form.
Then there is a c-equivalent system (/,/, 0) that is maximally unobservable and
satisfying

(5.8) fi A + BK., B,

where Kc is a covariant control law relative to (A, B).
Proof. We choose a K, using the "structure algorithm" of Silverman and

Payne [11], so that (A + BK, 13, C) is maximally unobservable. K may be made
unique by choosing a particular version of the structure algorithm [11]. If K is
covariant relative to (A, B), set (,, , ) (A + BK, B, C). If K is not covariant
relative to (A, B), let (,/) be the s-canonical form of (A + BK, 13), and define
the matrix T as

T-(A + BK)T= /,
T-B=.

Recall that T is unique by reachability. Note also that/ B because (A, B) is in
s-canonical form. Thus A + BK. , where K. is a covariant control law relative
to (A, 13). Let =CT. Then (A,/, 7) is c-equivalent to (A, 13, C) and
(fi, , ) I(A + BK, B, C) T so that (A,/, 7) is maximally unobservable.

We can use this theorem to construct the set E+ of maximally unobservable
c-canonical forms by starting with the set ,E of c-canonical forms described by
Wang and Davison 12]. A third set, say ,E, can be obtained by using a covariant
control law on each element of + to zero the "x" elements in (3.6). It would be
interesting to know if the covariant control laws used in the construction of
from Z could be chosen so that E E. This question is still under investigation.

6. Concluding remarks. Recently Wolovich [15] has described a simplified
construction of a complete invariant for c-equivalence (and implicitly a set of
c-canonical forms) by using frequency domain methods. Dickinson [3] has given a
similar construction including, in addition, a frequency domain approach to
maximally unobservable c-canonical forms. This is based on an extension of other
work of Wolovich 14] relating pole-zero cancellation in transfer functions to loss
of observability when a control law is used. These connections are beyond the
scope of this paper, however.

Morse [6] also investigated structural invariants of c-equivalence, but failed
to obtain a complete invariant. His approach was a geometric one; it appears that
the maximally unobservable c-canonical forms give a solution in the geometric
spirit of his work. Further investigation of the frequency domain approach in [3]
offers promise of more explicit descriptions of the output matrix and of a natural
choice of the control law K of Theorem 5.1.

We must also point out that solutions to many important control problems
are not always covariant control laws. In particular, choice of K using quadratic
regulator theory may not give a covariant control law. This brings up an interest-
ing point: quadratic regulator theory is often used to determine closed loop system
matrix pole locations, yet pole placement problems always have a covariant
solution! The reconciliation of these two design procedures is still an interesting
problem.
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Appendix. An arbitrary control law K for (A, B) can be written as K J + L,
where J is purely feedforward relative to (A, B) (resp. (A +BL, B)) and L is
purely feedback relative to (A + BJ, B) (resp. (A, B)), whenever (A, B) is defined
over an algebraically closed field. This follows from the fact that any polynomial
over such a field factors into a product of first degree polynomials over the field.
Closure is also a necessary condition.for this decomposition as demonstrated by
the following example.

Let k be a field that is not algebraically closed and let p(z) k[z] be a monic
irreducible polynomial of degree d _-> 2. Let (A, B) be a reachable system with
n 11 d + 2 and m 5 and with controllability indices , 3d + 1, ’2 ’3 3d,
’4 d + 1, v5 d. Let the invariant factors of the matrix A be d(z) ch2(z)

zp(z), ch3(z)-p(z)3, 4)4(z) 4,5(z) p(z). (Theorem 1 can be used to show
that such an A exists.)

By Theorem 1, there is a control law K so that the invariant factors of A + BK
are 6(z)= z2d+lp(z)2, t2(z z2d-lp(z). t3(Z Zd+p(z), //4(Z)-- z’p(z),
q,.s(z) z. This control law cannot be written in the form K J+ L, where J and L
are purely feedforward and purely feedback laws, respectively. In the practical
situation of k R, the real number field, the choice of p(z)- z2+ 1 will suffice.

Acknowledgment. The author is grateful to Professor T. Kailath of Stanford
University for encouraging this research.
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LINEAR HILBERT NETWORKS
CONTAINING FINITELY MANY NONLINEAR ELEMENTS*

VACLAV DOLEZAL?

Abstract. In this paper we establish conditions for the existence and uniqueness of a regime in a
linear (finite or infinite) Hilbert network which contains several nonlinear elements. These conditions
are given in terms of the driving point set impedance of the linear network, and the operator describing
the nonlinear elements. They are easy to test in specific cases. Two examples illustrating the
application are given.

1. Introduction. The objective of the paper is to give relatively simple
conditions which guarantee the existence and uniqueness of a regime in a linear
Hilbert network containing finitely many nonlinear (possible multivalued) ele-
ments. To this end, we first prove a theorem giving conditions under which the
driving point set impedance of a (nonlinear, in general) Hilbert network is an
operator. Then we establish the main theorem on existence and uniqueness of a
regime in a network under consideration. It turns out that the necessary and
sufficient conditions in question are given in terms of the mapping R +Z/, where
R is the driving point set impedance of the linear part of the network, and Z/ is the
operator describing the nonlinear elements.

As examples we consider a finite R, L, C network with constant elements,
which contains either a nonlinear resistor or a nonlinear inductance, and a
DC-current network containing several nonlinear resistors.

2. Results. In the sequel, we will use several results obtained in I-2] and [3],
which are slightly modified for the sake of our present purposes. To facilitate
reading the paper, let us first list various concepts and theorems we shall need.

Let X, Y be nonempty sets and let o-(Y) be the collection of all nonempty
subsets of Y; a mapping A X or(Y) will be called a set mapping from X to Y.

If X, # 5, we denote (A@)= U .4x. Moreover, if A is a set
mapping such that Ax is a singleton for each x e X, then A will be called an
operator.

Let A:X- o-(Y) be a set mapping, and let @ c X, @ # ; then the set
mapping A-: (A@) cr() defined by

A-y ={x :x6@,y6Ax}
will be called the quasi-inverse of A on @.

It is clear that if both A and A- are operators, then A- coincides with the
ordinary inverse A- 1.

Note that in [3] the quasi-inverse A- was defined only for a simple set
mapping A, and then A- was an operator. The present approach constitutes the
essence of the modification mentioned above.

* Received by the editors October 8, 1974, and in revised form April 17, 1975.
t Department of Applied Mathematics and Statistics, State University of New York at Stony

Brook, Stony Brook, New York 11794. This research was supported by the National Science
Foundation under Grant PO 33568-X00.
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It is easy to see that the quasi-inverse has the following properties:
(i) If x @, then z Ax x A-z.
(ii) (A-(A@))= @.
(iii) For the set mapping (A-)- @ --> o-(Y) we have (A-)- A.
Next, let A X- o-(Y) be a set mapping, and let c X, : . A will be

called simple on if x, X2 , XI 7" X2zz(Ax1)I"](Ax2) Q.
Then we have the proposition: A is simple on @Ca the quasi-inverse

A-: (A@)-> r(@) is an operator.
Finally, given A:X-> or(Y) and an operator B: Y--> Z, we define the set

mapping BA X->o(Z) by (BA)x B(Ax) Z for each x X; the definition of
AC is analogous. Also, if A, A2 :X--’> o’(Y) are set mappings and Y is a linear
space, we define A +A2 in the obvious way.

Let G be a locally finite oriented graph [1] which has the set of branches
{bl, b2, b3," } with cardinal c2---< bo, the set of vertices {v, v2, v3," with
cardinal c =< bo, and let d be the incidence matrix of G (having type c2 c l). Let
a [aik] K. d 7", where K diag (k, k2, k3, )of type Ca Cl is chosen so that
the number kj - 0 for all j’s and Yi,k lail 2 < .

Furthermore, let H be a fixed separable Hilbert space, and let d He2--> Hc’

be defined by fix- a.x. (For the definition of Hc, c-< 0, see [1]). Then fi is a
linear bounded operator on H"2, and its nullspace Na is closed in Hc2 and does not
depend on the choice of the matrix K.

Next, let X be a c2 Co matrix whose columns constitute an orthonormal basis
in the solution space of the equation a sc 0, c 6R (here, R is the Euclidean

space for C2<0, and Iz for c_--o), and let X" H"-->H be defined by
Xz=X. z.

Note that if G is finite, i.e., c, c2 < beD, then X can be easily constructed from
a complete set of linearly independent loops in G.

As shown in 1], X has the following properties:
(a) is a norm-preserving isomorphism between Hc’’ and N H.
(b) fi) 0 on Hc’’.
(c) If * is the adjoint of ), then *= 1 on H’’, * maps H2 onto H’’,

and *v )T. V for all v H.
(d) N.= N, where N,. {x: x H2, ’*x 0}.
(e) If.P is the orthogonal projection from H onto Na, then P )*.
Now, let @ c Hc, @ #- , and let Z @ - r(H) be a set mapping; then the

ordered pair (, G) will be called a Hilbert network.
Clearly, G in the pair (, G) describes the structure of a network, and .the

behavior of its elements.
DEFINITION. Given (, G) and e H, an element H2 will be called

a solution of corresponding to e if
K" there exists v i such that v-e N,
Kz: N f3 @.
Obviously, if e is interpreted as a vector of EMF’s in branches of our network,

then and v has the meaning of a vector of currents and voltage drops in individual
branches, respectively. The justification of this definition of a solution is discussed
in detail in [1] and [3].
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If Na f’l@ , let c H" be defined by .= Na f"l, and let 0()
(HC,,)_c + (j)o., if Na ffl , we put , O() . Note that is

defined uniquely, since 3 is a bijection from Hc’’ onto Na.
Finally, let the set mapping W: cr((W)) be defined by W=
THEOREM A. Let (, G) be a Hilbert "network, and let e

possesses a solution corresponding to e iff e Q(). In this case, the set of all
solutions corresponding to e is given by

(1) -= 2W-2"e,

where W- denotes the quasi-inverse of W on .
Obviously, O(@) has the physical meaning of a set of all EMF’s vectors such

that if e O(), there exists at least one current distribution in the network
corresponding to the excitation given by e.

The set mapping A JW-J* O()o(Na f’l ), appearing in the for-
mula (1), will be called the admittance of . Observe that in our interpretation,
any network with # possesses the admittance. This fact is in contrast to the
"classical" admittance concept, where the "admittance" is usually thought of as
an operator. Anyway, these circumstances are clarified by the following definition
and theorem.

DEFINITION. A Hilbert network is called regular on @ if for each
e O(@), . possesses a unique solution corresponding to e.

Obviously, in this case, - given by (1) must be a singleton for every e e Q(@),
i.e., the admittance A must be an operator. Actually, we have the following.

THEOREM B. Let (, G) be a Hilbert network with then is
regular on @ iff the set mapping W= Y(*2 is simple on .

Finally, let us mention the following fact.
THEOREM C. Let be a Hilbert network with ; then Q()= Hc iff

(W) Hc,,.
The meaning of this theorem is straightforward in view of the above comment

on O(@).
The proofs of Theorems A and B are minor modifications of proofs of

Theorems 1.1, 1.2 and 2.1 in [3]; the only difference is the fact that the
quasi-inverse has a broader meaning in the present context. Consequently, we
omit the details. Theorem C is an elementary consequence of relations (2.41) in
[3].

We have completed the survey of earlier results. Let us now turn to the
anticipated topic of the paper.

We will need the following proposition.
LEMMA 1. Let (, G) be a Hilbert network, and let z be an operator on

c Hc. Assume that
(i) there exist c > 0 and p > 1 such that

(2) Re (Wx- Wx2, x,-x2)o>-cllx-x21lPco forallx,,

(ii) there exist d > 0 and q > 0 such that

<3) IIvcx, wx2]lo < d[Ix 21[o for all x, x2 .
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Then is regular on and the admittanceA o] (operator) satisfies the inequality

(4) Re(Ae-Ae2, el-e2)co>=cd-P/qll2*(e,-e2)llP,/,q [oralle, e6 0().

Proof. The regularity of on @ is guaranteed by Theorem 2.2 (c) in [3]. The
inequality (.4) follows easily from (2) and (3) by applying the Schwarz inequality;
since the pattern of the proof is the same as that of Theorem 2 in [2], we omit the
details.

For our purposes it will be convenient to introduce the following notation.
Let c_-<No and let n be an integer with 1_-< n =<c. If x--[Xk] Hc, we put
(x), [x, x2,. x,]r H"; if M Hc, we put (N), {(x), x 6 M}. Analog-
ously, for y=[y,y2,...,y,]r6H., we let (y)’=[y,y,’’’,y,,0,0,’’’]T
H for N H, we let (N)’= {y’ y N}.

Let be a Hilbert network with Q3, let A be the admittance of and let
n _<-c be a positive integer; define the sets
(5) Q {e e e H", e’ e Q(@)},

(6) @. ((A(Q. ’))),,.
Obviously, @, is the set of all n-vectors of currents existing in branches

b, b.,. ., b, provided the EMF excitations are present only in b, b2,’" , b.
It is clear that if Q, #- , then , also note that Q, H" and @, c H".
DEFINITION. Let be a Hilbert network with Q3, @, , and let

A Q()tr(Na f3) be the admittance of . Then the quasi-inverse R of the
set mapping A, Qn --> r(@,), defined by
(7) A,e (A (e)’),,
will be called the driving point set impedance of branches b, b, , b, (further
DPSI).

A comment on this definition is in order. First note that, in the present
context, the DPSI of b, b2,’" , b, exists for any Hilbert network satisfying the
requirements # and , # . Also observe that we do not lose any generality
by focusing our attention to branches hi, b2," , b, only, since the enumeration
of branches in (3 is immaterial.

The physical meaning of the DPSI is clarified by the following fact.
PROPOSITION. Let j , then for any e Rj, there exists a solution of

corresponding to (e)’ such that (i), j.
Pro@ Choose some e 6 Rj. Since R’D,,-tr(Q,,), we have e O, and

consequently, by the above propositions (i) and (iii), ] R-e =(A)-e A,e
(A (e)’),. This means that there exists e A (e)’ such that j (i),. However, since

A (e)’ is the set of all solutions corresponding to (e)’ by Theorem A, our proof is
complete.

The most important situation occurs when both the admittance and DPSI are
operators. In this case, the above proposition reads" "If j n, then the unique
solution of s corresponding to (Rj)’ has the property that (i), j." In order to
investigate this case more closely, let us introduce several new concepts and carry
out some auxiliary considerations.

Let G be a locally finite oriented graph; a nonzero vector : [:k] eR will be
called a loop if a 0 and each element kattainsone of the values 1,0, 1.
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Note that every loop is a simple vector, i.e., all but finitely many of its entries
are zero.

We will say that a loop := [k] contains (does not contain) a branch bj if

Remark. In the above definition we deviate from the standard terminology
of the graph theory. This is done only for the sake of simplicity of the presentation
and can hardly lead to a misunderstanding.

DEFINITION. Let G be a locally finite oriented graph, and let n be an integer
with 1 _-< n < Co. The set of branches {bl, b2, ", b,} will be called regular if there
exist loops 1, s2,.. ", jn such that, for each k l, 2, ., n, the loop k contains
b and does not contain any other branch in the set {b, b2," "’, b,}.

From this definition ft follows immediately that vectors 1, 2,..., are
linearly independent.

LEMMA 2. Let the set of branches {b, b2," b,} be regular, let X be any
c x co matrix whose columns constitute an orthonormal basis in the solution space
of the equation a O, R 2, and let H be a separable Hilbert space. en there
exists I > 0 such thatforthe operator2" H" Hc defined byz X z we have

(8) [12*(z)’llc,, IIz[I,

for every z e H".
Pro@ Let {, 2,..., ,} be the linearly independent set of loops existing

by the above definition of regularity, and let {), ,...., ;} be the orthonormal
set in R : obtained from the former by applying the Gram-Schmidt process. From
the properties of ’s, it follows that the n x n-matrix Ml formed by the n first
rows of [)’" "(] is an upper triangular matrix such that each element in the
main diagonal is nonzero; consequently, M is nonsingular. Thus, it is clear that
there exists > 0 such that

(9)

for every p H.
Next, choose vectors R c, k n + 1, n + 2, , so that

{, ,..., , +’, ...} constitutes an orthonormal basis in the solution space
of a. 0, e R ’’, and define the c: x co matrix Xo by Xo [" " "]. Thus,
decomposing Xo into blocks, we can write

(10) Xo [

Now, choosing z H" we get by (10), (9) and proposition (c),

To conclude the proof, choose a c: x co matrix X whose columns constitute an
orthonormal basis in the solution space of a 0, R c:, and let " H"Hc:

be the operator generated by X. Define the operator S HH by

(12)
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B.y proposition (a), S is a linear bounded operator. Moreover, S maps Hc’’ onto
H o. Indeed, by (a), f(Hc= Na, and consequently, SHc’’=3Hc’’= JNa;
however, because also JoHc’’ Na, it follows by (c) that Hq’ ..z*o .o.r-tc". Xo" *Na.
Hence SHq’ H’’.

Furthermore, it is easy to see that, on H,
(13)

Indeed, choose an x e H. Then oSx Jo2Jx; however, since 2x e Na by (a)
and Jo2 is the orthogonal projection onto Na by (e), we have Jo2Jx Jx,
which confirms (1 3).

Finally, it follows that S is 1-1. Indeed, assume that Sx 0 for some x 6 H;
then, by (13), XoSx Xx =0, and consequently, by (a), x =0.

Summarizing these facts, we have that S is a bounded bijection; thus, by the
open mapping theorem, S- is bounded. Consequently, (S*)-=(S-)* is
bounded; i.e., there exists a/x’> 0 such that

(14)

for each x e Hc.
To finish the proof, let z e H" ;then (13), (14) and (11) yield

112*(z)’ll,,- IIs*2,*, (z)’ll., _-> ’112,*,(z)’llco--> ’llz’ll,
which is the inequality (8).

Now we are ready to state conditions under which the DPSI of a network is an
operator.

THEOREM I. Let (,, G) be a Hilbert network, let 2 be an operator on
H, let , Q, and let the set of branches {b, be," , b} be regular.

Furthermore, assume that
(i) there exist c > 0 and p > 1 such that

(15) Re

for all x, x2 , where W- f(*"- W,
(ii) there exist d > 0 and 0 < q <- 1 such that

(16) [IWx- Wx2llc,,<-dllx,-xll"co forallx,,xe.

Then the DPSI R @ --> O. ofbranches b, b2, , b. is an operator, and R has the
properties:

(17) IlRj,-_Rj2ll,<--rllj,-j21lq,/(p-q), y>O foralljl,j2.,

(18) Re (Rj, Rj2, j, ]2), ->- c IlJ, hll" for allj l, j2 @.
Proof. First, Lemma 1 implies that is regular on @ and its admittance

(operator) A Q(@)- @ satisfies the inequality

(19) Re (Ax,-Axe,

for all x,x2 Q(@), where h =p/q and a =cd- >0. Observe that, by our
hypothesis, h > 1.
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Let the operator A, O, - @n be defined by (7). From (5) and (6) it follows
that An maps C)n onto @,. We are going to show that An is 1-1 on On. Indeed, if
el, e2 O,, we have by (7) and (19),

Re’(Anel-A,e2, e--e.2) Re (A(e)’-A(e2)’, (e -ez)’)c:
(20)

However, invoking Lemma 2, we get from (20),

(21) Re (A,e-A,e2, e,- e2> e211 
with >0. This inequality shows readily that A, is 1-1. Consequently, the
quasi-inverse of A, coincides with A’, i.e., the DPSI R- A-" ,,O, is an
operator.

To prove the inequality (17), we can proceed as follows. The Schwarz
inequality and (21) imply that for e, e2

(22) IIA.e, A,e2l], ttlle,-
Choose jl,j2@, and put e=Rja=A-’j, k= 1, 2. Then (22)yields
> ozld.XllRj, Rj21lan -’ i.e

1/(a-l)

This, however, is (17), since 1/(A 1) q/(p q).
Finally to prove (18), choOse jl, j2 f n, and put ek (Rjk)’ O(), k 1, 2;

also, let and i2 be the solution of corresponding to e and e2, respectively.
Then we have

(23) Re (Rj,- Rj2, j,-j2), Re (e,- e2, i,- i2)c2.

On the other hand, by the definition of a solution we have (note that is an
operator)

(e-e2, i-i2)c2=(e-ez, Ae-Ae2)c:

Hence by (23),

(24) Re (Rj- Rf2, j,-j2), Re (2i- 2i2, i- i2)c2.

However, (15) is equivalent to the condition (see [3])

(25) Re (2y, 2y2, Y Y2>c2 clly, Y[I2
for all y, Y2 Nr . Since i, i2 G N0 [’l , we get from (24),

(26) _i pRe (Rj, Rj2, j, -j2), > cl[i, 21lc.
Since (i,), =jl, (i2), =j2, it follows that I[i,-i2llc2llj,-j2]],; this together with
(26) concludes the proof of (18).

From Theorem 1 we get readily the following result.
THEOREM 2. LetHbe a real Hilbert space, let sJ"t (:, G) be a Hilbert network

with , being an operator on Hc2, and let the set of branches {bl, b2,""", b,} be
regular. Assume that
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(27)

(i) there exist c > 0 and p > 1 such that

Wxt Wx2, x X2)c,, >-- c liXl x2[lcP,,

for all x l, x2 Hc’’, where W )* HC"- Hc’’,
(ii) there exist d > 0 and 0 < q <= 1 such that

(28)

]’or all x l, X2 Hc.
Then the DPSIR of branches b l, b2, b. is an operator from H" onto H"

and (17), (18) holds ]’or all jl, j2 H".
Proofi Since W is continuous by (ii), (i) shows that W is maximal monotone

on He; hence, the corollary following Theorem 2.6 in [3] implies that Q(Hc2)
=Hc2. Consequently, by (5), Q. =H". Thus, by (21), the operator A." H"
-. @. c H" satisfies the condition

(29)

for all el, e2 H", where 13 > 0 and A > 1.
On the other hand, if el, e2 Hn, we have by the definition (7) and Theorem

2.2 (c) in [3] (we use the inequality (2.10) in [3]),

IlA.e Ane2lln <--[IA e )’ A (e2)’llc+ <= c-1/(P-1)ll2*(e, e2)’lllllco/(p-I
(30)

--1/(p--l) tlll/(p--l) --1/(p e211,/<.-,>_-< c I(e- e+) ,c+ c )lie,
However, (30) shows that A, is continuous on H". Moreover, (29) implies that A,
is coercive and monotone on H". Hence, by continuity, An is maximal monotone
on H", and consequently, A,H" H" (see [4]), i.e., @, H". The rest of the proof
follows from Theorem 1.

Note that Theorem 5 in [2], apart from the assumption that H is real, is a
special case of our Theorem 2 with n 1.

Let us now prove our main resu|t--a theorem on regularity of a linear Hilbert
network that contains finitely many nonlinear elements.

THEOREM 3. Let ’ (2’, G) be a Hilbert network with ,’ being a linear (not
necessarily bounded) operator defined on a linear subspace H. Assume that

(i) ’ is regular on @’ and Q(’)= Hc,
(ii) the DPSI of branches bl, b2,""", bn is an operator R -H, where
H is defined by (6),

(iii) ]’or any solution i’ of ’ we have (i’), .
Furthermore, let Z @+ - cr(H) be a set mapping, where + H, and let

the set mapping " be defined on "= {x x H, (x), +} by

2"x (Z+Cx).)’.

Let (, G) where 2 2’+ 2". Then
(a) is regular on ’ FI"R +Z+ is simple on @. FI @ +,
(b) ]’or
A comment on the physical meaning of this theorem is in order. It is clear

that, by definition of 2, the network is obtained from the linear network ’ by
inserting additional nonlinear elements into branches bl, b2,"" ,b.. The
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behavior of these elements is described by the set mapping +. Since we do not
make any particular assumption about Z+, mutual couplings may exist between
the additional nonlinear elements (but no couplings are allowed between the
nonlinear elements and elements of the original network ’). In view of
propositions (a) and (b), the regularity of the composite network and the
existence of a solution of for a given excitation by EMF’s is completely
determined by the behavior of the set mapping R +Z*, where R is the DPSI of
those branches in t’ which contain the nonlinear elements.

Proof of Theorem 3. First of all, from the assumption O(@’)- H and (5)
follows that O, H". Moreover, since ’ is a linear operator and ’ is regular on
@’, it follows that the admittance A’ H2 ’ of ’ is a linear operator. (Witness
Theorems A and B; W X’*,’X" is a linear operator on H and so is W- W-).
Thus, by (6), @, is a linear subspace of

Since n < c2, we will introduce the following notation: if x [x] H, we let
(X)_ [Xn+l, Xn+2," IT H-,, (here we put C2 / 0 if C2 0)" Then we
clearly have x [(x’)[i (x)_,]r for any x H2.

Due to linearity of A’ it follows that there exist linear operators A :H"
-"> Hn, A2 Hc2-n ---> Hn, A2 H --> H-’+ and A22 H-->H-" such that

[_A,! !_A_,..2..I. F___)_,,__I(32) A’x
A2 jA22J L(x)_aJ

for every x H. Moreover, the assumption (iii) implies that we even have
AI :H" -> @, and A12 :Hc2-r’ -’-> n.

On the other hand, by (7) and (32), we have for any z

(33) A,,z=(ACz)’),,=AlZ.

Since, by (7) and (6), A,,H @,, and by (ii) the DPSI R @, -> H" is an operator,
(33) shows that A, A, i.e., the inverse A- @, -> H" exists and A- R.

Now, we are going to show that the following eq6ivalence (c) is true"
($) Let i Na (@’f3 @") and let e HC; then is a solution of corres-

ponding to e :> there exists an element Z+(i),, such that is a solution of ’corresponding to e- (1;)’. In this case,

(34) (e), + RA,zCe)_,+ (R + Z+)(i),,,

(i), @, f-150 +, and the element is determined uniquely.
Indeed, assume first that + Na I"1 (@’ f’l @") is a solution of corresponding

to e H+; then, since @", we have (i), + @+. Moreover, by condition K1 in the
definition of a solution, there exists v + ,,i such that

(35) v-e N-.
However, since 2=2;’+’", we have by (31), 2,i=2’i+,,"i=,,’i+(Z+(i),,)’;
this amounts to saying that there exists e Z+(i),, such that v 2,’i + ()’. Conse-
quently, (35) can be written as

(36) ,,’i-(e-(f,)’)e N,
i.e., because Na (-I @’, is a solution of ’ corresponding to e- ()’.
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On the other hand, by (32) we have

(37) (i), Al,((e), 5)+ Az(e)_,.

However, since both elements Al((e)n-f’) and A12(e)-,., are in @., (37) is
equivalent to

(38) R(i). + ,= (el,, + RA,z(e)_,.

This relation shows that the element k is determined uniquely. Moreover, since
i, eZ+(i),,, we have R(i),, +i,e(R +Z+)(i),; thus, (38) yields immediately the
relation (34).

Conversely, assume that Na rl (@’ci @") and that there exists e Z+(i),
such that is a solution of ’ corresponding to e ()’. Then (36) holds (it is K for
’), and letting v= 2’i +()’, we see readily that u62i and (35) is satisfied.
Hence, is a solution of corresponding to e, and our equivalence (g) is proven.

(a) Assume now that R +Z+ is simple on , fl +. Suppose that, for some
e e Hc2, has solutions i, {Na fl(@’f-/@") which correspond to e. Denote
f (el. +RA,(e)_.; then we have by (34), fe(R +Z+)(i), and f(R +Z+)({),.
Consequently, ((R +Z+)(i)n)rl((R +Z+)({),)# , so that, by simplicity of
R + Z+, (i), ({),.

Moreover, for there exists a unique element 5 6 Z+(i),, and for { a unique
element f, 6 Z+({), such that 5 and have properties described in (;). Since
(i), ({),, (38) shows that necessarily 5 f,. Now, again by (g), both and { are
solutions of ’ corresponding to the same element e- (5)’. However, since ’ is
regular on @’ by (i), it is regular on @’f-) @", too; hence, {, i.e., is regular on
@’N @".

Conversely, assume that is regular on @’N @". Suppose that there exist
], re@, N@+ such that ((R +Z+)]) N ((R +Z+)f) # Q. Then there exists

/ / .- Z/such that f (R + Z )1 and f e (R + Z )1, (Note that R + maps @, N into
o-(H")). Stated differently, there exists Z+] and (, Z+f such that

(39) f Rj + ,, f= Rf+ f,.

Let e (f- 5)’ (f)’- (5)’ and (f- )’ (f)’- (f,)’; since 5, { H", we
have e, 6 Hc2. Now, since ’ is regular on @’ and O(@’) Hc2 by our hypothesis
(i), then for e and there exists a unique solution and { of ’ corresponding to e
and , respectively. On the other hand, by (32) and (39) we have (i),
=Al,(f-f,)=A,,Rj=j (clearly, (e)_,=((f-3)’)_,=0), and similarly,
Al(f- )= AR] ]. Also, note that since i, @’, and the elements (i), =j

and (i), f belong to @+, we have i, "f6NaFI(J’I"IJ"). Thus, invoking (g), we
conclude that is a solution of corresponding to (f)’, and is a solution of
corresponding to (f)’. Hence, by our hypothesis, i= [=:),] (i), (f), . Thus,
R +Z+ is simple on , KI +, which finishes the proof of the assertion (a).

(b) Assume first that [(R + Z+)(@, CI @+)]o H". Choose arbitrarily e Hc
and construct the element (e),+RA2(e)_,6H". (This is possible, since
A2(e)_, , and R @,, --> H"). By our hypothesis, there exists j6 @, KI @+ such
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that (e), + RA2(e)_,, (R + Z+)j. Thus, there exists Z+j such that

(40) (e), + RA,z(e)_,, Rj + f,.

On the other hand. by the assumption (i) on ’, there exists a unique solution
@’ of ’ corresponding to e -()’ Hc2. Note that (i)n @n. Moreover, by (32)

and (40) we have

(i) A(e-(,)’) +A:(e-(f,)’)_
(4-1)

A1 ,(e)n A ?1 -}- A ,2(e)-n A1 l(Rj -RA 12(e)-n) + A,2(e)_n j.

Since (i), j 6 @+, we have 6 Na f-I (’ f’l @"), (see the definition of @"). Thus by
(), is a solution of corresponding to e. Hence, 0(’ ffl @")= H:.

Conversely, assume that O(’f-)")= Hc2, and arbitrarily choose f
Then, by our hypothesis, there exists a solution i6NaVl(@’@") of
corresponding to (f)’6 Hc:. Note that (i)n +. However, by (), is also a
solution of ’ corresponding to (f)’- (t;)’, where t;6 Z+(i),. Consequently, by
(iii), (i), @,, so that (i) @, fl @+. Moreover, by (34),

((f)’), +RAlz((f)’)_,=fe(R +Z+)(i),, i.e.,fe[(R +Z+)(@n fl@+].
Hence [(R + Z+)(@, fl @+)]o= Hn, which completes the proof of proposition (b).

Before proceeding further, let us make a few remarks.
Theorem 3 clearly solves completely the problem of the existence and

uniqueness of a current distribution in a composite network, since our proposi-
tions (a), (b) give sufficient and necessary conditions.

On the other hand, it is worth pointing out the following fact: as we can see,
Theorem 3 (and its proof, too) does not make any essential use of the topological
properties of spaces involved, i.e., it has a purely set theoretic character. Conse-
quently, Theorem 3 remains true without any change for finite networks whose
underlying space is any linear space not necessarily equipped.with any topology.
As a matter of fact, we can introduce the "abstract network" in a slightly more
general way than it is done in [3]. In essence, we replace the Hilbert space Y( by a
linear space , and subspaces No, N by some subspaces N, M of such that

N@M. Specifying then L c2, where L is a linear.space and C2 < NO, (we
can consider only finite networks, since a convergence concept is missing), we can
prove the same results as Theorems A-C, define the DPSI as above, and get the
same proposition as Theorem 3.

Returning to the Hilbert network, let us point out the fact that the concept of
the DPSI can be extended without essential difficulties to the case that countably
many branches are involved, and that results like Theorems 1-3 can be proved.
Because this is more. or less obvious, we omit the details.

Finally, it is easy to see that the generalization of the Shannon-Hagelbarger
theorem given in [2] (Theorem 6) remains true, if the "driving point impedance of

bl" is replaced by the DPSI of bl, b2, b,.
Let us now discuss some simple applications of Theorem 3 in the case n 1.
Example 1. Let G be a finite oriented graph having branches b, b2, bc:,

and let ’= (2’, G) be a (finite) network built up from constant (not necessarily
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nonnegative) R, L, C elements, i.e., the operator 2’ is described by a C2 X C2

matrix [Zik], where

(42) (Z,kX)(t) L,kX’(t) + RikX(t) + S,k x(tr) dtr,

and Lk, Rik, Sik are real numbers.
For the underlying space H let us take the real space L2[0, -], - > 0; also, let

Yg be the space of all absolutely continuous functions x on [0, ’] such that x(0) 0
and x’ L2[0, -]. Clearly, 27{ c L2[0, r].

Now, let @’= M1 x M2 " mc2, where Mk L2[0, "r], if the branch bk
does not contain any inductance, i.e., if Lkj 0 for j 1, 2, ., c2, andM Y{" in
the opposite case.

It is clear that then 2’ is well-defined on @, and maps @’ into La [0, -]. We
will assume that

(a) M1 g2[0, 7-],
(b) ’ is regular on ’ and O(’)= Hc.
If the admittance ft," HC- @’ of ’ is described by a matrix [A] (of type

c2 x c2), then, as known from the elementary network analysis, each operator A
has necessarily the form (witness assumption (2))

(43) (Agx)(t) ax(t)+ g,k(t-o’)x(r) dcr

where ai is a real number and K(r) is a continuous function on [0, oo) (in fact,
K is a linear combination of functions eX’{P(t) cos wt + O(t) sin wt}, P, O being
polynomials.

Furthermore, we will assume that
(C) all : 0.
Then it is easy to see that All is 1-1 from Le[0, -] onto itself (it is a

Volterra operator), and consequently, R A -1 Le[0, -]- Le[0, -] is the driving
point impedance of the branch b. Also, R has the form

(44) (Rx)(t) rx(t) + g(t- r)x(r) dr,

where r : 0 and K(o’) is continuous on [0, co). (Note that in the above develop-
ment we assume that our network is at rest 0, i.e., currents and charges in
capacitors are zero).

Thus, our assumptions (a)-(c) imply that conditions (i)-(iii) in Theorem 3 are
satisfied.

Next, let us build a network from ’ by inserting a nonlinear resistor into
the branch b. To be more specific, let q be a real-valued continuous function on
R 1, and, using the notation of Theorem 3, let Z/ Le[0, -]- L210, -] be defined
by

(45) (Z+x)(t) qg(x(t)).

(Thus, we have @ += L2[0, -]).
Finally, we will assume that the function qt R I_ R l, defined by

(46)
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satisfies the following condition:
(d) there exists an

(47)

We are goin to show that, under the assumptions (a)-(d), the network
(2, G), with Z being defined as in Theorem 3, i.e., 2x Z’x +(Z+(x))’, is

regular on. @’, and O(@’) Hc. (Note that we have @’(/@"= @’).
To this end, observe first that,due to continuity of q and (47), q is 1-1 and

maps R onto R 1. Thus if q- is the inverse of 0, we get readily from (47),

(48)

for all rtl,

Referring to Theorem 3, consider the operator (R + Z+): L2[0, 7"] L2[0, ’].
By (44), (45) and (46) we have

(49) ((R + Z+)x)(t) W(x(t)) + K(t- tr)x(tr) do’.

Arbitrarily choose y e L[0, ’] and consider the equation (R + Z+)x y. By
the above and (49), this equation is equivalent to

(50) x(t) q- K(t- tr)x(o-) do + y(t)

Define the operator S on L2[0, ’r] by

(51) (Sx)(t)=Ir-1 K(t-r)x(r) do’+y(/)

Since -1 is continuous by (48), we see easily that S maps L2[0, z] into itself.
Now we are going to show that, for some integer n 1, S" is a contraction on

L2[0, r]. Indeed, let C supero,,K() ]. Then we have by (51) for x, x2 e L2[0, ]
and t [0, ] (see (48)),

--1 (tI(Sx,-Sx2)(t)l K(t-)(x-x)() d)

(52) -C ]Xl- xa]() dm

Using the induction, we can easily confirm that, for any integer n 1,

(53) I(S"x,- Snx)(t) <(-lc). (t- )"-’[Xl- x[() d.
(n- 1)

However, (53) yields

(I--1 C)
(n-l)!

n-1 do" Ix1 x212 do"

<
(o-l c)n,.l-n-(1/2)

(n-)!
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Hence

(54)

where

(55)

snx SnX2ll < lnllX 1-- X21l,

. (-C-)"/(n 1)!.

From (55) it follows that A, < 1 for n sufficiently large, i.e., S is a contraction for
such n. Hence there exists a unique x e L2[0, r] such that x Sx, i.e., (50) holds;
consequently, we have (R / Z+)x y. Thus, R /Z+ is 1-1 on L2[0, -] and maps it
onto itself. This means that, by (a) and (b) in Theorem 3, network is regular on
@’ and O(@’) Hc2, which is what we wanted to show.

Example 2. Let ’ be exactly the same network as in Example 1, and assume
that conditions (a)-(c) are satisfied. Now, we will consider a network obtained
from ’ by inserting a nonlinear inductance into the branch b l.

In more detail, let be a real-valued function on R which possesses a
continuous derivative ’ everywhere and satisfies the condition (0)= 0. Using
the notation of Theorem 3, define the operator Z+ @+= 27{- L[0, -] by

(56) (Z+x)(t) [(x (t))]’.

It is clear that this definition is meaningful, and Z+ truly maps Y{ into L2[0, ’].
Furthermore, we will assume that
(d)* there exists a > 0 such that 1’()1 >- a for all e R 1.
We are going to show that, under conditions (a)-(c) and (d)*, the network

=(, G) is regular on ’f-I@" and Q(@’f’I@")=Hc2. Here @’f3@"
Y{ x M2 x Mc, where M, M3, ,M are the same as in Example 1, and

zx= 2’x + (Z+(x)) for every x e @’ f’l @".
To prove this, note first that (d)* and the mean value theorem imply that

(57) I(,)- (:2)1-->

for all
and for the inverse -1 we have

for all 1, 2 R ; also - (0) 0.
Consider now the operator (R +Z+): +=Y{ L210, ]. By (44) and

(56) we have

(59) ((R +Z+)x(t)=[(x(t))]’+rx(t)+ K(t-)x() dm

Next, arbitrarily choose y L2[O, ], and consider the following two equa-
tions:

[{I)(x (t))]’ + rx(t) + K(t- o.)x (o.) do y(t),

dO(x(t)) + r x(o") do" + K(o- o.)x(o.) do. dw y(o) do’.
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Now if there exists x ’( which satisfies (*), then x satisfies (), too; for seeing
this it suffices to realize that (x(0))= (0)= 0.

Conversely, let x L2[0, z] be an element satisfying (); then x ’ and
satisfies (*).

Indeed, since is 1-1 from R onto R, equation () is equivalent to

(+) x(t) -1 -r x(o-) do-- K(w- o-)x(o-) do-) doo + y(o-) do"

However, all terms in [. are absolutely continuous; since -1 has a continuous
derivative (-)’ and, by (d)*, [(-l)’()l-<_a- for all e R 1, it follows that
-1[... is absolutely continuous, and consequently, so is x(t). Moreover,
differentiating + ), we get

() {Ix’(t) ((I)-l)t[ ]" -rx(t)- K(t- o")x(o") do" + y(t)

Since (cI,-)[ is continuous, ($) shows that x’(t) L2[0, 7.].
Finally, putting 0 into (+), we get x(0)- -1[0] 0; hence, x
To conclude the proof of our assertion, it suffices to realize that (*) follows

from (**) by differentiation.
Next, define the operator S L2[0, 7.]--> L2[0, 7.] by

(60)

where

(Sx)(t)=- h(t-o")x(o") do"+ y(o") d

h(t- o-) r+ K(-o")d.

Then it is clear that equation x Sx is equivalent to (+).
On the other hand, since h is continuous and - satisfies (58), it follows in

the same way as in Example 1 that S is a contraction for n sufficiently large (after
all, our S is practically the same as operator S in Example 1; see (51)). Thus for the
chosen y L2[0, 7.], there exists a unique x L2[0, 7"] such that x Sx (+)
holds :ff (**) holds x ?7{ and (*) holds (R + Z+)x y.

Hence the operator (R +Z+) is 1-1 and maps Y{ onto L2[0, 7"]. Thus by
Theorem 3, our network is regular on @’f] @" and Q(@’ f3 @") Hc2, which is
what we wanted to show.

Let us mention the fact that the above examples can be extended to the case
that ’ contains time-varying elements; the case of constant elements, however, is
easier to analyze because the operators Aik (see (43)) can be easily established by
using methods of classical network analysis.

Example 3. Again let G be a finite oriented graph having branches
bl, be,’", be2, and let =(’, G) be a DC-network built up from constant
resistors, i.e., ’ is described by a matrix/ diag (rl, r2,""", rc2) where the rj’s
are real (not necessarily positive) numbers. For H we take the real line R 1.

We will assume that:
(a) The set of branches {bl, be," , bn}, n < c2, is regular.
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(b) The smallest eigenvalue A of the co co matrix XT./. X is positive.
(Here we take X real; clearly, A is independent of the choice of X. Also note that
A -< min__<kc2 rk.)

Now we will construct by inserting nonlinear resistors into branches
bl, b2,’" ", bn; note that mutual couplings may exist between these nonlinear
resistors. In more detail, we let Z+: R" - R" be defined by

(61) Z+x o(x),

where q R"- R" is a continuous function.
Finally, we will assume that
(c) there exists/x < A such that

(62)

We are going to show that, under assumptions (a)-(c), is regular on R c2

and O(R c2) R c.
Indeed, since the matrix Xr./ X is positive definite by (2), the operator

W J*2’) is a bijection between Rc and itself; thus, by Theorems B and C it
follows that ’ is regular on Rc and O(R c) R c2. Hence the condition (i) in
Theorem 3 is met.

Moreover, (b) implies readily that

<Wx, x>c,, ,xllxll c,, and Ilwxllco dllxllc,,
for all xeRc and some d>0; hence, by (a) and Theorem 2, the DPSI
Ro: R" - R" of bl, b2,’" ", b, is a continuous operator, and we have by (18),

(63) (Rojl Roj2, jl j2),, >Allj,

for ,all jl, j2 R".
On the other hand, (c) yields (Z+j Z+j2, j -j2), -> ][j -hll, and conse-

quently, by (63),

(64) ((R,, + Z+)j, (R,, + Z+)j. j,-j). >= (A -/x)lljl

for all j, j2 G R".
However, (64) shows that Ro+Z+ is 1-1 on R", and that Ro+Z+ is a

coercive, maximal monotone operator because it is continuous; hence, by
Rockafellar’s theorem [4], (Ro + Z+)R R". Theorem 3 completes the proof of
our claim.

As for the existence of a solution of , our conditions (a)-(c) can be modified.
Indeed, assume that the following requirements (a)* and (b)* are met:

(a)* The network ’ is regular on Rc and the DPSI Ro of branches
b, b2,""", b, is an operator.

(b)* There exist constants q > 0 and M> 0 such that

(65) I1 ( )11 -< qll ll for all s R" with II ll > M.

We are going to show that, if q is suciently small, the network has the
property O(R 2) R.

To this end, observe first that, due to Theorems B, C and finite-
dimensionality of R, we have O(R2) R for ’. Moreover, since Ro is a
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homeomorphism between R and itself (witness (7)), it follows that @n R , and
consequently, all conditions (i)-(iii) in Theorem 3 are satisfied. Also, there exists
/ > 0 such that

(66) llxll. IIRoxll. for all x e R".

On the other hand, (61) and (65) yield IIZ+xll. qllxll, for all x 6 R" with

Ilxll M; thus, for any such x, we have by (66),

(67)

Now, if q is so small that q#-l< 1, then the Sandberg-Willson’s theorem [5]
shows that (Ro+Z+)R "= R"; hence, Theorem 3 concludes the proof of our
claim.
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MULTISTAGE STOCHASTIC PROGRAMMING WITH RECOURSE:
THE EQUIVALENT DETERMINISTIC PROBLEM*

PAUL OLSEN-

Abstract. Multistage stochastic programming with recourse is defined recursively as a natural
extension of two-stage stochastic programming with recourse. Some existing results for two-stage
problems are extended to problems with K + stages, where -< K < +o, in the special case of a fixed
technology matrix. These results generally involve characterization of the "equivalent deterministic
problem"--showing, for example, that it has a convex objective function, a lower-semicontinuous
convex objective function, a Lipschitzian objective function, or linear induced constraints.

1. Introduction. The theory of two-stage stochastic programming with
recourse has been extensively developed by Roger Wets and D. W. Walkup (see,
for example, Walkup and Wets (1967), (1969b), Wets (1966b), (1966c)). They
specialized Dantzig’s "linear programming under uncertainty" (Dantzig (1955),
also see Dantzig (1963, Chap. 25)) to the two-stage case, but also generalized it by
allowing a random technology matrix. Wets (1966c), (1972) has explored the
generalization to more than two stages under the assumption that the random
variables in any stage are independent of the random variables in the preceding
stages. This paper extends some of the results for two-stage problems to problems
with K + 1 stages, where 1 -<_ K < +c, in the special case of linear constraints and a
fixed technology matrix. These results usually involve characterization of the
"equivalent deterministic problem"mshowing, for example, that it has a convex
objective function, a lower-semicontinuous convex objective function, a Lipschit-
zian objective function, or linear induced constraints.

2. Statement of the problem. The stochastic element in multistage stochas-
tic programming with recourse enters via dependence of problem data on random
vectorsmXo, , X:. Xk (0 _-< k _-< K) represents the state of the world at stage k.
A realization of Xk is denoted "Xk"; Xk R sk. Let _Xg be the random vector

k
(Xo, , Xk); a realization is denoted _Xk Let Sk =o s. For each 1 k K, a
regular conditional distribution function for Xk given g_, Fx,l_, is specified
as part of the problem framework. By definition (Ash (1972, p. 263)), for each
yR

for almost every (a.e.) _Xk_ I. Thus, the regular conditional distribution functions
link the random vectors Xo,""", X,.

The stochastic programming problem to be studied is really a recursive
sequence of problems, one for each stage. The decision made at stage k (0_-< k _<-

K) is given by a vector Uk R ". The sequence of decisions made up to and
including stage k is given by the vector _Uk (Uo,""", Uk) R N’, where Nk--

k

i=o hi. To begin the recursion, let //<+l(_Uk ;_Xk)=0. NOW let l<=k<=K, and

* Received by the editors July 2, 1974, and in revised form June 1, 1975.
Institute for Defense Analyses, Arlington, Virginia 22202.
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suppose that Pk+l R Nk x R sk --> [-oo, +oo] has been defined. Define the stage k
objective function

fk(U_k; X_k)Ck(U_k; X_k)-I-Pk+l(U_k; X_k)

and return function

rk (U_k X_k) =(nt_O0,

k

AkiUi bk (X_k),
=o

otherwise.

The cost function Ck RN R sk [-oo, +o0], the mk rt technology matrix

Aki (0<-----] <---- k), and the right-hand side.bk R sk --> R" are all problem data. For
z R N-’ define the parameterized problem

or, equivalently,

Pk Z X_ k ) minimize rk Z, Uk X_ k
Uk

minimize fk U_ k X_ k

subject to AkU_k b, (X_k),

_Uk-I Z, gk O,

where Ak [Ako Akk ]. The stage k perturbation function, Pk, is given by

Pk (Z X_k inf (Pk (z X_k )),

the optimal value of the problem Pk(Z; _Xk) (+O0 ifthe problem is inconsistent).
The stage k expected optimal return function,/Ok, is given by

Pk(Z _Xk-,)= f pk(z ;_Xk) dFxklX_k_,(XklX_k-,).
The last definition completes the recursion step.

Three of the preceding definitions give rise to an important technicality. The
definitions of f and r may involve adding -oo and +oo. So may the definition of

/5: for any extended-real-valued, measurable function f on a measure space
(x, ),

where

f+(x)=-max {f(x), O}, f-(x)-= max {-f(x), 0}.

Following the convention adopted in Walkup and Wets (1967), let +oo + (-oo)=
2-oo + (+oo)

A more precise way of writing the integral is

fik(Z _Xk-l)= j pk(Z X_k-i, Xtk) dFxklx_k_,(xk _Xk-1).

The shorter notation will be used often.
See Walkup and Wets (1967) for the properties of the integral under this extended definition of

integration.
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For stage 0 define

f,,(u,,; x,,) co(u,,; x,,) + p(uo; xo),

fo(u,,; xo), Aoouo= bo(xo),
I’o( Uo" Xo)

+oo otherwise.

The problem at stage 0 is

Uo-> 0,

Po(x,,): minimize fo(uo; xo)

subject to Aoouo bo(xo), Uo--> O.

Define po(xo) ---inf (Po(xo)).
The stochastic programming problem is specified by the sequence of

parameterized problems Po, ", P:. One seeks solutions to the family of prob-
lems {Po(xo); xo R""}, which amounts to seeking a function t/o: R s’’-> R n such
that

and

AooG,(xo) bo(xo),

G(xo) ->- 0

f,,(a,,(x,,); x,,)

for almost every (a.e.) xo. The decision that must be made here-and-now is Uo; it is
made knowing xo, the realization of Xo. After X1 is observed, a decision u will be
made, taking into account xo and the decision uo already made. At stage k, Xk will
be observed, and then a decision uk will be made, taking into account the
realizations of Xo, , Xk and the past decisions Uo, , uk-. The past decisions
cannot be amended, but uk provides a "recourse".

Since Xo represents the initial state of the world and its realization is known
when the initial decision, uo, is made, it might as well be a constant random
variable--i.e., P{Xo o} 1 for some o RS. Then finding the function. G
described above reduces to finding a vector uo R" such that

Aoouo bo(Yo), uo => 0 and fo(Uo; ,%) Po(Yo).

It is convenient to identify/, co, bo, fo, ro and Po with their values at 2o and to write
the stage 0 problem as

Po: minimize fo(uo), Uo R

subject to Aoouo bo, Uo >= O.

This is the stochastic programming problem’s equivalent deterministic problem.
According to Olsen (1975a),

G(z; _xk_,) E[pk(z; X_ k)lX_ k_,

for almost every (a.e.) _xk_ whenever E[p(z; _Xk)] < +oo or E[p-(z; _Xk)] < +c;
that is, if the positive part or the negative part of pk(z;" is summable, the
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conditional expectation E[pk(z; _Xk)l_Xk_l] exists and Pk(Z.; is one version of it.
To avoid the nuisance of events with probability 0 in some proofs below, use the
version

E[g(_X)l_X_ _Xk-1] I g(-Xk-l’ xtk) dFx.lx_._,(x’lx_,-)

whenever the conditional expectation exists (g is any Borel measurable extended-
real-valued function). E[p-(z; _Xk)] < +oo if, for example, ci->0 for every i>_-k.

Proposition 2.2 gives another condition.
The existence of E[pk(z; _Xk)l_Xk_] is not necessary to any of the results

obtained below although when it does not exist, the stochastic programming
problem’s economic meaningfulness is dubious. If the conditional expectations all
exist, /0k+l(_Uk; _Xk) is the expected optimal return from future stages given that
realizations _xk and decisions _uk have occurred. If the decisions _uk create a positive
probability, given _Xk =_xk, of inconsistency in a later stage problem, then
p+(_u _x)= +oo.

The recursion defining Po," , P,, tacitly assumes a measurability property
of Pk (_uk_; for 1 <= k <- K. It also assumes the existence of a regular conditional
distribution function for Xk given _Xk-1. And because this function, if it exists, is
ordinarily not unique, one might think that inf (Po) can depend on the (perhaps
completely arbitrary) choice of Fx,lx__,. The existence of Fxkt_xk-, requires no
additional assumptions; it follows from the fact that the values of Xk lie in a
complete separable metric space, R Sk (Ash (1972, pp. 263-66)). Perhaps less
obvious is that inf (Po) is independent of the choice of the regular conditional
distribution functions (given the same joint distribution of Xo,"" ,XK);
Theorem 2.1 of Olsen (1975a) shows that it is. The same paper gives sufficient
conditions for the requisite measurability property of 0k (_uk_, ).

Notation. Let F_x be the distribution function of _X. If w R", [w[ --a
(i= iw])1/2 For p 1 +oo), Lp(R s) is the space of Borel measurable functions
g. Rs - [-oe, +oo] such that Ilgll < /oo;

[Igll (I Ig(_x)l dfx_k(x_k)) lip.

Let /k be the Borel probability measure on Rs determined by F_x. Let
/Xk(’l_Xk_) be the Borel probability measure on Rs determined by
F,,l_)s._,(" I_x-,).

The proof of Proposition 2.2 uses the following lemma. It is almost certainly
well-known, and is a direct consequence of Walkup and Wets (1969a, Lemma 2);
a brief proof is given for the sake of completeness.

LEMMA 2.1. Let A be a real m x n matrix such that {x Ax O, x >= 0} {0}.
Then there is a positive number p such that]or any b R", Ax b and x >= 0 implies
Ixl<-plbl.

Proof. The hypothesis implies that C & {x Ax b, x >= 0} is the convex hull
of its extreme points. The conclusion follows if it is true for every extreme point of
C. But an extreme point corresponds to a basic feasible solution of the system
Ax b. Let B,..., B be the basis matrices of A. These matrices have left-



MULTISTAGE STOCHASTIC PROGRAMMING 499

inverses El,""", Et. If x is an extreme point of C,

Ixl max IEib[ <-- (max
l<_i<=l \ /

Take p maxl_<_,=<l

PROPOSITION 2.2. Assume [or each 0 k K"
(a) There are summable functions fig RS (-, 0] and ak Rs [-, 0]

such that

c_u; _x) (_x)l_u + (_x)

for every _k and every X_k.

(b) Elflk(X_ k)bi(X_ i)l <+ if 0 <-_ <- k (X_ being a subvector of _Xk).
(c) { w" Akkw 0, w -->_ 0} {0}.

Then Jbr each 0 <- k <= K there are summable functions tk" Rsk (-, 0] and
7 R Sk - [-, 0] such that

Pk(gk-1;

for every u__ and every x_k. There are also summable[unctions 6-- + Rs - (-o, O]
and /+1" Rs [_, O] such that

p+,(_u; _x) _-> +,(_x)l_u + /+,(_x)

for every _u and every x_.
Proof. Let -< k -< K. Assume that

p+, (_u; _x) _-> (_x)l_u + /(_x)

for every _u and every _x, where 6 and / have the nonpositivity, mean and
covariance properties of/3k and a, respectively, in (a) and (b). Let , =/3 + 6 and
rt =a +.

Let B =[Ao ’" .i Ak,_l]. By (c) and Lemma 2.1, there is a positive
number p such that

B
_Uk _Uk O,

I z

implies

I_u [--< p](bk (_x),

Therefore,

p (z; _x) _-> p(_x)lz + p(_x)lb (_x)l + (_x)

for every z and every _x. Define

,% (_x) p(_x)

and

v(_x)-=p,(_x)lb(_x)l + n(_x).
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Clearly, 6k(_Xk) is nonpositive, has finite mean, and has finite covariance with
bl(X_),’",bk(X_k). Also, 7k is nonpositive; since t is summable and
E]v(_Xk)bk(_Xk)] < +oo, W is summable.

It remains to verify the induction hypothesis for stage k-1. Since
E[p{(_u_; _X)] < +oo for any _uk_, E[pk(_uk-; _Xk)l_Xk-] exists, and

0k(_Uk-,; _Xk-,)= E[pk(_U-,; _Xk)l_Xk-
for every _xk-. (The rule on choosing a version of the conditional expectation
avoids the qualification "almost every.") Therefore,

for every _uk- and every _xk-, where

g(_xk_,)--= E[6k (_Xk)[_Xk_, _x_,]

and

Now

;/(_x_,) E[(_X)I_X_, _x_,].

E[(_Xk_,)] E[E[fk (_Xk)]_Xk_,]] E[fk (_Xk)] < +oo,

and similarly for . Nonpositivity is preserved since the selected version of
conditional expectation is defined in terms of an integral over a positive measure.
For =< k 1,

+oo > EI6k _Xk )b,( _X,)

El(X_ k-l)bi(X_ i)[.
That completes the induction step. The induction hypothesis holds trivially if

k=K. Fi
The full notation of the multistage stochastic programming problem is an

unnecessary burden in 3 and 4, where properties of Pk and 16k are deduced from
properties of Pk. To simplify the notation, everything in those sections is stated as
though k 1. The convention that Xo is constant is abrogated, so that for any
0 =< k <- K, Pk has the same form as P and/k has the same form as/; thus, there is
no loss of generality. To simplify the notation further, let Flo Fx,lx,,, Fl F_x,
and Fo Fx,,.

Sections 3 and 4 give conditions under which/k inherits key properties of

ffk + . Section 5 uses the propositions in 3 and 4 inductively to derive properties
of ff and hence Po, the equivalent deterministic problem. Section 3 examines

0k _xk_) in terms of convexity and lower-semicontinuity. Section 4 examines it
in terms of a Lipschitz property and polyhedrality of {z /Ok (Z; _Xk_l)" ---00}.

3. Convexity and Iower-semicontinuity. This section gives sufficient condi-
tions for ff to inherit convexity and lower-semicontinuity properties from

See Rockafellar (1970) for the definitions of convexity and lower-semicontinuity of extended-
real-valued functions.
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The next proposition is used often in the sequel, sometimes without being
cited. It specializes the product measure theorem (Ash (1972, p. 98)).

PROPOSITION 3.1. Let T be a Borel subset of R s’. Let T(xo)=-
{Xtl (Xo, Xtl) E T}. Then

I I-(,,)dl’l(’lg")dF(x)=I. dF1.

Consequently, if t.1 (T) I, Id,1 (T(xo)[xo) 1 for a.e. xo.
PROPOSITIOY 3.2. Fix X_l. If Cl(" ;_x) and 62(" ;_x) are convex, so is

p(" _x).
Proof. The hypothesis implies that r(. ;_x) is convex. Therefore, by a

straightforward argument,

p(z _x)= inf rl(Z, U ;_X1)

is convex in. z. [-1

PROPOSITION 3..3. Fix xo. Assume that p(. ;_x) is convex for a.e. x given
xo--i.e., there is a Borelset Tc {X’l" p(" xo, X’l) is convex} with/x(Tlxo) 1. Then
Pl(" ;xo) is convex.

Proof. Let E (0, 1). Let z’, z" R r%.

p,(,z’ + (- 2t)z"; x,,)

--< [ (,pl(Z’; _Xl)+(1--A)p(z"; _X)) dFlo(XllX,,)

--< JT p,(z’; _Xl) dF,,,(x,]x,,)

-k-(1--A) IT pl(Z"; _Xl) dFIo(XIIXo)

,p, (z’; x,,)+ (1-,)p,(z"; x,,).

Since +co + (-co) +co, that demonstrates convexity.
PROPOSITOq 3.4. Assume that {w A w O, w >= 0} {0}. Fix x_ . Assume

that Cl(’; _Xl) and/2(" _Xl) are lower-semicontinuous convex junctions. Then
p( x_ ) is lower-semicontinuous and convex, or it is identically -co on its effective
domain (or both).4

A proof is based upon Lemma 2.1 of Walkup and Wets (1969a, Thm. 2), and
the fact that the sum of two convex, lower-semicontinuous (1.s.c.) functions is 1.s.c.
convex or nowhere finite (Rockafellar (1970, p. 77)).

If, in addition to the hypothesis of Proposition 3.4, c(. ;_Xl) is finite
everywhere, p(.; _Xl) is 1.s.c. and convex, for/2 is 1.s.c. and convex (perhaps

4 Let X be an arbitrary set, and let f’X-[-oo, +co]. The effective domain of f is dom f---a
{x X f(x) < +oo} (Rockafellar (1970)).
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improper).5 If improper, 2( _X 1) is identically -oe on its effective domain, and its
effective domain is closed. But dom f(. _x)=dom/2(" _x).

PROPOSITION 3.5. Fix Xo. Ifp( x_ ) is l.s.c, and convex for a.e. x given xo,
and if (uo; xo) >-oe for every uo, then ( ;xo) is l.s.c, and convex.

Proof. Let T be a Borel set in R s’ such that P1( xo, x’l) is 1.s.c. and convex
for every x’ e T and/x(Tlx0) 1.

I(U(); X(,) fr Pl(U0; -xl) dFo (XllXo).

Apply the lemma in Walkup and Wets (1969b) to p(-;xo,.)" RxT
[-oo, +oo]. Cl

4. Lipschitz properties and polyhedrality. This section’s propositions
characterize/g (by analogy with 0) in terms of a Lipschitz property, a bounded-
ness (more accurately, a growth) property, and descriptions of its effective
domainmassuming certain properties of Pg. Among the assumed properties of Pg
are, of course, properties of ,0g + 1. Typically, the propositions fail to assert that fig
inherits all the properties of fig+l, and therefore, in contrast to the previous
section’s propositions, it isdifficult to apply them repeatedly to obtain characteri-
zations of Po. The next section invokes additional assumptions, leading, to
Lipschitz and polyhedrality characterizations of Po in some important .special
cases.

DEFINITION 4.1. Let g" R"- [-oo, +eo]. g is Lipschitzian- if and only if
/3 e [0, +oo) and either:

(i) g(z)=-oo for every z dom g or
(ii) g is finite everywhere on dom g and

[g(z’)- g(z")[ ._-< ]z’- z"[ V z’, z" dom g.

PROPOSITION 4.2. Fix x_. Assume that c1(’; _x) is Lipschitzian-a’ and
t02(’; _xl) is Lipschitzian-a". Assume that dom Cl(’; _Xl) and dom 02(’; _x) are
polyhedral convex sets. 6 Then p(.; _x) is Lipschitzian-, for some , and its

effective domain is a polyhedral convex set.
A proof relies upon Walkup and Wets (1969a, Thm. 2 (iii)). The proposition

is given only for the sake of comparison with Proposition 4.3, which is stronger.
The stronger conclusion is necessary to achieve the Lipschitz characterization of
/ in Proposition 4.5one of this section’s aims.

PROPOSITION 4.3. Assume that for every x_ S, a subset of R s’, c(. _Xl)
is Lipschitzian-a’(x_) and j2(" _X1) is Lipschitzian-a"(x_), with a’ and a" in
Ll(RSl). Assume also that there are an x N matrix D and a function d R s’ - Rsuch that for every X_ S

dom r(. _Xl) ={_ul D_u _-> d(_Xl), _ul _->0}.

(Measurability of d is not assumed.)

An extended-real-valued function is proper if it is -oo nowhere and finite somewhere (Rockafel-
lar (1970)).

6 See Rockafellar (1970, p. 170) for the definition of "polyhedral convex set."



MULTISTAGE STOCHASTIC PROGRAMMING 503

Then there is a function L(R s’) such that, for every x_ S, pl(’; _xl) is
Lipschitzian-6(x_l); in fact, there is such a function proportional to a’+a".
Moreover, dom p( _x) is a polyhedral convex set for every x_ S.

The proof uses the following lemma.
LEMMA 4.4. Let A be a real m n matrix. For any b and z in R", let

C(z)={x Ax=b-z,x>=O}.

Then there is a positive number such that

c/(G(z’), G(z")) <--/31z’-
for every z’, z" and b such that Cb(z’) and Cb(Z") are nonempty, where d(.,.
denotes the Hausdorff distance with respect to the Euclidean norm (see Berge
(1963, p. 126)).

Proof. Lemma 2 of Walkup and Wets (1969a) says: for any given b, there is a
/3 > 0 such that

d(C(z’), C(z")) <- llz’- z"]

for every z’ and z" such that Cb(Z’) and Cb(z") are nonempty. Then for any b’ R"
such that C,, (z’) and C, (z") are nonempty,

d(C,(z’), C,(z")) d(C,(z’ + b b’), C(z" + b b’))

<--13lz’- z"l.
Proof of Proposition 4.3. Let

C(z; _x,) {_u, D_u, >= d(_x,), _uk_ z, _u, _>-0}.

It follows from Lemma 4.4 that there is a p > 0 such that

d(C(z’; x_,), C(z"; x_))<=p[z’-z ’’]
such that both sets are nonempty.for every z, z and _x,

Let _x 6 S.

dom p(. ;_x,)={z dom rl(z," ;_x,).}

{z C(z; x_,)

a polyhedral convex set. The assumptions on c and fi2 imply that f,(.; _x) is
Lipschitzian-/3(_x), where/3 a’+ c". There are two possible cases" (i) f(. _x) is
identically -00 on its effective domain; or (ii) f(. ;_x) is finite and Lipschitzian
with Lipschitz constant/3(_x) on dom f(. _x). In case (i), p(. _x) is identically
-c on its effective domain. In case (ii), the argument parallels the proof of Lemma
3 in Walkup and Wets (1969a).

The next proposition says that if p has the Lipschitz property described in the
conclusion of Proposition 4.3, ,61 inherits the property. It does not say that there
are a matrix D and a function d such that

dom ro(" xo) {uo" Duo >- d(xo), Uo>= 0}

for a.e. xo, or even that dom to(" ;xo) is a polyhedral convex set for a.e. xo.
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PROPOSITION 4.5. Assume that P1(’; _xl) is Lipschitzian-(x_) for a.e. x_l,

with 1 LI(RS’). Then there is a function 6 Ll(R s’’) such that /(. xo) is
Lipschitzian-8(xo) for a.e. xo. In fact, E[3(_X)IXo is such a function.

Proof. Let S be a Borel subset of R s’ of measure 1 contained in the set of
every such that p(. ;g)is Lipschitzian-(). Let

S(x,, {x (no, x ;) s}.

Let T be a Borel subset of R s’’ such that o(T) 1 and l(S(xo)]xo) 1 for every
Xo r.

Now let xo T. If dom (. ;xo) or (. ;xo) is identically - on its
effective domain, 1(’; xo) is Lipschitzian- for any % Therefore, suppose the
contrary. Choose uo such that -< (uo, xo) < +. Let uo dom ( xo)..

s(x)

Since I(N,)I < +,

Take 6(xo) E[(NI)IN xo]. Then 1(" xo) is Lipschitzian-6(xo) for a.e.
Xo.

EI(X,,)I E[(X,,)] EFEF(Xl)[Xo]] E[(X,)] < +.

Proposition 4.5 (in conjunction with 4.3) fails to characterize the effective
domain of l(" xo); consequently, an attempt to show that [o is Lipschitzian by
using Propositions 4.3 and 4.5 inductively, starting at stage K, breaks down after
one step. The remainder of this section is devoted to identifying conditions on P
which imply that dom (. ;xo) is a polyhedral convex set for a.e. xo and hence
that l induces linear constraints at stage 0. The conclusion of Proposition 4.7 is
the hypothesis of Proposition 4.8(i). If the conclusion of Proposition 4.8(i) holds
and the conclusion of 4.8(ii) holds for a.e. xo, Proposition 4.10 reveals that
dom (. ;xo) is a polyhedral convex set for a.e. xo.

DEFINITION 4.6. Let g" RxRS[-, +]. Suppose that for every
R s,

for every ff dom g(. ), where Rs [_, +], ff Rs [_, +], and
and ff belong to L(RS). Then g is upper-bounded-(, ).
Although in the preceding definition <+ a.e., complete rigor requires a

convention on the value of (+) (0). Define (+) (0)= 0.
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PROPOSITION 4.7. Assume"
(a) f is upper-bounded-(, a).
(b) There are an N matrix D and Borel measurable function d R s, - Rsuch that for a.e. x_ ,

dom r,(. _xl) {_u, D_u, _-> d(_xl), _u,->0}.

(c) E]/3(_X,)d(_X1)] < +oo.
Then"

(i) Pl is upper-bounded-(& y) for some (6, y). Moreover, there is such a
proportional to a.e. (tz).

(ii) ,6 is upper-bounded-(& /) for some (6, /). In fact, one can take

(x,,) E[(X_ ,)IX,, x,,],

?(x,,)-= E[(X_I)IX,, x,,].

(iii) For a given uo, let

S(x,,)--{x’, p,(uo; xo, x’,)< +}.

For a.e. x,,, if Il(S(x,,)]x,,) 1,/3,(u,,; xo) < +c.
Proof of (i). Let

C(z; _Xl)-={_ul D_Ul => d(_Xl), u,,= z, _ul->0}.

Suppose C(z ;_x 1))# ; if (z, _x 1) does not exist, the conclusions hold trivially.
Choose _u] C(z’; _x]). By Lemma 4.4, there is a positive number p such that

d(C(z; x_,), C(z’; x_’,))<=pld(x_,)-d(x_’,)l+plz-z’[

for any. (z, _x) such that C(z ;_x) . Given any such (z, _x), choose _u to a
point in C(z ;_x) closest to _u in order to verify the following proposition:
there are positive numbers p and r such that

inf {l_u, _u, C(z; X_ l)} <= plzl + pId(x_ ,)l + ,n

for every (z, _x) such that C(z; x_l) #
Suppose _x is such that the equation in assumption (b) holds, and suppose

z dom Pl(" _xl). Let _ul be the minimum-norm point in C(z; x_). Then

pl(Z; _X1)/,(1; _X1)

--</ (_x l)l_u, + (_x l)

p/3 (_x,)[z + p[3(x_l)]d(x_,)] + (x_,)r +

Take 6(_xl)= p/3(_xl). Take

V(_X,) iO (_X 1)[d(_x 1)] + "/7" (_x 1)+ c (_x 1)

if the equation in assumption (b) holds, and take y(_x) +oo if not.
because E]/3(_X,)d(_X,)] < +oo, E[/3(_X,)[ < +oo and E[a(_X,)] < +oo. Of course, 6
inherits the properties of/3.
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Proof of (ii). Suppose z 6 dom/51(" xo). Then z 6 dom p(- xo, x’l) for a.e.
x’l given xo.

101(Z; Xo)= j pl(Z; Xo, X’l) dFlo(X’llXo)

<-

[ I x,,, x’,)

+

E[6(8,)IX,, x,,] Izl + E[v(8,)IX,, x,,].

The last inequality follows directly from the subadditivity of the extended integral
used in this paper. (See Walkup and Wets (1967).)

Proof of (iii). Suppose (S(x;,)]x;,)= 1. Then

(xS)

[(x,, x)lu,, + v(x,, x,)] dFlo(X]X[O
(xS)

(x:,)u,, + (x,,).
Therefore, the set of every xo such that (S(Xo)]Xo)= 1 and fi(uo; xo)=+ has
measure 0.

Poeoswoy 4.8.7 Define
K (xo) dora p (. xo),

"(xo){u,," p,(u,, ;,)<+ V x, e =,(xo)},
where (xo) is the support of (" xo)i.e., the smallest closed set T such that, (x,,)

(i) If the hypothesis of Proposition 4.7 holds,

K(x,,) K(x,,) for a.e. xo.
(ii) For a given xo, assume the existence of a matrix D (D D) and a

continuous function d Rs R such that for every x (xo),

dora rl(" _x,) ={_ul :.D, ul +D2uo>=d(x_), u_l =>0}.

Then K" (xo) K’ (xo).
Proof of (i). Proposition 4.7(iii).
Proof of (ii). Let R (D1

KP(xo) {uo X’l e E(xo) 3 u r,(uo, u’l," xo, x ’1) <

={uo" d(xo, x’)-Dzuocone R V x’ v" (xo), uo > 0},

The definitions of Kp, K and K and the proof of (ii) parallel Wets 1974, Thm. 4.1). In the case
under consideration, where A is fixed, that theorem is a special case of Proposition 4.8.
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where cone R {y y Rw, some w => 0}.

K’(x(,) {uo" d(xo, x’)-Dzuoe cone R for a.e. X’l
given Xo, uo->- 0}.

Clearly, KP(xo)c K’ (xo). Let uo K" (xo). The continuity of d implies that

S a=-{xl d(xo, x)-Dzuoecone R}

is closed. Since uoK’(xo),/x (S[xo) 1 Therefore, "=’ (xo)f-)S is closed, and

/d. (’l(X(,)f") Six(, 1.

But "z’(xo) is the smallest such set. Hence, S = "l(xo), and uo Kp(xo). [3
Example 4.9 (Eisner (1970, p. 65)). (K" K # KP). Let X1 be a random

variable uniformly distributed on [0, 1]. Let

1 -1 0 -1

0, x=0,
bo=-l, b(_x)=

-1, x0.

Notice that b is not continuous. Let

c,,( u,,) =- u,,, c,(_u,; _x)-- 0.

Thus, the equivalent deterministic problem, Po, is

minimize -uo+ E[inf {0; 0_-< u _-<-b(X1)-uo}].
()u()

Since Xo is constant in this example, ](o) is identified with ,,=[0, 1], the
support of X1.

K" =-{uo:O<-uo<-_-b(x) for a.e. x}=[0, 1].

K {Uo ][pl(uO, X,)]< +oo} [0, l].

Kp -{t/o :0 <- uo<=-b,(x)[ Xl t[0, 1]}= {0}.

The unique solution to Po is Uo 1, which yields the stage 1 constraint u_-<
-b(Xl)-1, which can be satisfied (with Ul >_-0) almost everywhere but not for
every possible realization of X--i.e., for every X e E.

The failure of Kp to agree with K" in the example is closely related to critical
anomalies in stochastic programming duality and discretization theories. Typi-
cally, these theories formulate the SP problem as mathematical programming in
an Lp space, the variables being functions of Xo, , X. The constraints, which
involve functions of Xo,"" ", X:, are required to hold a.e.(/x), where /x is the
Borel probability measure determined by _X. A major nuisance is the possible
nonexistence of an optimal program that satisfies the constraints everywhere on
the support of/x instead of just almost everywhere. (See Rockafellar (1975) and
Olsen (1975b).)
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PROPOSITION 4.10.s Define KP(xo) as in Proposition 4.8. Assume the
hypothesis of Proposition 4.8(ii) except for continuity of d. Then KP(xo) is a
polyhedral convex set.

Proof. Using the definitions in the proof of Proposition 4.8, let

/P(_x) dom Pl(’; _x)

Now
{uo" d(_x 1) D2uo cone R, uo => 0 }.

d(x_l)-D2uo6cone R 1=> d(x_l)-S2uo6(cone R)**,

by Rockafellar (1970, Thm. 14.1)? But

d(x_)-Dzuo (cone R)**

(d(X_l)-Dzuo,

for i= 1,-.., n, where w*,..., w*, generate (cone R)*. The last statement is
equivalent to

(u,,, D; w*) (d(_Xl), for i-- 1,.-., n.

Therefore,

KP(x,,) =[ N,,;’,tx,,RP(x,,, Xtl)]

{u,," (u,,, D’2w*)<= inf {(d(xo, X’l), w*)" X’l #, (x,,)}

fori 1,..., n}fl{Uo" uo-->0},

which is a polyhedral convex set (empty unless the infimum is finite for i=
1,...,n). [-1

5. Characterizing the equivalent deterministic problem. This section induc-
tively applies the propositions in 3 and 4 to obtain characterizations of the
equivalent deterministic problem, given properties of ck, bk and Ago, Akk for
0 _-< k _-< K. (The convention that Xo is constant is restored, so that Po is identical to
the equivalent deterministic problem.)

The first major result is Theorem 5.2, which gives a sufficient condition for/
to be 1.s.c. and convex. An argument based on Theorem 1(i) of Walkup and Wets
(1969a) shows that if/ and co are 1.s.c. convex functions, if {uo Aoouo bo, uo ->-
0} {0}, and if inf (Po) is finite, then Po is solvable (ro(uo) inf (P0) < +c for some
Uo) and dualizable (its dual problem, defined as in Rockafellar (1967) or Van
Slyke and Wets (1968), has the same optimal value).

Corollaries 5.7 and 5.10 and Theorem 5.12 give sufficient conditions for Po’s
feasible region to be a polyhedral convex set and for fo to be either finite and
Lipschitzian or identically - on it. Therefore, with the additional assumption
that inf (Po) is finite, they give sufficient conditions for Po to be stable (Walkup and

Conceptually identical results have appeared in several places--e.g., Walkup and Wets (1969a),
Wets (1966c), Wets (1974).

9 If S R", the dual cone, S*, is {w* R" (w, w*)=>0 V w S}. S** a___ (S*)*. Rockafellar (1970)
uses "S*" to denote the polar cone, {w* 6 R" (w, w*)-0 V w S}.
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Wets (1969a, Thm. 1 (ii))). (Po is stable if its dual has the same optimal value and is
solvable (Rockafellar (1967), Van Slyke and Wets (1968)).)

TI4EOREM 5.1. Assume that]’or each 0 <- k <= K ck x_k) is convex [or a.e. x_k.

Then [or each 1 <-_ k <-_ K, Pk( x_k) is convex ]’or a.e. x_k, Ok(" x_k_) is convex ]’or
a.e. X_k-1, and Po is a convex programming problem.

Proo[. Let 0 -< k _-< K. Assume that/k+ (" _xk) is convex for a.e. _xk. Then by
Proposition 3.2, Pk (" ;_xk) is convex for a.e. _xk. This implies by Proposition 3.1
that for a.e. _xk_ Pk(" ;_xk) is convex for a.e. xk given _xk-. By Proposition 3.3,
P-k(" _Xk-) is convex for a.e. _xk-, to complete the induction step. The induction
hypothesis holds trivially if k K. I--I

TI-IEOREM 5.2. Assume that for each 1 <-_ k <- K {w Akkw O, w >-- 0} {0},
ck( x_k) is a l.s.c, convex [unction ]’or a.e. x_k, and k( X_k-l) > --O [or a.e.
Then [or each 1 <- k <- K" (i) Pk(" _xk) is l.s.c, and convex and greater than -o [or
a.e. x_k and (ii)/k (" _xk-) is l.s.c, and convex [or a.e. x_k-. In particular, is l.s.c.
and convex.

Proposition 2.2 gives a condition guaranteeing the theorem’s assumption that
for each 0_-< k < K/0k+ (" _xk) >- for a.e. _xk ck --> 0 for each 1 _-< k _-< K also
suffices. If the assumption is not satisfied, but the hypothesis of Theorem 5.1 is
satisfied, there is a set T of positive measure such that _xk T implies/3k + _xk) is
a convex function having the value -o somewhere. Let _xk T. Then ,Gk+( _xk) is
-a3 everywhere on the relative interior of its effective domain (Rockafellar (1970,
p. 53)). In that case, if/k+(_Uk, _Xk) is finite, an arbitrarily small perturbation of
say _u, yields /0k+(_U;._Xk) ----a situation atypical of well formulated
physical-world problems.

Proo[ oj: Theorem 5.2. Convexity is immediate from Theorem 5.1.
Let 1-<_ k _-<K. Assume that/0k+l(" _xk) is 1.s.c. and convex for a.e. _xk. By

Proposition 3.4, for a.e. _xk, Pk(’; _xk) is l.s.c, convex or identically -oo on its
effective domain.

Suppose the latter alternative holds on a set ScR sk with /k(S)>0. Let
S(X_k_l)--{Xtk (X_k_l,Xk)S}. By Proposition 3.1, IJl,k(S(X_k_l)[X_k_l)>O on a set
TcRsk-’ with /k_(T)>0. It follows that for every X_k_T, k(" ;_xk-) is
identically -c on its effective domain. Since /Ok(" _Xk-l)>-- for a.e. _Xk- by
assumption, dom Pk _Xk) for a.e. _xk S. Thus, for a.e. _Xk, Pk (" _Xk) is I.S.C.
and convex (perhaps identically +). If, for a particular X_k, Pk(’; X_k) is 1.S.C.
convex and is - somewhere, it is - everywhere on its effective domain.
Consequently, Pk (" ;_Xk)>-- for a.e. _Xk.

By Proposition 3.5 together with Proposition 3.1, /k(" _Xk-) is 1.S.C. and
convex for a.e. _Xk-, which completes the induction step. The induction
hypothesis holds trivially if k K. l-]

Walkup and Wets (1969b) obtain the following result, which applies only in
the case of K 1 and c( _x) linear, but which allows Ao andA to depend on

X1.
THEOREM 5.3. Let K 1. Assume that co is linear and c( x) is linear for

a.e. x . Then fo is 1.s.c. and convex if it is nowhere -o.
The next theorem ties together many of the propositions from , 3 and 4. It

applies only in the case of K 1. The theorems following it achieve similar
conclusions in the multistage case, at the cost of more stringent assumptions.
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THEOREM 5.4. Let K 1 and Cl(_Ul; _XI)(Ul, q(x)), where q
belongs to Ll(RS’).

(i) IJco is convex, then Jo is convex and Po is a convex programmingproblem.
(ii) Ij" co is Lipschitzian-o, ]o is Lipschitzian-o ]:or some o.
(iii) Ij Elqj(X1)bli(X1)]<+oo ]or each l<-j<-n, and l<-_i<-_ml, i]: b is

continuous, and if dom co is a polyhedral convex set, then dom fo is a polyhedral
convex set. In that case Po’s constraints (implicit as well as explicit) are linear.

Proo]: oj (i). This follows immediately from Theorem 5.1.
Proof of (ii). Take [(Xl)lq(Xl)l. Cl(" ;Xl)is Lipschitzian-fl(Xl) and

dom Cl(’; Xl) R n’ for every Xl. By Proposition 4.3, Pl(’; Xl) is Lipschitzian-
pfl(Xl for every x, for some O>0. By Proposition 4.5, /l is Lipschitzian-
oE[[3(X1)].

Proo[oj: (iii). Take/3(x) --Iq(xl)l, c (.X:l) 0. fl is upper-bounded-(/, a). The
covariance condition in (iii) implies assumption (c) of Proposition 4.7 by a
straightforward argument. Thus, the hypothesis of Proposition 4.7 holds at stage
1. Then by Proposition 4.8 together with Proposition 4.10, dom/5 is a polyhedral
convex set. Since the intersection of two polyhedral convex sets is a polyhedral
convex set, (iii) is proved.

The preceding theorem resembles Theorem 2.2 of Wa|kup and Wets (1970).
Part (i) is essentially a special case of Theorem 4.4 of Walkup and Wets (1967),
which requires bl to be linear but allows Alo andA to depend upon x. Parts (ii)
and (iii), combined, differ from Wa|kup and Wets’ (1967) Proposition 3.16 and
Theorem 4.5, combined, principally in substituting a covariance condition for
the requirement that q eL’’(R s’) and b e L’l(RS’). The proof of part (iii)
basically consists of showing that dom fil Kp and that Kp is a polyhedral convex
set; cf. Corollary 4.5 and Theorem 4.10 of Wets (1974).

THEOREM 5.5. Let " be the support oj: txr, the Borel probability measure
determined by _XK. ( is the smallest closed set o] measure 1.) For 1 <- k <-_ K, let "k
be the projection oj: " on R sk, let ’’k (_Xk-1) be the section {X’k (_Xk-1, X) e ..}, and let
k (_Xk-) be the support oj tXk(" IX_k-l).

Assume that " is compact. For each 1 <- k <- K assume"

(a) For a.e. X_k,

dom ck (. _xk) {_u Ak_uk bk (_xk), _uk -->_ 0}.

(b) Ck is upper-bounded-(k, ak).
(C) bk is continuous on "k.
(d) k is a continuous mapping from "’k- into the space of closed, nonempty

subsets of R S% equipped with the Hausdorff metric with respect to the Euclidean
norm.

(e) k(_Xk_I) c ’’k(_Xk-I) ]’or every X_k- "’k-1.
Also assume dom co {uo Aoouo bo, Uo >- 0}.

Then for each 0 <-_ k <-_ K, there are a matrix D and a ]:unction d continuous on
’’k such that

dom rk (" X_k) {U_k Du_g >--_ d (X_k), _Uk ----> 0}

for a.e. X_k. In particular, dom ro is a polyhedral convex set.
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If dom Ck(" ;X_k)--" {_k DkU_k ----> dk(_Xk)} for a.e. _xk, for some matrix Dk and
continuous function dk, the constraints DkU_k >----dk(X_k) can be adjoined to the
constraints AkU_k bk (X_k) at stage k (possibly requiring expansion of Uk to include
slacks), and assumption (a) will hold. Also, there is no harm in redefining Ck X_k)
outside {gk AkR_k bk (_Xk), gk 0} in order to get (b) to hold.

Since E has measure 1, so has "k, and therefore, Ik(..k(Xk_l)I X_)-- 1 for
a.e. _Xk-. Since k(X_k--) is closed for every x_, this implies that ’k(Xk__l) C2

Ek(X_k-) for a.e. _Xk-. Thus, Fxlx__.( [Xk-) can be redefined on a subset of R s-’

of measure 0 in such a w.ay that it is still a regular conditional distribution function
for Xk given _Xk_ and ..k(X_k_)c Ek(X_k-) for every _xk-1 6 Ek-. Substituting the
redefined Fxlx__ in the definitiori of/3k would alter the function re(" _x), for
0_-<i< k, only on a set of _x’s of measure 0, which would be irrelevant to the
theorem’s conclusion.. (Note, however, that (d) must hold after the redefinition in
order to apply the theorem.)

The proof of Theorem 5.5 uses the following lemma.
LEMMA 5.6. Let X and Y be metric spaces. Let be the collection of

nonempty, compact sets in Y; equip with the Hausdorff metric (see Berge (1963,
p. 126)). Let F be a continuous mapping from X into , and let ch X Y R be
continuous. Then the function q X- R defined as

q(x)- inf {b(x, y)" y F(x)}
is continuous.

Proof. Apply Theorem 1 of Berge (1963, p. 126) and then Theorems and 2
of Berge (1963, pp. 115-16). I-1

Proof of Theorem 5.5. Let 1 =< k _-< K. Assume"
(i) /k+ is upper-bounded-(fi, c);
(ii) dom rk(" _xk) ={_uk D_uk _-->_ d(_xk), _uk 0} for every_xk k, where Disa

matrix and d is a continuous function on

k is compact, and /Zk(k)= 1. Hence, d is bounded on ’k, and, since
lt(_x,)l < /o, [t()d(_X)l < /. This together with assumption (b)implies
by Proposition 4.7 that Pk is upper-bounded-(& /) for some (, /), so that
induction assumption (i) holds at stage k- 1.

The next step involves a minor modification of Proposition 4.8(ii),
precipitated by a modification of the set S that occurs in its proof. Let
In the proof of 4.8(ii), let

S--{x" d(X_k_t,x)-D2_k-1 cone R}(’q’k(X_k_l).

S is closed since d is continuous on "k(_Xk-1)- Moreover, since
k(Ek(X_k--,)lX_k--,)----1, k(SlX_k-,)--l. The rest of the proof of 4.8(ii)is
unchanged. It follows that K’(X_k_l) KP(_Xk_.l) for every _Xk-1 k---1.

By Proposition 4.8(i), K"(x_k_l)= K(X_k_1) for a.e. _Xk-. Redefine/Tk on the
exceptional set according to

0, _Uk--1 6 g" (_Xk-1),
_Xk-1)

+ otherwise.

(Redefine / to be identically 0, for example, on the exceptional set.) This
redefinition does not alter fil since it occurs on a set of measure 0. After the
redefinition, dom/k(" _xk---i) KP(_xk-l) for every
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Theproof of Proposition 4.10 reveals the existence of vectors ,. , ,, a
matrix R and a function d continuous on ’k such that for every _Xk-1 "’k-,

KP(_Xk-) {_Uk-I "(U_k-1, i)di(X_k-1)for/= 1,-.., n, _uk_ =>0},

where di(X_k_)=inf{(d(x_k), i)’x ..(_xk_)}. Now .apply Lemma 5.6" take
X-- ’k-1, Y= R sk, 4 (d(’), ffi) (some 1 =< _-<. n), F= ’k" ( is continuous on E,
which contains

(_x_)}"

F is continuous by assumption (d). Bxv the lemma, di is continuous on E_ for each
i. Consequently, there is a matrix D such that

dom G(" _xk_,)= {_uk__, "/)_uk--, =>-d(_xk_,), _uk_, _->0}

for every _x_E , where d=(d,..., d,)’ is continuous on E_. Given
assumption (c), the only remaining obstacle to verifying the induction hypothesis
for stage k 1 is the qualification "almost every" in assumption (a). But just as
was redefined innocuously, c__ can be redefined to get the desired conclusion"
take Ck-( X_k-) 0 for every _Xk-- in the set of measure 0 where the inclusion in
(a) fails to hold. After the redefinition, the induction hypothesis holds at stage
k- 1. It clearly holds at stage K once cn is suitably redefined.

COROLLARY 5.7. In addition to the hypothesis of Theorem 5.5, assume that
for each 0 <- k <- K, c( x_) is Lipschitzian-a(x_) for a.e. x, with a Ll(RS).
Then Po’s feasible region is a polyhedral convex set, and on it fo is either finite and
Lipschitzian or identically

Proof. Use the conclusion of Theorem 5.5 in an inductive application of
Propositions 4.3 and 4.5. !-1

The conclusion of Theorem 5.5 implies that for each 0 -<- k =< K, dom rk X_k)
is a polyhedral convex set for a.e. _x. The next theorem gives a sufficient condition
for polyhedrality to hold for every (not just almost every) _x . E. The stronger
conclusion is useful in the study of discretizations of stochastic programming
problems (see Olsen (1975b)).

THEOREM 5.8. In addition to the hypothesis of Theorem 5.5., assume for each
l<=k<=K

(a’) dom Ck( X_k) {U_k Ak_Uk bk (X_k), _Uk ->---0} V _Xk e Ek-
(b’) c is upper-bounded-(, %), and and a are bounded on Ek.
Then for each 0 <= k <-_ K there are a matrix D and a function d continuous on

Ek such that

dom rk (" _xk) {_uk D_uk -->_ d (_x), _u => O}

for every _xk f --,k-
Proof. In light of Theorem 5.5 and its proof, it suffices to show that the

redefinitions of/k and Ck-. in the induction step are unnecessary. Assumption (a’)
removes any need to redefine Ck-I. Let 1 _--< k _-< K. In addition to (i) and (ii) of the
proof of Theorem 5.5, assume that fi and c are bounded on Ek- Then by
Proposition 4.7(ii) and assumption (e) of Theorem 5.5 (and the way the
conditional expectations are defined in terms of integrals over a positive measure),
6 and z/(defined as in 4.7(ii)) are bounded on ’k--1- Now consider the proof of
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Proposition 4.7(iii). It says that if 6 and / are finite everywhere on ..,’k_l,

dom/k(" ;_Xk_l)=K(_Xk-1) for every _Xk_l’k_, and consequently, the
redefinition of/k in the proof of 5.5 is unnecessary. The induction hypothesis is
true by implication at stage k 1. It is clearly true at stage K.

All that was needed in the induction step was 6 and " finite on ,.k-1, but that
in itself would not assure finiteness at the next stage in the induction. Boundedness
is a convenient property for that purpose; in a particular problem, other
properties with the same effect might exist.

The next theorem and its corollary deal with the important special case in
which the random variables in any stage are independent of the random variables
in earlier stages. They are fairly straightforward consequences of propositions in
4. Wets (1972, Corollary 4.1) outlines a direct proof of a similar result.
THEOREM 5.9. Assume for each 1 <- k <- K"
(a) Xk is independent of X_ k_.
(b) ck and bk do not depend on x_k-.1; thus, write Ck(U_k Xk) and bk(xk).
(c) ck is upper-bounded-(k,
(d) dom ck(" xk) {_uk Ak_uk bk(xk), U_k _-->0} for a.e.
(e) Ell3k(Xk)bk(Xk)[ < +oo.
(f) bk is continuous, and Elbk (Xk)] < +oo.

Also assume that dom co is a polyhedral convex set. Take
Fxk (xk), the distribution function o[

Then ]’or each 0 <-_ k <-_ K there are a matrix D and vector d such that

dom rk(" _xk)= {_uk Ak_uk bk(_Xk), D_uk ->d, _uk ->_0}

for a.e. x_k. In particular, dom ro is a polyhedral convex set.

Proof. Assumption (b) and the choice of the regular conditional distribution
function imply that at any stage rk and Pk can be written as functions rk (U_k Xk) and
pk(U_k; Xk), which do not depend on _Xk-t. Thus,

,Ok (_uk--,) - j pk(_Uk-1; Xk) dFxk(xk).
For each 1 <- k _-< K, redefine ck on the exceptional set of measure 0 in (d) to be

identically 0o This redefinition can alter 0k, for any 1 =< k <-K, only on a set of
measure 0, which is to say, not at all. After the redefinition, the inclusion in (d)
holds for every

Let 1 -< k _<- K. Assume:
(i) /0k+ is upper-bounded-(/, 6) (/ and c are constants);
(ii) dom 16k+l is a polyhedral convex set.

Then by (d), there are a matrix D and a vector d such that

dom rk(" xk) ={_uk "Aku_k =bk(xk),Du_k >-d, u_k 20}

for every xk. By Proposition 4.7(ii), Pk is upper-bounded-(& z/) for some (8, z/). By
Proposition 4.8, dom /3k--Kp, which is the set of every _uk_ such that
Pk (_Uk-1 Xk)< +O0 for every xk in the support of Fx, and by Proposition 4.10, Kp

is a polyhedral convex set. That completes the induction step. The induction
hypothesis is trivially true if k K. 1--!

COROLLARY 5.10. Assume the hypothesis of Theorem 5.9. Also assume that
for each 0<= k <- K, Ck( Xk) is Lipschitzian-6k(Xk) for a.e. Xk, with 6k LI(R).
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Then Po’s feasible region is a polyhedral convex set, and on it fo is either finite and
Lipschitzian or identically -oo.

Proof. The proof of Theorem 5.9 shows that for each 0_ k _<- K

dom rk(" Xk) =(_Ug AkU_k =bk(Xk),DkU_k >--_dg, U_k __>--0}

for a.e. Xk. Inductive application of Propositions 4.3 and 4.5 reveals that ,61 is
Lipschitzian-y for some 3’. The polyhedrality assertion follows directly from the
conclusion of Theorem 5.9. [3

DEFINITION 5.11. A stochastic programming problem has complete (almost
complete) recourse at stage k + 1 relative to stage k if and only if, for every (almost
every) _Xk,

Ak _U. k bk X_ k _U_ k 0 =)2 Ok -+- _Ug _Xg) < q- 00.

A stochastic programming problem has complete (almost complete) recourse at
stage k + 1 relative to stages 0 through k (all prior stages) if and only if, for every
(almost every)

A_u b(_x) for O, , k, _Uk 0 Pk+l (k _X_k) < -}" 00.

Of course, if k 0, almost-complete and complete recourse are the same.
In the two-stage problem, Wets uses the term "relatively complete course"

for what Definition 5.11 would call "complete recourse at stage 1 relative to stage
0" (Wets (1974)). Relatively complete recourse and related notions have often
been assumed in stochastic programming problems (Dantzig (1963, p. 510),
Madansky (1960), Charnes et al. (1965), Willians (1965), Wets (1966a)). When a
problem has relatively complete recourse, many difficulties vanish, as the next
theorem shows.

THEOREM 5.12. Assume for each 0 <= k <-_. K:
(a) There is almost complete recourse at stage k + 1 relative to stage k.
(b) For a.e. X_k,

dom cg (. _Xk) {_Uk AkU_k bk (X_g), U_g 0}.

(C) C (" _X) iS Lipschitzian- (X_k) fO/ a.e. x_, for some e L1 (R sk).
Then Po’s feasible region is a polyhedral convex set, and on it fo is either finite

and Lipschitzian or identically -oo.
Proof. For any 0 _-_ k _-< K,

dom rg (. _xg) {_ug A_u. b (_xg), _ug _->_ O}

for a.e. _Xk. Apply Propositions 4.3 and 4.5 inductively. El
PROPOSiTiON 5.13. Assume that inf (Po)< +oo. Assumefor each 1 <= k K:
(a) Ck is upper-bounded-(k, ak ).
(b) dom Ck (" X_k) {_Uk Ak_Uk bk (X_k), U_g _>= 0} for a.e. X_k.

(C) EI/3(_X)b,(_X,)I < +c for each 1 -<_- <= k.
(d) If P{bk(X_ k) S}= and S is closed, S R ink.
(e) bk is continuous.
Then there is almost complete recourse at stage k + 1 relative to stage k for each

O<_k<_K.
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Proof. Let 1 <-_ k <= K. Assume:
(i) Pk+ is upper-bounded-(& y), and EIG(X_k)bi(X_i)l< +oa for each 1 _-<i _<-

k;
(ii) dom 16k + 1(" _Xk) {_Uk _Uk >-- 0} for every _Xk.

Redefine Ck on the exceptional set of measure 0 in (b) to be identically 0. For
any 1 =< _<- k, the redefinition leaves ,6i(" _xi) unchanged for every _xi in some set of
measure 1. After the redefinition,

dora rk (" _Xk) {_Uk Ak.U_k bk (X_k), U_k >- 0}

for every _xk. By Proposition 4.7(ii),/3k is bounded-(j, ), where

being a nonnegative number. For 1 =< k 1,

+oo > ,EII3k(X_ )b,(X_ )I+
_>- EE[[(fl (_X) + 8(_x))b.(_x,)l _x,_.]

AE E[(/3 (._X,) +

AEIE[(fl (_X) +

By Proposition 4.8,

dom/3k(. _x__,)= {_u_," p(_u_,; _x)< +oo V xk 6 (_x__,)}
for a.e. _x__. ((_x__) is the support of /z(. ]_xk_).) Since inf(Po)<+eo,
assumption (d) implies that

cone Akk = {y AkkW y, some w

Consequently, pk(U_k-; _X)< +OO whenever _Uk-- >0, and dom 10k(" _Xk-)
R Nk-!

+ for a.e. _Xk_. For every_xk_ in the exceptional set, redefine/( _Xk_I) to be
identically O.

That comples the induction step. The induction hypothesis is trivially true if
k=K.

The preceding proposition’s conclusion can be strengthened, as the induction
hypothesis reveals. The stronger conditiondom/3+(. _x) {_uk _u _>-0} for
a.e. _x--might be termed almost complete recourse at stage k + 1.

Assumption (d) of Proposition :5.13 holds if, for example, b in the identity
mapping and (X, , X) is a multivariate normal random vector with a positive
definite covariance matrix.

Complete recourse relative to all prior stages is a weaker condition than
complete recourse relative to the preceding stage alone. This section concludes by
presenting a simple device that obviates the need for restatement and reproof of
Theorem 5.12 in the case of complete recourse relative to all prior stages.

lWets says that a two-stage problem (K 1) has "complete recourse" if and only if cone

AI R" (Wets, (1974)).
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Recall the definitions of the problems Po,""", PK, which fully specify the
stochastic programming problem. Form a new sequence of problems P, ,
as follows"

P,(z; _Xk )" minimize f,(_uk _xk

subject to A_u b(_x) V 0_-< i_-< k,

_Uk- Z, _Uk => O.

The notation is meant to indicate that _x is a subvector of _xk and _u is a subvector of
_uk. All that has been done is to adjoin the explicit constraints from previous stages
to the explicit constraints at stage k. Then

(_, fk(_k ;_Xk) Ai_-- b(_x,) for 0,..., k,

+oo o otherwise.

Po and P[ have the same explicit constraintsnamely, Aoouo bo, uo >- 0andf
differs from fo only outside {uo’Aoouo= bo, Uo-->0}, so that Po and P are
effectively the same problem.

But Po,"" ", P have complete (almost complete) recourse at stage k + 1
relative to stages 0,..., k for each 0 <= k <K if and only if P,... P’K have
complete (almost complete) recourse at stage k + 1 relative to stage k for each
0_-< k _-< K. Furthermore, several propositions (and the theorems that use them)
have polyhedrality assumptions that are weaker for P,... ,P than for
Po,’" ", PK. For example, Proposition 4.3 requires

dom fk (" X_k) (3 {U_k AkU_k bk (X_k), _Uk ----> 0}
{U_k AkU_k bk (X_k), /)_Uk >- (_Xk), _Uk ----> 0}.

The same assumption for P, is weaker"

dom fk(" _Xk) f3 {_Uk A_u b(x_i) V O<-i <-_k, U_k =>0}

{_Uk A_u b(_x,) V 0_-<i_-< k,/_Uk ----> (_Xk), _Uk _-->0}.

Other examples are Propositions 4.7, 4.8 and 4.10 and every theorem following
Theorem 5.4.

Acknowledgmenl. This paper incorporates numerous improvements
suggested by Mark J. Eisner and a referee.
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WHEN IS A MULTISTAGE STOCHASTIC PROGRAMMING
PROBLEM WELL-DEFINED?*

PAUL OLSEN-

Abstract. Certain measure-theoretic issues raise the possibility that (a) the optimal value.of a
multistage stochastic programming problem may be ill-defined and (b) the recursion defining the
problem may fail, so the problem itself is not even defined. The first difficulty is illustrated by example.
A rigorous definition of multistage stochastic programming with fixed linear recourse is shown to avoid
this difficulty. In the context of the new definition, certain measurability, convexity, and lower-
semicontinuity assumptions on the objective function preclude the second possibility.

1. A reformulation of the problem. Multistage stochastic programming with
recourse corresponds to a situation in which information is revealed in stages and
a decision is made at each stage based on the information revealed up to and
including that stage and on the decisions already made. Number the stages
0,... ,K (K<+). Assume that the information revealed at stage k
(0= k :< K) is fully represented by the realization of a random vector Xk with
values in R, where Xo," , X: are defined on the same sample space and have
known joint distribution; assume that the decision at stage k is represented by a
vector uk R ’

Let S ==os, let S-S, and let X denote the random vector
(Xo,"" ,X). Let Fx_ denote the distribution function of _X_. For each
l<=kK, there is a regular conditional distribution function (r.c.d.f.) for
Xk given _X_k --i.e., a function Fxl_x__ R" .Rs-l-> [0, 1] such that:

(a) for each X_k-- -.R s-., Fx,t__( [X_k-) is a proper distribution function on

(b) for each Xk R,
for almost every (a.e.) _Xk-.

For convenience, also require that Fxl_x_ ,(x[ be Borel measurable for each Xk.
The existence of such a function follows from the fact that the values of Xk lie in a
complete separable metric space--R s [1, pp. 263-66].

For 0 =< -_<-_ K and 0 =< j K, let Aii be a real mi ni matrix (recall that n,i is the
dimensionality of the stage j decision vector, ui). Require that Aq 0 if j > i. Let
Nk E:o n, let N-NK, and let .U_. (Uo,""", u).

For 0 5 k _-<_ K, let

b Rs R ", c RN Rs - [-o, +co].

The stochastic programming problem is defined recursively. Let
,0:/(_U_K;..X_:)0. NOW let l<=k<=K and suppose that +’RxRs

[--oe, +oe] has been defined. Let.

rk(_u. _x.) c. (._u. _x.) + p. +, (u. _x_.) + 0(_u. _x.),

Received by the editors July 2, 1974, and in revised form March 6, 1975.
Institute for Defense Analyses, Arlington, Virginia 22202.
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where

k

0, Y’, AkUi b, (x_,), u_, >-_ O,
4,(_u _x) =o

+c otherwise.

The convention +o+(-o)=(-o)+(+o)=+o applies throughout.
Define the parameterized problem

Pk(uk-1 _Xk) minimize rk (Uk-, V _X_k).
vRnk

Let pk(U_k-I; _xk)------inf (P(_uk-1; _x)), the problem’s optimal value. Let

1 P, (u_k
_

x,-1 =-- ) P, (U_k -1 X_k dFx,,Ix_. ,(Xk [X_k -1 ).
That completes the induction step. So that the integral is defined whenever the
integrand is measurable, define (as in [9])

for any measure / and measurable, extended-real-valued function L with the
convention +-(+o)=-o+(+o) +o.

For stage 0 define

Po(xo): minimize Co(Uo; Xo)+/01(Uo; Xo)

subject to Aoouo bo(xo),

Uo_->_ 0.

The preceding formulation of multistage stochastic programming with (fixed
linear) recourse resembles that of Dantzig [3], who introduced the problem in [2].
Wets [10] presents results for a special case of the problem in which X is
independent of_Xk-1 for each 1 =< k _-< K, but he also formulates the problem in the
absence of stagewise independence. The Dantzig and Wets formulations differ
from the one given here essentially in replacing the definition (1) above with

(1’) p (u___, x_,) E[p (u____, _X_)]Xk_, xk_,],

Section 2 shows that k(__.k_l; __Xk_l) is indeed a version of the above conditional
expectation, but Example 2.3 reveals that using (1’) instead of (1)i.e., defining
Pk(U_k-;Xk-1) to be any version of E[p(u__;X_k)lX_k_.]can result in
E[Po(Xo)] (the optimal value of the stochastic programming problem) being
ill-defined. According to Theorem 2.1, this cannot happen with the formulation
presented here.

A separate issue is whether the function pk(R_k_l;" has the measurability
property that permits the integration in equation (1). (The same property must

A more precise way of writing the integral is

f Pk(1Ak-1 _Xk-1, Y) dFxl_x_, (y[_X_k-).

The abbreviated notation will be used often.
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hold or the conditional expectation in (1’) is undefined.) Section 3 presents
conditions under which the integrand in (1) has the requisite measurability
property at each stage; it relies upon Theorem 2.2 (below) and Rockafellar’s
theory of normal convex integrands [6].

2. Uniqueness of the problem’s optimal value. For now, m.easurability is
assumed while attention focuses on the issue of whether Po is well-defined. Since
the r.c.d.f, in (1) is not necessarily unique (there may be more than one function
having properties (a) and (b) above), the definition of/ in terms of an integral
over "the" r.c.d.f, for X given X_ seems to raise the possibility that p can be
essentially altered simply by using a different r.c.d.f, at each stage. In fact, that is
not the case.

Suppose that for 1 =< k -< K, Fxl_x.,_, and Gxlx__, are both regular conditional
distribution functions for X given X__. Using Fxl_x_, at stage k for each k
generates a sequence of problems P:,..-, P[ via the recursion

p,(z ;_x_,)= J p,(z;_x) dFxl_x_,(x[x_-,).
The functions Gxlx____,, 1 <= k <-_ K, generate a parallel sequence P/,. ., PI;. (The
data b and c are the same for P, and P’.)

THEOREM 2.1. For each 1 <= k <-K, p,(. x)= p’(. x) for almost every
2x_. Thus Po is essentially the same as 1)o.
Pro@ Let 1 =< k _<- K. Assume that

p,+,( ;_x) pL,( ;_x) for a.e. x.
Then

p,(.;_x_) =p’(.;_x) V_x T,

where P{_X_ T} 1. By the product measure theorem [1, p. 97],

I Xr(x--,, xt) dGx,,lx_,,_,(x_tlx_.,-,) Vx__,_, e1 0o,
where P{k-1 e co} 1.

Property (b) of the r.c.d.f, implies that for each fixed xk,

Fxklxk--,(X 1" Gxklx_k__,(x l" a.e.

Since R" is separable and distribution functions are right-continuous, there is a
set 5e’ of measure such that if _X--1 ’,

If __xk - ,- [’]

for every z R u-’. That completes the induction step. The induction hypothesis
is trivially true if k K. [-I

If f" Rn- R and g" Rn R, f= g means f(x)= g(x)Vx R".



MULTISTAGE STOCHASTIC PROGRAMMING 521

THEOREM 2.2. Let g" R"Rsk-[-, +oo] be Borel measurable. Let
Fkl_x_ be any regular conditional distribution function for Xk given Xk-1 such that
Fxlx_k_,(xkl is Borel measurable for each fixed xk. Let

h(u, x_k__,)= f g(u, x_k_-,, y)

for every u R" and every X_k-. Then h is Borel measurable, and

()

for each u R ". If, for a given u,

then (2) holds as an equality, and

h(u, x__k-,) E[g(u, Xk)JXk-, X_k-,]

for a.e. X_k-.
The theorem extends Fubini’s theorem [1, p. 1()1] to agree with the extended

definition of integration given after equation (1). A proof appears in [4].
The first part of the theorem is used below to demonstrate neasurability of

(whose role is played by h in the theorem) while the second part justifies the usual
economic interpretation of the stochastic programming problem. The second part
implies that if Ep-+(u_, Xk+l)< +oNfor which the Appendix’s Proposition A.1
gives a verifiable sufficient conditionmthen E[pk+(U_k;X__k+)].Xk =_Xk] exists and
equals /Sk-l(_Uk ;_X_k) for almost every _xk. Thus, /k+(_Uk _X_k) is the expected
(minimum) cost of operations in stages k + through K given past decisions
uo,..., uk and states of nature Xo,"., Xk. The problem Pk(_Uk-;_X_k) involves
trying to choose uk to minimize the sum of current costs, Ck (_Uk; _Xk), and expected
future costs,/k+,(_Uk ;_Xk). To be precise, at stage k the decision-maker observes
xk; knowing _xk and his past decisions, _uk_, he seeks a stage k decision Uk that
minimizes current costs plus expected future costs subject to the constraints

k--1

AkkUk bk (X_k)-- AkUi
=0

Uk >=0.

Theorem 2.2 implies Pk(_Uk-; Xk-) is a version of E[pk(Uk-; Xk)]_X_k-]. It
does not follow that one could simply take k(U_k-;" to be any version of the
conditional expectation and still conclude (as in Theorem 2.1) that Po is well-
defined. The example below illustrates how choosing a different version of the
conditional expectation could make Po essentially different.

Example 2.3. Let K 2, let Xo 0 almost surely, and let X and X2 be
uniformly distributed on [0, 1]. Let

c2(u;_x)-0, c(_u;_x,)-=xu, Co(Uo; 0)--0.
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Let the constraints be

Uo =< 1,

ui __--<1,

u2l,

U(), Ul, U2 0.

Clearly, 2 is everywhere 0 or +oo. Redefine it for each ul on a set of measure 0:

ff;(Ul __Xl) -1,

+o0,

U 20, X Ul,

Ul_0, Xl Ul,

otherwise.

For any fixed .1, P;(_U_I __X1) i02(.__1 __Xl) for a.e. _x1, so p2(__Ul; Xl) and/(ul X1) are
two different versions of E[pz(_Ul;_X2)l_X1]. Notice, however, that there is no
regular conditional distribution function Fzl_Xl such that

0.(_U.1 _X.l) j p2(_Ul __X2) df’x2lx_, (X2l__Xl)
for every _u_ and _Xl.

Use of /5 in place of /02 in the stage 1 objective function results in the
sequence of problems

P’ (Uo; _x)" minimize x u Xx,}(u )
subject to u -<- 1

Uo, u 0

P,(Xo)" minimize’-23

subject to 0 =< Uo-< 1.
2Thus inf (P)(())) -< 0 inf (Po(0)).

Although p;(_U.l was created by redefining P2(_Ul; on a set of measure 0
for each fixed _Ul, the set of everyx such that .5 ;(__U __Xl) P2(Ul __Xl) for some_u1 has
positive measure; that is the source of the discrepancy. In general, Pk(’; Xk)
depends (at least potentially) on the whole of the function t0k+l( ;_Xk). Altering
,0k+l(’;_x_) on a set of measure 0 alters Pk(’; X_k) on a set of measure 0 and
therefore leaves .5 essentially unchanged. Altering the function on a set of
positive measure can essentially alter Po and destroy the original problem.

3. Measurability of each stage’s objective function. Let/x(. [_x_) denote
the Lebesgue-Stieltjes measure determined by Fxl_x__,(" Ix-l). The recursive
definition of the stochastic programming problem tacitly assumes that at each
stage, for a.e. x_, p(_u_l; X-l, is --measurable for every _u_, where - is
the completion of the Borel sets in R s with respect to/x( I_x_l); if that is not the
case, the function p (. ;_x_l) is undefined on a set of x_’s of positive measure,
and the recursion cannot continue.

DEFINITION 3.1. /:+l is said to be essentially defined. Let 1-<-k =< K. One
says that/ is essentially defined if and only if: (i)/+l is essentially defined; and
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(ii) for a.e. _Xk-1, Pk (_Uk-1 _Xk-1, is measurable with respect to the completion of
the o--algebra of Borel sets in Rk under the measure/xk(" [__xk-.-) for each _uk--1.

PROPOSITION 3.2. Let 1 <- k <= K. Assume"
(a) /0k+ is essentially defined, and there is a Borel measurable function

such that fik + xk rio,_ k/i( xk) for a.e.
(b) frok + 1(" _x.k) is convex for a.e.
(c) ck and bk are Borel measurable.
(d) G(" ;_xk) is convex for a.e.
(e) there is a countable collection V of Borel measurable functions v R’-’

x R sk - R " such that for a.e. _X__k, V(U_k-1,_X_k) (-] dom rk(..k-, ;__Xk) is
dense in dora rk(_U_k-1, X_k) for every U_k-1, where

V(...l_k- _X.k { "[’ (__.k 1, ___Xk); V (Z V}. 3

Then k is essentially defined, and there is a Borel measurable function -o
P k such that"

(i)/0,( ;Xk_I)=ffk( ;_Xk-1) for a.e. _x.k--; and (ii)/0k( ;_xk.-1) is convex for a.e.

Proof. Let S be a Borel set of measure 1 such that S implies:
(i) G(" )and -p+(. ;) are convex;
(ii) V(_,g)dOmrk(k_.," ;k) is dense in dom rk(__,. ;k) for

every k-1
(iii) k-,-(" ) -op+(" ,.).

Redefine -oP+I(" ;ff) outside S to be identically +. Let P be the
(parameterized) problem formed from P by using -o

p+ in place of /. Denote
its return function by r and its perturbation function by p. By [1, 1.5.6], r is
Borel measurable.4

The first step in the proof is to show that

(3) p(z; _X_k) nf{rk(z, v(z, _xk); __xk)" v V}

Let z R Nk-’, X_k R s.
0 0If pk(Z; Xk) +0O, rk(z, uk _xk) +0o for every ukR", and (3) holds trivially.

Alternatively, suppose p(z xk)< +0o.

Choose a sequence {u} such that

and

r(z, u;_xk) < +m for every n

r(z, u; _Xk)Np(z _x).

Choose {a,}c R such that r(z, u;_x)<a, for every n and
For any given n, suppose that u lies in the relative interior of

dom r(z,. ;_xk) &{uk r(z, Uk; Xk)< +0o}.5 Then by[7, Thm. 10.1] and property
(ii), there is a function v V such that

ork(z, v(’z, _xk); x)< a. + (l/n).

Cf. the definition of "normal convex integrand" in [6].
4 Note that Ash does not use the term "Borel measurable" in the same sense as this paper, where it

means "measurable with respect to the o--algebra of Borel sets." Also, the theorem in [1] must be
extended slightly since rk (_Uk" Xk) may involve a sum of the form ++(-), which Ash does not define.

See [7] for the definitions of "relative interior" and "relative boundary".
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Alternatively, if u lies in the relative boundary of dom r(z, .; Xk), Corollary
7.3.1 of [7] reveals the existence of a point w in the relative interior of
dom r(z,. xk) such that r(z, w" xk)< an, and the preceding argument can be
applied to w.

Thus, in any case, there is a sequence {v n} c V such that
0 /)n ,_r(z, (z, x);_x)-p(z" x).

That demonstrates (3).
Since r and v are Borel measurable, r(z, v(z, _xk); xk) is a Borel measurable

function of (z, _xk) for each v V. As the infimum of a countable collection of Borel
measurable functions, p is Borel measurable. Then by Theorem 2.2,

Pk -1 -1 Pk(__Uk-1," x_k) dFxklx_k_,o

is defined for each_uk and Xk-1 and -o
Pk is Borel measurable. By Proposition A.2

(Appendix) -o
Pk (" _Xk-1) is convex for every xk--1. Since pk (. _xk) p(" xk) for

a.e. _xk, Theorem 2.2 reveals that for a.e. xk-1, there is a Borel set B in R s" such
that k(BIX_k_l)= and Pk(" ;Xk-1, y)= p(’; Xk--1, y)if y B. Consequently, Pk
is essentially defined. [-l

The preceding proposition’s assumption (e) is appealing but not directly
verifiable. The next proposition gives a sufficient condition for it. The hypothesis
of Proposition 3.3 is the conclusion of Theorems 5.5, 5.9, and 5.12 of [5].
Consequently, one can merge the hypothesis of any of those theorems with
assumptions (c) and (d) of Proposition 3.2 and prove inductively that pl is
essentially defined.

PROPOSITION 3.3. Let 1 <= k <-_ K. Suppose there are matricesD and D2 and a
Borel measurable function d" Rs - R such that

dom rk(" ;_x_k)= {_U_k Du__. +Dzuk >--d(x_k),u_k =>0}

br a.e. k. Then assumption (e) of Proposition 3.2 holds.6

Proof. Let W [D2 i-1]. There are square matrices M1," , M,, such that,
for any given a R", w is an extreme point of {w Ww a, w >-0} if and only if
w 0 and w =Mia for some i. Let a1,’’’, a be the extreme directions of
{w" Ww =0, w >=0}. Now redefine M1,"" ", M,, by deleting all but the first nk
rows of each matrix, and redefine a,..., a by deleting all but the first nk
components of each vector. For any z R Nk-1 and any _Xk,

dom rk(Z," ;_Xk)= {y y Y AM(d(Xk)-DlZ)+ ya,
i=1 i=1

A, 1, A--> 0Vi, y _-->_ 0V i, y _-> 0}.
i=1

Let V be the collection of functions v such that

v(z, x_)----- E A,Mi(d(x_)-D,z)+ Aiai,
i=l i--1

where =l ’ 1, )t _-> 0Vi, y-> 0Vi, and and y are rational numbers.

6 Actually, the linear mappings Da and D could be replaced by a Borel measurable mapping and
a continuous mapping, respectively. See the proof of Proposition 4.6 in [4].
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THEOREM 3.4 Assume for each 1 <-_ k <-_ K:
(a) Ck and bk are Borel measurable;
(b) Ck(" ;__Xk) is l.S.C, and convex for a.e. X_k;
(C) There are functions fig and ak in LI(Rsk) with values in [-oo, 0] such that

for every Uk and every Xk, and

if l <-i <=.k; 7

(d) {w" AkkW O, W >= 0} {0}.
Then 01 is essentially defined, and for each l <= k <=K, there is a Borel

omeasurable function ; such that p(. ;_X_l)=p(’ ;_x_,) or a.e. X_k-1 and
P’(" ;_Xk-1) is I.S.C. and convex for a.e. X_k-.

The theorem’s proof uses the following lemma, which extends [6, Thm. 5].
LEMMA 3.5. Let f" R"xR’[-oo, +oo] be Borel measurable. Let Ix be a

Borel probability measure on R". Assume that [(. x) is l.s.c, and convex for a.e.
x c R’. Then there is a countable collection U of Borel measurable junctions, u"

R - R" such that U(x) (-I dom [(. x) is dense in dom [(. x) ]:or a.e. x, where

U(x) {u(x)" u e U}.

Proof. Redefine f( x) to be identically +oo on the set of measure 0 where it
is not lower-semicontinuous and convex.

Define a multifunction K1 R R by

Kl(X){_cR n’f(. ;x)GR}.

Since f is Borel measurable, the graph of K1 is a Borel set, and therefore by
[6, Thm. 2], K is measurable with respect to 3(R")*, the completion of the
o--algebra of Borel sets under the measure Ix. Consequently,

S -- {X" f(u; x) R for some u}

={x’K,(x)#}

K-I(R")e (R)*.

Define a multifunction K2 by

Kz(X) =-{u R " f(u x) -oo}.

An argument parallel to the preceding one reveals that

S2 = {x" f(u x) -oo for some u}

Let

{x" Ke(x) }_ 3(R’)*.

0,
g(u; x)=

f(u; x)
x $2 and f(u; x) < +oo,
otherwise.

The notation signifies that Xi is a subvector of Xk.
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Since (R xS2)("]{(N,X )" f(u; X)< +CO}6N(R")*, g is N (R ")*-measurable. If
xe $2, f(’" x) is identically -co on its effective domain; hence, for each xR",
g(. x) is a lower-semicontinuous convex function with the same effective domain
as f(.; x).

Let T= S U S. By [6, Thin. 5], there is a countable collection U of
N (R ")*-measurable functions u" T-, R such that U(x) dora g(. x) is dense
in dora g( x) for every x e T. Extend each function in U to a function on R by
making it identically 0 outside T. If u e U, there is a Borel measurable function
fi" R" --) R such that u fi a.e. (/x) [8, p. 145]; let/) be the collection consisting
of one such t/ for each u e U. Then (](x)= U(x) for a.e. x R since U has
countably many elements. Hence, there is a Borel subset To of T such that
/x(T) =/x(T) and /Q(x) f-) dom g(. ;x) is dense in dom g(. x) for each x T.
Since domf(.; x)=dom g(.; x) for any x eR" and domf(.; x)= if x,g T,
the collection U has the desired property. E!

Proof of Theorem 3.4. Let 1 _-< k =< K. Assume that iG+ is essentially defined
and there is a Borel measurable function -o

P k + such that Pk + (" __Xk pO+(. ,_x)
for a.e _x_ and p+(. _x) is 1.s.c. and convex for a.e _x. Also assume that

Pk+l

for every _Uk and every xk, where 6 and y have the nonpositivity, mean, and
covariance properties of flk and Crk, respectively, in (c).

Let P be the problem formed from Pk by replacing Pk+l with /5 k+l
Proposition A.1 (Appendix) implies that p(.; _Xk)>--CO for a.e. _Xk. Then by
Proposition A.3, p( _Xk) is 1.S.C. and convex for a.e. Xk. Since Pk+l(’- X_k) > --CO

and Ck(" _Xk) > --CO for a.e. _Xk, r(" _Xk) is 1.S.C. and convex for a.e. _X_k by [7, Thin.
9.3]..As a finite sum of Borel measurable functions, it is Borel measurable.
Lemma 3.5 reveals the existence of a countable collection U of Borel measurable
functions u" R sk -, .R Nk such that U(X_k) (’1 dom r(. _Xk) is dense in dom r(. ;_Xk)
for every Y_k S, where S is a Borel set of measure 1. Let T be a Borel subset of S of
measure such that _Xk T implies r(. Xk) and p(. ;Xk) are 1.s.c. and convex.
Redefine r and p to be identically +CO outside T. Thn for any z R N-’ and
Xk R s,

rk(z, uk,p(z x)= lim inf (inf
o

z’-z

lim inf {r( ;_Xk) [l_Uk-1- ZlI2 < In}
n-oo _u

lim inf {r(yk(x); ._x) I[_u_l(x)- zll2 < In, g}.

It follows that p is Borel measurable. An argument identical to one in the proof of
pk(’; x )Proposition 3.2 shows that G is essentially defined and/ x 1) -o

for a.e. xk_ 1.

By-Proposition A.1, there functions d and 4/ in L(R s-l) with values in
[--.CO, 0] such that
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for every Uk-1 and every_xk_; also, Elg((_k_l)bi(_)l < +cx3 if 1 _-< _-< k s. Then by
,--0

Proposition A.4, Pk(" Xk-1) is 1.S.C. and convex for a.e. Xk-1.
That completes the induction step. The induction hypothesis is obviously true

if k =K. 1-1

Appendix. These propositions are restatements of some propositions in [5],
whose numbers are displayed in parentheses.

PROPOSITION A. 1 (2.2). Assume for each 0 <= k <- K,
(a) Forsome selectedfunctions [k andak in L(R sk) with values in [-c, 0],

[or every Uk and every
(b) E]k(Xk)bi(Xi)l<+ i[O<=i <=k. (Xi is a subvector
(c) {w" Akkw 0, w => 0} {0}.
Then, for each 0 <= k <- K, Ep(u_k-; Xk) < +, and them are functions 6k and

yk in LI(RSk), with values in [-, 0], such that

[or every uk and every
PROPOSIWION A.2 (3.2, 3.3). Let 1 <- k <-K. If ck(" ;_xk) and Pk+i(" ;_xk) are

convex ]’or every xk, Pk( xk_l) is convex ]:or every
PROPOSITION A.3 (3.4). Let l<-k<-K. Assume that {w’Akkw=O,

w--->0} {0}. Fix x_k. If Ck(’;_Xk) and fik+l(’X_k) are l.s.c, convex [unctions and
Pk( x_k) >-, then p’( x_k) is l.s.c, and convex.

PROPOSITION A.4 (3.5). Let l<-k<=K. Fix xk-. I]pk( ;xk-1, Sk) is l.s.c.
and convex for every ik and if Pk(’;_Xk-)>--, then 10k(" ;_xk-1) is l.s.c, and
COlil)ex.
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Strictly speaking, the argument is circular since Proposition A.1 makes no sense unless
/0:,...,/1 are essentially defined. But the proposition’s inductive proof can be woven into the
theorem’s (inductive) proof to avoid the circularity.
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MULTISTAGE STOCHASTIC PROGRAMMING
WITH RECOURSE AS MATHEMATICAL PROGRAMMING

IN AN L, SPACE*

PAUL OLSEN?

Absll’acl. Multistage stochastic programming with recourse has been formulated in terms of a
recursive sequence of parameterized, finite-dimensional mathematical programming problems. It has
also been formulated as mathematical programming in an Lp-space. The two formulations are
reconciled by showing that the Lp-space, or static, formulation is a restriction of the recursive, or
dynamic, formulation and by deriving conditions under which any solution to the static formulation
solves the dynamic formulation.

Introduction. Wets [15] identified two-stage stochastic programming with
recourse with the problem

SP2: minimize CoUo+E[inf {CUl: Alu X1-Alouo, ul =>0}]

subject to Aoouo bo, Uo >-0.

Dantzig [3] (also see [2, Chap. 25]) introduced essentially the same problem under
the rubric linear programming under uncertainty. In stage 0 the decision-maker
seeks Uo R " to minimize the sum of current costs, CoUo, and expected future
costs (anticipating an optimal decision in stage 1) while satisfying the stage 0
constraints.

Aoouo bo, Uo >= O.

In stage 1 he observes a realization x of the random vector X1, which determines
the stage 1 resources and requirements; he then seeks u R n’ to minimize the
current costs, c u 1, (the future costs are 0) while satisfying the stage 1 constraints

A.lU xl-Aouo, Ul >=0.

The two-stage problem’s structure extends naturally to K+I stages
(1 _-< K < +c). The following formulation of multistage stochastic programming
(SP) with recourse is slightly more general than SP2, as it admits nonlinear,
stochastic costs and lets the vector of resources and.requirements be a function of
a random vector instead of the random vector itself.

For 0 _-< k =< K, let Xk be a random vector describing the state of the world in
stage k; to be consistent with SP2, let Xo assume a single value, Yo, with
probability 1. Let Sk be the number of components of Xk. Let Xk be the random
vector (Xo,’", Xk); let Sk =io St" Let "Xk" denote a realization of Xk, and
"Xk" a realization of Xk. Let Uk be the vector of stage k activity levels; Uk R "k.

* Received by the editors July 19, 1974, and in revised form April 27, 1975.
t Institute for Defense Analyses, Arlington, Virginia 22202.
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Let Uk be the vector (Uo,’", uk); let Nk=ioni. The random vectors
Xo,""", X: are assumed to be defined on the same sample space and to have a
known joint distribution independent of the decisions Uo,’", u:.

Let PK+I(Uk Xk)----0. NOW let 1 <_-k <-K, and suppose that k+" R sk R sk

[-, +] has been defined. Let

where

rk (_Uk _Xk) -= Ck (_Uk Xk) +/k+ (Uk _Xk) + q(Uk _Xk),

q(_Uk _Xk) / 0, zjk=oAkjUj =bk(x-k)’ U_k>----O,
+, otherwise.

By convention, ++(-o)=-o+(+c)=+o. The current cost function Ck: Rs
R sk - [-, +], and bk: R sk - R"; Ao,...,A are real matrices. At stage k
the decision-maker seeks to solve the problem

Pk (k- k)" minimize r(_, v; k )-
R nk

Let pk(k_l;Yk)=inf(Pk(g_;yk)), the problem’s optimal value (+ if the
problem is inconsistent). Let Fx_, be a regular conditional distribution func-
tion for Xk given Xk-I (for the definition see [1, p. 263] or [8]); its existence
follows from [1, pp. 263-66]. Define

Pk (k k-1 j Pk (g-1 k dFxlx_ Xk Ik ).

Given the convention +-(+)=+, the integral is defined whenever the
integrand is measurable; for any measure and measurable, extended real-
valued function L

f fdu= f+ du-l f- du,

where f+ is the positive part of f, and f- the negative part. The definition of
completes the recursion.

The stage 0 problem is

Po(xo)" minimize Co(Uo; Xo)+ P(Uo; Xo)

subject to Aoouo bo(xo), uo O.

Since Xo o almost surely, it makes sense to identify co(uo; ), O(Uo; and bo
with their values at o and to write the stage 0 problem as

Po: minimize Co(Uo) +
subject to Aoouo bo, Uo O.

Po is the SP problem’s equivalent deterministic problem.
The problem sequence Po,’", P constitutes the dynamic formulation of

the SP problem. The formulation Po,’", P is the natural extension of SP2
because

for almost every (a.e.) [8]. At stage k the decision-maker observes the current
state of the world, x (a realization of X); he knows the past states of the world,
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_Xk_l, and his past decisions, ___k-l. He seeks a program Uk to minimize the sum of
current costs, Ck (._k X__k), and expected future costs, k+l (,__k Xk), (anticipating
optimal decisions in the future) while satisfying the stage k constraints

k-1

AkkUk bk (Xk) AkjUj, Uk >---- O.
=o

The dynamic formulation Po,’", PK is basically the same as the earlier
formulations of Dantzig [3] and Wets [16], [17]. The principal difference is
technical: Dantzig and Wets define iO+l simply as a conditional expectation rather
than an integral over a regular conditional distribution function, with the result
that ,6 may be ill-defined. This and related measure-theoretic issues are treated in
[8] and will be skirted here/.

In contrast to the dynamic formulation, which defines the SP problem
recursively in finite-dimensional space, the static formulation defines it as
mathematical programming in function space. Eisner [4] defined it as a mathemat-
ical programming problem in an Lp-space; the same approach was taken in [5];
Rockafellar and Wets [12] took a similar but more general approach. In this paper
the static formulation is developed from the dynamic formulation. The resulting
static formulation, which embraces Eisner’s as a special case, is shown to be a
restriction of the dynamic formulation. The two are shown to be equivalent under
certain conditions on the problem data.

2. The existence of measurable optimal programs. For an arbitrary
mathematical programming problem

MP: minimize f(u)
subject to u e O,

one says that a program u solves MP if and only if: (i) u e O and f(u) inf (MP); or
(ii) inf (MP)= +oo. If MP has a solution, one may denote MP’s optimal value by
"min (MP)" instead of "inf (MP)". In view of the above, it is clear what is meant by
the statement, "uo solves Po."

DEFINITION 2.1. Let 1 _--< k _-< K. Suppose Uo,""", /’/k-I solve Po,"’, Pk-1.
Then uo,’", Uk solve Po,’",Pk if and only if: (i) Uu: RskR nk is Borel
measurable, and Uk(Xk) solves Pk.(Uk-I(k-1); Xk) for almost every (a.e.) _Xk; or (ii)
inf (Po)= +.

THEOREM 2.2. Assume for each 1 <- k <-K:
(a) Ck and bk are Borel measurable.
(b) Ck( X_k) is proper, lower-semicontinuous, and convex for a.e. x_u.
(c) There are functions flk andak in LI(R s) with values in [-c, 0] such that

.for every U_k and every X_k, and

for each 1 <- <- k. 2

(d) {w: Aw 0, w => 0} {0}.

An extended real-valued function is proper if it is nowhere-and not everywhere +c [9].
The notation implies that Xi is a subvector of Xk.
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Assume that Co is lower-semicontinuous, proper and convex and that
{w Aoow O, w >- 0} {0}.

Then there is a sequence of programs Uo, ", UK solving Po, ", PK.
The conclusion is meaningless unless Po, ", PK are well-defined; Theorems

2.1 and 3.4 of [8] show that, given (a), (b), (c) and (d), Po," ", PK are well-defined.

Proof of Theorem 2.2. Assume that inf (Po) < +oe; otherwise, the conclusion
is trivially true.

oFor each 0<-k-< K, there is a Borel measurable function Pg+l such that"
0

Pg+l (" "_xk) /5k+1 (" "2) for a.e. xg and -o
Pk+l (’; xg) is lower-semicontinuous

o(l.s.c.) and convex for a.e. xk [8, Thm. 3.4]. Substitute ,0g+l for pg+ in the
definition of Pk for each 0=< k =< K, and drop the superscript "0". This leaves
Po,"’, PK essentially unchanged, and therefore, if uo,"’, UK solve the new

sequence of problems, they also solve the original sequence.
By Proposition A.1 (Appendix), p >-oe. Then since Co> .-co, Po’s objective

function is 1.s.c. and convex [9, Thin. 9.3]. Po’s feasible region is bounded. It
follows that Po is solvable. Choose uo to solve Po; P(Uo)< +oo because inf (Po)<
+0(3.

Now let l<=k <=K, and assume that uo,’" ", Ug_l solve Po," "’, Pg-1, with

(1) pk(U__k_l(X__k_-l);X__k_l)<nLO0 for a.e._Xk_l.

Define

k(" ;__Xg)-- rk(k_l(X__g_l) ;__Xg).

Since cg,/Sk+l and bg are Borel measurable, so is rg, and then since _ug_ is Borel
measurable, so is k. Since, by Proposition A.1, pg(.;x,)>-oo for a.e. xg,
?a(. ;_x)>-c for a.e. x. Line (1) above implies that

pg(.ug__(_xk_);_xg)<+oe fora.e._xg,

and therefore, for a.e. xg, k(v; xk < +oo for some v eR ". Combining these results
reveals the existence of a Borel set T in Rs such that" P{_Xk T} 1; and for each
_xg e T, ?g (. ;_xg) is 1.s.c., proper and convex, and

inf g(1); Xg) pk(,_k_l(Xk_l); Xk)

is finite. Apply 11, Thm. 5] and then 11, Corollary 4.3] to verify the existence of
a function ilk" T-* R such that: fig is if--measurable, - being the completion of
the o--algebra of Bore! sets in Twith respect to the measure induced byXg and

rg(fqk-l(_k-,), /k (_g); Xg)= Pk(ff_k-l(.k-l); X_k) VX_g T.

Choose ug R s. --> R n to be any Borel measurable function equal to fig a.e. on T.
Of course,

&+(_u(_x); _x)< +o

which completes the induction step. [-I

for a.e. xk,

3. The static tormulation of the SP lroblem. The preceding section having
defined the concept of uo,"" ", u/ solving Po,’" ", P, it is natural to inquire
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whether there is a mathematical programming problem, P, to which the function
u--(Uo, "", us:) is a solution. Since Uk is a Borel measurable function on R sk

(Definition 2.1), and therefore by extension a Borel measurable function on R s,
where S is the_ number of components of (Xo,""", Xs:), the variables in P should
be Borel measurable functions on R s. In fact, the variables in P will be restricted
to an Lp-space with p [1, +oo].

To introduce Psome notation must be defined. Let (R s) be the tr-algebra
of Borel sets in R s. Let/x be the probability measure on (R s) determined by the
random vector XA(Xo,..., Xs:). If u: (R s, (RS), ix)R", and pc(0, +oo),

Ilull lu(x)l

where l" is the Euclidean norm on R" (any fixed norm on R" would do), while

Ilulloo is the essential supremum of the function lu(x)l. Let A be the matrix whose
(k, ])-element is itself a matrixmnamely, Akj if ]_--< k and 0 if not. (Recall the
matrices Ako, ", Akk from the definitions of Pk.) LetMbe the number of rows in
A and N the number of columns (N=NS:). Fix p e[1,+oe]. Define
E=L(R s, N(RS),lx) and F=Ly(R s, t(RS),lx). E and F are considered
seminormed vector spaces of functions; thus, if u, v e E, u v if and only if
u(x) v(x) for each x e R s.

E will be the optimization space for P. If uo, "", us: solve Po, "", Ps:, the
vector u (uo," ", us:) has the property that

Uk(X’)= Uk(X ’’) if_x,=_X V O<-k <-K;

let U be the set of every u e E with that property. It is the subspace of E consisting
of every function u whose stage k components, uk, depend only on information
known at stage k; in the terminology of Rockafellar and Wets [12], U is the set of
nonanticipative functions in E.

Let b (bo, , bn). For any u: (R s, N(RS))- R, let

c(u) E

(X is a subvector of X); the convention that ++(-)=-+(+)=+
remains in force. Define T: E F such that (Tu)(x) A (u(x)) for each x R s. T
is continuous and linear.

The static formulation of the SP problem of which Po, ", Pnconstitute the
dynamic formulation is

P: minimize c (u), u e E,

subject to Tu b a.e.(/x),
u->0 a.e.(/x), u6 U.

(Of course, P is inconsistent unless b e F.) Eisner’s formulation of multistage SP
with recourse [4] is essentially P with c a continuous linear functional. P is a
special case of the formulation in [12].
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Although the dynamic formulation of multistage SP is the natural extension
of the two-stage SP problem introduced by Dantzig [3] and investigated in depth
by Walkup and Wets [13], [14], the static formulation has an independent
rationale. (See [10].) The decision-maker assigns the cost

K

)_2 c (Vo, v x)
k =0

to the sequence of decisions Vo," , vK (v, R "k) when the sequence of states of
the world is Xo,""", xK. He seeks a program u: R s - RN; u,(x) tells him what
decision to make in stage k if state of the world is Xo in stage 0,. , xk in stage
k, , and xn in stage K. But in stage k he will not know xk+l, ", xn; hence, uk
must depend only on xo,"’, xkmi.e., u must be chosen from U, the set of
nonanticipative programs.

Both formulations of SP with recourse have appealing rationales: in the
dynamic formulation, the decision-maker seeks a stage 0 program Uoe R " to
minimize the sum of current cost and expected future cost, which is computed
recursively; in the static formulation, he seeks a program u e U, determining a
response to each possible state of the world, so as to minimize the expected total
cost from stages 0 through K. It would be distressing if the two formulations were
not intimately related. A close relationship can be useful, as well as emotionally
satisfying, because for some purposes one formulation is more convenient than
the other. The static formulation is more computationally tractable than the
dynamic formulation; it admits an elegant duality theory (see, for example, [4], [5]
and [10]), and can be solved in some cases by solving a sequence of finite-
dimensional "discretizations" [6]. The dynamic formulation, as a recursive se-
quence of (parameterized) finite-dimensional problems, is generally more fruitful
than the static formulation for characterizing solutions. In the duality and
discretization theories for P, it is important to know when P has a solution
satisfying the constraints everywhere on some set of measure 1, not just almost
everywhere; the dynamic formulation can furnish conditions. (See the use of
results from [12] in [10] and results from [7] in [Ta].

This paper’s principal results are Theorems 3.1 and 3.2. They will be proved
via two propositions interesting in their own right.

Define

g(u) E min {c(_u(X); X), O}
k =0

and
K

e(u)= E E[c.(X);X)]
k=0

for any u: (R s, Y3(RS))--> R r. Of course, c__(u)<-c(u)<-e(u).
THEOREM 3.1. Assume Uo, u: solve Po, P and u E

(u =(Uo,"" ", uK)). If -oo<__c(u) or ?(u)< +oo, then u solves P, and min (P)=
min (Po).

THEOREM 3.2. Assume min (P)= inf (Po). If u solves P, then Uo,"’, u
solve Po, P.

Combining the two theorems produces
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THEOREM 3.3. Assume there is a sequence of programs ao, aK solving
Po, PK such that Ilallp < +oe and -o<c(a) or e(a)< +oo. Then P is solvable,
and if u solves P, uo, u solve Po, Pr..

Of course, Theorem 2.2 gives a sufficient condition for the existence of
programs uo." "’, u: solving Po,’" ", P/. Moreover, its hypothesis leads to a
simple condition assuring that Ilu[l < /o. The hypothesis of Theorem 2.2 implies
that

{w: Aw=O, w >_-0}={0}.

If uo,""", u: solve Po,’’’, P:,Au(x)-b(x) and u(x)>=O for a.e.x. It follows
that if Ilbll < and uo,’", u solve Po,’", P, I[ull < (us [7, Lemma
2.1.]).

The assumption of Theorem 3.3. that g(u) >- or g(u) <+ holds automat-
ically if Co,""", c have certain boundedness properties:

(i) Suppose that for each 1 N k N K for a.e.k,

c(z; )()[zl+()
for every z R u, with Lq(R s) and L(RS)q being the conjugate
exponent of p. Also suppose that Co< +. Then c(u)<+ for every uE (by
H61der’s inequality).

(ii) Suppose that for each 1 N k N K for a.e. ,
for every z6R, with Lq(Rs) and L(RS). Also suppose that
Co > . Then (u) > for any u N.

Of course, if c(u)(u, c*) for some c* e L(R s, N(R s), )-with
1/p + 1/q lthe hypothesis of (i) and the hypothesis of (ii) both hold.

DEFINITION 3.4. Uo satisfies the explicit constraints of Po if and only if
Uo R, Aoouo bo and uo0. The function uo,"’, u satis[y the explicit
constraints of Po,’",P if and only if" uo,"’, u-i satisfy the explicit
constraints of Po, ",P-; u" (RS% N(RS)) R"; and for a.e. ,

k

E Aiuii) b), )0.
=o

PaoposITOy 3.5. I uo, , u satisfy the explicit constraints o[ Po, , P,
then

inf (Po)-<_E ’, Ci(_U_i(); Xi)+P,+,k(k); Xk) <= C(U)
=o

for each 0 <= k <-_ K.
Proof. The first inequality clearly holds if k 0. Let 0_-<_ k _-< K and suppose

that the first inequality holds for this value of k. Let F_xk be the distribution
function of _X.

I[kinf (Po) i-o ci (_if,i); _x,) +/5+,((_x); _x dFxk
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(2)

The last inequality follows from [8, Thm. 2.1]--a slight extension of Fubini’s
Theorem.

COROLLARY 3.6. irff (Po) =< inf (P).
Proof. If inf (P) +oo, the conclusion is trivially true. Suppose inf (P) < +oo.

Let u be feasible in P. Then uo,"’, UK satisfy the explicit constraints of
Po,""", PK, and the conclusion follows from Proposition 3.5.

The corollary and its proof make precise and verify the first section’s
assertion that the static formulation is a restriction of the dynamic formulation.

PROPOSITION 3.7. Assume uo,’’’, UK solve Po,’", P. If-oo<_c(u) or
e(u) < +oo, inf (Po) c(u).

Proof. If inf (Po) +oo, inf (Po) c(u) by Proposition 3.5. Suppose inf (Po) <
+oo. Suppose _c(u)>-oo. Let l=<k =< K. Assume that

k

C(U) Z JE[ci(,__i(,_i);Xi)]wE[p+l(,_k(,t);X)]
=0

and E[ff{+k(_k); Xk)]< +oo. (/0+1 is the negative part of ffk+.) Then since
E[e-(_u_(X); x)]< +oo,

c(u) Z E[<(u(X,); )]+ E[g(_Xe)],
0

where

g() c (); x) + p,, +, (); x).

Since uk() solves P_l(y__);_x) for a.e. _xk and inf (Po)< +oo,

E[g(X)].= E[p(u_,(X_k_,); _X)]

and E[p{(u_(X,__); _X)] < +oo. The latter fact implies that

E[p,(u_,(X,_,); X)]= E[p(u_,(X_,); X_,)]

[8, Thm. 2.1]. Combining these results yields

(3)
k-1

c(u) Z E[ci(i(_); Xi)]+ E[0(_U_k_,(___,);
=0
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To complete the induction step, observe that

E[p-(u_ (X_

Pk-lk-,);.k) dFk)

The induction hypothesis holds if k K since (u)>-.
The induction shows that

c(u) Co(Uo) + p,(Uo).

The right-hand side equals inf (Po) (still under the assumption that inf (Po) < +.
To demonstrate the conclusion under the assumption that 6(u) < +, repeat

the proof from the beginning through equation (3), but substitute the positive part
for the negative part everywhere. The remainder of the proof need not be
repeated since (3) and the fact that c(u) g(u) <+ imply that

--+p(_1(x_1); x_,)] < +.

Proofofeorem 3.1. If inf (Po) +, inf (P) inf (Po) by Corollary 3.6, and
P is trivially solvable. Suppose inf (Po)< +. Since Uo," , u solve Po," , P,
they satisfy the explicit constraints of Po, ",P. Hence Tu b a.e. and u 0 a.e.
Since u E, u 6 U. By Proposition 3.7 and Corollary 3.6,

c(u) inf (Po) inf (P).
But u is feasible in P.

Proof of eorem 3.2. Suppose inf (Po)< +; otherwise, the conclusion is
trivially true. Let u solve P. Since inf (P)< +, Uo," , u satisfy the explicit
constraints of Po," ", P. Since

inf (Po) inf (P) c(u) < +,

every inequality in Proposition 3.5 and its proof must hold as an equality (for this
u)..Take k 0 in the proposition’s conclusion (with the inequalities changed to
equalities) to verify that

inf (Po) Co(Uo) + P Uo);

thus Uo solves Po. When changed to an equality, inequality (2) in the proof of
Proposition 3.5 implies that for each 0 k < K

p+);+)
(4) c+,++,);+)+P++1+1);
for a.e. k+- Thus uo,’" ", u solve Po,’", P.
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Appendix.
PROPOSITION A. 1 [7, Proposition 2.2]. Assume that for each 1 <= k <= K"
(a) Forsome selectedfunctions anda inL(Rs with values in [-o, 0],

c,,Cu,,; _x,, >_- ,, (_x,,)l_u,, l+ ,,, (_x,,)

for every U_k and every X_k.

(b) EI(X)b,(X_)I< +oo for each 1 <-i <=k (X is a subvector of Xk).
(c) w" Akkw 0, w _--> 0} {0}.

Then [or each 1 <- k <- K there are Junctions 6k and yk in LI(R sk) such that

Pk(blk-1 X_.k) tk(Xk)l __k-ll "[" ")lk(X_.k)

]:or every uk-I and everyx with 6() and 3’ (k) 6 [-o, 0] for every x. For each
0 <-_ k <= K there are functions 6-k + find /+ in L (R sk) such that

&+(u; _x _-> +(x)lu l+ /+(x)

]:or every u and every X’k with 6+ (x_) and y+ l(X_) [-c, ()] for every x.
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N-PLAYER STOCHASTIC DIFFERENTIAL GAMES*

PRAVIN VARAIYA

Abs|ract. The paper presents conditions which guarantee that the control strategies adopted by N
players constitute an efficient solution, an equilibrium, or a core solution. The system dynamics are
described by an lto equation, and all players have perfect information. When the set of instantaneous
joint costs and velocity vectors is convex, the conditions are necessary.

1. Introauction. N players are simultaneously controlling the evolution of a
system described by the Ito equation

(1) dzt=f(t, z, ut, ", u) dt+dBt, t6[O, 1],

where (zt) is the state process, (Bt) is Brownian motion and (ul) is the control of the
ith player. Player chooses this control so as to minimize the cost

II(2) J’(u) E ci(t,z, ut) dt+yi(z)

where u =(u,)=(u,, ., u).
Different solution concepts of the resulting game are studied. Sufficient

1" N*conditions are given which guarantee that * (ut , ut is a (Nash) equilib-
rium, a (Pareto) efficient solution, or a member of the core. When the set of
admissible cost-drift vectors (c, c N, f) possesses a certain convexity prop-
erty, these sufficient conditions become necessary.

The next section gives a precise model of the game. The convexity property is
stated, and its main implications are drawn out in 3. The main results are given in

4. A priori conditions on the c and f which imply the.convexity property are
examined in 5.

2. The model.
2.1. Admissible controls. The sample paths of the state process (z,) are

evidently continuous, hence members of the Banach space C of all continuous
functions w" [0, 1]- R ". Let jt be the evaluation functional on C, that is,t(w)
=w(t). Let if, be the o--field of subsets of C generated by {]O -< s -< t}. Let
if= ff.

For each i, Ui is a compact metric space, the set of actions available to i. A
function u; [0, 1] C- U is an (admissible) control for if

(i) u is jointly measurable,
u(t, is o%-measurable for all t.(ii) u,--

0// denotes the set of controls for i.

* Received by the editors December 18, 1974.
Department of Electrical Engineering, Massachusetts Institute of Technology, Cambridge,

Massachusetts 02139. This research was initiated at the University of California, Berkeley, under the
Joint Services Electronic Program, Contract F44260-71-C-0087, and continued at the Decision and
Control Sciences Group of the M.I.T. Electronic Systems Laboratory with partial support provided by
AFOSR under Grant 72-2273 and by NASA Ames Research Center under Grant NGL-22-009-124.
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Denote U= UI UN with elements u --(Ul,’’" b/N) and
=0?/l...0?/N with elements u=(u1,...,aN). For uU, vU and
i {1,..., N}, denote (u;, vi)= (u,..., ui_., v, u+,’.., urn). More generally,
for S{1,... ,N}, denote (u, Vs) to be the N-tuple obtained from u upon
replacing_ ui by v for each S. In exactly the same way one defines (u ,v i) and
(us, s) when u and z are in 07/.

2.2. Dynamics. The function f :[0, 1] C UR in (1) satisfies the fol-
lowing conditions:

(i) f is jointly measurable,
(ii) f(t,., u) is oft-measurable for all t, u and f(t, 0,. is continuous for all

(iii) There is a constant k such that If(t, o, u)l<= k(1 /11,o11) for a t, ,o, u.
Let P denote Wiener measure on (C, ). Let (zt) be the family of evaluation

functionals on C so that (zt, t, P) is an n-dimensional, standard, Brownian
motion. For u 6 R, define the drift (c7, , P) by

’[= f(t, z, a(t, z))

and the density (p 7, t, P) by

p7 =exp 0" dzs-- ]dp’l ds

Denote p"= p’. The next result is well known [1], [2].
TrtEORZM 1 (Bene). E(pT) 1. Hence P" is a probability measure on (C, *),

where

P’(F) I, O"(z)P(dz)’ F e .
Furthermore, the process (wT, , P’) defined by

wt -z,- ds

is a Brownian motion.
This theorem justifies the following definition. The solution of (1) corres-

ponding to u 07/is the process (z, t, P").

2.3. Solutions o[ the game. Conditions analogous to those imposed on f are
also imposed on the functions c in (2). The functions yi" CR are
measurable and integrable with respect to P" for all u. In addition, the c and
are nonnegative.

The cost to player of u 0-//is defined to be

J(, c(t, u,) d + ,/(.

where E denotes expectation with respect to P’.
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Recall the following definitions, u*= (1",,,,, gN*) is
(a) an equilibrium if there is no and no u such that

ji(u,r ji< (*),

(b) efficient if there is no u such that

for all i,

(c) in the core if there is no S and no u such that

ji(u,g, s) < ji(u,) for all S.

To avoid confusion it should be pointed out that the definitions (b) and (c) are
not the standard ones. Usually, u* is said to be efficient if there is no u such that
ji(u <= ji(u,) for all with the strict inequality holding for at least one i. If one
adopts this definition, then the observation at the beginning of 4.3 below needs
to be modified and so do the subsequent results; these modifications are slight but
clumsy, and the definition given here avoids the clumsiness. In any case, the
difference is slight. The core is usually defined only for games where comparison
of inter-personal utilities is permitted and where side payments are allowed. For
games where such comparison is not permitted, as is the norma! posture in
mathematical economics, one is naturally led to the definition given here.

3. The convexity property. Let g(t, z, u)= (cl(t, z, u),’’’, cN(t, z, u),
f(t,z,u)).

g is an (N+ n)-dimensional vector.
The game is said tohave the convexity property if for all t, z,

{g(t, z, u)lu e u}

is a convex set. It is said to have the strong convexity property if for all t, z, u and for
all S,

{g(t, z, (ug, Vs))lv U}

is a convex set.
In [1] and [2] it is shown that the convexity property implies that the set of

densities obtained by using all possible admissible controls is convex. The two
lemmas below follow readily from these results.

LEMMA 1. Suppose the game has the convexity property., Then

is a convex subset of R N.
LEMMA 2. Suppose the game has the strong convexity property. Let all and

S c{1,..., N}. Then

is a convex subset of R u.
4. The main results.
4.1. A result from control theory. Suppose N 1 so that the game is simply an

optimal control problem. Dropping superscripts and subscripts, the control
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problem is to find u* q/so as to minimize

J(u) E c(t, ut) dt + 3’(

A minimizing control is said to be optimal.
The result below has been proved in [3-1 in a slightly more restrictive form

than necessary.
THEOREM 2. u* is an optimal control if and only if there exist a constant J*,

and processes (A Vt), (V) with values in R, R", respectively, such that

(i) J* + A V, dt + V V, dz, a.s.,

(ii)
A V + min {V V[(t, z, u) + c(t, z, u)} O,

ug

and the minimum is achieved at *(t, z) or almost all t, z. Furthermore, J* J(*)
is the minimum cost; in act,

t it {1J*+ AVds+ VVdzs=minE c’(s,z,u)ds+vl,

4.2. Conditions tot equilibrium. The controls u*= (u*, u*u) consti-
,itutc an equilibrium if and only if for each i, mmmzcs J ( i) over the set. Theorem 2, therefore, immediately yields the next result.

To 3. *= (*, ., *) is an equilibrium if and onlyif for each,
there exist a constant and processes (A Vt), (V V) such that

(i) J* + AV dt + VV dz, a.s.,

(ii) A+min{VV(t, z, (u*r(t, zl, ull + c (t, z, (u*r(t, zl, ul/= O,
uie Ui

and the minimum is achieved at *(t, z) a.s. Furthermore, J*= J(*).
4.3. Conditions [or eciency. Consider the set {J()

=(J(u),... ,J())l }, the set of attainable cost vectors. Suppose there
exists a nonnegative vector A (,..., &u) 0 and * such that

(3) AJ(u*) &J for all J 6.
It is then immediate that * is an efficient solution. It is also well known that (3) is a
necessary condition in the event that is a convex set. This observation, in
conjunction with Theorem 2 and Lemma 1, imply the next result.

THeOreM 4. (a) u* is an ecient solution if there exist A O, O, and for
each a constant J*, and processes (A V), (V V) such that

(il 2 J*+ AV+ Viz, = a.s.,

(ii)
Vtf(t, z, u)+ c (t, z, u)} O,

uU

and the minimum is achieved at u*(t, z) a.s.
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(b) I[ the game has the convexity property, then the conditions above are
necessary for efficiency.

From a game-theoretic viewpoint, an efficient solution is of interest only
insofar as it is also an equilibrium. The combination of the results above gives the
first intriguing result. Its proof is given in the Appendix..

THEOREM 5. (a) * is an efficient equilibrium if there existfor each a constant
J*, and processes (A VI), (V VI) such that

(i) J*’ + A VI dt + V VI dz, y’ a.s.,

(ii) AVI+ min {V V,f(t, z, (a*r(t, z), ui))+c (t, z, (a*r(t, z), ui))} 0,
ui Ui

and the minimum is achieved at u*i(t, z) a.s.,
(iii) there exist A >= 0, 0 such that

E Ai{V V,f(t,i z, a*(t, z))+ c i(t, z, a*(t, z))}

min Y ai{V V,f(t, z, u)+ c (t, z, u)} a.s.
uU

(b) 1]" the game has the convexity property, then the conditions above are also
necessary.

Remark. Define the Hamiltonian Hi(t, z, u) V Vif(t, z, u) + ci(t, z,. u). Con-
dition (ii) above says that the ith Hamiltonian must be minimized along the ith
"coordinate" ui. Condition (iii) says that in order that the "private" minimization
(implied in the equilibrium concept) also be "socially" efficient, this private
minimization should lead to the "global" minimization of the social cost obtained
as a weighted combination of the private costs. The intriguing part of the result is
that these weights, the , are constant, that is, they do not depend on time or the
random state z.

4.4. CondRions for ihe core. The result for the core follows in the same way
as Theorem 5.

THEOREM 6. (a) * is in the core if there exist for each a constant j.i, and
processes (A VI), (V VI) such that

(i) j,i + AV dt + V VI dz, /i a.s.,

(ii) A VI+ min {V r( c r(V,f(t, z, (u* t, z), ui))+ (t, z, (u* t, z) ui))}= 0,
ui Ui

and the minimum is achieved at *’ t, z) a.s.
(iii) for each S there exist constants A/s__> O, S, not all zero, such that

ieS

min E As{v g
Vtf(t, z, (u*s(t, z), us))+c (t, z, (a* (t, z), Us))} a.s.

U iS
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(b) If the game has the strong convexity property, then the conditions above are
also necessary.

Remark. It may appear reasonable, at first sight, to conjecture that the
weights, As, should not depend upon S. However, upon further reflection, the
reader should become convinced that this is unlikely. Thus the weights associated
with different players will vary with the coalition S in which they are being
considered as members.

5. Randomized straltegies. The convexity property is evidently quite restric-
tive. However, if one permits randomized controls, then convexity is guaranteed.
To see this, define Mi as the set of all probability measures on Ui. Ui can then be
regarded as a subset of Mi and the function f can be extended to the domain
[0, 1] C M1 MN by setting

(4) f(t, z, ml, mN)= Iu Iu f(t, Z, Ul, u)ml(dUl) m(dUl).

The cost functions c can be extended analogously. The spaces M can be made
compact and metrizable in a standard manner and f(t, z, remains continuous on
M M1 MN. The controls for are now randomized controls, that is,
functions ,: [0, 1] C-M. The previous results continue to hold for this
"extended" game. But notice from (4) that this extended game enjoys the
convexity property, and if joint randomization is allowed, it also enjoys the strong
convexity property.

6. Cenclusions. These remarks are mainiy suggestions for further research.
It is known that for deterministic differential games the condition that the

weights A are constant is sufficient but not necessary even when the game has the
convexity property. The results presented here therefore convey surprise. How-
ever, it is not evident that these results should be regarded as curiosities or as
significant. To decide this, it is necessary to clarify the precise role played by the
Brownian motion in (1). Such clarification should also aid in restoring a measure
of unity to the currently disparate traditions in the literature on deterministic and
stochastic differential games. In the cases of control problems and two-player
zero-sum games, this has been achieved by the important work of Fleming [4], [5]
and subsequent work of Danskin [6] and Friedman [7], but it is not clear that these
directions will prove useful for the many-player games.

This paper is not addressed to the important question of existence of
solutions. For efficient controls, this question is immediately settled by known
results on existence of optimal controls. A recent study [8] has nicely resolved the
problem of existence of saddle points and value for two-player, zero-sum,
stochastic differential games. It seems likely that the methods used in that study
combined with the usual fixed-point arguments will help in proving existence of
equilibrium solutions and the core.

Finally, the condition of complete information is a serious a priori restriction
on the family of games considered in this paper. It is likely that results similar to
those obtained here hold when all players have the same information even if it is
incomplete [9]. The game is enormously more complicated when different players
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have different information. In the context of static games, many important insights
are provided by the results reported in 10], 11 ].

Note. Reference [9] contains several incorrect statements.

Appendix. Proof of Theorem 5. Part (a) of the theorem follows immediately
from Theorem 3 and part (a) of Theorem 4. Hence it only remains to prove part
(b).

By Theorem 3, there exist for each i, J*, and processes (A VI), (V VI) such that

I I’j,i + A VI dt + V VI dz, ,/i a.s.,

(A.1)

AVI+ min {VVif(t, z, (u*r(t, z), u))+c(t, z, (u*r(t, z), u))} 0
ui Ui

and the minimum is achieved at a*(t, z). On the other hand, by part (b) of
Theorem 4, there exist A_->0, A #0 and for each i,K*, and processes
(AWI), ($7 WI) such that

2 A K* + A Wi dt + V Wi dz, =h7 a.s.,

(A.2)

Z AiAWi+min Z h{VWlf(t, z, u)+ci(t, z, u)} 0,
uGU

and the minimum is achieved at u*(t, z) a.s.
Comparison of these two sets of conditions reveals that it is enough to show

that whenever (A.1) and (A.2) are both satisfied, then (A.2) is also satisfied by
choosing

K*i=J*, AWI=AVI, and

Now, by the last part of Theorem 2,

J* + A V,! ds + V V/ dzs

c (s, Zs, (*’, as)) ds + ylo%,

Ea* { ci(S, Zs, )-Jr-/i

and similarly,

litZ A, K*’ + A W’s ds + c (S, I&

Hence

E 1i j,i + AV as + VV dzs E A, K*’ + AW ds + VW dzs
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Setting 0 yields AiJ*i AiK *i and so

( ti vis- 2 1i Wis) as ( t VW- 1 V Vis) dz

But, under the measure P, (z,) is a Brownian motion so that the term on the right is
a continuous martingale, whereas the term on the left is a process with integrable
variation. It follows that both terms must vanish so that hV hW and
hVV VW and the result follows.
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CONTROLLABILITY AND NECESSARY CONDITIONS
IN UNILATERAL PROBLEMS WITHOUT
DIFFERENTIABILITY ASSUMPTIONS*

J. WARGAt

Abstract. We study the attainable set and derive necessary conditions for relaxed, original and
strictly original minimum in control problems defined by ordinary differential equations with unilateral
restrictions. The functions defining the problem are assumed to be Lipschitz-continuous in their
dependence on the state variables except for the unilateral restriction where continuous differentiabil-
ity is also required. We define an extremal control as one satisfying a generalized Pontryagin maximum
principle, with set-valued "derivate containers" replacing nonexistent derivatives. We prove that a
nonextremal control (either original or relaxed) yields an interior point of the attainable set generated
by original controls, and that, in normal problems, a minimizing original solution must also be a
minimizing relaxed solution. The proofs are carried out with the help of an inverse function theorem
for Lipschitz-continuous functions that is formulated in terms of derivate containers.

(1)

(2)

(3)

(4)

1. Introduction. We shall study control problems that involve the relations

(t) f(t, y(t), u(t)) a.e. in T= [to, tl],

u(t)R#(t)cR a.e. inT,

y (to) Ao c Rn,
h2(t, y(t))6 (-oo, O]m2 (t Th c T),

with a particular emphasis on two closely related subjects:
I. Properties of the attainable set of a function h l(y(tl)), that is, of the set of

points hl(y(t))R corresponding to choices of (y, u) that satisfy relations
(1)-(4);

II. Necessary conditions for a couple (y, u) to yield a minimum of h(y(t))
subject to relations (1)-(4) and the end condition h (y(t))e A.

We shall assume that the functions f(t, v, r), h(v), h(v) and h2(t, v) are
measurable in t, continuous in (v, r), and Lipschitz-continuous in v over bounded
sets, and that h 2 is continuous and has a continuous partial derivative with respect
to v. We shall consider the original problem, in which the original control function
u is chosen from the set g# of measurable selections of #, as well as its relaxed
version in the formulation of Gamkrelidze [3]. In that formulation, the original
control functions u are embedded in the set ow of Gamkrelidze controls r such
that o(t) is a probability measure concentrated at n + or fewer points of R #(t).

For (or, a)e ff’ Ao, let y(f, o-, a) denote the unique absolutely continuous
solution y of the equation

y(t) a + d" f(/, y(’), r)o(’)(dr)

* Received by the editors April 9, 1975, and in revised form May 18, 1975.
t Department of Mathematics, Northeastern University, Boston, Massachusetts 02115. This

work was supported in part by the National Science Foundation under Grant GP-37507X.
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if such a solution exists. Our present investigations have three primary objectives:
(a) To prove that for every "nonextremal" control (o’o, ao) owg Ao, the

point h (y(f, cro, ao)(t)) is in the interior of the original attainable set

{h l(y(f, u, a)(t:))!u ##, a a,,, h2(t, y(f, u, a)(t)) (-00, 0]m(t Tn)};
(b) to derive necessary conditions for an original minimum; and
(c) to show that a strict original solution (that is, a minimizing original

solution that is not at the same time a minimizing relaxed solution) cannot be
present in "normal" problems.

The result (a) generalizes Yorke’s [10] and o.verlaps with Schwarzkopf’s [6]
results for problems in which all the defining functions are continuously differenti-
able with respect to v. The result (c) generalizes [7, VI.2.3, p. 357]. The necessary
conditions (b) extend those of Clarke [2] that apply to "free" problems in which
restriction (4) and one of the boundary conditions at to or t are absent. On the
other hand, Clarke’s results apply to problems involving differential inclusions
that appear more general than relations (1)-(2) and do not require representation
in terms of controls. Furthermore, because we req.uire the assumption that h2(t,
is differentiable, we are unable to completely extend to original unilateral
problems the necessary conditions derived in [9] forrelaxed unilateral problems.

As in every investigation related to necessary conditions under constraints,
we are faced with the need to apply an "implicit point" theorem. However, no
theorem of this kind employed until now in the study of necessary conditions (such
as the finite-dimensional implicit function tb.eorem, or its refinements by Halkin
[4], or Brouwer’s fixed point theorem, etc.) appeared helpful when we attempted
to derive results of the type described in (a). This was the case even if the fun.ctions
f, h and h were assumed continuously differentiable with respect to iJ .d
restriction (4) was dropped. Ultimately, we were able to coml.ete our arguments
with the help of a rather simple but apparently new "convex mapping" theorem
(Lemma 3.3) that generalizes the finite-dimensional inverse function theorem to
Lipschitz-continuous (but not necessarily differentiable) functions defined on
convex sets. The basic tool in formulating and deriving this theorem, as well as in
the study of the control problem proper, was the use of "deri,ate con.tainers", first
introduced in [8], that contain the d.erivatives of particular C approimatios to a
given Lipschitz-continuous function. Tbese derivate containers re.resent a kind
of set-valued Fr6chet derivatives of Lipschitz-continuous functions between
finite-dimensional spaces and thus seem conceptually related to the subdifferen-
tials of convex functions [5] and Clarke’s [ 1 "generalized gradients". The concept
of an "extrem.al" control (that satisfies a Pontryagin maximum principle) is
defined in terms of these derivate containers instead of ordinary derivatives that
may not exist.

Our basic results are stated in 2. Some auxiliary lemmas, inc!uding the
"convex mapping" theorem, are derived in 3, while 4 and 5 contain the proofs
of the results stated in 2.

2. Definitions and basic results. We denote the Lebesgue measure on
T [to, t] by , and use the terms "a.e.", "a.a." (almost all) and "measurable" in
the sense of Lebesgue. We assume we are given an open set V [", closed convex



548 J. WAIGA

sets Ao c V and A1 C Rm, a compact metric space R, a compact set Th c T, and
functions

that are measurable in and continuous in (v, r). We also assume that, for every
compact set V* c-- V, the functions

flrg*e, hlg*, h’lg*, hlrhv*

are bounded and have a common Lipschitz-constant with respect to v, indepen-
dent of the arguments and r, and that h2 is continuous and has a continuous
partial derivative with respect to v. We shall write h2o or generally gv to indicate
such a (partial) derivative.

Our problem involves a measurable mapping R # T Y{(R), where ?7{(R) is
the collection of nonempty closed subsets of R with the Hausdorff metric. We
denote by # the set of all measurable selections of R e, and refer to them as
original controlfunctions. If X is a compact metric space, we denote by rpm(X) the
set of all Radon probability measures on X with the relative weak topology of
C(X)*. We denote by 5# the collection of all measurable functions tr:T
rpm(R) such that tr(t)(R#(t)) 1 a.e. in T. We embed the set 0# of relaxed control
functions in L l(tz, C(R))* with its weak topology by identifying tr 5e# with the
continuous linear functional

dt dp(t, r)tr(t)(dr),

and recall [7, IV.3.11, p. 287] that bee is convex and compact and its topology is
derived from a "weak" norm l" Iw on L l(tx, C(R))* [7, IV. 1.9, p. 272]. We embed
Y/# in # by identifying each r e R with the Dirac measure r at r.

We write

[(t, v, r(t))= f (t, v, r)r(t)(dr),

and similarly for other functions.
Let 5e denote the set of all tre # such that tr(t) is, for all e T, concentrated

at n + 1 or fewer points of R #(t). (This type of control was apparently first used by
Gamkrelidze [3]). It is well known [7, VI.3.2, p. 370] that, for every (or, ao)e
5# x Ao for which the equation

y(t) ao+ f(r, y(r), o-(’)) dr (te T),

The assumption about f can be replaced by one stating that, for each compact V* c V, there
exists an integrable function q TI that is both a bound and a Lipschitz-constant for f(t, , r). Since
our future arguments will apply to a fixed set V*, we can replace q by a constant by choosing the
indefinite integral of q as a new independent variable instead of t.
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has a solution y(f, o-, ao) (which must be unique), there exists o-G such that
y(f, or, ao) y(f, cry, ao). This observation justifies our formulating our results in
terms of the elements of 5 which we shall treat as a topological subspace of 5e#.
However, 5# will remain a basic tool in the derivation of these results.

It is clear that for every trG 5 there exist pj t# and measurable a T
[0, 1] (]=0,..., n) such that

tr(t)({pj(t)}) cJ(t), a(t) 1 (t T).
j=o

Ve rnay, and henceforth always shall, assume that the points p(t) (cJ(t) O) are
distinct for each T. We shall write o- i-c, ] to describe the abov relations
and assumption.

We let e denote the kth column of the unit matrix I of appropriate
dimension; d(x, y), dx, A-I, d[B, A] the distance between two points, a point and
a set and two sets, respectively; let

S(x, c)={yld(y, x)-<-}, S(A, c)={yld[y, A]<-_c};

let b’(v) or ev(v) denote the Fr6chet derivative; (1a, Ib) the space of real b a
matrices; co and g-d, the convex hull and the convex closure; and A, A, 0A the
interior, the closure and the boundary of A. For

x (x x a) R, M (Mii) (R,
we set

]x] max Ix’l and IM[ max ]M,I.

Unless otherwise specified, we define distances in and (1, Ib) accordingly.
We write MT for a transposed matrix, v T for a row vector and vTw or V w for the
scalar product. Thus, when convenient, we shall write ei.v or e]’v for the jth
component of v.

DEFINITION 2.1. Let A be an open subset of R and b’A- Ib have a
Lipschitz-constant %. A bounded indexed family {A(v)l >0, v A} of closed
subsets of (a, b), also referred to as Ab, is a derivate container for 4’ if

a(v) a ,b(v) ( < ’, v e A)

and for every compact subset A* of A there exists a sequence (b) of C functions
defined in a neighborhood of A* and such that lim b k uniformly on A* and
for every e > 0 there exist i(e, A*) and (e, A*) > 0 such that

b’(v) e A&(w) (i>-i(e,A*),

While elements of S yield the same set of solutions of controlled ordinary differential
equations as 5#, this is no longer the case for various integral and functional-integral equations.
However, it follows from Theorem IV.3.14 and the arguments of VII. 1.4 and VIII. 1.3 of [7] that, for
functional-integral equations, # can be replaced by , the set of all cr S# for which there exists
n’(tr) 1, 2,. .} such that or(t) is, for all T, concentrated at n’(cr) + or fewer points of R#(t). Our
present results and arguments remain valid, without any change whatsoever, when Seg is replaced by. Thus we are hopeful that our present methods may be useful in the study of control problems
defined by functional-integral equations.



550 J. WARGA

We shall say that a bounded indexed family

{Af(t, v, r)le >0, (t, v, r) rx Vx R}

of cosed subsets of (N", I"), also referred to as Af, is a derivate container for f
(with respect to v) if

Af(t, v, r)c A’f(t, v, r) for all e’> e and all t, v, r,

and for every compact subset V* of V there exist a neighborhood Q of V* in V
and a sequence of functions f" T x x R--) N" such that each f has a partial
derivative f, both f and f’ are measurable in and continuous in (v, r), lim f’ f
uniformly on Tx V* x R, and for every e >0 there exist i(e, V*) and 6(e, V*) >0
such that

f’(t,v,r)Af(t,w,r) (i>=i(e, V*),(t,w,r)6TxV*xR, Iv-wl<=6(e, V*)).

This definition generalizes a concept introduced in [8]. The argument used
there shows that a particular derivate container for 4} (4} , 4} b) can be
constructed in one of the following ways" we set

B2(v)-{(2a)-’[ch(x +ce)-4}(x-{e)]l Ix-v[<-_e, 0<a <-e, x, x +ce V},

and define A4}(v) as the collection of all M=(M)e(Na, N) with Mff
c-6B (v). Then ZX4} is a derivate container for 4}. Furthermore, if
with each 4}’j-defined on an open subset of some N, and A4]i is a derivate
container for 4}i, then

A:q(v) {M,. M2 M,IM
_
A4,(4,+

also defines a derivate container for 4}. An analogous procedure permits one to
define a derivate container for with respect to v. It also follows from the
definition that if 4}’ exists and is continuous, then we may define A4}(v) as
{4}’(w)] ]w- v] = e/2} for all e and v.

We now generalize the concept of an extremal control usually defined under
assumptions of differentiability.

DEFN’roN 2.2 (extremal control). Let (6-, i)6 ox A{} be such that
y(f, & i) exists, # [c j, Oi], Af and Ah be derivate containers for f and h with
respect to v, and

[=(f, A] h Ah h2 A{})

We say that (6, i) is extremal relative to 1 if

h(t, (t))6 (-oo, (}]" (t Th)
and there exist leN’, nonnegative Radon measures w,.-., w,, on Th, a
mea,trable F- T--) (N, N"), and H6 (N", N") such that

(-) [lll -1- 22 {oj(Th) >(},
j-1

(2) wi{Ei) 0, where Ei {t e Thlei h2(t, (t)) < 0},

(3) He t-) Ah()(t)),
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(4) F(t)6 f3 co Af(t, (t),pj(t)) a.e. in T,
e>O j=O

(5) k(t)’f(t, )7(t), 6"(t))= min k(t)’f(t, (t), r) a.e. in T,
rR(t)

(6) k(t{})TK min k(to)ao,
aoAo

where

and

k(t)T=
]f"l T

ej hv(’, f(-))Z(’)- wi(d) Z(t)

Z(t) I + Z(r)F(-) d" (t T).

If this is the case, we also say that ({, c1, l, wi, F, H) is extremal relative to 11.
If 6. e ,, 37 y (f, 8, ) exists, and

h 2(t, (t)) 6 (-, 0] (t Th)
but (8, ) is not extremal relative to , then we call (8, ) nonextremal relative to

We can now state our basic results.
THEOREM 2.3. Let (o, o) be nonextremal relative to =

(fi AL h , Ah , h e, A{}). Then there exist a finite collection {u, UN}
and > 0 such that

St(h ’(y(f, r,,, co)(t,)), so) c {h (y(f, u, ao)(t))lu #, a,, Ao,

h2(t, y(/, u, ao)(t)) 6 (-00, K]m(t Th),
u(t) {u(t), uN(t)}(t T)}.

Furthermore, there exists a sequence ((fii, aD) in # x A{} such that

a’(t)6{u,(t),’’’, uN(t)} (i= 1, 2,’-’, t6 T),

lim t {r{}, lim a{}

h ’(y(f, fii, aD(t,)) h ’(y(f, or,,,

h2(t, y(f, fii, aD(t)) 6 (-00, {})-,2

(i= 1,2,...),

(t Yh, i= 1, 2,’’ ").

We shall refer to (#, c) A{} as a minimizing relaxed solution if (6,
minimizes h(y(/, or, ao)(t)) on the set

sg(oW) {({r, a{,)e 9x Aolh l(y(f, o’, ao)(tl)) A,,

hZ(t, y(f, {r, ao)(t))e (-00, 0]’2(t e Th)}.
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We similarly define a minimizing original solution,(& ti) # x Ao, with #
replacing 5e. We refer to a minimizing original solution as a strict original solution
if it is not a minimizing relaxed solution.

THEOREM 2.4. Let (tro, gto) be either a minimizing relaxed solution or a
minimizing original solution, and let A[and A (h, h 1) be derivate containers with
respect to v for and (h, h 1). Then there exist (lo, I1), toj, F and H such that
(o’o, io, (1o, I1), toj, F, H) is extremal relative to

-(),1 (f, Af, (h o, h 1), A(ho, h 1), h a, Ao)
and

l,)>=O, lhl(y(f, oo, tio)(t,)) max la,.
altAr

TI-IFORZM 2.5. Let o, be dened as in Theorem 2.4 and (, o) be a strict
original solution. Then the set- {(, a,,)xAolh(y(L , ao)(/1)) < h(y(L a, o)(h)),

h (y(f, , ao)(t))e A1, h2(t, y(f, , ao)(t))e (-, 0](t e Th)}
is nonempty and for every (& o) e- there exist (lo, l), w, F and H such that
(, o, (lo, /1), ], K H) is extremal relative m a’ and

l,, O, lh ’(y(f, ’, 0)(t,))= max lal.
alA1

COROLLARY. Let (& o) be a minimizing relaxed solution.
(, rio, (/o,/1), to, F, H) can be extremal with respect to o,1 only for lo 0 (in which
case we refer to the problem as "normal"), then there exists no strict original solution.

3. Some auxiliary lemmas.
LEMMA 3.1. LetA be a convex subset of Rn, an open neighborhood ofA and

th , - Rm continuously differentiable. Then

tb(v)-d(w)co{d?’(w+t(v-w))(v-w)lO<-_t<-l} (v, wA).

Furthermore, there existpoints tl, , tm [0, 1] and numbers a 1, ", a, such that
a;>O, ’= a 1 and

6(v)-6(w) E 6’(w + (v- w))(v- w).
j=l

Pro@ Let v, w 6 A and

O(t) ck(w + t(v- w))

Then q is continuously differentiable and

It follows that

(0t 1).

tO’(t) th’(w + t(v- w))(v- w).

0(1) 0(0) I1, ck’(w + t(v- w))(v- w) dt;
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hence

dp(v)-dp(w) E co {’(w + t(v- w))(v- w)lO<=t<= 1}.

The second statement now follows by applying Caratheodory’s theorem about the
representation of the convex hull of a connected set. Q.E.D.

LEMMA 3.2. LetA be a closed convex subset of ", fi, an open neighborhood of
A, OEA, ch " have a continuous derivative, and I’(v)-ll-<c (vA). Let

A {vvlv A, v >= 0},

o<= <-sup{y>-ol/va(v fi, lvl 1)}.

I[ a d’(v)fi, [or every v a and lal 1, then

4(0) +[0, alcJa = ck(A fq Sv(O, a)).

If[urthermore, v, w A and Im-l <= c [or every

MF(v, w)=co{ch’(Ov+(1-O)w)lO<=O<= 1},
then

Proof. If a 0, then our first statement is trivially satisfied. We assume
therefore that a > 0.

For each x e Rn, let s(x) denote the unique point in A that minimizes the
Euclidean distance [X--S(X)[2 to x. Then ]s(x)-s(y)lz<-Ix Y[2 for all x, y 1",
and the function q n-(", I"), defined by

q(x) 4;(s(x)),

is continuous. We now consider the differential equation

ti(t) q(u(t))-la (t >= 0), u(O) O.

Since [q,(x)-[ =< c for all x z " and 4’ is continuous, this equation has a continu-
ously differentiable solution u for all => O. Since, for each v A, ’(v)-a fi, we
have

It follows that

and

ti(t)A and Ii(t)l <c (t-->O).

u(t)=

lu(t)l Ifi(z)l drct.

Thus, for [0, a/c], we have u(t) A and

qb(u(t)) (0)= b’(u(’))ti(’) d"

6(u(r))ti(’r) dr ta;
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hence

b(0) +[0, a/c]a 4,(A f-I SV(O, a)).

Now assume that [M-I_-< c for every Me F(v, w). By Lemma 3.1,

ck(v)-ck(w)= M(v- w)

for some M F(v, w), and therefore

IO W --I]r--l[(;O) l)(W)] Cl I()(V )(W)l. Q.E.D.

LEMMA 3.3. Let A be a convex body in (that is, a closed convex set in
with A ), O A,

A {wlv A, 0},

O<-a<-sup(r>-_OI3,veA(veA, Ivl 1)},

and ch A " Lipschitz-continuous. If A49 is a derivative container for chlA,
Co>0, a e[", lal 1 and if, for every vA and every MA4)(v), we have

[m-’] _-< c and a e MR,
then

b(0) +[0, a/c]a = ch(a FI S(O, a)).

If v, w A and IM-I <- Cl for eery

MF(v, w)= co (.J A4(Ov+(1-O)w),
()

then

b(v)- 6(w) c]-llv wl.
Proof. We shall assume that a > O, the first statement being trivially true if

a O. Let p be an interior point of ft. with Ipl 1, 0 < n < 1/2a, and

A, =rip + A Sv(O, a 2n).

Then An is a convex body and An A.
Now let (i) be a sequence of C uniform approximations to A, associated

with A&. We can determine a positive integer jo such that

&(v) e A6(v) (v An, j jo).

We set

(v) (nP + v) (v e A, rip, J J,,).

Then the conditions of Lemma 3.2 are satisfied, with , A, a replaced by i,
An- p, a- 2, respectively. It follows that

i(0) + [0, (a-2n)/c]a = i(A,-riP);
hence

i(’np) + [0, (a-2n)/c]a = i(A,).
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Since limj bj b uniformly on An, An is compact, and 4 and bi continuous, we
conclude that

b(r/p) +[0, (a 2)/c]a &(A,) +(A sF(o, a))

for all sufficiently small positive . This implies that

(0) +[0, /c]a (A S(O, )).

Now assume that v, w A and [M-] c for all M F(v, w). We denote by
A* the closed segment joining v and w and determine a sequence (i) of C
uniform approximations to &]A* associated with A&. Then (Ov+(1-O)w)
F(v, w) for large and, by Lemma 3.2,

We obtain our final conclusion by letting j . Q.E.D.
We shall henceforth denote by XA the characteristic function of A.
LEMMA 3.4. Let 6 L(, m) and (s)= ,, 6(z) dr (s 6 T). Then, for

every e > 0 and every subset N of T with g(N)=0, there exist 16 {1, 2,... },, TN and a , a(0, e] such that the points , are dis-
tinct, and

E a k t /o, (s) E ag6( (s T).)xt,,,,(t) e
k=l k=l

(tl to)), choose a closed subset T of TN suchProof. We set e =min (e,
that (T T)e’[4bl]-1 and b[T is continuous, and let 8>0 be such that
8 =< min ([S]l]-’e’, ’e’) and

16(t’)- 6(t")l < ’[4(t,-

if It’- t"] 8, t’, t" T. We partition.r into consecutive subintervals ,, , ,
of lengths not exceeding 8, set Ig Ik T, flk (Ig), choose in each nonempty
Ig a point k, and set k to if Ig . We denote by O(a) an element x of with

Ixl a. For each s , we have

( (sl= ( +o +o(4+o

Now

E (tk) +0 e
k---I

j--1

(2) E b(t) ., 134(t)xt.,,(t)+o(l’kl).
k=l k=l

We set a k-- (tl- tO)flk/i=l [i and observe that

(t, t,,) > Z 3i > (/1 /o) [41thl]-1
i=1

hence
k k k k

a e’[41tl(tl- to)]-la <-_ fl <- a
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Then, by (1) and (2), we have

Since

and

(s)= f ak4)(tk)x[,,.sl(tk)+o(-5-)+O(1/4)+O(61lo).
k=l

k<__ )<=6<_e

[i I(T)>=(tl-to)-e =>5(t,- to),
i=1

we conclude that a k E[0, e]. The points k corresponding to a k 0 are
distinct. Q.E.D.

LEMMA 3.5. Let ro [aj, Pi] . Then there exist sequences
({Ao, A of measurable partitions of T and (ui) in # such that

()

(2)

lim,/x(Af"l B) IB ai(t) dt (i 0," ", n, B measurable),

ui(t) pi(t) (t 6 Ai, j O, n)

and

(3) lim ui o’o.

Pro@ Let
kd(t) sup {a =< diameter (R) d(Oi(t), 0k (t)) => c (k j, c (t) : 0, c (t) 0)},

R(t)={&(t)la(t)O,j=O, ,n} (te T),

be the collection of measurable selections of R and ’ the collection of
measurable functions r" T- rpm(R) with r(t)(R #(t))= 1 (t T). Then roe5
and, by [7, IV.3.10, p. 287], there exists a sequence (ui) in such that

limi u o-o, that is,

(4) li 4(t, u,(t)) dt dt 49(t, r)o’o(t)(dr) [dp e L ’(tx, C(R))].

Since u e, there exist measurable partitions {A o, , A,} of T such that

and

u(t)= pi(t) (t6Ai, j=O," ,n)

Aj{t6 (t) : 0}.

For each 0, 1, , n and 6 T such that ai(t) : 0, let

F(t) SV(pi(t), d(t)),

t-I.(t) {r Rid(r, &(t)) e 2d(t)},

Oi(t, r)= (d[r, (t)]+ d[r, 6(t)])-’ d[r, (t)].
If (t) O, we set O(t, r)=O (re R).
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If B is a measurable subset of T and bj(t, r)= qS.(t, r)xB(t), then, for every
i=1,2,...,

I," dj(t, u(t)) dt p(ACI B)

and

dt I Cj(t, r)oo(t)(dr): fn (t) dt.

Thus relation (1) follows from (4). Q.E.D.

4. Proof of Theorem 2.3. We shall first show that it suffices to prove the
theorem for the special case where Ao--{do}. Indeed, let A be a compact and
convex neighborhood of do in Ao. We now consider a related problem in which
relations (1)-(3) of 1 are replaced by

(1’)

(2’)

3 (t) ao(t) 5o a.e. in [t,,- 1, to),

(t)=f(t, y(t), u(t)) a.e. in [to, t,],

(u(t), ao(t)) R A a.e. in [to- 1, to),

(u(t), ao(t))e R#(t) A a.e. in [to, t],

(3’) y( t,, 1 5,,.

Then (o’o, Ko) is extremal for the old problem if and only if ((oo, o), do) is extremal
for the new problem, where ro(t) o’o(to) for < to and each derivate container is
defined as before for T and as containing only an appropriate zero matrix for
< to. Then l, ooj, (t), Z(t) and k(t) remain the same for the new problem when
t T, while Z(t)= Z(to) and k(t)= k(to) when t< to. Thus Definition 2.2(5) for
t-< to and the new problem is equivalent to Definition 2.2(6).

Thus Theorem 2.3 remains valid for arbitrary closed convex sets Ao c [" if it
is valid for sets Ao consisting of one element only. For this reason, we shall
assume, in the remainder of this section, that Ao {a}, and shall write y(g, o-) for
y(g, o’, ao). We shall use the terms "extremal respectively nonextremal" to mean
"extremal respectively nonextremal relative to

Let o-o= [a, p], V* be a compact subset of V containing y(f, o-o)(T) in its
interior, and let (fP),=l, (hl’P)p=l represent the uniform approximations to

fiT V* R respectively h 11 V* associated with the definition of Af and Ah 1. It
follows easily from Gronwall’s inequality and [7, Chap. VI, pp. 346 ft.] that

lim y(fP, r)(t)= y(f, r)(t)
p

uniformly for o- near O’o and 6 T, and that the function o- y(g, r) is continuous
near O-o for large p and g=f, fP. We may therefore assume that y(fP, o’)(T)c V*
for p 1, 2,- provided ]r-O’olw (the distance in b#) is sufficiently small.
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We set

y( Ahl(y(f, o.o)(tl)

and denote by the collection of all measurable F" T--> (Nn, [n) such that

f(t)e co U Af(t, y(f, cro)(t), oj(t)) a.e. in T.
=o

For every F e L(/x, (N", N")), the matrix-differential equation

Z(t) I + Z(r)F(r) dr (t T)

has a unique solution Z(F), and the matrices Z(F)(t) and Z(F)(t)- are uniformly
bounded for e T and ]Fifo uniformly bounded. We shall denote by c a common
bound of

1, f (t, v, r), fP(t, v, r), h l(v), h2(t, v), h2(t, v), Z(f)(t), Z(f)(t)-1

and all elements of Af(t, v, r) and Ah l(v) for

(t, v, r)e Tx V*x R,

s > 0 and Ifloo =< sup {IMI ]M Af(t, , r)},

and a common Lipschitz-constant for f(t,., r), fP(t,., r), h and h2(t, over
Tx V*xR.

We shall write 6r for the Dirac measure at r 6 R,

r’--- r’’= ,- Nr,,, r’--- O’(t) (r’- O’(

and 1. [p for the sup norm. By [7, IV.3.10, p. 287], # contains a denumerable
subset that is dense in the compact metric space 5#.

LMMA 4.1. Let be as defined above. Then there exists 3’ (0, 1 such that,
for every choice of a set N T with tz (N) 0 and of

e >0, Fe yT, He ygv and i C sF(0, ")/)C []m (i 1," ", m)

we can determine

e{1, 2,... }, e T---N, a ik

(i=l,...,m, k=l,.-.,l)

I,i- Ht (tl)l =< e

and corresponding

i(t):Z(F)(t)-I Z aikZ(F)(ti)

f(tik, y(f, ro)(tik), pi(tik). O’o(tik))x[to,t](tik),
such that the points k are all distinct,

ik
C
2 ika N(32 exp[c(t-to)])-ly,

k=l
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and

he(t, y(f, o-o)(t)) + h,Z,(t, y(f, oo)(t))6i(t)6 (-00,-y]

(tT", i=l,...,m).

Pro@ Step 1. For F e U >o 8, H U >o Y(, o- 6 e and e Th, let

Xl(F, H, )= H Z(f)(r)/(r, y([, o)(r), (r)- o(r))

x2(f, )(t)= h(l, y(f, o)(t))Z(F)(l)-1

Z(F)() f (, y(L ,,)(), () ,,()) d,

W(k H) {(x, (F, H, ), x2(F, a))la *} c x C(T, ),
() h(, y(L o)(t)), (t)- h(t, y(L o)()).

For each F and K the function

(x,(K K ), x2(K ))" ax C(T, a)
is continuous. Since is convex and compact, it follows that W(K H) is also
convex and compact, and we have

0- (x,(K K o), x(K o-,,)) e w(K H).

We shall show that there exists (0, 1] such that, for every F and H
W(K H) contains a point (w, w2) satisfying the relations

() w,-O, fi(t)+w()e(-,-] ( Yh)
Indeed, assume the contrary. Then there exists a sequence ((, E, )), with

decreasing to 0, E 6 ’ and H 6’ such that, for each i, the closed co,vex set

{0} x{e C(Th, am)14() + ()e (-,-,]m( e rh)}
has no points in common with the compact convex set W(F, H). It follows that
there exist (1, l) [m x C(T, Nm)* such that

(2) I’1- 1 and lw 1 [w W(, H), ].
yh.We can represent l C(T, N)* by Radon measures w, w on Since

06 W(, H), (2)yields

j=l

This impfies that each w is nonnegative,
m2

and

IIl-- to}(Th)1

(3) where Ai {t 6 ThIei /(t)<--/3i--V/}.
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Furthermore, setting 2----ii(1," , 1) in (2), we obtain

(4) liw --[i [W e W(Fi, Hi)].

Since the families {Z(F)]F ,’} and Y(’ are conditionally compact in
C(T,(",")) and (1",’), respectively, we can find a sequence J c
(1, 2,...) and Z, H, 11 and wj such that

lim Z(F)= Z uniformly, lim Hi H,
iJ iJ

Then, by (2),

We set

Then, by (4),

lim Iil l, lim toj toj weakly.
iJ iJ

I/,1+ 2 oj(T") 1.
j=l

f(o’)(r) f (’r, y(/, o’o)(r), o’(r) o’o(r)).

(5)

’ e’ t)Z(F)(t)- ’oo(dt)t, , z(,)(,,-)?(o-)(,,-)

Since o is bounded, the sets

co A’f(t, Y(L o’,,)(t), pi(t))
=o

are convex and compact, and

d--Z(Fi)(t) -Z(F)(t)Fi(t)
dt

a.e. in T,

it follows from standard arguments of optimal control, with Fi playing the role of
control functions (or from a special case of [7, IV.3.14, p. 291]), that there exists
F VI >o such that Z Z(F). Thus relation (5) implies, letting i, i J,
that

f," k(’)Tf(", y(f, tr,,)(’), cr(’)--O’o(’))dz=>O

where k(’) is defined as in Definition 2.2 for F f, H H. We deduce from the
above relation (as in [7, VI.2.3, step 2, pp. 360-361]) that

(6)
k(t)Tf(t, y(f, O’o)(t), o’(t))

min k(t)Tf(t, y(f, o’o)(t), r)
r_R(t)

a.e. in T.
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Finally, since the toj are nonnegative, relation (3) implies that

o({t Th]e /(t) < 0}) 0 ( 1,-. ", me).

This shows that o’o is extremal, contrary to assumption.
Step 2. Let/3 be as defined in Step 1. We next show that there exists a > 0

such that, for all F 6 and H , we have

S(0, a) W, (F, H) {x, (F, H, )1 }.
Indeed, otherwise there exist sequences (F) in and (H) in such that each
convex and compact set W(F,H) contains a boundary point w, with
lim w 0. For each such boundary point w we can determine an inward normal
li such that l 1 and

(7) l’, w > lWi [We Wl(Fi, Hi) i= 1,2,...].

As in Step 1, we select J (1, 2, .) such that

lim l,, lim Z(F/) Z(P), lim Hi ffI,
iJ iJ iJ

and it follows from (7) that relation (6) is satisfied with k(t)T= l(Z()(t)
(corresponding to tol to,, 0). Again, this contradicts the assumption that
fro is nonextremal.

Step 3. Let a and/3 be defined as in Steps 1 and 2, F and H6 t. Then
sF(0, a) WI(F, H) and there exists a point ff =(0, 2) W(F, H) such that

2(t) + ft (t)
_
(-oo, -fl ],,2 (t G_ Th).

The number c’=c4(tl-to)+c is an upper bound of c and all Ix(F, H, r)l and
Ix2(F, tr)(t)l. Weset/3 =/(c +/3)and, foreach w =(w, w2) W(F, H),

1, (11, ffz) =/3’w +(1-/3’)ff e W(F,H).

Since Iw .lsu -< c and ]/lsup-<C’, we have

ej. ff2(t)<=’c’+(1-’)(-e f(t)-) (j= 1,..., m_, te Th);
hence

Since

ej. life(t) +/(t)]--< (j 1, 2," , m2, Th).

SF(0, l’a)c t’WI(F, H) ={ffllw e W(F, H)},

it follows that

SF(0,/3 a) {Wll(W,, w2le W(F, H), t(t)+ w2(t)e (-o0,-/3](t e r")}.

We now set y min (1,/3 a, /3). Then the above relation implies that for
every choice of Fo%, H and s1,.-.,’SF(0,y), there exist

,_#tr,...,tr such that

,i xl(F, H, o-i), ft(t) + x:(F, o-’)(t) 6 (-oo, -4V]" (t
_
Th).
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Since # is dense in #. for every e>0 we can determine
5(i 1,.-., m) sufficiently c]iose to o-i so that

li-x,(F,H, pi)l<e/2, B(t)+x2(F,p)(t).(-oo,-2y]m2 (t rh).

We then apply Lemma 3.4 to approximate xl(F, H, p) and x2(F, p)(t) by I-I6(tl)
and ’v(t)6i(t), respectively, choosing for each points ik distinct from all pq for
p < i. We may clearly assume that the nnm0er of points k and a k is the same for

1,. , m, choosing for the largest of these numbers, setting a k 0 for the
"missing" values of k, and selecting corresponding k arbitrarily but distinct from
each oti3er and the previously selected points. Q.E.D.

4.2. Auxiiiay aefirfitions. We shall continue to use the notation introduced
in this sectio,, and shall denote by [al,’", a,] the matrix with columns
al, ",am.

I. It is easily seen that we can determine a finite collection cg of
m-simpfices in S (0, ,)c Nm and a number

e (0, [80c3(t to) + 1

with the propery that for every w e [" wffh iwl- y/(2m) there exists a corres-
ponding G co {0, , "} e 03 such that the are mutually orthogonal and
of norm y, and

provided
Igi--,l<-[lac3(t,-to)+ 1]e, (i 1,..., m).

II. We can determine a number e2 e (0, e 1] such that, for all t, - e T, F
-’, v e e" and K in either (N", em) or (N", Nm), with Ivl, IK]--< c, the expres-
sions

Z(f)(t)-lz(f)(7-)v and KZ(f)(t)-lz(f)(’r)v
change 0y terms oi norms not exceeding (tl to+ 1)- el whenever (Z(F), K, v, ’)
is repiaced by (Z*, K*, v*, -*) such that

Iz()-z*lu,_-<2, IK-K*I2, I-*1--<, I--*1--<.
III. Since the family {Z(F)IF } is bounded and equicontinuous and the

set Y bounded, we can determine finite collections c and c Y with the
property that for each F Y and He there exist F* and H* such that

IZ(F)- Z(F*)lup =< e, [H- H*I--< e.
IV. Let the finite sets , and N be defined as above. We set =cx ;x and, for each L=(G*,F*,H*)e., we denote by sc (i= 1,-.., m)

the points s’ corresponding to G* as defined in I.
We shall say that a function 4 T- Nb is approximately continuous at [ if, for

each e > O,

lim (2)-I/z({/(E[/--, /+][’-’l T[ el) o.
+0
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We shall henceforth denote by T* the set of all points where

t--> [(t, y(f, O-o)(t), p(t)) and t--> aJ(t)
are approximately continuous for =0,..., n, p =& and pc #. As is well
known, Ix(T*)= Ix(T) (because is denumerable).

By Lemma 4.1, for each L (G*, F*, H*) 5 we can determine

L,tLik6T*, aik6[0,1], pi6, 8i(t

(i=l,...,m, k=l,...,l, tT),

sati.sfying the conditions of that lemma with

N T--- T*, e e l, F= F*, H= H*, , ,,i, 6i 6ti.

We may assume that the points L differ from each other and from t because we
may determine these points for any L 5 by defining the set N of Lemma 4.1 as
the union of [to, t)--- T* and the collection of all previously determined ’’’’’
Furthermore, since is finite, we may replace ’ by

sup {IL’[L 6 }

by defining the "missing" A’ as 0 and the "missing" Lik as arbitrary points in
T* distinct from each other, from t and from those already determined.

V. Let d be the smallest of the distances between the various points c or

t and c 2c exp [c(t- to)]. We shall write Ix(o- : tr’) for Ix({t T[o’(t) : tr’(t)}),
and Ir,,r21w,,,_-<a if there exists 0-30# such that Io’,-r31w_-<a and
/x (r3 # tr2) =< a.

We can determine a positive integer Po and a number

e3 (0, min [(cc)-le, e2, d])

such that, for every choice of

L, i{1,...,m}, Fv, P>-Po, rR, ’T, tTh

and o" 0#, with IO-o, rlw., <= 3, we have

y(f’, tr)(T) V*, [f -fPlsup < ,,
f o(p z, y(fP, tr)(r), pi(r))6 AV(’, y(f, tro)(r), &(’)) (j O,-’’ ,n),

h 1,p p(y(f o)(tl))6 ov,

and the values of

Z(F)(’), fP(’, y(fP, tr)(’), r), h2(t, y(fP, o’)(t)), h2(t, y(fP, tr)(t))

and

h2(t, y(fP, o-)(/))+ h2(t, y(fP, o’(t))6Li(t)

change by at most min (e2, 7/8) whenever any combination of the following
changes is made" fP is replaced anywhere by f, or cr is re,placed an.y.here by r’

< F is replaced by some measurable F such that IFlp =< c andwith IO’o.z o"1,, e3, or
Ix(F : F) =<
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VI. Since tLike T* for each Le&#, i= 1,..., m, k 1,..., l, we can
determine sets TLik c[ti, tl) of positive measures and such that, for e T

Lij=0,---,nando=&,p we have

If(t, y(f, Oo)(t), O(t))-f(" p(t’y(f, O’o)( ), ))I -< ee,

a (t) ->- 1/4a (tc’), diameter (Tc) =< e3,

and the union of all Ti has a measure not exceeding e3. We may choose these
sets so that they are disjoint and observe that, for each L, and k, -6 Tc contains
no point c’’il’k’ with (L1, il, kl)# (L, i, k). We set

TLik/3 =min{tx( )[Le, 1,.-., m, k 1,-.., l}.

VII. Let Cl be as defined in V and c_ 8m2cc(tl- to). By V! and Lemma
3.5, we can determine a measurable partition {Ao,’’’, A,} of T and a corres-
ponding function Uo 6

# such that

O’O- UOI E3,

Uo(t) pi(t) (t e Ai, j 0," ", n),

Ih ’P(y(fO, uo)(t))- h (y(f, ro)(t))l <-- v//(4m),
Ih2(t, y(fP, Uo)(t))- he(t, y(f, o-o)(t))]-< ,/e//(2ce) (t Th),

for all sufficiently large p, and

> Ti, (tLi.(1) /x(T’" CIA)=5/x( )a for all L, i, k, j.

VIII. For each L, i, k and j, we set

Zcij Tmk 1"-’1 Aj

and determine a family Ti(a) (a e [0,/]) of subsets of TL such that

TLii(a) c Tci(a’) if c < c’,

Trikj (0) ,
tx(rL(a)) min (a, tx(rr)).

It follows from VII(l) and the definition of/ in VI that tx(TLk(a)) a whenever
ce <--_ ai ci ).

LikjFor each choice of o (o)LkJ), with o) e [0,/3 ], we set

pr’(t) It TL’/(ooL’)],
U(OO)(t)

u0(t) elsewhere in T.

We also denote by Il the number of elements of , and set

’---{0 =(oLi)Le.,i:l,...,m]OLi t[0, ]}--[0, []m[c<’[,
o)Lik] o) a Likol tLik )oLi (0 (0Li) Cv_. ),

o(o) (o’’/(o)).
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LikjWe observe that z(TLikj(toLikj(o)))= to (0) for every 0 ,.
In the remainder of this section we shall refer to the items I-VIII above and to

the various objects defined there. We shall use letters L, i, j, k, with or without
additional symbols, to represent elements of , {1,...,m}, {0,... ,n},
{ 1,. , l}, respectively. We shall use the symbol O(a) (in a more restricted sense
than usual) to represent an element x of a normed space such that Ixl -< a.

LEMMA 4.3. Let C and c2 be as defined in V and VII, p => Po, n ", Inl 1,
,3-,/ =/-II, = u(to())andh’= hl’"(y(f p, fi)(t,)). Thenforeveryb[O,]

there exists 0 3- such that, for all Th and j l, , m2,

(1) 0=<0L’-0L’-<b (L, i= 1,..., m),
(2) h "P(y(fP, u(to(O)))(t)) h’ +[yb/(2m)]n,
(3) ej hZ(t, y(fP, u(to(O)))(t))

-<_max(ej h(t, y(fP, fi)(t))-byZ/c,-3,/4).
Proof. Step 1. Let 3 denote the collection of all numbers b’ [0,/3 such that

for every b 6 [0, b’] there exists 0 - sa,tisfying relations (1)-(3). The point b 0
belongs to and corresponds to 0 0. Furthermore, is closed because the
function 0 y(fP, u(to(O))) 3- C(T, ") is continuous and 3- is compact. Now
let 0 -< b <
Since is closed, this will imply that [0,/].

Step 2. Let 0 be the value of 0 corresponding to b. We can determine a
simplex G* 3 corresponding to the point [y/(2m)]n as in I. We let

ao min {1/2(/ )aLikoJ(tLik)laLikoJ(tLik > O, all L, i, k, j},

(t) y(, u(,o(o)))(t),

F(t) fP(t, 6(t), u(to(O))(t)).

Since tx(u(to(O)) uo)<--e3 and Io-o-uol--< e3, we may, by III and V, select
elements F* and H* e Y( such that

(4) IH*--Hl’P((tl))l<--_ez, [Z(F*)-Z(P)lup<-_2e2,
and we set

L*=(G* F* H*)
Since the function

to

is continuous, we can determine/30 e (0, ao] such that

" sup IfPo(t, ay(f p, u(to))(t)+(1 a)O(t), r)- f(,P g(t), r) dt < e,/c,,
rR,O<=a<=

(5)
sup Ih l’P(ay(f
Oa

sup
Th,oN N

Ih2(t, ay(f, u(to))(t)+(1-a)(t))-h(t, g(t))l

<=[16c3(tl--to)+ 1]-’y,
Likjprovided Ito toLikj()[ ____< 2/3o for all L, i, k and j.
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For each choice of (?ikj) with elements in [0, 2/o], we consider the array
o3(sr) (03 Likj (r)), defined by

() Likj () o)Likj() (L L*),

*J() *’J() + ’J.
We choose a fixed (i*, k* j*) with aC**k*aJ*(tL*i*k*) >0, denote () by
when ff*k*j* while all other kj are kept fixed, and set

M* (C*, i*, g*, j*),
M* M* M* M*

A(, fl)(t) (t) fl-[(a + fl)(t)- (a)(t)] (a, [0, flo], fl > 0),
L*r* * * f* f(r*, Y(L m,)(r*)) 0 (r*) or(r*))

We observe that for all a, fl [0, o], we have
M* ’ (*) ’*(,*),

and therefore ((a, fl))= ft.
Step 3. We shall next show that, for every choice of

i*, k*, j*, [O, flo], fl(O, flo], tT,
we have

(6)
A(t) 0 (t ’*), IA,(t)l c, (’* "r* +

IA(t) Z(F*)(t)-’Z(F*)(-*)f*I < 5c 2
el (t :-- T*

For all a,/3 [0,/3,,], we have

(a + fi)(r) fi(a)(r) (r e T (a, fi)),

(+)()=o*’*(), ()()-u,,()=oj.() ( (,fl)),
’(,) [*, t,], ((, ))= .

Thus

(a, )(t) &, + fP(z, (a + )(z), fi(a + )(r)) dr

and, for/3 > 0,

(7)

(t T),

A(t) 0 if <- -*, and otherwise

A(t) fl-1 [fP(, (a + fl)(T), t(a)(’))-fP(, (a)(T), a(a)(T))] d-

+ fl-’ I fP(r, (a + )(r), pL*’*(r)"Oj.(r)) dr.
ot, )fq[ to,t
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otherwise.

Since fi(a) coincides with u(to(O)) except on a set of measure at most e3 and
ccle3<-el, it follows from (9) that

A(t) F(-)A(-) d" + f* + O(4e )
*+83

(t >=’r* + e3),

which, together with (4), (8), (9) and II, implies the validity of relation (6).
Step 4. Now let

$(sr)(t) y(fP, u(o3(’)))(t) (t T,

ikj(Tq) aL*ikolJ(lL*ik)TI (’O (’O 1,

’(’0) (’ik](’lr])), (D(’])

.,kj [0, 2/30]),

"", /") [0, 2/3,,]"),

and let Ai*k*J*(t)=Ai*k*i*(a,)(t) denote A(t) of Steps 2 and 3. Then
Ai*k*r(a,/3)(t) represents a partial difference quotient of q(sr)(t) with respect to
i*k*i* between the values a and a +/3. It follows that, for each choice of i, of
/6 [0, flo]", and of/3 6 (0, flo],

(10) /3-’[th(/+ fle,)(t)- th(n)(t)] Y. aL*ikoY(tL*ik)AikJ(t),
j,k

where each Ak is evaluated for appropriate choices of " with elements in [0, 2flo].
By IV and Lemma 4.1,

Lik Lik Lika [0, 1], a (16CCl)- % a t-to;
k

and by V, any subinterval of T of length 63 contains at most one of the points Lik

or tl. Since

fit, v, cro(t))= Z ai(t)f( t, v, p(t)),
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we deduce from (6) and (10) that

fl-[4,(r/+ fle)(t)- 4 (r/)(t)]

(11)

where

aL*gZ(F*)(t)-IZ(F*)(tL*’)f’kxt,,.,t
,./*k

k

+ 0(5c2(t- to)e, +(16c)-yX,,,,,,)(t)),

fk f(tl*k y(f, O.0)(t*k) pC*(tC*k)... O.o(tt.*k))
If we denote the first (main) term on the right of (11) by 6*(t) (as in IV and
Lemma 4.1), then we deduce from (11) that

L*i(t4,(/)(t)-q(O)(t)= E n [6 +O(5c2(t,-to)e, +(16c)-’y)]
i=1

and, by the definition of e in I,

(12) 6(n)(t) 6(O)(t)
i=1

It is easily verified that ]6L*(t)]2c3(h--to) for all and t. We can now
deduce from (4), (5), (11), (12), II and IV that

fl-[h ’P((n + fle)(tl))- h ’P((n)(t))]
(13) (H* + 0(2e))6*(t) + O(18c3(ta to)e

* +o([8c(tl-to)+
and, setting c’=[16c3(tl-to)+ 1]-, that

h(t, 4(n)(t))= h(t, (O)(t))+[h(t, 4(O)(t))+O(c’v)][(n)(t)-O(O)(t)]
(4)

h(t, e(t))+ Z n[h(t, o(t))8*(t)+ 0(7/4)].
i=1

Now, by V and Lemma 4.1,
7(.5) e. [h(t, O(t)) + h(t, e(t))*’(t)]-v

for all i, j and e T. We first consider values of j and Th for which
3e h(t, O(t))-v.

Then, by V,

e h(t, 4(n)(t)) -v/4.
For other j and t, it follows from (15) that

e. h(t, O(t))6*(t)N-7/2 for all i,

and therefore, by (14),

Te h(t, 4(n)(t)) e h(t, O(t))- ,l n
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Thus

(16) ej h2(t, 4(rt)(t))=<max ej. hZ(t, f(t))-
(j=l,...,m2, tTh, r/6[0,/3o]m).

Step 5. Let A be the derivate container operator described in the remarks
following Definition 2.1, and let

(rt) h’P(b(rt)(t)) and /3’ (0,/30].

By (13), for every rt (0,/3’)" and every

we have

hence by I,

Ii-’*’l<=[18c,3(t-to)+l]e for all i;

1-11<-_2m/7 and n[0, c)".

It follows, by Lemma 3.3, that

(0) + [0, ’/(2m/3,)]nc ([0,/3’]").
Thus there exist rl 6 [0,/3’]" and a corresponding 0 - such that

oLi Li b (L L*), 0L*i 6L*i + T 6+(17)

and

(18)
((rl) h "P(y(fP, u(w)(O)))(t,))

h’ +[(6+/3’)’y/(2m)]n ((0) + [/3’y/(2m)]n.

Finally, we deduce from (8)-(10) that 4 has a Lipschitz constant mc(t- to)
and therefore has a Lipschitz constant mcc(tl- to). It follows therefore from
(18) that

/3’y/(2m) l((’O)- ((O)l <---- mcc,(tl- to)In} <- rncc,(t,- to) . n
i=I

hence, by (! 6),

(19)
e h2(t, th(r/)(t))_-< max (e he(t, (t))-’/2/c2,-3’/4)

=max (e h2(t, y(fP, f)(t))-(+[3’)’y2/c2, -7/4)

for all Th and .i 1, , m2. Relations (17)-(19) show that/+/30 6 , and
therefore 30 [0,/]. Q.E.D.

4.4. Proof of Theorem 2.3. Let p-> Po,

w(O)(t) y(/, u(w(O)))(t) (0 3-, T),

3- and 0_-<s -_<- (/- 1Ol)//(2m). Then it follows from Lemma 4.3 that for every
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point v R at a distance s from h I’P(w()(tl)) there exists 0 e
+[0, 2ms/3"]’lsele - such that v h l’p(w(O)(t)) and

ej. h2(t, w(O)(t))<-_max (ej. h2(/, w(O)(t))-(2ms/c2),-3’/4)
(lETh, j=l,"’,m2).

This implies that if v is the endpoint of a polygonal line in Rm of length 3"/(2m)
and originating at h’P(y(f p, uo)(t)), then there exists Op -such that v=
h ’P(w(Op)(tl)) and

ei. h2(t, w(Op)(t))<-max (ei. h2(t, y(fP, u,,)(t))-(3"2/c2),-3"/4)
(t Th, j 1,’’’, m2).

It is clear that every point in SF(vo, e) is the endpoint of a polygonal line
originating at vo and of length e. Therefore, the above relation together with the
relations in VII shows that for all sufficiently large p and all

(1) v e SV(h (y(f, oo)(/1)), 3"fi/(4m))c SV(h 1,p(y(fp, uo)(t)), 3"fi/(2m))

there exists Op 27 such that

(2) v h"P(y([P, u(w(Op)))(t))

and

(3) ej h2(t, y(fP, u(oo(Op)))(t)) <- max (-1/2/3"2/c2,-3"/4)
(t e rh, j 1,’" ", m2).

Because - is compact, we may choose a sequence P c (1, 2,...) such that
(Op)pc P converges to some 0 -. We can enumerate the finite collection of the
control functions

Li
0,0 (j=0,...,n, i=l,...,m, Le),

as u l, , uN. Then

u(o)(O))(t) {u(t)," uN(t)} (0 e -, e T),

and the first part of Theorem 2.3 follows therefore from relations (1)-(3) by
letting p -> oo, p e P, and setting

K min (3"/3/(4m), 3"2/c, 3’/4).

In particular, there exists 0o -such that

h l(y(f, U(co(Oo)))(tl)) h (y(f, ro)(tl))

and

he(t, y(f, u(oo(Oo)))(t))(-oo, O)m (t Th).
Finally, our previous arguments remain valid if we replace the number e3,

chosen in V, by any smaller positive number. In particular, if (e ) is a sequence in
(0, e3] decreasing to 0, then for every we can replace e3 by e 3. We then denote by
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Uo and the control functions corresponding to Uo and u(oo(Oo)). By VII and
VIII,

i__ <Uo O’ow=e3 and /.(/iCu))<t3
It follows that limi fii .O’o, while

h’(y(f, a’)(t,))= h l(y(f, O’o)(tl))

(2) lrtil max
alEA1

furthermore,

(1)

and

0= min losCo

5.2. Proof of Theorem 2.4. Let (o-o, io) be either a minimizing relaxed
solution or a minimizing original solution, 37= y(f, cro, io), il hl(y(tl)), a =0
and/3 1. If (%, (cio, 0, oil)) is nonextremal relative to D,,,,, fo,1 (as defined in

and

h2(t, y(L ai)(t))(-o, O)" (t6 Th),
for alli--1,2,.... Q.E.D.

5. Proofs of Theorems 2.4 and 2.5.
5.1. A related problem. We shall apply Theorem 2.3 to a related problem

for which an interval [c,/3] is given and relations (1) and (3) of 1 are replaced,
respectively, by

(1’) (t)=f(t, y(/), u(t)), o(t)=0, (t)=0 a.e. in T

and

(3’) (y(to), s%(to), C(to))e AoX[Ct,/3]x Al a.e. in T,

while h l(y(tl)) is replaced by

]l((y, o, )(tl))=(h(y(t,)) + o(/1), h l(y(tl))--(tl)).

We deduce from the remarks that follow Definition 2.1 (of a derivate
container) that, if a component th of a Lipschitz-continuous function 4)=
(b 1,..., 4b) A Nb has a continuous derivative, then we may choose the jth
row of elements of A b(a) as {b(v)l Iv a] _-< e/2}. Similarly, if 4’ b* + 4’** and
b**v exists and is continuous then we may set

A(4)*+4,**)(a)=A’4,*(a)+{4,**(v)[lv-al<=e/2} (aeA).

Thus, if Af and A (h, h l) are given, then we can easily determine corres-
ponding derivate containers for (f, 0, 0) and/. A simple computation then shows
that if (6, (io, 0, Oil)) is extremal relative to

fl,,t ((f, O, 0), A (f, O, 0),/,A1, h 2, AoX[a, fl]xA),

then there exist (lo, ll)e N"+l, nonnegative Radon measures tol, , to,2 on Th, a
measurable F T-( 1, Nn) and He 5f( N",/t"/l) that satisfy relations (1)-(5)
of Definition 2.2 with l replaced by (lo, l) and h by (h, hi), and that,
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5.1) then, by Theorem 2.3, there exist points aoe Ao, :oe[0, 1], e A1 and
u e# such that

h(y(f, u, ao)(tl)) + o< h()7(tl)),
h l(y(f, u, ao)(tl))-- O,

h2(t, y(f, u, ao)(t))e (-, 0]’ (t e Th).
Since :o -> 0 and : e A, this contradicts the assumption that (ro, 8o) is either a
minimizing relaxed solution or a minimizing original solution. Thus
(tro, (8o, 0, 8)) is extremal relative to D.o,1 and it follows from 5.1 that (O’o, rio) is
extremal relative to fo, as defined in the statement of Theorem 2.4. Relation (1)
now shows that lo=>0 and relation (2) of 5.1 shows that lr81
max,,a, la. Q.E.D.

5.3. Proof ot Theorem 2.5. Now assume that (t, 80) is a strict original
solution. Then the set - is nonempty by the very definition of a strict original
solution. Now let (& do)- and set

/3 =-c 1/2[h(y(f, tT, 8o)(t))-h(y(f, t, do)(tl))],

dl h l(y(f, ., do)(tl)).

If (, (rio, 0, til)) is nonextremal relative to 1). (as defined in 5.1), then the same
argument as in the proof of Theorem 2.4 shows that there exist ao e Ao, :o [c,/3 ],
: e A1 and u # such that

h"(y(f, u, ao)(tl)) + :o< h"(y(f, d’, do)(tl)) < h(y(f, ti, 8o)(t,)),

hl(y(L u, a,,)(t))eA1,

hZ(t, y(, u, a,,)(tl)) (-oo, 0]m (t6 rh).
The first of these relations implies that

h(y(f, u, ao)(tl))< h(y(f, a, 8o)(tl)),

contradicting the assumption that (ti, 8o) is a minimizing original solution. Thus
& (rio, 0, dl)) is extremal relative to, and it follows from 5.1 that there exist
(Io, l), toj, F and H such that (& do, (lo, l), toj, F, H) is extremal relative to fo.1.
Since c<0<fl, relation 5.1(1) yields /o=0 and, as before, 5.1(2) yields
llr8 max,,a, la. Q.E.D.
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STOCHASTIC CONVEX PROGRAMMING: RELATIVELY
COMPLETE RECOURSE AND INDUCED FEASIBILITY*

R. T. ROCKAFELLAR AND R. J-B. WETS$

Abstract. The basic dual problem and extended dual problem associated with a two-stage
stochastic program are shown to be equivalent, if the program is strictly feasible and satisfies a
condition generalizing, in a sense, the condition of relatively complete recourse in stochastic linear
programming. Combined with earlier results, this yields the fact that, under the same assumptions,
solutions to the program can be characterized in terms of saddle points of the basic Lagrangian. A
couple of examples are used to illustrate the salient points of the .theory. The last section contains a
review of the principal implications of the results of this paper combined with those of three preceding
papers also devoted to stochastic convex programs.

1. Introduction. This is the fourth in a series of papers [1], [2], [3] devoted to
the following two-stage model in stochastic programming. Let C1 and C2 be
nonempty, closed convex sets in R n’ and R n2, respectively, and let (S, , o-) be a
probability space. Let fli be a finite convex function on R n’ for --0, 1,- , ml,

and let f2i(s, , be a finite convex function on R n’ x R n2 for 0, 1, , m2 and
s S. The problem is to minimize

(1.1) /lO(Xl) + Is f20(S, X,, x2(s))o(ds)

over all X e R n’ and X2 9n% /9c(S, E, 0-; R n2) (the Lebesgue space of equival-
ence classes) satisfying

(1.2) xl C1 and fi(Xl)<=O for i-- 1,..., rn,

and almost surely

(1.3) x2(s)e C and [i(s, x, x2(s))-<_O for 1,. , m2.

It is assumed that f2i(S, Xl, X2) is measurable in s for each (Xl,/2) R "1 x R ", in
fact summable if 0 and bounded if 1, , m2. (From this it follows that for
each xl R "1 and x2 ,%, ]:2i(s, x, Xz(S)) is measurable in s, summable if i=0
and essentially bounded if 1,. , m2.)

The basic Lagrangian function introduced for this problem in [1] is defined
on the product of the sets

(1.4) Xo {(x l, x2) 6 R "’ ,lXl 6 C1 and almost surely Xz(S) 6 C2},

Yo {(Y, Y2) R "1 wly _> 0 and almost surely y2(s) => 0},

* Received by the editors October 7, 1974, and in revised form May 29, 1975.
t Department of Mathematics, University of Washington, Seattle, Washington 98195.
$ Department of Mathematics, University of Kentucky, Lexington, Kentucky 40506.
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by the formula

(1.6)
L(Xl, X2, Yl, Y2) ---flo(Xl) +

i=1

+ [o(s, Xl, x(s))+ 2 y(s)h(s, Xl, x(s))]o(ds).

The given problem can be identified with

minimize f(xl, x2) over all (x 1, X2) { X(,, where

f(xl, x2)= sup L(xl, X2, Yl, Y2)-
(yl,y2) Yo

The basic dual problem is

D maximize g(Yl, Y2) over all (yl, Y2)E Yo, where

g(Yl, Y2)-- inf L(xl, X2, Yl, Y2).
(XI,X2)GXo

The relationship between P and D was studied in [1], and it was shown in
particular that

(1.7) min P sup D if C and C2 are bounded.

In cases where actually min P max D, a pair (gl, g2) solves P if and only if there
exists ()7, ;2) E Yo such that (gl, T2, ;, )72) is a saddle point of the Lagrangian. This
saddle point property was reduced in [2] to a certain set of Kuhn-Tucker
conditions involving a function p n, which essentially associates prices with the
constraint that X must be chosen before the observation of s. The pairs (;1, ;2)
are, of course, solutions to D.

To apply this basic duality theory at its fullest, one needs a simple criterion for
the relation inf P max D. But the latter does not hold in general, even if P is
strictly feasible in the sense that for some e > 0 the constraints (1.2) and (almost
surely) (1.3) can be satisfied with e in place of 0.

The goal of this paper is to obtain such a criterion in supplementing strict
feasibility by a condition on the availability of second-stage recourse. The
technique is to analyze the so-called induced constraints in the first stage in terms
of the "extended duality" developed in [3]. The extended duality adjoins to the
Lagrangian additional terms involving "singular" linear functionals on ]o. It is
interesting that, despite reliance on such esoteric objects in the proof, our main
result on basic duality makes no mention of them in its statement.

Let K1 be the set of all x R nl satisfying the first-stage constraints (1.2) and
let K2 be the set of all x R n’ such that there exists an X2 { on2 satisfying the
second-stage constraints (1.3) almost surely. It is evident that K2 is convex.
According to [1, proof of Thm. 1], we have x E K2 if for the set

(1.8) r(s, X 1) {X2 {E C2]f2i(s, x l, x2) 0, 1, ", m2},

there is a bounded region B,with F(s, x) B # almost surely.
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We shall call K2 the induced feasible set for the first stage of P, as opposed to
the explicit constraint set K1.

Still another set is of interest in this connection. Let us say that a function
0 ](S, Y_,, tr) is singularly nonpositive, if for every e > 0, there exists a (measura-
ble) set T S, comprised of a finite number of atoms with respect to tr (or empty),
such that O(s) <- e for almost every s S\ T. The reason for this terminology will
become clear in the next section. The singularly induced feasible setK is defined
as the set of all x e R"’ such that there exists an x2 en with Xz(S) e C2 almost
surely and fzi(", x, x2(" )) singularly nonpositive for 1,. , m2. Like K1 and
K2,.the set K is convex. Obviously

(1.9) K2 K,

but in general the sets are not equal. The relations between these two sets is
investigated further in 4.

The main result is the following. (ri C denotes the relative interior of a set C,
i.e., the interior of C relative to the smallest affine set containing C [10, 6].)

THEOREM 1. Suppose that P is strictly feasible and ri K K. Then

(1.10) inf P max D,

so that solutions to P and D correspond to saddle points ofthe basic Lagrangian L.
In the last section ( 4) of this paper we pursue the implications of this result

and the significance of the hypothesis ri K1 K,. We note, however, that this
hypothesis is automatically satisfied whenever

(1.11) K2 K1.
Stochastic programs satisfying this last condition are known as stochastic prog-
rams with relatively complete recourse. Strictly speaking, this is the version of that
condition for the class of stochastic programs under consideration here.

This is not an unusual property for stochastic programs. In fact, we might
expect that for many stochastic programs arising from specific applications a
stronger property will actually be satisfied, namely, the so-called complete recourse
condition, which requires that for all X 6 R n, there exists x2 ?n satisfying the
second stage constraints (1.3), or equivalently that K2 Rn; this implies that for
all xl, F(s, xl) : almost surely.

The seminal papers on stochastic programming of G. Dantzig [4] and Beale
[5] consider only stochastic programs with complete recourse. This restriction is
not artificial, since the applications envisaged by these authors fall in this class.
Actually, Beale’s model [5, 5] and one of the problems motivating Dantzig’s
work, described in [6], belong to an even more restrictive class, known as
stochastic programs with simple recourse, which has received considerable atten-
tion (cf. [7] for a survey). Roughly speaking, for simple recourse the recourse
decision is simply a way to record the "state of the system" after a first stage
decision x has been selected and a particular element s of S has been observed.

The term "complete" was first utilized by G. Dantzig in [4]. The more
detailed classification sketched out above was introduced in [8]. Interest in the
class of stochastic programs with relatively complete recoursewbut not necessar-
ily complete recoursemstems from theoretical considerations, but also from the
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observation made in 4 of [8] that some important allocation problems arising in
agricultural economics and formulated by G. Tintner [9] are indeed members of
this class and not of the more restrictive class of stochastic programs with complete
recourse. Independently of the implications resulting from the theory developed
here, stochastic programs with relative!y complete recourse are also of interest
from a computational viewpoint, since they usually possess special structures
which can be exploited in the solution procedure; see, for example,[8, 2 and 4].

2. Singular multipliers and induced feasibility. As in [3], we denote by Y3 the
set of all y (y, , y 2) such that y is a nonnegative singular linear functional
on ]. The latter means that y is a continuous linear functional with y(c) _-> 0 for
every nonnegative c ]o, and there exists an increasing sequence of measurable
sets Sk with 1.3 k=l Sk S, such that y(c) 0 if c(s) 0 almost surely for sg Sk.

The extended Lagrangian associated with P is the function L- on

Xo Yo Y3) defined by

(2.1) L’(x,, x2, y,, Y2, yO)= L(Xl, X2, Yl, Y2) + E YT(f2i(", Xl, X2(" ))).

The extended dual problem is

maximize (y 1, Y2, yO) over all (y, Y2, yO) Yo Y], where

(Yl, Y2, yO)= inf L (x,x2, y, y2, yO).
(XI,X2)UzX

We have

(2.2) (yl, y2, 0)=-g(yl, Y2),

so that D can be regarded as a "subproblem" of
It was shown in [3] that strict feasibility in P implies inf P max 13. We shall

demonstrate in the next section that, in some cases, solving is equivalent to
solving D, and this will yield Theorem 1. The present section paves the way to this
argument by developing a representation of the singularly induced feasible set K
in terms of the singular component of L" in (2.1). This representation, in the
theorem which follows, explains the name we have given to K_.

THEOREM 2. One has x K if and only if there exists X2 ,2n such that
x2(s) 6 C2 almost surely and

(2.3) E Y(f2i( , x,, x(. )))-< 0 for all yO y.
i=1

Proof. Clearly, the theorem will be proved if we establish that a function
0] is singularly nonpositive if and only if b(O)<=O for every nonnegative
singular functional b.

Suppose first that 0 is singularly nonpositive, and let b be a nonnegative
singular functional with an associated sequence of sets Sk, as per definition. Let
e > 0. Then there exists Tc S, consisting of a finite number of atoms, such that
O(s) <-e almost surely outside of T. Since Sk S, we have o’(Sk) ’ 1. Hence for
some k sufficiently large we have Sk T (except possibly for a subset of T of
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measure zero), implying that b(O) depends only on the restriction of 0 to S\ T.
Let e be the function in] with e(s) 1. Then b(O) <= b(ee) eb(e), because b
is nonnegative and O(s)<= ee(s) almost surely on S\ T. This is true for arbitrary
e > 0, so we conclude b(O) <- O.

Assume now that the function 0 Le is not singularly nonpositive. Thus for a
certain e > 0 the set

T={sS[O(s)>e}

is not comprised of a finite number of atoms (up to a set of measure zero). We shall
construct a nonnegative singular functional b such that b(O)>= e. The assumed
property of T implies the existence of a decreasing sequence of measurable sets

Tk T such that o-(Tk) > 0 for all k and tr(Tk + ) <- o’(Tk). Then

0 lim cr(Tk) or( UI Tk).
k->c k=l

Deleting the null set T k Tk from each set in the sequence, if necessary, we
can suppose that f3 k Tk- . For each k, let bk be the nonnegative linear
functional on defined by

(2.4) bk(C)
r(T)

c(s)r(ds).

Observe that

(2.5) b(e) Ilb.[I for all k,

where, as above, e(s)=- 1. The set {bklk 1, 2,... } is thus bounded in the dual
space (Sf)* and hence has an accumulation point in the weak* topology. Let b
denote any such point. Then b is again nonnegative, and b(e) 1 by (2.5).
Moreover, b is singular: setting S S\T, we have S U _- S, and for _-> k
the functional b has b(c) 0 for all c vanishing almost surely outside of S;
thus b(c) 0 for all c ]o vanishing almost surely outside of S. In particular, for
c(s) max {0(s)- ee(s), 0}-[0(s)- ee(s)] we have c(s) 0 for all s T, and
hence b(c)= 0. Therefore

b(O)- e b(O ee) b(max {0 ee, 0}) -> 0,

and the proof is finished.

3. Equivalence of D and !). We consider now, as in the extended Kuhn-
Tucker conditions in [3], the function on R"’ x Y defined by

(3.1) l(x, y)=inf Y(f2i(", Xl, x2(" )))[X2t/gn, X2(S)t C2 a.s..

This is convex in x l, concave in y, and nowhere +0o. Let

(3.2) K’={xeR’lll(Xl, y)=<0 for all ye Y3}.

This is a closed convex set in R "l. (Each of the functions 1(., y) for yOe y,
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convex on R nl and nowhere +co, is continuous.) Moreover

(3.3) K_ c K.,
in view of Theorem 2.

THeOReM 3. Suppose there exists at least one x C with f(x)<O for
1,. ., m2, and that every such x which is also in ri C belongs to K. Then

the dual problems D and D are equivalent, in the sense that for every
(y, y2, yO) Yo + Yg there exists y such that (y ;, y) Yo and

(3.4) (Yl Y2 yO) < (y,1, Y:, O)= g(y, Ya).

Proof. Let (Yl, Y2, yo) No X g. We assume (y, y:, y) is not -eo (and
hence is finite), since otherwise the conclusion of the theorem is trivial. In this case
we have the following formula:

(3.5) g(Y, Y2, yO)_ inf {L(x, x2, y, y2)+ t(x, y)}.
(XI,X2)EXo

To see this, fix (y l, Y2, Y) E Yo Y, and observe that for all x E C1 we have that

inf L2(s Xl, X2(S), y2(s))cr(ds) + Y y i(f2i(’, X1, X2(" )))
x2ED i=1

x2c,inf Is L2(s, xl, x2(s), y2(s))o’(ds)+ x2t)inf Y(f2i(", Xl, x2(" ))),

where

@ {x2 en [x2(s) C2 almost surely}.

Since the inequality -_> certainly holds, equality will follow if we show that for
arbitrary x2 @, x2 @ and e > 0, there exists x2 e such that

L:(s, x, x:(s), y:(s))(ds)+ Y(h(", x, x:(" )))
i=1

(3.6)
=< ] (s,x,x"(s), y(s))(as) + Z yff( x,, x;(. )))+

i=1

Now to each singular functional y, there correspond an increasing sequence of
measurable sets S with U S S, such that y(a) 0 if for some k, the function
a e vanishes a.e. outside S. The latter property implies that y(b) y(b’) if b
and b’ agree almost everywhere outside of S. Now for each index k define

k [X’(S) ifsS fori=l ...,m2,
x(s)

x;(s) for all other s.

kFor each k, the function x2 and
k[:(s, x, x:(s))= h(s, x,, x;(s))

so that

yff:(’, Xl, x(. )))= 2 y (h(", x, x;(. ))).
i=1
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On the other hand, since limk_+oo cr(S\Sik)= 0, we get that

lim Is L2(s, x,, x(s), y2(s))o’(ds) Is L2(s’ x" x2’(s)’ y2(s))o’(ds).

k if k isFrom the two preceding equalities, it follovs that (3.6) holds for x2 x2
sufficiently large, which in turn directly yields (3.5).

Now, define the functions h and k on R "’ by
x2, yl, yz)lX:En2, Xz(s)ECza.S.} ifxEC,

h(x)=
+oo if XlC,

(3.7)
k(x) l(x, yo).

Then h is a convex function, not identically +oo, while k is a concave function,
nowhere oe, and

(3.8) (Yl, Y2, yO)= inf {h(x)-k(x,)}.
xIGR nl

The finiteness of (yl, Y2, yo) implies k cannot be identically +oo, and hence k is
finite everywhere; furthermore h cannot have the value -eo and hence is proper.
Fenchel’s duality theorem [10, Thm. 31.1] is thus applicable to (3.8), and we
obtain

(3.9) (Y, Y2, yO)= max {k*(x’)-h*(X*l)},
xER

where the conjugate functions k* and h* are defined by

(3.10) h*(x*)= stlp {X," x*-h(Xl)},
xlERnl

and

(3.11) k*(Xl*)= inf {x. x*-k(x)}.
xlRnl

Fix x* for which the maximum in (3.9) is attained. Then

(3.12) h*(x*)= (yl, Y2, Yo)-- k*(x*),

and therefore by formula (3.10),

(3.13) h(Xl)--Xl" x*-->(yl, Y2, Y)-k*(x) forallxR"’.

Also from the definition of k and by formula (3.11),

(3.14) l(x, y)+x" x*>-k*(x’) for all x R"’.

The latter implies that x. x _-> k*(xT) if l(x, y)-<_0, and thus, in particular, if

x.l 6 K. Our hypothesis then yields that x x >-_ k*(x) for all x in the set

(3.15) Ki {x e ri Cl[f,(x) < O, 1,..., m}.
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Define

(3.16) K’’= {x Cl[(x) < 0, i= 1,. , m}.

By hypothesis, K’l’ is nonempty. From this (and the finiteness, hence continuity, of
the convex functions fli) it.follows that K’I ri K’l’, while on the other hand,

(3.17) cl K’l’: {xl Cll[l(xl) _--< 0, i= 1,’-’, ml}-- K1.
Hence K1 is in fact the closure of the set K’l, where the inequality xl x* >- k*(x’)
holds, so that

(3.18) k*(x*)<= inf Xl" x*.
xlK1

The right side of (3.1 8) represents an ordinary convex program which, by our
hypothesis, is strictly feasible. In consequence, there exist multipliers 171 >_-0,

1,. , ml, such that

k*(x*) <- inf 1" x*l q- ;lifli(X1)
xC i=1

The latter is better expressed, for our purposes, as

(3.19) _, ifli(Xl)>--k*(x’)--Xl X* forallxlC1.
i=1

Combining this inequality with (3.13) and reverting to the definition (3.7) of h, we
see that

(3.20) L(xl, x2, Yl, Y2) q- ;lifli(Xl) (Yl, Y2, yO)
i=1

for all (x l, x2) Xo.

But the left side of (3.20)is L(xl, xe, Yl + 1, Ye). Therefore, setting Y’l Yl + Yl we
have (y’, y2)e Yo and

(Yl, Y2, yO)< inf L(x1 x2, y’, Ye)= g(Y , Y2),
(x ,x2)e Xo

which is the desired relation.
Proof of Theorem 1. Since P is strictly feasible, we know that inf P max

[3, Thm. 2], and also that the set K’I’, as defined in (3.16), is nonempty. But then,
as in the proof above, the set K’l in (3.15) is ri K’l’ while c! K’I’= K1. Therefore

ri K --ri(cl K’’)= ri K’l’=
Our assumption that ri K c K then gives us, by way of (3.3), that K’l c K. Thus
the hypothesis of Theorem 3 is fulfilled, yielding the conclusion that max D
max D.

4. Analysis of induced feasibility. We turn now to investigating further the
relations between the induced feasible set Ke, the singularly induced feasible set
K_ and a related set K, which consists of all vectors x e R nl such that for almost
all s S there exists a vector x2 C2 c R n2 such that

(4.1) fei(S, Xl, Xe)<-O fori=l,...,me.
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We shall call K the r-induced feasible set. It is evident that

K2 K2.
One can view K as the set of all (first-stage) decisions x with which we can
associate at least one feasible recourse decision for almost any "observed value"
of s in S. In order for xl to be also in K2, one must be able to string these recourse
decisions together so as to form an essentially bounded measurable function of s.

The singularly induced feasible set K, is not so easily amenable to physical
interpretation. However, .the main results do not refer to K2 but to the larger set

K2, or even (in Theorem 3) to a still larger set K,. At least in part, this is due to
technical reasons which we examine in this section. We concentrate our attention
on two "extreme" cases: at one end the discrete case, where the support of the
random variable consists of a finite number of atoms, and at the other end the
nonatornic case, where the probability space contains no atoms. (This latter case
includes the one of S c RN, N finite, and r absolutely continuous with respect to
Lebesgue measure). These two situations seem to cover nearly all applications of
practical interest. By abuse of language we shall refer to (S, Z, r) as being a
discrete or nonatomic probability space in the respective cases.

Recall that for s S and x R n, one has

(4.2) F(s, xl) {x2 C2]f2i(s, x, x2) =< 0 for 1,. ., m2}.

As already pointed out in [1, Proof of Thm. 1], the multifunction

s --, F(s, x)

is measurable. This. follows from [11, Corollary 4.3], since for fixed x the
functions

(S, X2)>f2i(S Xl, X2) for i= 1,’’’, m2

are normal convex integrands [12, Lemma 2]. Thus for each x e R ’, the set

(4.3) (.O(Xl)-- {s SIF(s Xl) }

is a measurable set. Moreover if x K, then to(x) is a set of measure 1, i.e.,
o[w(x)] 1. We also define

(4.4) w-(s) {x, R"IF(s, x,) : },
which is clearly a convex set. With this notation we have that

(4.5) K= {x, R"lr[w(x)] 1}.

PROPOSITION. Suppose that]or all s in S, oo-(s) is closed. Then the o’-induced
feasible set K is closed and convex.

.Proof. It suffices to show that the or-induced feasible set can be written as

(4.6) K2 ["] o) (s),
sS’

where S’ is some subset of S of measure 1. The proposition is clearly true if
K . Assume otherwise and let D be a countable dense subset of K. Such a
set exists, since K is a subset of the separable metric space R "1. Take S’
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x,D to(x1). Clearly o-(S’)= 1 and K2 D (-] seS’ to- (S). Now for all s S, we
also have that to-l(s)DD and thus to- (s)D K2 since to (s) is closed, i.e.,

-1Kc 71 ss’ to (s).
COROLLARY A. Suppose that C2 is compact. Then K’ is closed and convex.

-1Proof. In this case, to (s) is closed for every s S, since C2 is compact and the
functions f2i(s, "," are lower semicontinuous.

COROLLARY B ([13, Thin. 3.5]). Suppose that C2 is polyhedral and that for
1,..., m2 and all s S the ]:unctions (x, x2)--hi(s, x, x2) are affine. Then

K is closed and convex.

Proof. For each fixed s, the set

W(S)={(XI, X2)If2i(S, X1, X2)<--O for/= 1,-.. ,m2, XlR"’,x2C2}
-1is a polyhedral convex set, and its projection in the x2-coordinates is to (s). Thus

--1
to (s) is polyhedral convex and consequently closed.

With some additional assumptions, it is also possible to show that K
CI sS to- (s). This essentially requires embedding S in a topological space (with

S then the support of o’) and subjecting the maps s--f2i(s, xl, x2) to continuity
conditions (cf. [14, Thm. 2]).

The following two theorems establish the relations between the various
induced feasible sets in the discrete and nonatomic cases.

THFOREM 4. Suppose that (S, 2,, r) is a discrete probability space. Then

(4.7) R n, K K,D K2 K.
Proof. When (S, Z, o-) is a discrete probability space, every function in is

singularly nonpositive, since the criterion for singular nonpositivity allows us to
ignore a finite number of atoms; thus K R hI. The first string of equalities now
follows from the known inclusions Kc K_ c R "’. The equality of K2 K is a
direct consequence of the definition of these sets when the underlying probability
space is discrete.

THEOREM 5. Suppose that (S, , r) is a nonatomic probability space. Then

(4.8) K2=K.
Moreover, if to every x K’ there corresponds a bounded region B R t12 such that
for almost all s, F(s, xl) ffl B , then

(4.9) K2 K2 K.
Proof. When (S, E, o-) is nonatomic, a function in 3f is singularly nonpositive

if and only if it is nonpositive. This yields (4.8). We have already observed that,
in general, K K2. Thus to prove (4.9) it only remains to show inclusion in the
other direction. Fix x6K. The multifunction s-F(s,x) is closed-convex-
valued and measurable, and thus the multifunction s-F(s, x)71 cl B is compact-
convex-valued and measurable. Furthermore, by assumption, F(s, x)f3cl B is
almost surely nonempty. Thus there exists a measurable selector 2 with ff2(s)
F(s, x) 71 cl B for almost all s[ 12, Cor. 1.1 ]. Since B is bounded, i2 is in;hence
x 6 K2 and consequently Kc K2.

These two theorems have immediate implications as to the class of dual
variables we need to consider in obtaining an inf-max duality theorem.
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COROLLARY 4. Suppose that P is strictly feasible and (S, 5;, or) is a discrete
probability space (finitely many points). Then

(4.10) infP=max D.

Proof. Theorems 4 and 1.
COROLLARY 5A. Suppose that (S, E, 0") is a nonatomic probability space.

Then xl K2 if and only if there exists x2 , such that x2(s) C2 almost surely
and

(4.11) Z Y(f2i(’,x,x2(’))-<O forally6Y3.
i=l

Proof. Theorems 5 and 2.
COROLLARY 5B. Suppose that P is strictly feasible, (S, , tr) is a nonatomic

probability space, and to each X K there corresponds a bounded region B with
F(s, Xl)(’l B ( almost surely. Suppose also that w-l(s) is closed for all s S. Then
ri K1 c K if and only if P is a stochastic program with relatively complete recourse,
in which case

inf P max D.

Proof. Theorem 5 with the Proposition above and Theorem 1.
COROLLARY 5C. Suppose that P is a stochastic program with relatively

complete recourse, strictly feasible with C2 compact and (S, , tr) is nonatomic.
Then

inf P=maxD.

Proof. Corollary 5B with Corollary A of the above Proposition.
One of the implications of Corollaries 5B and 5C is that under those

assumptions K2 and K, are closed.
Corollaries 5A and 5B assert that when (S, E, o-) is nonatomic, the "singular

multipliers" result from the presence of induced constraints. The singular multi-
pliers y_ appearing in the extended Kuhn-Tucker conditions [3] correspond.
figuratively speakingmto a singular subset T of S which determines the critical
points in S. These multipliers can not be 1 functions, since these critical points
have mass 0, yet they do play a crucial role in the optimization problem.

On the other hand, if (S, ,Z, o-) is discrete, Corollary 4 indicates that we never
need to use "singular multipliers" to obtain the strong form of the duality result.
Thus the basic Kuhn-Tucker conditions [2] are in fact necessary and sufficient,
assuming strict feasibility. This does not mean that we can ignore the induced
constraints, but more simply that the multipliers associated to these constraints
will be represented by o/91 functions on the probability space. (In the discrete case
the dual of 7, is ,2.) We illustrate this by a couple of examples.

Example 1. Find X e R n’, x2 e 5f] such that

Xl0,

X2(S 0 and s x q- x2(s 0 for almost all s,
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and one has the minimum of the expression

1
2Xl---- Z X2(S),

?l seS

where S= {s-(k-1)/n, k- 1,..., n} with cr(s) 1/n. There are no first-stage
constraints; C1 {XllXl 0}. The induced feasible set is

K2={x,lxl>=l},
whereas K.= R (Theorem 4). From Corollary 4A we know that the basic
Kuhn-Tucker conditions are necessary and sufficient for this problem. From the
differentiable form of these conditions with C1 and C2 the nonnegative orthants,
we obtain using [2, Cor. B] that a pair ((1,2), Y2)(R x)xl deter-
mines optimal solutions to the program (4.8),..., (4.10) and its dual if there
exists a function p I satisfying:

(a) .1! 0;
(b) ff2(S) 0, Y2(S)0, S--ffl +2(S)0, Y2(S)[S--l +2(s)] 0 for all sS;
(%) 2(1/n)2,s O(s) and 2x (i/n)
(d) p(s) ya(s), Y2(s) 1 and 2(s)[- 1 + Y2(s)] 0 for all s S.

One verifies easily that the values

1- 1, )2(S)- 1--S for S

and

k
y2(S)-- --IO(S)-- 1 for s--,

k=0,1,...,n-1,

k =0, 1,..., n-2, Y2(1) -p(l) n +

satisfy the above conditions. It is striking that the "price" y2(S) associated with the
constraint

S X1-}- X2(s) O

is much larger when s 1 than when s < 1.
Example 2. We consider the same problem as in Example 1, except that the

probability space is now nonatomic. Specifically: S is the interval [0, 1] and cr is
the Lebesgue measure. As.before, the induced feasible set is

K2={XllXll}.
This is also the singularly induced feasible set K_ (Theorem 5), and as can be
verified, it is also the set K defined by (3.2) and utilized in Theorem 3. Corollary
5A directs us to use in this case the extended Kuhn-Tucker conditions [3, 5].
Thus, we have that a pair ((1, 2), (Y2, 37)) (R x ]o) x (]o x 01) determines
optimal solutions to program (4.8),..., (4.10) and its extended dual (with s
uniform on [0, 1]) if there exists O -> 6 satisfying

(b) 2(s)0, y(s)0, s-+2(s)0, Y2(s)[s-l+2(s)]=O for s
[0, ];

(c) minimizes (2x +Ip(s)(ds)+ l(x, fo)) subject to x 0;
(d) p(s) 2(s), 2(s) 1 and Y2(s)[- 1 + 2(s)] 0 for s 6 [0, 1];
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(e) 37 _-> 0, 370( , + 2(" )) 0 and 0 inf {370( , + 2(" ))]x2 ]o
([0, ], Z, o-), x2(s) >= 0 almost surely}.
Conditions (a), (b) and (d(R)) are the same as before, but this time a term involving
the singular multipliers l(xl, yO) appears in (c), and these multipliers must satisfy
the condition (e). The functional is a continuous linear functional on ]o and
can be expressed as an integral with respect to a purely finitely additive measure u
on S. Let u be the measure on S which assigns measure 1 to a set A if A is
(Lebesgue) measurable and 1 is a point of density of A; otherwise the measure of
A is 0. (Such a measure can be generated on the Borel field by a construction
similar to the one used in the proof of Theorem 4.1 of [16] starting by simply
specifying u(B)= 0 for every set B of Lebesgue measure 0 and ,(B)= 1 if B is
(relatively) open in [0, 1] and contains 1). One can verify that the values

1- 1, 2(S) 1-s for s [0, 1]

and

2(s)--p(s)= 1 fors[0, 1] and 37(’)- I" u(ds)

satisfy the above conditions.
The solutions to the problems in Examples 1 and 2 resemble each other in

many ways, except for the presence in the case of Example 2 of the singular
function 7, and on the other hand the "jump" in the 2 multiplier when s 1 in
the case of Example 1. In fact, if we allow n to go to + oo in Example 1, it is clear
that 372(1) also tends toward +oo. In other words, in the limit there will be an
"infinite" price associated with the second-stage constraint when s 1. We know
from the derivation in Example 2 that this unusual behavior at s 1 is due to the
presence of induced constraints. The relations between these two examples give
an illustration of the content of Theorem 1 of [3].

One can also view Theorem 1 as an enticement to introduce the induced
constraints explicitly among the first-stage constraints (1.2). If this is done, every
stochastic program becomes a stochastic program with relatively complete
recourse and Theorem 1 becomes applicable to every stochastic program.

This, however, requires the actual determination of these induced con-
straints. The general theory of optimization indicates that merely a finite number
of these will be sufficient to represent the binding constraints at the minimum. But
this is only of relative comfort since, in general, the constraints in question are not
especially easy to identify. Practically, we expect that the appropriate constraints
will be generated as needed. By this it is meant that the algorithm builder will use
some test to verify if a given x e K1 is or is not a member of K2, and in the latter
case he will generate certain induced constraintsto be added to the constraints
determining K--which would "cut out" that particular x. This procedure is
already used for stochastic linear programming [15, 5], although in that case
fairly complete and concrete characterizations of the induced feasible set K2 are
known 1 5, 4].

We conclude this paper by illustrating the effect on the dual variables of
introducing the induced constraints as first-stage constraints in the case of the
examples appearing above.



STOCHASTIC CONVEX PROGRAMMING 587

Example 1’. Same as Example 1, except that the induced constraint

is now explicitly introduced as a first-stage constraint. The same Kuhn-Tucker
conditions yield optimality criteria, except that (a) must be changed to

(a’) ->0, 1-$ _-<0, 9->0, (1-:)9 =0.
With this modification, it can be seen that the following yield optimal solution to P
and its dual:

and

-1, ff2(s)=l-s forsS- l, a(s)= -p(s)- I forsS.

The "curious" behavior of 2(S) at s 1 in Example 1 has now disappeared.
Example 2’. Same as Example 2 except that the induced constraint is

explicitly introduced as a first-stage constraint. The new problem 2’ is now a
stochastic program with relatively complete recourse. We can thus turn to the
basic Kuhn-Tucker conditions to obtain optimality criteria. They are (a’) as
above, (b) and (d(R)) as in Example 2, but from [2, Cor. B] we also have

(c’) 2 +p(s)o(ds)>-_O and x112 +p(s)o(ds)]=O.
This shows that the values

xl-- 1, ff2(s)-- 1-s fors[O, 1]

and

1, 2(S)- -p(s)= 1 for s [0, 1]

yield optimal solutions to Example 2’ and its dual. Observe that the (2, )
solution obtained in Example 2 is actually an optimal solution to the extended
dual of Example 2’, but so is the solution obtained here (with y 0), giving us a
concrete illustration of Theorem 3.

If in P the set C is replaced by C [’] K2 (or C A K_, or C [’-) K), then every
problem so generated is also a stochastic program with relatively complete
recourse. But this time the relation between the dual variables associated with the
original problem and those of the new problem is no longer as easy to establish.

Finally, we observe that from the proofs of Theorems 1 and 3 it follows that
we could actually use the larger set K in place of K. This gives a more general
result, but K. is at the same time "less concrete". We have not succeeded in
proving any more intimate relationship between K and K, than the inclusion

K_ K_,

except in the discrete case, when evidently equality holds.

5. Conclusion. The objective of [1], [2], [3] and this paper is to develop
necessary and sufficient optimality conditions for stochastic convex programs. The
model chosen P (see 1) demands that the recourse (or second-stage) decision as a
function of the random elements be measurable (an inconsequential restriction)
and essentially bounded. This last condition is a definite restriction, in general,
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(not if the second-stage feasibility region is bounded [1, Thm. 2]) but it is not a
significant restriction 1, Thm. 1] since the main concern is not with the existence
of optimal solutions. The approach is through general duality theory: we first
embed the original problem in a class of perturbed problems (the natural choice
turns out to be to perturb the constraints by elements of R "’ 2), then set up a
Lagrangian L associated with the system of perturbations and finally from L
derive a dual problem D. Saddle points of L are characterized by the so-called
Kuhn-Tucker conditions. These Kuhn-Tucker conditions always provide suffi-
cient optimality conditions for P; moreover they become also necessary if it can be
shown that inf P max D (and not just inf P sup D). To guarantee the existence
of optimal solutions to D, the standard requirement is to demand that P satisfies a
constraint qualification (e.g., strict feasibility).

This is precisely what happens [3, Thm. 2] if the space associated with
perturbations is sufficiently "large", viz., if the multiplier space is selected to be
R "’ ()*. The extended Kuhn-Tucker conditions [3, 5] are then necessary
and sufficient. The choice of R"’ (,2) as the multiplier space is however
rather unsatisfactory since calculations involving elements of (2)* are generally
unmanageable unless one can handle "separately" the singular part and the
-part of every such (,,) .multiplier.

This paper shows that the singular parts of the optimal multipliers correspond
basically to the induced constraints (Theorem 2), more precisely to the singularly
induced feasibility set. Consequently, if there are no induced constraints (rela-
tively complete recourse) or, more generally, if the induced constraints do not
determine binding constraints at the optimum, we may restrict the multiplier
space to R " and still obtain the necessity of the Kuhn-Tucker conditions
(Theorem 1). Note also that every stochastic program can be transformed into a
stochastic program with relatively complete recourse by the inclusion of the
induced constraints in the first-stage constraints. In this case the basic duality
theory [1, 4] is applicable, and the necessary and sufficient conditions for
optimality are given by the (basic) Kuhn-Tucker conditions [2] involving only
l-functions as multipliers.
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SINGULARLY PERTURBED OPTIMAL CONTROL PROBLEMS.
I: CONVERGENCE*

PAUL BINDINGt

Abstract. The problem studied is as follows: when does the full solution of minimizing x(T),
given

(t)=f(x(t), y(t), u(t)), u(t)6 U,

e(t)= g(x(t), y(t), u(t)), O<=t<: T,

with boundary conditions on x and y, converge in some sense to the reduced solution of minimizing
Xo(To), given

o(t)=f(Xo(t), yo(t), Uo(t)), Uo(t) U,

O=g(Xo(t), yo(t), Uo(t)), O<=t<=To,

with boundary conditions on x0 as e 0? Without the minimization, this is a standard topic in o.d.e.
theory which essentially covers the case where u Uo is smooth. The corresponding methods need
considerable modification for the control problem and, in the end, are closer to those of optimal
existence theory. Assuming Lipschitz dependent right sides for the full model, we see that various
additional hypotheses give convergence in modes varying from weak L1 to strong AC. In particular, if
controls are prerestricted to a fixed compact set in L1 (e.g., of uniformly bounded variation), or if the
model is linear in y and the reduced solution is normal, then y and u converge in L to Yo and Uo while x
converges in AC to Xo, and thus the full optimal costs converge to the reduced one.

Introduction. There are many reasons for considering perturbations, among
them the determination of a confidence (i.e., error) estimate for the use of a
mathematical model which is in some sense oversimplified. Rather general
theories have been advanced for the use of models which are averaged or those
with smoothed coefficients, but the question of order reduction is less clear. Most
of the known work concerns linear models, and the object here is to analyze
nonlinear ordinary differential control problems in which some of the state
variables are "parasitic" or "fast", i.e., evolve on a faster time scale than the
others. Such effects were investigated long ago, e.g., by Prandtl for p.d.e. (partial
differential equations) and Nagumo for o.d.e. (ordinary differential equations). In
many cases, these fast variables are virtually constant outside their "boundary
layer" of evolution; this leads to a "reduced" model involving the other, slow
variables. The full model can then be viewed as the reduced one perturbed by the
parasitic effects.

Such perturbations fit into a general class termed "singular". Singular
perturbations have been applied a good deal of late to control problems by, e.g.,
Kokotovic and O’Malley, but such investigations have been confined mostly to
linear dynamics with quadratic or time optimal cost functions and have made use
of explicit formulas for the optimal controls.
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In the absence of such a priori knowledge, the singularly perturbed control
problem possesses two differences from more conventional o.d.e, formulations.
The first is the unsmoothness of the fast variables: in fact, the better behaved the
full model is, in terms of differentiability and simplicity, the more the fast variables
reflect the character of the control variables. When the latter are piecewise
continuous, a "boundary layer" occurs at each discontinuity. In general, controls
are only measurable and the resulting "perpetual" boundary layer requires
different estimates. A piecewise theory is also developed here, but only for cases
where controls are of a priori bounded variation. The second difference from the
usual o.d.e, case is that the two-point boundary problems (b.p.) appearing in the
control formulation are frequently known to be soluble. For example, suppose
that the state variables must satisfy conditions at both ends of the trajectory; it is
often the case that an improvement over a known (perhaps default) control
strategy is desired, and that the resulting known trajectory does satisfy the end
conditions. Similar remarks hold concerning solubility of the b.p. arising from the
maximum principle. The works 10], 15] make use of this b.p., but here it is used
sparingly, the approach being mostly via the model equations alone.

The first phase of the analysis, in 2-4, simply gives convergence of the full
trajectories to the reduced ones. Convergence can mean many things, of course,
but the minimal objective here is that the slow (including cost) variables should
converge uniformly. Existence theory also arises naturally here. The level of
model smoothness used is Lipschitz, and the assumptions are discussed in detail in
4. Section 2 contains the key estimates and is a contribution to the initial value

o.d.e, theory under reduced smoothness assumptions.
The second phase, published separately as 5-7, estimates the difference

between full and reduced solutions. With bounded variation (rather than measur-
able, as earlier) controls, Lipschitz models can be controlled to differences in
response (hence cost) of the same order as the ratio e of slow and fast time
constants. The further problems of (i) eliminating the boundary-layer discrepancy
at the fast variable boundary conditions and (ii) reducing the response differences
to a smaller order than e are also tackled. Finally several of the results are
exemplified in a problem with relay dynamics limited to a time constant 1/e.

1. Basic assumptions.
Summary. The full model d.e. are Lipschitz in the state variables, and the fast

d.e. satisfy a stability assumption in the fast variables alone. An assumption of
existence of (weak) minimizing solutions and their continuous dependence on
nonsingular perturbations is made, but only for the reduced problem.

1.1. Problem specification. We are to minimize x(T) subject to

(1.1) (t) fix(t), y (t), u(t)), u(t)

(1.2) x(0) X0 ({0}, r()) [= {0}

for almost all te[0, T] and neLl([0, T]-[’). Here ,icNn, x is the cost
variable, the other x are the slow variables and u is the control. T is the least time
for which the terminal condition (1.2) is satisfied; its dependence on x(0) and e will
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be restricted below. The fast disturbance y satisfies

(.3)

that is,

(1.3")

(1.4)

y’(’)=g(x(’),y(’),u(’)), y(t)=y(’), ’=-d/d’, = t/e;

e(t)=g(x(t),y(t),u(t)) a.e. t6[0, T],

y(0) Yo, y(T) Y,,

where Y c [k and e is a small positive constant. For notational convenience we
set

z=(x,y), Zi =(Xi, Y/), h=(f, g),

and we assume that Zo is bounded and h is independent of x.
We also assume for the moment that Y--Ik and U is bounded; these

simplify matters and amendments necessary to cope with more general situations
are discussed in 4. The cost function has been taken in Lagrange form but
modification to general Bolza form (with a x(T) instead) follows standard
techniques (cf. [5, 69]). Likewise no real difficulties are incurred in extending
dependence of the end sets Zi to t. The question of explicit dependence of the d.e.
(1.1), (1.3) on and " is taken up in 4.

1.2. Restrictions on the d.e. First we assume that

(1.5)

(1.6)

(1.7) [v-v,][g(, , 0) g(, ,, )3<-lu-,12= >0,

where l" denotes appropriate Euclidean norm and adjacent vectors are multi-
plied scalarly. Double bars will be used for function space norms, and vectors may
be row or column depending on context. In general, italic letters denote functions
and Greek ones denote constants and variables.

We further assume a uniform Lipschitz condition on g in v (1.6) and
continuity of f in p. These guarantee that the problem is well-posed in the
following sense. For any admissible (see 1.1) control u on [0, T] and initial value
z(0) there is just one absolutely continuous (AC) state function z z (x, y)
satisfying (1.1) and (1.3) on [0, T].

We also assume that the endtime T T for an optimal solution is uniformly
bounded in e, say,

(1.8)

Fixed time formulations are thus covered, and it also suffices if fo has a positive
lower bound; the latter can be weakened [1] or removed altogether if the state
variables are known to lie in a fixed compact set [6, p. 391], but state constraints
will not be imposed here.
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1.3. The reduced model. Formally setting e 0 in (1.1)-(1.3) gives

(1.9) o(t) f(xo(t), yo(t), u(t)),

(1.1 O) xo(O) e Xo, xo(To) X,

(1.11) 0 g(x,,(t), yo(t), n(t)),

which is the reduced model. It is shown in 2.1 that the assumptions so far
guarantee a unique reduced solution zo (xo, Yo) for each u L1. Note that yo(0)
and Yo(To) are now determined by (1.10) and (1.11).

We now make two well-posing assumptions on the reduced optimization
problem; from these it will follow that for small enough e the full model is
similarly well-posed (e.g., has feasible solutions). First, there is an admissible
triple u, Xo(0), To so that the terminal condition xo(T) X1 (hence zo(T) Z1) is
satisfied.

The other assumption requires a preliminary comment. Eliminating yo(t)
from (1.9), (1.11) makes the resulting right side of (1.9) Lipschitz dependent on
xo(t) (see 2.1), so minimizing weak ("relaxed" 19]) reduced solutions x exist.
Our assumption is now that any such x has uniformly continuously varying
endpoints; i.e., given t > 0, there is 0 > 0 so that if [x(t) -Xo*(t)] < 0 for all t, then

(1.12) x(s) Xo, x(T0) X, with Is] < rt, To- To < n.

Here To* is the endtime for Xo* which is extended over A= [-rt, T + rt], say, by
fixing u at some constant value, ranges over A and x e AC on A.

There are standard conditions for (1.12), for example, nontangency of x8 to
full-dimensional tangent cones to X at the endpoints (this is justified in 6).
Weaker conditions can be given using Lyapunov-like functions (cf. 11, Chap. 4]),
or local controllability conditions as in [12] in case X are "thin".

2. Singularly perturbed o.d.e.
Summary. In 2.1 we obtain Y0L for each ue L1 with y0(t) Lipschitz

dependent on xo(t) from (1.11), and this guarantees unique reduced solutions zo.
We then consider fixed measurable control u and endpoints x(0), x(T) and
suppress them for most of the section. This corresponds to the o.d.e, case with
right sides measurable in t. The basic result, that z- zo as e - 0, is obtained via
three differential inequality estimates and features different norms, uniform for x
and L1 for y. Section 2.2 contains the first two estimates for x and y and gives
bounds which are uniform in e and t. Using these and the third estimate of 2.3,
we see that y are relatively compact in L1 as e varies, and the desired result
follows from standard connections between L1 and almost everywhere con-
vergence in 2.4.

2.1. Reduced solutions. From (1.7) and 16, Thm. 6.4.4] a unique function e
exists so that

(2.1) g(, e(, D), D) O.
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Now let 1 =e(, p)-e(j,, p,) so

l’q[ -< Il[-g(,, e(, O), P,)]/
(2.2)

--< Il[vl-,l+lo-
using (2.1) and its, equivalent, and (1.6), (1.7). With , p, 0, we obtain

[e(, p)[-< K-I(y[I / alp[)+ le(0, 0)[,

so e is bounded when [2 and p are.
LZMMA 2A. For each admissible control u on [0, T], T< c, (1.9), (1.11) has

a unique solution continuable over [0, T] with Xo AC and yo L. Further, yo(t)
has a Lipschitz constant 3// with respect to xo(t) for each t.

Proof. The Lipschitz constant 3’/ is immediate from (2.2), while measurabil-
ity of yo’t->e(xo(t), u(t)) is trivial. Since U is bounded, the continuity and
Lipschitz assumptions of 1.2 show that

(2.3) fr(, u(t))=f(, e([2, u(t)), u(t))

satisfies a Lipschitz condition in [2 and hence a bound of the form O(112[ + 1). Thus
xo AC is unique and bounded over [0, T] from standard exponential estimates
[11, Chap. 2]. We now conclude that Yo is also uniformly bounded, and hence
Loo. Q.E.D.

2.2. Norm estimates. For the rest of this section, u, T and x(0) x (0) will be
fixed and u suppressed in general. Define the norms

(2.4) Ilxll- max (]x(t)l- 0 -< T},

where 7r >-1, and let

If(o, o)1,

Then using (1.5) we have

Ilyll= ly(t)l d

c(t) Ig(O, O)l.

(2.5)

dlx(t)l<:lf(t)l<:l(x(t), y (t))-f(O, y (t))l
dt

+ If(O, y (t))-f(O, O)l + b(t)

_-< c Ix (t)l //3 ly (t)l + b(t),

while from (1.6), (1.7) we have

(2.6)

d e d
(t)]e ly (t)l ly (t)l--< Ey(t)y

y (t)Eg(x (t), y (t))-g(0, y (t))

+g(0, y(t))-g(0, 0)+g(0, 0)]

=< ly (t)[[yx (/)[- ly (t)[ + c (t)].
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Now set

Then

v(t) Ix (t) w(t) lY (t)[.

3 av w b <- O,

w(e- /v + rw -c) <-O,

and standard o.d.e, theory [11, Chap. 1] shows that v and w are pointwise
dominated by the maximal solutions v, and w, of the corresponding linear
equations unless w,(t)=0 for some t>0. The latter is easily prevented by
amending c.

We now triangulate the linear system by introducing r ov + w, where
o we is the solution branch of

(2.7)

which remains finite as e --> 0; in fact we -y/K + O(e). With these substitutions:
(2.5) and (2.6) become

(2.8) ( <- Av + flr + b,

(2.9) ek <= -lzr + c,

where A a-/3w and Ix u- flew are both positive for small e. Now we can
integrate (2.9) and (2.8) to give

r(t)
(2.10)

Ilrll
(2.11) llvll <--

Thus {Ix{I and Ily{{ are bounded uniformly in e. An alternative direct
approach, eliminating v and using Fubini’s theorem, is also possible (cf. 4.3).

2.3. Compactness of y. Since y are uniformly bounded, it is enough to

prove that

(2.12) ly(t+s)-y(t)l dtO ass-0

uniformly in e, in order to conclude relative compactness ofy in L [7, IV.8.20].
LEMMA 2C. Let e/(t) g(p(t), q(t)), e,(t) g(,(t), ,(t)) and , , e L1.
en

}lq- q,l[, e Iq(0>- q,(0)} + VlIP- p,ll,.

Proofi Let a q-q,, b p-p,. Then

ela<t>lla(t>l= [a<t>a(t>]
(2.13)

la(t)l[vlb(/)l- la(t)l].
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Integrating (cf. the treatment of (2.6)), we have

[a(t)[ _-< e [a(0)l + 3’ eKS/lb(s) ds/e

Now using Fubini’s theorem [7, III. 11.9], we get

(2.14)
Ilall, la(0)l (1 e-) + VK I,T

--< la(o)l / v I,(s)l as.

T

eS/ll(s)l e-t/ dt ds/e

At this point we use the control dependence of g (1.6). Fix s and set

q(t)=y(t+s), q,(t)=y(t),

b(t) Ix(t + s)- x(/)l, c(t) -1(/+ s)- (t)l.

By an obvious amendment of the lemma,

llq- q,lll --< e lY (s) y, (0)1 + vllbll / llclll
-< s[max [g(.)[ + y max If(’)l] + llcll,.

Q.E.D.

Since the last expression is independent of e and tends to zero as s -* 0, the y do
indeed form a relatively L1 compact set.

2.4. Convergence of z to zo. We shall use sequences ei $ 0, denote z for
e ei by zi, and relabel subsequences with the same notation.

THEOREM 2D. Under the assumptions of 1 with u, Tand x(0) x(0) fixed,
IIx-xoll and Ily-yoll, converge to zero with e, while yi--> Yo almost everywhere for
some sequence e $ O.

Proof. Starting with any sequence e $ 0, we see that 2.3 guarantees a
subsequence and y, L1 with Ily,.-y,ll,-,0. Thus y,-, y, a.e. 7, III.3.6, III.6.13]
for a new subsequence. It follows that

xi ---> x(0) + f(xi(s), yi(s)) ds

converge uniformly over [0, T] to

(2.15) x," --> x(0) + f(x,(s), y,(s)) ds,

since Yi are bounded ( 2.2) and f satisfies a (Lipschitz) uniqueness condition in the
first R" argument. Finally by boundedness of Yi and g and the dominated
convergence theorem [7,111.6.16],

g(x,(s), y,(s)) ds lim g(xi(s), y(s)) ds as --> o

lim [e,y,(t)]; 0.
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This establishes

(2.16) g(x,(t),y,(t))=0 a.e. t,

so x, xo and y, Yo a.e. Finally it is easily seen that these are the only possible
limit points (modulo null sets for Yo), so IIx-xo[I and [[Y-Yolll tend to zero with
e. Q.E.D.

It will be observed in addition that [lii-iolll->0 by pointwise a.e. con-
vergence of Yi and the dominated convergence theorem, so xi -> Xo in AC. Further,
if we assume instead that x,(0)-> xo(0) as e-->0, then the conclusions still go
through, the only change being a term in v(0) in (2.11).

3. Convergence of optimal cost.
Summary. In 3.1 the convergence theory of 2.4 is combined with the end-

point assumption (1.1) to give upper scmicontinuity (usc) of infimal cost at the
reduced solution. Lower scmicontinuity (lsc) is more tricky, and various results,
corresponding to the three "standard" optimal control existence assumptions, arc
given in 3.2-3.4. The first requires the full optimal controls to be uniformly
well-behaved in ; this condition will be developed for quantitative error esti-
mates later. Strong convergence is obtained for all variables. The second imposes
a convexity condition in both y and u, and the third requires linearity in y. These,
and combinations of them, give ( 3.3) strong convergence of x, but at best weak
convergence of and y. Using the maximum principle in 3.4, we recover strong
convergence under existence and normality assumptions on optimal reduced
solutions. Finally, 3.5 contains examples illustrating the hypotheses. The
assumptions of 1 remain in force throughout 3.

3.1. Upper semicontinuity of infimal costs.
LMM 3A. The infimal costs J of (1.1)-(1.4) and Jo of (1.9)-(1.11) satisfy

limo J -< Jo.
Proof. Let uo and zo be the (perhaps weak) optimal control and solution, and

To be the corresponding endtimc, for the reduced problem. From Theorem 2D, if
satisfies (1.1) with u- uo and (0)= xo(0), then there is >0 so that

(3.1) I(ro)-x,,(ro)l<,C(e2) whenever

where q N+ --> N+ increases and is continuous at zero. By continuous dependence
of endpoints (see (1.12)) there is T so that

(3.2) ie(L) e X1, L To[ < X([e(ro) xo(r)l
with X as per qg. Choose el SO that X q(e) < oo; this ensures that full trajectories
are close enough to hit X.

By uniform boundedness ( 2.2) of z on [0, To+X q(e)], there is a (linear)
function g, so that

(3.3) I()-(zo)l < 4,(1 ’ Tol).
Combining (3.1)-(3.3), we obtain

0 OJ =< x()=< xo(To) + g, X q(e2) Jo + g’ X q(e2)

whenever e < e2. Q.E.D.
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It will be observed that this also gives existence of feasible full solutions for
each e < el, an assumption not made explicitly.

Since the object of the theory is to discern to what extent the reduced model
can approximate the full one, usc is a necessary property to ensure against undue
optimism. The endpoint variation assumption, seen to be necessary in 3.5, seems
a very reasonable one.

3.2. Compact control set. In this subsection we introduce the following
additional assumption.

I. There is a sequence ofcontrols ui, relatively compact in L1, so that if zi and T
are the response and endtime for (1.1)-(1.4) with control ui and e ei, then

xi’(T)-Ji0 as ioo.

Here Ji is the infimal cost for the e ei full problem, and zi could be taken as
(perhaps weak) optimal solutions. Assumption I is satisfied if the optimal controls
belong to the required class by virtue of model "smoothness" (e.g., linear time
optimal problems), or if the minimum is sought over a restricted control class to
start with.

By boundedness and [7, III.3.6, III.6.12, 13 and 16] it is no different to
assume compactness in the topologies of/x-uniform (almost everywhere) con-
vergence or convergence in measure; this in turn contains the case where the
controls u have uniformly bounded variation, a case to be treated in 5 and 6.
Berkovitz [2, Thm. 4.1] also uses compactness with respect to convergence in
measure to give an a.e. convergent control subsequence and an existence result for
unbounded controls.

Conventions. For the remainder of 3, the symbols z and u will denote the
solution and control for e ei and similarly for zo and no at e 0. Subsequences
will in general be extracted without comment and the following standard device
for dealing with variable endtimes will be employed.

Let z(T) ZI: by assumption (1.8), we may extend zi over all [0, T] by
setting

We also denote

(3.4)

ui(t)=ui(Ti) for t[T/, T].

Ii(t) t(zi(t), Ill(t))

and similarly for gi, hi, fo, go and ho. Finally, weakly sequentially compact will be
abbreviated to wsc.

THEORFM 3B. If I holds, then Ji - Jo, the infimal reduced cost. Further, xi - Xo
in AC and (Yi, ui)- (yo, no) in L, where Zo is a (perhaps weak) optimal reduced
solution.

Proof. By Lemma 3A it is enough to show that zi Zo, a reduced solution
with cost -> Jo. By assumption I, there is Uo so that ui - Uo in L and hence a.e. (see
above). By uniform boundedness and (1.1), xi are equicontinuous, so let
IlXi "--> X0I "-> 0 ((2.4)) and

eii,(t) g(xo(t), yi,(t), Uo(t)), yi,(0) y(0).
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From Lemma 2C,

SO

(3.5) Yi-Yi, ->0 in L1.

Now arguing as in 2.4, the yi, are L1 compact so have an a.e. limit Yo, say,
where (cf. (2.16))

g(xo(t), yo(t), Uo(t)) 0 a.e.t.

Thus since Yi, - Yo by Theorem 2D, (3.5) gives Yi - Yo in L1.
It remains to discuss xo. We have (Yi, ui)- (Yo, uo) a.e., so (cf. (2.15))

xi(t) -- xo,(t) Xo(0) + f(xo,(s), yo(S), u(s)) ds

for each t, and so xo, xo is a reduced slow solution. Fin.lly (z,, u,)--> (zo, uo) a.e.
gives x-Xo in AC by the dominated convergence theorem (cf. end of

2.4). Q.E.D.
Technically, we do not assume existence of any optimal controls, though I

guarantees existence of the reduced optimum Jo if II is satisfied.
II. U and Xi are closed.

3.3. Weak convergence results. We now forsake assumption I and use a
priori hypotheses of convexity and linearity instead. The first conditions are
variants of one originally due to McShane [ 13] and recently explored a good deal
by control theorists. Let h= (fo, a) and x (x, ).

III. There exist compact V "+, W [ and e > 0 so that full optimal
trajectories z for e < e satisfy z (t) V, W) and for all t V,

(3.6) > fo(:r(w)

is convex.
IV. This is the same as for III except that F({u)) is convex for all (,)

(v, w).
Assumption IV is a standard optimal existence condition. Existence of a

compact set containing z follows from 2.2, so the only new assumption is that of
convexity.

LEMMA 3C. Assume III and II. Then J Jo, and given any sequence z as
per the conventions of 3.2, there is a reduced solution Zo so that fi fo weakly in
AC (thus I1 ,- o11-, 0) xl(t)<_--lim x’(t) as ioo for all t.

Proof. By Lemma 3A the assertion about J follows from that about zi. Now
2.2 and boundedness of U give uniform boundedness of zi and hence of the d.e.

right sides hi (see (3.4)). Thus hi are equicontinuous, so we can assume that
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[[xi x,[[-> 0 and hi h, weakly in L1. Taking limits and using boundedness of

(3.7) ,(t) lim t, ,,
(3.8) 0 lim [eiy(t)]’ lim g g,.

Now III gives

h,(t) h(x,(t), y,(t), u,(t))
for some (W, U)-valued function (y,, u,) which can be taken integrable by
Filippov’s lemma [8]. Define o , and

(t) =min {f(x,(t), u, p) uc W, pc U, (x,(t), v, I)=(o, 0)}.

This exists by II, and it is a simple consequence of convexity in III that o c L (cf.
[17, Thm. 10.7]). Thus zo (xo, y,) is a reduced solution, i o weakly in AC by
(3.7) and x(t) <-_ x(t) is immediate. Q.E.D.

It may be noted that there is no reason for (y,, u,) to coincide with any weak
limits of (Yi, ui). We now turn to an alternative assumption involving linearity.

V.
h(, v, p)= H()v+h(j, p),

where H= (F, G) is an (n + 1 + k) x k matrix-valued function.
THEOREM 3C. Assume V. ThenJ Jo and a given sequence z converges to a

(perhaps weak) reduced solution zo in the following sense" i -’-> o weakly in AC,
Yi Yo weakly in LI and x(t)-< lim x(t).

Proof. The proof of the Lemma can be repeated, replacing h by h, down to
(3.7). Since yi are also wsc in L (because uniformly bounded), lety y, weakly in
L1. Denote F xi--F/, etc. Then (3.7) becomes

(3.9)
x,(t) lim

1- -’o

,/, [F,y, + f,]

since F, cL L* [7, IV.8.5] and y are bounded. Likewise,

0 G,y, + ,].

Differentiating and using Mazur’s theorem [7; V.3.13], we obtain

(3.10)
f,(s) -,(s) F,(s)G,(s)-,,(s)

c co {[(x,(s), p)-F,(s)G,(s)-’,(x,(s), p)" pc U}=--A,

where co denotes convex hull.
The rest of the proof is as per Lemma 3C, weak convergence of to io in

AC coming from (3.9) and setting, instead,
0xo(t) =min { f(x,(t), y,(t), )" U, f(x,(/), y,(t), )= (i,,, 0)}

to give a reduced solution zo (xo, y,). Q.E.D.
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Combining this with standard optimal existence theory (cf. [6], [ 14]), we get
the following corollaries.

COROLLARY 3C1. Assuming II, IV and V, we can take z0 optimal if zi, are.
COROLLARY 3C2. Assume II and that

(, ,, ) =/4, +Hv+().

Then zo achieves optimum cost Jo if zi achieve optima Ji.
In Corollary 3C2, zo may still not be a (strong) reduced solution. Finally we

may combine the above ideas with an Ll-compactness condition (cf. assumption I)
as follows.

COROLLARY 3C3. Assume II, IV, that zi are optimal and that Yi are relatively
Ll-compact. Then zo can be taken optimal with Yi - yo in L1 as well.

This follows because we can take Yi Y, in L1 hence a.e. Thus continuity of h
gives

h,(t) 6 co {h(x,(t), y,(t), p)" p6 U}

as the analogue of (3.9), and the argument then follows that of the Theorem.

3.4. Strong convergence results. From now on we assume V; the object is to
give additional conditions ensuring convergence as in Theorem 3B.

VI. H and h have continuous derivatives with respect to the slow variables.
These will be denoted by H and h, with H xi contracted to Hi, etc. By

carefully analyzing the reachable set, VI can be avoided, but the treatment given
(via the maximum principle which is a statement about the reachable set) seems
complicated enough anyway.

We start with a revised version of 2, appropriate for the Euler multiplier
system to be employed later. Hi =(Fi, Gi) retains its previous meaning: in
particular all the eigenvalues of Gi have real parts __<-r by (1.7).

LEMMA 3D. Hypotheses"

(3.11) li pi(Aiyi + Bi)+qi(Cyi +

(3.12) eli -piF/-qiGi,

where capital symbols denote uniformly bounded linear operator-valued functions
of t. (Ai, Ci, Fi, Gi) (ao, Co, Fo, Go) pointwise while (Bi, Di, yi)(Bo, Do, Yo)
weakly in L1. Terminal conditions pi(T)- Xro, qi(T) 0, T To are given.

Conclusions: ri (pi, qi) ro =(Po, qo) asper Theorem 2D; i.e., Pi Po in AC,
qi qo in L1 while r0 satisfies (3.11), (3.12) and the boundary conditions obtained
by formally setting e O, .

Proofi Examination of 2 reveals no essential changes until 2.4, except to
extend solutions over [0, T] (cf. 3.2 conventions) and to observe that ri(To)-
(o, 0) by boundedness of derivatives.

From 2C, qi are L-compact and Pi are equicontinuous, so take

IlPi -Po[I--> 0 and qi -’> qo a.e.
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Integrating and taking limits of (3.11), we have

po(t) lim {poAoyi + (piA poAo)y +poB + (p

+qoCoy + (qG -qoCo)y +qoD+ (q qo)D}

{o(Aoyo + Bo) + qo(Coyo + Do)}

using uniform boundedness ofy and poAo (etc.) e Lo (cf. (3.8)). The derivation of

0 -poFo-qoGo

follows that of (2.16). Q.E.D.
We can now set up the principal results.
VII. N ->{ n+ is normal to X1 at t} is upper semicontinuous.
Thus if X with corresponding normals and (i, ri)--> (/, 0, then is

normal to X at . This prevents X1 from having notlzhes, but is not a great
restriction.

VIII. With z as usual, the normals N(x(T)) are uniformly bounded in i.
oIt is assumed here that r 1, so VIII is a local controllability assumption on

the full model; cf. (1.12) which refers to the reduced model.
DEFINITION. An extremal is a (perhaps weak) solution satisfying the max-

imum principle.
THEOREM 3D. Assume II, VI, VII and VIII and that Z are (perhaps weak)

optimal solutions. Then the function zo of Theorem 3C is a reduced extremal.
Proof. For convenience we display

(3.13)
i:GYi+fi,

6ii GiYi q-i.

Define

Mi(t) r,(t)h(xi(t),

(3.14) p,(Ti) Oi Pi(GiYi q- [xi) --qi(GiYi

q, (T)=0, ’’ii -PiG

From the maximum principle,

ri(t)hi(t) =max {Mi(t) p6 U}=- mi(t).

Using VIII we can assume that o, so from VII and Lemma 3D, r- ro a.e.
with po(To) 6 N(xo(To)).

A rather tedious calculation shows that the reduced form of (3.14) (e =0,
) is the multiplier system corresponding to the reduced form of (3.13), while
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convergence of ri gives Mi -) M0 a.e. whence mi--) mo a.e. Now,

mo= lim rib

lim rohi + lim (r l’o)hi

using weak convergence of hi on the first integral and the dominated convergence
theorem [7,111.6.16] on the second. It follows that

ro(t)h,(t)- mo(t) a.e.t. Q.E.D.

We are now in a position to deduce strong convergence from a normality
condition along optimal reduced extremals, i.e., those giving infimal reduced cost
o.

IX. Every optimal reduced extremal z, has a control u, determined uniquely
by the maximum principle.

Equivalently, the set A (see (3.10)) is strictly convex along the chosen
direction

f(x,(/), u,(t))-F,(t)G,(t)- (x,(t), u,(t))
for almost every t. Note that x, is then automatically a strong reduced slow
solution and so gives minimal reduced cost.

COROLLARY 3D. Assume IX and Theorem 3D. Then Zo is an optimal
reduced solution, xi Xo in AC and (yi, u)-)(yo, no) in L1.

Proof. zi are full extremals by the maximum principle, and zo is a reduced
extremal by Theorem 3D. Assumption IX now gives ui-)uo a.e. hence in L1 [7;
III.6.16], so Theorem 3B completes the proof. Q.E.D.

3.5. Examples. The first shows the necessity of a continuous dependence
condition for Lemma 3A to be valid. No control is needed.

Example 3E 1.

fO X x =y, x (0)=x (1)=0,

e3):-y, y(0)=l, T:I.

Obviously y (t) > 0 for > 0, so x 1(1) > 0, and no full solutions exist. On the other
hand, the reduced system is

-0__ .1yo o, Xo Xo, Xo o, x(O)=x():o,
so x(1)= 0 is the optimal (and only possible) cost.

With minor variations, one could obtain a finite difference between reduced
and all full optimal costs.

Example 3E2.

O=(y)2 U={-1 1}, T=I

e=u-y, y(0)=0.
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Clearly, u L gives y 0 so x(1) > 0; thus the infimal full cost of zero is attained
by the weak solution

(3.16) x y u O.

The reduced model is
o 2

yo=U, Xo=(U) =1,

so xl(1) 1 is the optimal reduced cost, and we do not have lsc at e 0. Theorem
3B and Corollary 3C3 fail because L1-approximations to the weak control and
fast solution (3.16) are not strongly convergent. Lemma 3C fails because U is not
convex and Theorem 3C fails because of the nonlinear (y)2 term.

Example 3E3.
0x =uy U=[-1,1], T=I,

e= -2 -2
y’ y(0)=

Then yl(t) e sin - (" t/e), and the optimal control satisfies

u(t) -sgn [yl(t)].
It follows that u are not L1 compact, so Theorem 3B does not apply, but y are
Ll-compact, and Corollary 3C3 gives a positive result. In fact, the reduced model
is

.0
Yo O, Xo 0

so all reduced variables vanish. It is easily checked that y - 0 pointwise on ]0, 1 ]
and that x(1)--llyll[10 so, in fact, Zo and z, (x,, y,) coincide here (as one
would predict from linearity in u).

4. Relaxing the assumptions.
Summary. Comments will be made regarding only 1 and are designed to

enable interested readers to carry out the indicated extensions themselves. In
4.1, we discuss more general "nonlinear Lipschitz" conditions. Section 4.2

considers the implication of time dependence to the difference between (1.3) and
(1.3"). Time-dependent Lipschitz conditions form the topic of 4.3. The ques-
tions of relaxing the stability side of (1.7) to "nonsingularity" and of terminal
conditions on y, i.e., bounded Y1, are connected and considered in 4.4. Finally
4.5 contains comments on unbounded U.

4.1. Lipschitz conditions. We assume (1.7) for the present. The other
Lipschitz conditions have four functions" to provide solution boundedness, solu-
tion uniqueness, norm estimates in 2.2 and the solution difference estimate of
Lemma 2C. It may be pointed out that the analysis is virtually unchanged if the
condition on f in the fast variable is taken monotonic, i.e.,

[-,][f(, v, )-f(,, ,, p)]_-< 1-,1.
Concerning boundedness, there are nonlinear estimates like

(4.1)
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with 1 /a divergent for 0 > 0, from the theory of o.d.e. Similarly for uniqueness,
and conditions involving Kamke- or Lyapunov-like functions are possible (cf. 11,
Chap. 2]). Boundedness and uniqueness for the reduced model must also be
ensured, of course (these will not automatically follow from those for the full
model, at least in t-dependent cases or nonlinear versions of (1.7)). There is a
singular perturbation theory for nonunique reduced solutions (cf. 15, p. 86]), and
one could derive an analogue here, but it presumably would have only theoretical
value.

The differential inequality theory of 2.2 remains unchanged with continu-
ous nonlinear "moduli of continuity" for h provided certain monotonicity condi-
tions are satisfied. For example,

(4.2)
Ig(, v, p)- g(,, v, p)l--< e([-

with both sides increasing in I-,[ will suffice for 2.2. Indeed one reaches

b(t) <-- d(v(t), w(t)) + b(t),

egv(t) <-- e v(t)- rw(t) + c

with v and w dominated by solutions of the corresponding equations [11, Chap.
1]. The triangulation process can still be carried out with

r= w + tc-e v + a,

where a - 0 as e O, to give

((t) <-dl(V(t), r(t))+ b(t),

ei(t) <- -rr(t) + ra(t) + c(t).

As e -> 0, d tends to a limit d,, say, and it thus suffices if

((t) d,(v(t), r(t)) + b(t)

is L-stable for perturbations r. Again appropriate conditions can be given from
o.d.e, theory [11, Chap. 3].

The other point where the Lipschitz bounds are used is in Lemma 2C; the
applications are in 2.3 and 3.2. With e as in (4.2), (2.13) becomes

a <-- w- Ka, w(t) e(lb(t)l), a(t) la(t)l.

Now Ilwll,- 0 as ,- ,, in L, by continuity of e and the dominated convergence
theorem, so Lemma 2C gives directly

llWlll =< ea(O) / Ilwlll.
It is easily seen that if (see (1.6)) is constant, then this suffices for the two

applications. Nonlinear bounds 6(]p-p,I) can be treated as follows. Assuming
that is a modulus of continuity, we can take

a(0) 0, ( + ,)-< ()+().
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The standard argument (cf. [7, IV.8.20]) now gives
w-

(lu(/+ s)- u(t)l) dt

<- [,(lu(t/s)-v(t/s)l)/,(Iv(t/s)-v(t)l)/i(Iv(t)-u(t)l)]dt

<3,

where v is a simple function with IIv ull < and s is small enough for the middle
term to be less than .

4.2. Reduced model dependence on t. The standard o.d.e, formulations
seem to be couched in terms of (1.1), 1.3") and to obtain fast solutions of the form
y(t) yo(t)+yr(’), where -= t/e. These are generally achieved by keeping (1.7)
linear and independent of (in the dissipative case considered so far, this means
that the Jacobian 0g/0y(. has eigenvalues with real part _-< -K). We show below
what can happen when (1.7) does depend on t.

There are two possible versions of (1.3), (1.3") in the t-dependent case, viz.,

(4.3) y’(-) g(x(-), y(’), u(’), r), y(t) y(r),

and

(4.4) e (t) g(x(t), y (t), u(t), t).
In (4.3), the parasitic dynamics are assumed to be externally forced on the fast
time scale, while in (4.4) external effects act on the slow scale. Note that (4.3)
means

e(t) g(x(t), y(t), u(t), ’),

so the two corresponding reduced d.e. are

0 g(x(t), y(t), u(t), oo)

and
0 g(x(t), y(t), u(t), t).

Mathematically, the difficulties in extending the earlier analysis to (4.3) rest
principally with (2.16). It is easily seen that, if

lim g([2, v, p, t) g(, v, p, oo) as -> oo

exists uniformly over ([2, v, p), then

0 lim g(i(s), yi(s), u(s), oo) ds as oo

lim g((s), y(s), u(s), oo) ds

g(x,(s), y,(s), u(s), ) ds.
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Without such uniformity, however, the conclusion may fail.
On the other hand, the difficulties in dealing with (4.4) basically stem from the

fact that estimates as per 2.2 will not be available in terms of " unless uniformity
assumptions in are made on (1.7). For example, suppose that K there is replaced
by Kt 1/2. Then the differential inequality estimates involve equations of the form

(4.5) eW(t) -rw(t)t1/2 + a(t)

instead of just eft -w + a. Thus where previously we could use

c -K’/ a(t) dt/e O(llall),

we now have to consider

(4.6) I, exp (-t3/2q)a(t) dt/e, 1 2/(3e).

Set a(t)= 1, for illustration, and s t/2, SO (4.6) becomes

1/3 --1/3 1/3 --1/3
rt e s ds >= rt e s ds

for large r, i.e., small e. Thus (4.6) is O(e -1/3) not O(1), and the whole analysis
breaks down. One can make headway by using nonlinear functions of Iv-v,I in
(1.7) to counter the behavior in t, but the analysis is much more complicated and
does not seem justified here.

4.3. General t-dependence. We now examine the effect of t-dependent
Lipschitz conditions, again leaving (1.7) alone. It is easily seen that, apart from the
point about uniformity as c if (4.3) is chosen, the analysis of 2 (and hence of
3 with assumptions like III taken pointwise) goes through unchanged if h is

measurable in and obeys

(4.7) Ih(, v, p, t)l <= d(t)

with d L but a, , 6 independent of t. Further, if a, , 6 are L-functions
of t, then only minor alterations are necessary, except that the triangulation of
2.2 needs modifying in one of two ways. Either retain (2.7) so that (2.9) becomes

e(t) <= -tz(t)r(t) + c(t) + edg(t)v(t),

where & L is easily checked for small enough e. Then (2.10) takes the form

r(t)<-(o)+-’llcll+ o(s) exp ; [(tr)r(tr)+b(tr)] dtrds
(4.8)

--< o[e(llrll / )3.

Thus Ilrll O(l). Or redefine o ,o to satisfy

e lob(t) + a(t)o(t)- fl (t)o(t)2] + y(t) +o(t) 0,

with w, (0) chosen so that w,(t)--y(t)/K uniformly as e -> 0. Then the analysis of
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2.2 is virtually unchanged; for example, (2.10) becomes

--1 --1r(t)<=r(O) exp -e /z /llcllo,, exp ( /1111o).

In fact, d L1, corresponding to Carath6odory’s o.d.e, condition, is possible
with changes as follows. In Lemma 2A, Yo L1 while only a I]yl]l-estimate is
available in 2.2:

(4.9) Ilrll, rr(O)+llcll, 11112 exp (: + I111oo)+ O[([[rl], + Ilbll,ll011)].
This is proved from (2.9) with c Ll using the technique of Lemma 2C; the final
term comes from the analogue of (4.8), using a convenient upper bound for I]o11, as
e varies. The estimate for x is still uniform, since

IIll (lllloollrll, + Ilbll,)exp

Inequality (4.9) (with ][r[]l terms collected)is enough for relative Ll-compactness
of y for fixed u.

The other uses of the boundedness of d (see (4.7)) were for convergence of
eiyi pointwise to zero, domination of hi (for the convergence theorem [7,
III.3.16]) and wsc of Yi and hi in L1. With d L1 the second of these still holds, and
wsc of h; is clear from the criterion [7, IV.8.10, 11]

lim I. Ih’(s)l ds 0

uniformly in i, I,Z] being the Lebesgue measure of Z c [0, T].
In order to establish wsc of Yi, or equivalently r re (see (2.9)) for variable

define

e(Z, e, s) f e -’)/dt/e.
Y.N[s, T]

Using the technique of Lemma 2C, we have

(4.10) K r Ir(0)l e -K’/ dt + c(s)e(E, e, s) ds,

so it suffices if e(E, e, s) -+ 0 uniformly in (e, s) as ]Y--I -+ 0. Choose a finite union A of
intervals with ]E---A < elY-,[ to give

e(E, e, s)_--< :-’[A[ + e-liE--- A[ O([E[)
as required.

The analysis is now as before, but with eiyi weakly convergent to zero, so if
gi - go weakly in L l, then

I’I sg(s)dsdt=O,
and go 0 again (cf. (3.8)). Finally, nonlinear Lipschitz conditions (cf. 4.1) are
possible if d in (4.7)is multiplied by an appropriate function of I1 / I,,I (el. (4. )).
We note c(s) Ig(0, 0, u(s), s)l in (4.10); thus r and Yi remain wsc in L1. The only
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essential difference is that hi are no longer dominated, but they are wsc (because
"Lipschitz" in the fast variables Yi), so the fundamental convergence theorem
below will apply. Incidentally this result also shows why subsequences have been
treated so informally.

THEOREM 4C. Let yi be wsc in L1. Then L1 and a.e. convergence essentially
coincide; i.e., if y -> Yo in one mode, then all limitfunctions in the other mode differ
from Yo at most on a null set.

Proof. Let y->Yo in L1, so we can assume y->y, a.e. by [7, III.3.6,
III.6.13(a)] for a subsequence. Thus from [7, III.6.13(b)], y -> y, in measure, and
noting that only wsc (not weak convergence) is needed in [7, IV.8.12] we obtain

Yi Y, in L.
Thus y, Yo a.e. Conversely, if Yi - Yo a.e., then the previous sentence, with

Yo replacing y,, gives yi Yo in L1. Q.E.D.
For further comments on ensuring wsc in L1, see 4.5.

4.4. End conditions and stability. The dissipative action of (1.7) has been
seen to ensure that, with bounded Yo, the endpointsy (T) are close to yo(T). Since
yo(T) is determined by

g(xo(73, yo(73, u(73) 0

with (xo(T), u(T)) (X1, U). the question arises as to whether the assumption of
Y1 k can be relaxed without losing convergence.

We suppose that the full problem (1.1)-(1.4) has an admissible (hence an
infimal) solution for each e 0. Pick e 0 and z, u as corresponding (perhaps
weak) optimal trajectory and control with endtime T. Then under the conditions
of Theorem 3B, it follows that

(4.11) g(z,(t),u,(t))=0 a.e. t[0, T,],
where, denotes subsequential limit. If (4.11) holds, in particular, at T,, then
we have the following necessary condition.

The closures of Y1 and
(Y1, g, z,(T,), u,(T,)) [{v g(x,(T,), v, u,(T,))=0} should intersect.

The notation (3(.) will be used below: the condition is clearly necessary
whenever a sequence of controls u is uniformly continuous on a neighborhood of
T,. On the other hand, some weakening is possible in general, e.g., if u, is
discontinuous at t,, but points y(t) are controllable to Y for close to T. An
example illustrating this appears in 6.

Having seen what restrictions the bounding of Y1 imposes, we turn to the
relaxation it permits. Working with reversed, (1.7) becomes an instability
assumption under which bounded Yo (the reversed terminal set) gives con-
vergence under singular perturbation. Returning to the original t-direction, it
follows that bounding Y1 instead will handle the case where (1.7) is replaced by

(4.12) (v--v,)[g(, v, p)--g(, v,, p)]>--_tclv--v,I 2.
Combining these ideas, we can obtain a generalization of a standard o.d.e.

singular perturbation condition involving block diagonalization of 0g/0y. We first



OPTIMAL CONTROL PROBLEMS 611

state the result for fixed control u and endpoints (i.e., the setting of 2). Explicit
t-dependence would also be possible (cf. 4.3). Let p:k_>N/ denote the
projection onto the first j coordinates, pc that onto the last k-j and O the
reflection (P,

THEOREM 4D. Suppose there is a homeomorphism M --> so that

PM-lg(fo, My, p) a(, Pv, p), PCM-lg(, My, p) b(t, PCv, p),

and a satisfies (1.7), b satisfies (4.12); i.e., v-> QM-lg(, My, p) satisfies (1.7). If
f’l (pc Y0, pCg, x0(0), u(0)) and f’l (PY1, Pg, x0(T), u(T)) both hold, then so do the
conclusions of Theorem 2D.

This follows by considering QMy instead of y. If there is no boundary
condition on pCMy(O) [PMy(T)], then the first [second] intersection condition is
unnecessary. Returning to the control problem, we see that 3.1 will continue to
hold provided that the (3-conditions are valid with x0 as the (perhaps weak)
reduced optimal solution and with U replacing u(0), u(T). If not, then we may get
strict lsc in cost at e 0 (cf. Example 3El). Conversely the results of the rest of 3
are valid under 71 (pc Yo, pCg, x,(0), U) and (PY1, Pg, x,(T,), U) where, as
usual, x x,. Quantitative illustrations of 3.1 with boundary corrections when
the f?-conditions are satisfied can be found in [10] and 6.

4.5. Unbounded controls. The work of 3, in particular, has much in
common with optimum existence theory for variational problems, and unbounded
derivative sets form one of the standard topics in this theory.

For most practical purposes, the relaxations in 4.1 and here may be viewed
as gilding the lily since non-Lipschitz d.e: and unbounded controls will be
necessary only in rather special models. It may thus be worth commenting on
some situations involving unbounded U; aside from the purely mathematical
question, possible models might (i) involve convexity, (ii) be simple enough, (iii)
admit impulsive control. Case (i) refers to representation of constraints by
infinite-valued convex functions, a device popularized by Rockafellar and others.
It may be noted that the earlier viewpoint of defining a function via its domain is an
alternative. Case (ii) refers to the situation where physical bounds are present, but
an unbounded (near) optimal solution is computable cheaply enough to justify an
a posteriori check on whether the bounds are met. This is generally confined to
linear dynamics and quadratic or time optimal cost functions, and, as mentioned in
introduction, singular perturbations of such models have already been studied.
Case (iii) is relevant to singular perturbations because, under certain assumptions,
the reduced and full solutions can be made to coincide. If the optimal reduced
control and trajectory are AC, then we obtain discrepancies or "boundary layers"
only at the endpoints (cf. 5 and 6) and, subject to impulsive controllability, the
full endpoints can be moved to the reduced ones. The problem then essentially
becomes of the usual nonsingular perturbation type. In general, (iii) is not covered
by the analysis here, but the necessary treatment of Stieltjes integral systems can
be found in [4] or [18], and the work of 5 and 6 is also similar.

Assuming the positive lower bound on fo(. (see 1.2), we may continue to
assume that (z(t), t) belongs to a fixed compact set (cf. [6, pp. 395-6]). Section 2
then follows as previously because u e L1 is fixed. Section 3, however, uses wsc in
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L1 of the o.d.e, right sides hi (cf. 4.3), and this involves "growth" assumptions as
in [3], [9] and their references. While these cover 3.1 and 3.2, the analysis of
3.3 relies on h,, the weak L-limit of hi, taking values a.e. in the set F (3.6)

evaluated at =x,(t). This requires a uniformity condition in the absence of
compactness, and two such may be found in [3, pp. 32, 36]. Finally the argument
of Theorem 3D makes use of boundedness of hi at (3.15): theextra assumptions
needed to cover 3.4 seem complicated and not worth detailing.

Acknowledgment. I would like to thank K. W. Chang and D. R. Westbrook
for their help, and P. Kokotovic for introducing me to the topic.
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A DIRECT SUFFICIENT CONDITION FOR FREE
FINAL TIME OPTIMAL CONTROL PROBLEMS*

P. M. MEREAU? AND W, F. POWERS$

Abstract. A general sufficient condition for global optimality in terms of inequalities between the
functions involved in the definition of the problem is developed. This condition is an extension of the
sufficient condition obtained by Leitmann and Stalford [9] and can handle problems with constraints
on the control and/or the state as well as problems with free final time. Simplified forms are obtained
for the particular cases of minimum time and fixed final time problems. Simple examples which
illustrate the applicability of the condition to problems with several extremal solutions and/or singular
subarcs are also presented.

1. Problem formulation and necessary conditions. Let the following quan-
tities be given: (to, Xo), a fixed point in R x R" T1, T2], T2 -> T1 > to, a compact
interval in R 1; X and U, open sets in R" and R", m-< n; Xt X and Ut U,
arbitrary sets defined for each in [to, T2]; f(t, x, u) and L(t, x, u), continuous
functions from [to, T2] X U into, respectively, R" and R1; g(tr, xr), q,(.tt, xr,
and 4,(tr, xr), continuous functions from [T1, T2]X into, respectively, R 1, R
p<-n+l and R q.

A control u [to, tl]--> R is said to be admissible if it is measurable and if it
satisfies

(1) u(t) U a.e. on [to, tl].

Given an admissible control u(t), [to, tl], a trajectory x(t), [to, q], is said
to be admissible if it is an absolutely continuous function from [to, q] into X, if it
satisfies
(2)

(3)

(4)

X(to):Xo,

Y(t) f(t, x(t), u(t)) a.e. on [to, tl],

x(t) X, a.e. on [to,

and if there exists t [to, t] f’l T1, T2] such that

(5) 4,(q, x(t)) o,
(6) ch(tt, x(tt))<-O (i.e., thi <=0, i= 1,-.., q).

When the control u and the corresponding trajectory x are admissible, we shall
say that the pair (u, x) is admissible or, when the final time tt is mentioned, that the
triple (u, x, tt) is admissible. Given a cost functional

(7) J= g(tr, x(t))+ L(t, x, u) dt,

the problem is to determine the optimal triple (u, x, t) which minimizes the cost
functional over the set of admissible triples.
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was supported by the National Science Foundation under Grant GK-30115.
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ADERSA/GERBIOS, Velizy 78104, France.
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Define the following functions:

(8) K(t, x, u, X)= L(t, x, u)+A 7"(t)f(t, x, u)+ 7"(t)x,
(9) G(tt, xf, v, tz, At, C)= g(tr, xl)+ vT"q/(t, x)+ lzT"cl,(t, x,)-X T"(t)x+Ctt,
where (t) is an absolutely continuous function from [to, T2] into R" and (t) is
the derivative of with respect to t, v,/z and C are constant quantities with values
in R p, R" and R , respectively. In order to simplify some of the comments to be
made later, the necessary conditions of the maximum principle [13] for the
problem considered will now be given in terms of the functions K and G.

THZORZM 1 (Necessary conditions). If the functions f(t, x, u) and L(t, x, u)
are continuously differentiable with respect to (t, x) on [to, T2] X, and if the
functions g(tt, x),q/(t, x) and cl,(t, xt) are continuously differentiable with respect
to (tt, x) on T1, Tz] X, necessary conditions .for an admissible triple (u*, x*, t)
satisfying x*(t) Int. Xt, [to, t], and the normality condition, to be optimal are
that there exist an absolutely continuous function *(t) R n, [to, t], and con-
stant vectors v* R p, ix* R q such that

OK ,((10) cg---(t, x*(t), u*(t), A /))--0 a.e. on [to, t],

(11) K(t,x*(t), u*(t),A*(t))<=K(t,x*(t), u,A*(t)) foralladmissible ua.e. on
[/o,

(12) -tGf(t?, x*(t), v*,/x*, A *(t), K*(t)) 0 (with C K*(t)),

c3G’t* *(t), K*(tT)) O,(13) x( f, x*(t), v*,/x*, A

(14) /x*-->0; Ix*r6(t,x*(t))=O,
where K*(t) is the value ofK evaluated at t when x, u and A take the value of the
corresponding starred quantities.

In particular, if u*(t) Int. Ut, t[to, t’], and if the functions f(t, x, u) and
L(t, x, u) are continuously differentiable with respect to u on U, (11) implies

(15) OK(t,,9--ff x*(t), u*(t), a*(t))-0 a.e. on[t0, t]..

2. A general sutticient condition. We shall first state and prove a sufficient
condition for the optimality of a given triple and then make remarks concerning
the implementation of the condition and present an illustrative example.

THEOREM 2 (Sufficient condition). A sufficient condition for an admissible
u*, x*, t) to be optimal is that there exist"

1. A function A (t) R, absolutely continuous on [to, T2];
2. Two functions Ft(t) U and (t)6X defined on [t, T2] and satisfying

(t’) x*(t) and (3)a.e. on [t, Tz];
That is, the constant multiplier in front of L(t, x, u) in the expression of K is nonzero and can be

taken equal to by proper scaling of the other multipliers X(t), 1,. ., n. (See [1].) Note that
normality is not needed for necessity but is assumed because we are interested in sufficiency.
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3. Two constants f, R p and 12 R q satisfying 12 >=0 and/24(t, x*(t)) 0
such that the following quantities

satisfy

(16)

()

(18)

x*(t) [to,(t)
(t)’ t[t, Z2],

.{ .*(t). [to.

/(t) K(t, (t), a(t), (t)),
d(tt, x)= G(t, xt, ,, , (t),/(t)) (with C= I(t))

(i) /(t) --< K(t, x, u, (t)) for all x Xt, u Ut, a.e. on [to, T2],

(ii) (t,x*(t))<-((tr, xr) forallxr6Xtt, traiT1, T2],

(iii) [(tr)-(t?)](t/-t)O for all tr6[Tl, Tel.
Moreover, if at least one of the above inequalities holds strictly, when

(u, x) (, ), (u*, x*, t) is a proper (i.e., unique) optimal triple.
Proof. Let (u, x, q) be an admissible triple. Then (16), (8) and (3) imply

d
L(t,(t), (t))-L(t,x, u)[w(t)(x-(t))] a.e. on[to, T2].

Integrating both sides between to and tt and using (7) and (2) gives

J*-g(t,x*(t))+ L(t, 2(), a(O) d-J+g(t,x(t))N2r(t)[x()-2()],

where J* and J are the values of the cost functional (7) given by (u*, x*, t) and
(u, x, t), respectively. Adding to the right the nonnegative quantity

ffw[(t, x*(t))-(t, x(t))] + [(t, x*(t))-(t, x(t))] 0

and using (9) yields

J*-J (t, x*(t)) + T(t)x*(t)-- (t)t (tf, x(lf))--T(lf)x(tf

+ (l+2([x(l-x*(ql]+ (, (, a( ,
but from (8) and (3),

t f t d "TL(t, Y(t), fi(t)) dt (/(t)--T[A (t):(t)]) dt
.,q q

and it follows that

J*-J <= d(t, x*(t))-d(tt, x(tt))+ It’; [/(t) -/(t)] dt.
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Then (17) and (18) imply

J* <_-J for all admissible triples (u, x, tf).

If at least one of the inequalities (i), (ii), (iii) holds strictly when (u, x) (fi, ), the
same arguments would give J* < J for all admissible triples and (u*, x*, t]) would
be a proper optimal triple.

Remarks. 1. If x*6 Int. Xt, t[to, t], and the triple (u*, x*, t) satisfies
necessary conditions for optimality, then the quantities A*(t), 6[to, t], v* and

* of Theorem 1 are known (normality is assumed) and one can choose
v*, ti =/x*, ,(t)= A*(t) when t[to, t] and ,(t)= 2(t)when t[t, T2], where
,(t) is any absolutely continuous function from It?, T] into R" satisfying ,((t)
A*(t). Obvious choices for the functions a(t), (t) and ,((t), t ItS, T2] are, for
example,

(a) a(t)=const, a.e. on [t, T2],
x(t), solution of (3) with u (t) and initial condition g(tt*)= x*(t’),
(t) A *(t) a.e. on [ 7, T2],

(b) a (t), solution of f(t, x*(t), u) 0, [t, Ta], if such a solution exists.
(t) x*(/), t[t’, T2], and X(t)= A*(tf), t[t’, T2].

2. Since the triple (u, x, tr) considered in the proof of Theorem 2 is admissi-
ble, the sufficient condition is obviously valid if inequalities (16) and (17) are
verified with x in the set X, R,, e[to, Ta], and xr in the set
(whenever this is possible), where R, is the reachable set at time of the system
(2)-(3) when u()eU,,e[to, t], and 0r is the target set at tr, O=
{x" q(t, xr) 0, 4(tr, xr)<-O}. Example 1 given below illustrates this remark.

3. It should be noted that the approach of this paper and [9], [11] is
somewhat related to the sufficiency approach of Krotov2 [5]-[7]. In [5], it is shown
that (x*, u*) is optimal if there exists a function q(t, x) such that

R[t,x*(t), u*(t)]<-R[t,x(t), u(t)] V x(t)Xt, u(t)

where

R L(t, x, u)+ qf(t, x, u)+ qt,

g(x ) + q,(q,

Note that R corresponds to K with 0(t, x) A T(t)x and is closely related to G.
The main differences are that this paper attacks the free final time problem (which
is the main extension of the results in [9], [11]), and involves an explicit method for
a restricted class of problems (whereas the Krotov method applies to a larger class
of problems but with the requirement of guessing the 0(t, x)-function).

The authors are indebted to Professor Jack Warga for indicating the possibility of a relation to

Krotov’s method.
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Example 1. Consider the following problem proposed in [14]"

minimize J-- If

subject to 1= cos x3 Xl(0) 0 Xl(tf)-
)2 sin x3 X2(0 0 x2(tf) 1

k3 u x3(0) 0 x3(tt) free

lul_-<a,

This is a variation of Zermelo’s problem, where it is desired to move a boat
from a given point to another given point (in the xlxz-plane) in minimum time
with a bound on the rate of change of the steering angle (x3). The upper bound on tt
is chosen arbitrarily large and the lower bound is a reasonable choice since the
optimal time without the constraint on u is ,f(> 1), and certainly the constraint
will cause the optimal time to increase.

Consider the following admissible triple:

when [0, 7r/4]; u*(t) 1 x*(t)=sint; x(t)=l-cost; x3*(t) =t;

]whent6 ,t t=-+l; u*(t)=O; x*(t)=-- t+l-

together with

,l(t) ,2(t)=-4c/2, [0,

-l+cos t6 0,
3(t)

0, t ,10

tT(t) 0, t[t, 10],

:l(t) =-- + 1 -Yz(t) 1 +- t- 1--
ffl 32 -4/2.

t6[t?, 10],
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Then we have, after some manipulation,

-cos -x3 1-cos u+x3sin t 0,
g(t, x, u, ;(t))--

-cos -x t ,10

r(tt, xt) 1 + (’f/2), t 6 [1, 10],

/(tt) -1, t6[1, 10].

Let us now check inequality (16) of Theorem 2. When [0, 7r/4],

K(t,x, u,A(t))-(t) 1-cos (1-u)+cos -(/,x3),

where

a(t, x3)=cos -xa +(t-x3) sin -We have (Oa/Oxa)(t, x)=sin (/4-x3)-sin (/4-t); but any admissible x is
such that x3 ’o u dt, and since lul 1, lxl and it follows that (Oa/Ox3)(t, x3)0
for any admissible xa. Then supadmiibea(t, xa)=(t, supx3)=(t,t)
COS (/4--t) and we have,

(t, x, u, Y(t))- R(t) [1 -cos (/4- t)]( u)0

for all admissible pairs (u, x). When t617r/4, 10], K(t, x, u, (t))-ff;(t)=
1-cos (7r/4-x3)=>0. Therefore inequality (16) is satisfied (strictly when u u*).
I.nequali.ties (17) and (18)are also satisfied since r(tt, xt)-(t x*(t))=0 and
K(t) K(t)=-1, and it follows from Theorem 2 that the triple (u*, x*, t’) is
properly optimal. It is interesting to note that besides the starred triple, there exist
two other obvious extremal triples (i.e., triples which satisfy the necessary
conditions of Theorem 1), the controls of which are,

a(t)

The corresponding extremal trajectories in the xl, x2-plane are shown in Fig. 1.
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This example shows that the proposed sufficient condition can be successfully
applied to problems having several extremal solutions, contrary to similar suffi-
cient conditions presented in references [8] and [10], and to problems with free
final time, contrary to the sufficient conditions presented in [3], [4], [8]-[ 10], 12].

X2

\

Xo=0
(to 0)

FIG. 1. Extremal trajectories ofExample

3. Comments and corollaries. The sufficient condition proposed in Theorem
2 applies to a relatively general problem and thus appears somewhat complicated.
When the problem considered has particular features, conditions (i), (ii) and (iii) of
Theorem 2 may be simplified as shown below.

Comment 1. If inequalities (16), (17) and (18) of Theorem 2 are considered
for t[to, t] and tfE[T1, t], then the functions iT(t) and (t) are no longer
necessary and Theorem 2 states that (u*, x*, tr) is better (i.e., gives a smaller value
to the cost functional (7)) than any admissible triple (u, x, tr) such that tr _<- t. In
particular, for a minimum time problem, L(t, x, u)= 1, g(t, xr)- 0 and we have
the following.
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COROLLARY 1 (Sufficient condition for minimum time problems). A suffi-
cient condition ]’or an admissible triple u *, x *, t) to be optimal is that there exist"

1. A function (t) R", absolutely continuous on [to, t];
2. Two constants , 6 Rp and 15, R q satisfying l2 >=0 and xrq)(t, x*(t))=O

such that the following inequalities hold,3

(i) 7"(t)[f(t, x, u)-f(t, x*(t), u*(t))]+r(t)[x-x*(t)]>=O
for all x Xt, u Ut, a.e. on [to, t];

(ii) f, rg,(t, x)+ lirdp(t, x)-r(tf)x +
>- -.r(t)x*(t’) + ff(t)t

for all x Xtt, t [to, t];
(iii) I(t) <- ffi(t) for all t T, t].
Moreover, if at least one of the above inequalities holds strictly when

u, x) u *, x *) u *, x *, t) is a proper optimal triple.
Proof. Conditions (i), (ii) and (iii) above imply that inequalities (16), (17) and

(18) of Theorem 2 are satisfied for t .-<_ t when L(t, x, u) 1 and g(t, xr) =0. The
case t > t need not be considered since J* < J is automatically satisfied.

Comment 2. When the final time t is prescribed, T1 T2 T and condition
(iii) of Theorem 2 is satisfied trivially. The sufficient condition reduces to the
following.

COROLLARY 2 (Sufficient condition for fixed final time problems.) A suffi-
cient condition ]’or an admissible pair (u*, x*) to be optimal is that there exist"

1. A function 3, t) R , absolutely continuous on [to, T];
2. Two constants , R p and iJt, G R q satisfying 12>-_0 and/2rb(x*(T)) =0;

such that the quantities

and

(t) K(t, x*(t), u*(t), A*(t)),

d(x) d(q T,

satis]:y

(i) /(t) _-< K(t, x, u, 2(t)) ]’or all x e Xt, u Ut, a.e. on [to, T],
(ii) ((x*(T)) _-< ((x) for all xt Xr.
Moreover if at least one of the above inequalities hold strictly when

u, x) u *, x *), u *, x *) is a proper optimal pair.
Example 2. Consider the fish harvest problem proposed in [2],

minimize J xu dt

subject to x- x2- xu; x(0) .25; x(4) free,

O=<u=<l; O_<x=<l,

(l[) is defined as in Theorem 2 and reduces to K(tt, x*(tt), u*(ti), 2(t)) since ti =< t.
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where x, u and xu are proportional, respectively, to the fish population, the
amount of effort in harvesting and the rate of fish removal.

The particular values T- 4 and x(0) .25 have been chosen in order to avoid
complicated expressions, but the results hold for general values. Consider the
following admissible pair:

when [0, log 3], u*(t) 0; x*(t) et/(e + 3),

when 6 [log 3, 2], u*(t) .5; x*(t) .5,

when t612, 4], u*(t) 1; x*(t) 1/t,

together with

-(e-t/12)(et+3)2,
2(t) ,

(t/4)(4- t),

Then we have after simplifications"

e___,., + t,2 2 +e_,., ,,2 -(3 + e’)x,12t e) x 12t e) xu

K(t, x, u, (t))= xZ-x,

4 2 2 2( -t)x -( -t) xu-[t(2-)+4]x,

xt) =0.

[0, log 3],

[log 3, 2],

[2, 4].

[0, log 3]

[log 3, 2]

t[2, 4],

Consider inequality (i) of Corollary 2" when [0, log 3],/(t) -et/12 and
after some manipulation,

e
e --t ]2 e

K(t,x, u,(t))-K(t)=-[1 (3+et)x +--(3-et)2xu>=O
for all t, u [0, 1], x [0, 1 ].

When [log 3, 2],/(t) 3 and

K(t, x, u, (t))-t(t)= x2-x +1/4= (x _1/2)2
When [2, 4], K(t) -(4- t)/(4t) and after some manipulation,

K(t, x, u, (t))-K(t)=1/4(2-t)2(1- u)x +--(tx- 1)2 =>0

for all t, u [0, 1 and x [0, 1 ].

Note that inequality (ii) is satisfied trivially.
Thus inequality (i) of Corollary 2 holds strictly for u u* and it follows that

(u*, x*) is a proper optimal pair. This agrees with the result of [2] where
sufficiency was proved with the aid of a field-type theorem requiring the guessing
of a function with special properties as well as lengthy calculations. Note that the
optimal trajectory x* has two nonsingular arcs (when [0, log 3] and [2, 4])
separated by a singular arc.
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4. Application of convexity and generalized convexity conditions. It can be
shown 11] that inequalities (i) and (ii) in Theorem 2 and Corollaries 1 and 2 can
be insured by conve,xity and generalized convexity conditions on the functions
K(t, x, u, (t)) and G(ty, xy). Such requirements lead to other sufficient conditions,
less general than the conditions presented here, but which may be easier to verify
(as shown in 11 with examples).

5. Conclusion. An inequality-type sufficient condition has been developed
for a relatively general class of optimal control problems. The condition is
applicable to problems involving free final time and/or multiple extremals, which
is an improvement of the conditions reported by Leitmann and Stalford in [9].
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THE REPRESENTATION OF MARTINGALES
OF JUMP PROCESSES*

M. H. A. DAVIS?

Abstract. In this paper it is shown that all local martingales of the r-fields generated by a jump
process of very general type can be represented as stochastic integrals with respect to a fundamental
family of martingales associated with the jump process.

1. Introduction. Recently a number of results have been obtained on filter-
ing, detection and stochastic control problems involving discontinuous stochastic
processes, using methods based on martingale theory. These developments stem
from the realization [3] that such problems are mathematically analogous to the
corresponding problems involving "signals in additive Gaussian white noise". The
theory in the latter case has reached a certain degree of completeness, reflected in
the appearance of a comprehensive account in [10], and is based on two funda-
mental results in the calculus of Brownian motion, namely, the Ito differential
formula and the fact that all the martingales on the r-fields generated by a
Brownian motion can be represented as stochastic integrals.

Stochastic calculus having been developed to a high degree of generality in
[7], an analogous theory can be developed in a situation where suitable martingale
representation results are available. It is the purpose of this paper to establish
these in the case where the underlying process lies in a certain class of jump
processes (i.e., processes with piecewise-constant paths). Such processes arise in
operations research, optical communications and in many other areas of com-
munication and control theory.

The basic jump process considered in this paper is defined in 2 below. It
takes values in a measurable space (X, 5) and the jump times have a single
accumulation point at a random termination time T (which may be identically
+). The main result is Theorem 2 in 3.2 which states that every local
martingale on the o--fields generated by such a process-has an integral representa-
tion with respect to a certain fundamental family of martingales associated with
the basic process, and identifies the necessary class of integrands.

The basic process is defined in terms of a family of conditional distributions.
In 4 the possibility of an alternative specification in terms of a "local descrip-
tion" is investigated. This is perhaps more natural from the applications point of
view.

Related papers are those by Boel, Varaiya and Wong [2, Part I], Chou and
Meyer [4], Elliott [8] and Jacod [9]. Roughly speaking, this paper derives the
results of [2, Part I] by the methods of [4]. The advantage of the approach in

* Received by the editors November 12, 1974, and in revised form April 10, 1975.
t Department of Computing and Control, Imperial College, London SW7 2BZ, England. This

work was supported in part by the U.S. Office of Naval Research under the Joint Services Electronics
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Offices of Scientific Research, Air Force Systems Command, under Contract AF 44-620-69-C-0101
at Stanford University.
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[4]--where the results below are proved for the special case of point processes,
i.e., real-valued jump processes with all jumps having magnitude + lmis that it is
virtually self-contained and no general theorems on stochastic integration or
martingale decomposition are invoked. By contrast the argument in [2, Part I] is
based on a theory of stochastic integration for square-integrable martingales and
this entails the assumption that the jump times of the basic process are totally
inaccessible stopping times, since otherwise their Lemma 3.1, which in our
notation says that (q(. ,A)),=(t,A), is not true. It was also assumed that
To--oe. By generalizing the methods of [4] and introducing some sequences of
stopping times to show that certain integrands are "locally LI" we are able to show
that both of these assumptions are unnecessary. Further generalizations will be
found in [8] where the formula for (q(., A)), is given in case the basic jump times
have an accessible part, and the process can continue beyond To (where, in our
framework, it terminates).

The representation result is also given in a form close to ours in [9] where the
proof proceeds via an exponentiation formula for positive martingales and the
Radon-Nikodym theorem. This route is less direct than ours (representations are
not the primary concern of [9]), and, although there is no stochastic integration,
results on predictable projections, etc. from the "general theory of processes" [6]
are freely used.

For applications of the results the reader is referred to 14] (filtering), [2, Part
II] (filtering and detection) and [1] (stochastic control). Reference [13] deals (not
from the martingale standpoint) with control of jump processes defined very much
as below.

2. Definition. The basic jump process (x) is to take values in a measurable
space (X, oW). We assume that (X, 0) is a Blackwell space [11, III D 15], not a
restrictive assumption since, for example, complete separable metric spaces are
included. The salient feature of these spaces is that two separable sub-o--fields of
0 are then identical if and only if they have the same atoms; this property is used in
12] to obtain the characterization of stopped r-fields which we use in Lemma 0
below. Let z0, zo be fixed elements of X and for 1, 2, ., let (Yi, i) denote a
copy of the measurable space

(Y, ((R + x X) U {(oo, zoo)}, +) 0, {(oo,

Now define

i=1

An argument similar to that of [2, Part I, 2] shows that (1), -o) is then also a
Blackwell space.

N(R+) is the Borel r-field of R+; o’{. denotes the o--field generated by the sets or random
variables (r.v.) in the braces.
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Let (Si, Zi) 12 Y’ be the coordinate mapping and (.Ok - "-’> ’k H Y bei=1

the restriction of the identity function, i.e.,

0,(,o) (S(,o), Z(o) S(,o), Z(,o)).

We now set

k

rk (o)) Y,
i=1

Too(w)= lim Tk(w),
k-oo

and define the path (x,(o))),>=o by

Zo if < Tl(o)),

xt(w) Zi(o)) if t[T/(w), T/+l(o))[,

zoo if t-> Too(w).

The random function (x,) generates the increasing family of r-fields (,), i.e.,

= o’{Xs, S <-- t}.

Notice that T/is not a stopping time of (,) because we have not excluded the
possibility that Zi-1- Zi. A probability measure P on (f, -o) is defined by the
following family of conditional distribution functions: Ix is a probability measure
on (Y,) such that Ix (({0}xX) U(R+x{zo}))=0, and for i=2,3,-..,
Ix i-1 x 0-td [0, 1] is a function such that

(i) Ix (" ;F) is measurable for each fixed F,
(ii) Ix

(w)" ({0} x X) U (R+ x {Zi-l(w)})) 0 for all o),(iii) Ix (o)i_
(iv)

The family (Ixi) defines a probability measure on (1, -o) as follows" for F 6 and
T i-1,

P[(T1, Z1) F] Ix (F),

P[(Si, li) rio)i_, 7] Ix (r/; r).

The purpose of (iii) is to ensure that two "jump times" T/_I, T/do not occur at
once and that the process xt does effectively jump at its jump times; i.e.,(iii) implies

P[T/-1 T] P[Zi-1 Zi] O.

Part (iv) ensures that P[Zk zoo[ Tk oe] 1.
Now let t(o) be the o’-field obtained by augmenting -,(-o) with all subsets

of P-null sets of -o.
LEMMA 0. (a) T/is a stopping time of (t).
(b) Too is a predictable stopping time of (*t).
(c) oo= o%, where oo= V ,.

t_>o

(d) V "Tn Too--" T-- "
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Proof. (a) Let Pt Ys_-<t I(xex._) and p(t, X) Yi I(t>__T,). Then from (iii) above,
p, p(t, X) a.s. and (Ti <-- t) (p(t, X) >-_ i). The result follows.

(b) z, Tn ^ n foretells To in the sense of [6, III D 36].
(c) By definition 0 or{ T, Zi, 1, 2," } so that ooo c o%. Since Ti is a

stopping time of o%, it is oo-measurable, so to show c oo it remains to show
that (Zi A) 6 oo for A . Now

(Zi A) ((Zi A) ffl T < oo)) U ((Zi A) ffl T oo)).

The first set on the right is in oo as is the set (Ti =oo). If zooA, then
P[(Zi A) fl (T/= oo)] 0 whereas if zoo A, P[(T/= oo)\(T oa) f’l (Zi A)]
0. Hence (Zi 6 A) VI (T/= oo) oo. This completes the proof.

(d) The first equality is given by [6, III T 35(b)]. To get the second and third
we apply the characterization of stopped o--fields given by Courr6ge and Priouret
[5] and by Meyer 12]. However since this refers to the unaugmented o--fields we
first define

tl"= {to 6 tl" Zi_l(to) Zi(to) for some 1, 2,. .}

which by definition is a P-null set. Now let

This is a Blackwell space since (fl, -o) is.

Ti restricted to fl’ is a stopping time of ’, since {to e t2’" Ti(w)<-t}
{to e tl" p,(to) _-> i}, and hence (’,) is the family of o--fields generated by (x,) in
For U a stopping time of (o%’,) define the equivalence relation Ru by

to to’(Rv) U(to) U(to’) and

x,(to) x,(to’) for <- U(to).
Then according to 12, Prop. 1 ], A *v if and only if A is saturated for Ru (i.e.,
to A, to’ to Ru =) to

It follows that for each n, r. o’{ T, Zi, 1, 2, n } since

to to Rw. :> Ti to Ti to

Z,(o) Z(,o’),
Also since XTo =- Zoo,

to to Rwoo Ca’ Ti to Ti to

1, 2,... ,n.

Zi(to) Zi(to’) for all i,

and hence ’oo ’Too Vn ’-/e T,,- Augmenting these o--fields with the null sets of -o
(in particular, with W) gives the result as stated.

For fixed k and >-0, U=(T_ / t) ^ T is a stopping time of (s). We shall
need the following characterization of the o--field

LEMMA 1. -u Tk- Vo’{X(Tk-+s)^ Tk, S [0, /]}.
Proof. As in the proof of Lemma O,

o%’r_, o-{ Ti, Zi, 1, 2... k 1}

cr{Xs^T,,_,, s e R+}.
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Thus

Tk-,’ VO’{X(Tk_, +s^ 7"k, S [0, t]} tr{Xs^ Or, S R +}

Augmenting with null sets now gives the result since

_
already contains

all P-null sets.

3. Representation resets.
3.1. e single jump case. The process (xt) has a single jump if

e(; {(, z)}) 1 for all n Y
so that T in this case. Such a process can be defined directly by taking
(, o) (y, ), p=,

Zo if < T,,
xt(m)

Z,(m) if t T,,

and (,) defined as before. (T,, Z,) is now the identity function on (, ) and it is
not hard to see that , consists of (N[0, t]). together with the set (It, [ x X) U
{(, z)} and all -null sets of 0. For the remainder of this section, T,, Z,,
are denoted by T, Z, .

PROPOSTO 1. Suppose is a stopping time of (t). Then there exists to R+

such that T to T a.s.
Proof. Form ’= Y(R+x {Zo}) and ’, as in the proof of Lemma 1. Then

(It, [ x X) ’ is an atom of . Suppose r takes on at least two values t, and te
on (r N T). Then for It,, tel we have

(r t)D (It, [xX)’ (]t, [xX)’
so that (rNt)ff’,. This shows that (rNT)c(toNT) for some toeR + and a
similar argument gives the reverse inclusion. Augmenting ’t the result follows.

For A e let us define

(1) F=(]t,]xA)
so that is right-continuous for fixed A. In particular, the marginal distribution
of T is given by

F,=P[T>t]=F.
Now define

c inf{t Ft 0}.

Note that Ft is decreasing so that for integrable functions ’(T),

Ef(T)= f fd -I fdF.

Suppose (M,),>=o is a local martingale of (,). The following result is proved as
in [4], using Proposition 1.

PROPOSITION 2. (i) If C 0O or, C < oO and Fc- O, then Mt is a martingale on
[0, c[.
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(ii) Ifc < oo and Fc- > O, then (Mr) is a uniformly integrable (u.i.) martingale.
We now introduce the fundamental family of martingales associated with the

process (It). For A and t R+ define

#(t, A) I(,>= )I(zA),

/5(t, A)= I _1 dFA
0.T^J F_

q(t,A)=p(t,A)-(t,A),

PROPOSITION 3. (q(t, A))teR is a martingale of ().
Proof. Direct computation. For s we have

F-FE[p(t, A)-p(s, A)I] I(<,F

E[ --1 dF2,]=,( { dF2 1 dF,

and

The martingale equality follows from these calculations.
Let denote the set of measurable functions g Y-R such that g(oo, z) 0

for all z 6 X. Since, for fixed (t, to), the functions p(t, A),/(t, A) are countably
additive in A, we can define Stieltjes integrals of the form I g(t, z)p(dt, dz),
g(t, z)(dt, dz) for suitable integrands g 6 . Explicitly,

(2)
IR+xX g(t, z)p(dt, dz)= g(r, z),

g(t, z)(dt, dz)= I(s<=w)g(s, Z)--F- d(s, z).
+IX +IX

We introduce the following classes of integrands, which are similar to those
defined in [2]:

Ll(p) {g, E+x ]g(t, z)lp(dt, dz) <oo},
Lloc(P) {g e 5 gI(,<,k)e L l(p), k 1, 2,. , for some sequence

of stopping times irk < Too, rk 1’ Too a.s.}.:
L l(p) and Loc(iS) are defined analogously.

PROPOSITION 4.

(i) L’(p)= L l(ts) {g e " IY Ig[ d/x < oo},
(ii) L]oc(p) L]oc(/) , where {g e " I.I(s<__,)lgld# < oo for all < c}.

Recall that in this section To oo. To is written here for future reference.
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Proof. (i) For g ,

and hence,
I Ig(t, z)lp(dt, dz)= Ig(T, Z)l,
+X

Now

I1 d/3 I 1

+X O,T]xX Fs-
lg(s,z)ld(s,z)

so that

1

f. Ig(s,/)l d/z.

Thus L’(p) L’ (/).
(ii) Suppose g6Loc(P). Let (o-) be an associated sequence of stopping

times, and (t) be numbers such that o- ^ T t ^ T (Proposition 1). Since o- ’a.s. it is clear that t c. Now

y I(s<)lg[ dp g(T, Z)I(>T).

It is easy to see that (k > T) [0, tk[ X. Thus

E Iy Is<k)lg]dp Io.tk[x ]g] dla,.

Since tk C, it follows that g . Conversely, suppose g . Then gIs<k) L l(p)
with the following choice of stopping times (Ok):

for c oo: rk k,
for c <oo, Fc_>0 O’k =o0,
for c < oo, Fc_--0 take tk ’ C and define

O’k kI(T<=,) + tkI(T>O,).
Evidently rk ’ 00 a.s.; consequently Loc(P)= . A calculation similar to that in
the proof of (i) shows that for rk

E I I(s<,)]g[dfi= I ]g.ldtz
O,oO]XX O, tk X

and Loc(/) follows from this. This completes the proof.
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PROPOSITION 5. Suppose (M,) is a uniformly integrable martingale of (t)
such that Mo 0 a.s. Then there exists h such that

(3) Iy
1 I h.(s, z) dla,(s, z).(4) M, I(t>__r)h(T, Z)-I(,<r) o.,lxx

Pro@ Each u.i. martingale is of the form M, E(#I,) for some 0%-
measurable r.v. , and from the definition of each such r.v. is a.s. equal to
h(T, Z) for some measurable h Y--> R. Expression (3) is satisfied since EIM, <
oo and if Mo 0, then

(5) Iy h dp, O.

Now

1 I h(s, z) dtx(s, z)(6) E[h(T’Z)I]=I(’>-r)h(T’Z)+I(’<r)-
and (4) follows from (5) and (6).

For g , the stochastic integral

Mr= g(s, z)q(ds, dz)
O,tJxX

is defined as the obvious difference of Stieltjes integrals, i.e.,

I. l(s__<,)g(s, z)p(ds, dz)-j, l(s<_,)g(s, z)fi(ds, dz).(7) M=
+xX +X

Equation (2) gives explicit formulas for the integrals on the right.
It is shown below thatMg is a local martingale, and the question is whether all

local martingales are of this form for suitable g & As a guide to the answer it is
instructive to consider the special case where (X, 0)=(R, (R)) and x is
absolutely continuous with respect to Lebesgue measure, with density q(t, z).
Then, from (7) one sees that

(8)
M= I(t>=r){ g(T, Z)- -s g(s, z)q(s, z) dz

1
z ds}.

If (M) is a u.i. martingale with associated function h as in (4), then, comparing the
coefficients of I(,er) in (4) and (8), in order that Mt Mg it is necessary that

h(t, z)= g(t, z)- g(s z)d/(s, z) dz ds.
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Thus rh
a__ g, t, z h t, z) must satisfy

rt, (rls + h(s, z))q(s, z) dz ds.

Putting % JR h dz and ft R q dz dFffdt, we see that this becomes

f, 1

r/o O,

which has the unique solution rh (I/E) ’o 3,(s) ds, i.e.,

110’ IRg(t, z)= h(t, z)+rh h(t, z)+--t h(s, z)q(s, z) dz ds.

It is now easily checked that with this choice of g the coefficients of I(,< T) in (4) and
(8) agree as well, so that Mt M as required. The general result is as follows.

THEOREM 1. (Mr) is a local martingale of (t) ifand only ifMt M, for some
gLoc(P).

Proof. Suppose g Loc. Calculations similar to those of Proposition 4 show
that gMt^, is a u.i. martingale, where (o-g) is the sequence of stopping times
introduced in the proof of Proposition 4. Thus Mg is a local martingale of (t).

Now suppose M is a local martingale of ot. The situation breaks up into two
cases.

Case 1: c < oo, Fc_>O. From proposition 2(ii), Mt is u.i. and is therefore
given by (4) for some h satisfying (3). We are going to show that Mt M,, where

1 I h(s, z) dlz(s, z), < c,g(t, z)= h(t, z)+ I(t<) o,t]x
(9) g(oo, z) 0.

By using (2), (7) can be written as

(10) Mr= I(teT) g(T, Z)- Fs---- g(s, z) dla, -I(t<T) Fs_0,T]X 0,t]X

From (4) and (10), in order that Mt Mtg we must have

(11) h(t,z)=g(t,z)- I 1

o,t]xx Fs--- g(s, z) dtx.

Now for < c, with g given by (9),

o,t]x F--_ g(s, z) dlx
o,t]x F,_

h(s, z)

o,tl FsG-
h(u, z) dlx(u, z) dF,

g dlx.

-1
h dtX + Io,,]xx (Iu.t] FsFs_ dF)h(u, z)
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o,,]x Fs-
h dlx + h(u, z)

O,t]xX

1-- I hdla,.F,

Thus (9) is satisfied for < c. A similar calculation shows that the coefficients of
I(t<’r) agree in (4), (10), and hence that Mt= Mt as long as < c. Since M and Mg

are stopped at T and P[T> c] 0, it only remains to check that Mc M in case
T(o)) c and this is established, again, by a similar calculation to the above.

We now show that g L l(p). Since Mt is u.i.,

I, Ihl d/x oo.

Now using (9),

I Igl d--< I lhl dtx-I0,ct fftlI0,t]xx Ihl dtxdFt

I 1 I I ,hldtxdFt-<- Ihl d/x--_ 0,c[

Ihld + 
1+ Ihl d<.

Thus g L(p) and afortiori g Loc(P).
Case 2: c , or c <, Fc-= O. M is a martingale on [0, c[ according to

Proposition 2. It is therefore u.i. on [0, t] for any < c and hence of the form (2) for
some h satisfying

Ih(s, z)] d(s, z) < for all < C.
0,t]xx

Calculations as in Case 1 above show that M, M a.s. for g given by (6). Now

1

dEs)
< for < c.

Thus g Loc(p), from Proposition 4. This completes the proof.

3.2. e general case. We now revert to the situation described in ff 2.
Define

p(t, A)(o) 2
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Recall that fk [Ii=l Yi and wk" f-f is the natural restriction. For A ,
k =2, 3,. , define the" R+-R+ and " -1 xR+R+ by

o.]
dF,,

A 1 kAk (k-l(); S)= dF

where F, F are as in 3.1 and, for k 2,

Fk k ]U, ] X A)(k-,

F XkF
Now define

(t,A)()=(T)+(I; Sa)+ (_ t- ._())
and

for ITs._,, T]

q(t,A)=p(t,A)-(t,A).

Calculations as in the proof of Proposition 3 give the following result.
PROPOSITION 6. Forfixed k, andA 9, (q(t ^ Tk, A)),>=o is an t-martingale.
The class of integrands o for stochastic integration is defined as follows. A

function g f Y- R belongs to o if there exist g Y- R and for k 2, 3,
k ,-k--1measurable functions g YR such that

g (t, z), -<- T1(6o),
k(i) g(t, z, w)= g (Wk-l(O)); t, Z), ]Tk-l(o)), Tk(0))],

O, >= Too(o),

(ii) gl(o3, Z) gk(tOk; 00, Z)=O.

Now the definitions of L l(p), etc., read exactly as in 3.1.
PROPOSITION 7. Suppose g Loc(P) and define

M= f g(s, z)q(ds, dz).
O,t]X

Then there exists a sequence ofstopping times ’ < T such that ’ T and Mt^
is a u.i. martingale for each n.

Proof. Let tr, ’ To be a sequence of stopping times such that g(s, z)I,,
Ll(p), and -, T ^ o-. Then ’ < T a.s. and calculations similar to those in 2.2
show that M^ is a martingale Thus M E[M,]t^,] so that Mt^ is
uniformly integrable.

Now let (Mt),>=o be a uniformly integrable martingale of (o%). It follows from
the martingale convergence theorem (see [6, V T8, T10] that

E[MTooIT-] lim E[MTIOTk] lim MTk MT-.
k k

On the other hand, from Lemma 2, ’-To----" ’- SO that E[MTlOToo-]--MToo
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a.s. Thus MToo-" MT- a.s., i.e., (Mr) is left-continuous at To. Similarly, (Mr) is
stopped at To. This shows that the following formula is true a.s. for all t"

(12) Mt Mt^T + (Mt^Tk--MT_)I(t>=T,_)
k=2

because this is an identity if < Too and the right-hand side is equal to lim Mr if
t>-_To.

We are now in a position to state the main result.
THEOREM 2. Let (Mr) be a local martingale of (). Then there exists

g L]oc(P) such that

(13) Mr-M= Io,,lx g(s, z)q(ds, dz).

Proof. Suppose, to start with, that (M) is a u.i. martingale. Define

X Mr^ T,
Xt M(t+Tk_,)^ Tk-- Mrs,_,, k 2, 3,"

Then in view of (12),

X(t-T,_)vo.
k=l

We can now use the result of Theorem 1 to represent each Xk. Fix k and define for
t-->0,

t (/+rk--1)A rk

NowX 0 and using the optional sampling theorem [6, V T8] we see that (X,k) is
a martingale of (t); also, from Lemma 1, t is generated by rk_, and the
sample path of xs for s e ]Tk-1, Tk]. Thus there exists a measurable function h k

such that

xkt E(hk(tok-1; Sk, Zk)[t ).

Since EIXtl < oo we have

Ill Iy k k-1Ih(n;s,z)l (’o;ds, dz)v (drl) < oo,

where e Ok-1 and vk-1 is the marginal distribution of ok-1. The argument of
Theorem 1 goes through unchanged if/z is a conditional measure given some
r-field. Thus, using Theorem 1 together with Lemma 1, there exists gk (wk-1; s, z)
such that

xkt f gk(tOk_l; S, z)qk(ds, dz),
O,t]xX

where qk(t, A)=q((t+ Tk-1) ^ Tk, A) and where gk satisfies

Igl d/z k < Ihl d/z k 1-
o,t]xx o,0xx o,tl Fs

for all < c k (tOk-1) _a inf {t" Fk (tOk-1; t) 0}.



REPRESENTATION OF MARTINGALES 635

The collection {gk, k 1, 2," "} defines an integrand g # such that (13)
holds a.s. for each t; it remains to show that g 6 Loc(P). For n 1, 2, , define
Snk(O)k-1) as follows" if ck(ook-1) or ck(ook-1)<O0 and F_k < 1/n3, set

s(o)k_l) =inf {t" Fk(ok-1; t) =<--513}.
If c k(ok_l) < (30 and k 3Fc_>--_ 1/n set

Then

so that

Skn(OOk_l) Ck (OOk_l).

I 1 dFs <o, F

(14) In Iy I(S<S)l’l dlJ’k dvk-l N(l +n3) Ia Iy Ihl dtx dvk-l <"
k--I

Now define

’rn T. + sn,

j=min{k- Tk "-- Skn" Tk+ ll.

where

Then -, is a stopping time of t and

P[’. < T.] -< P (s < Si) < n--- -]=1 /’/ n

Thus Y’. PIT,, < T,]< oo and hence

P[lim inf (r. > T.)] 1.

It follows that -, To a.s. Now

Iy gI(t<_T.tp(dt, dr)= gl(T1, Zl)+. -1-- gn(T1, Z1, Sn, Zn).

Thus, using (14) we see that

k=l k--I

Since T ^ ’. ’ Too a.s., this shows that g Loc(P), as claimed.
If (Mr) is a local martingale with associated stopping time sequence u, ]’ oo

such that Mt,,,n is a u.i. martingale for each n, then the above argument goes
through using Tn ^ -n ^ un as the stopping time sequence associated with g. This
completes the proof.

Remark 1. Suppose Too ---oo. Then Proposition 7 and Theorem 2 combine to
assert that M is a local martingale if and only if M Ms for some g Loc(p). This
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is the result obtained (when the T’s are totally inaccessible) by Boel, Varaiya and
Wong [2]. When Too is possibly finite our results are a slight generalization of
Theorem 5.4 of Jacod [9] who, however, does not consider the integrability
properties of his integrands g.

Remark 2. In our framework the basic process (xt) stops at Too and this
implies the martingales stop at Too and are left-continuous there. It is possible to
generalize the framework so that (xt) continues beyond Too, and to obtain
representations for square-integrable martingales. The reader is referred to [8]
for details.

4. The local description. In 2 the probability measure P was specified
through the family {/x k} of conditional distributions. It is also possible to
specify it through the "local description" [2], which gives the conditional
probabilities of jump occurrence and the distribution of jump location given that
one occurs. This is perhaps more natural from the applications point of view, and
also has connections with the "L6vy system" for Hunt processes [15]. Let us
return to the one-jump situation of 2.2.

For fixed A it is evident that the measure on (R +, (R+)) defined by F.a

is absolutely continuous with respect to that defined by F. Thus there exists a
positive real-valued measurable function n(A,. such that

(1) F;’-F,A= f n(A,s) dFs.
0,t]

It is easy to see that n(A, s) is also equal to P[A x R+] T]. In view of the Blackwell
property a regular version of this conditional probability exists, which is assumed
to be the one chosen. Then n(., s) is a probability measure for each s. Now define

A(t) a(t ^ T),

where

(16) A(t): -I 1

o,,j s- a/"

The pair (n, A) is called the local description on account of the probabilistic
interpretation

dA(t) P[T6 ]t, + dt]lT>= t],

n(A,s)=P[ZAIT=s].
In terms of the local description the compensator i6(t, A) can be written as

/(t, A) n(A,s) dA(s).

This may be compared with equation (3.3) of [15].
The functions (n, A) have the following properties:

(i) A(t) is defined for e [0, c[,
(ii) A(t) is increasing and right-continuous; A(0)= 0,
(iii) Aa(t) < 1,



REPRESENTATION OF MARTINGALES 637

(iv) n(A, s)=>0,
(v) n(A,. is measurable for fixed A,
(vi) for all s ]0, c[ except a set of dA-measure 0, n(., s) is a probability

measure on (X, ), and n(., c) is a probability measure if c<c,
A(c-) <oo.

PROPOSITION 8. There is a bi]ective correspondence between the set ofproba-
bility measures Ix on Y, ) and the set of local descriptions (n, A) satisfying (i)-(vi)
above.

Proof. There is a bijection between the set of functions A satisfying (i)-(iii)
above and the set of probability distributions F on ]0, oo] given by (15) and

Ft e -A(t) H (1 -AA(s))e AA(s), < c,
sl

(17)
F, =0, t>-c.

See Jacod [9, Lem. 3.5]. Thus given (n, A) satisfying (i)-(vi), the distribution Fa is
specified for each A oW by (17) and (15) and this uniquely defines the measure Ix.
Conversely tz defines (n, A) via (1), (15) and (16).

This result shows that there is a single-jump process corresponding to an
arbitrary local description (n, A). Clearly the same is true of the jump process
introduced in 2.1, if by a local description we understand a family of functions
{(n , A), k 1, 2.-.} corresponding to the family of conditional distributions
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A SPECTRAL FACTORIZATION APPROACH TO THE
DISTRIBUTED STABLE REGULAR PROBLEM;

THE ALGEBRAIC RICCATI EQUATION*

J. WILLIAM HELTON

Abstract. This paper is a study of the discrete-time infinite-dimensional "stable regulator
problem" having a cost function which is not necessarily positive. We take a spectral factorization
approach to the problem. Also there are results on the algebraic Riccatic equation which are

equivalent to results about fixed points for a broad class of symplectic maps.

Introduction. This paper is a study of the infinite-dimensional "stable reg-
ulator problems" having a cost functional which is not necessarily positive. The
control problem will have a solution or approximate solution in feedback form
provided that one "completes" a certain square in a way familiar in control theory.
In this paper, we use a spectral factorization method to obtain necessary and
sufficient conditions for this to be possible ( 2). Section 3 describes the stability of
the feedback system resulting from the optimal control problem. Section 4 treats
the infinite-dimensional algebraic Riccati equation associated with the control
problem. This can also be described as a study of the fixed-point problem for
certain infinite-dimensional "symplectic" maps (see Appendix plus 4).

This paper follows in the footsteps of a paper by Willems [25] in which he
gives necessary and sufficient conditions for solving a broad class of finite-
dimensional continuous time algebraic Riccati equations. In addition to giving a
discrete-time and an infinite-dimensional version of these results, our article
gives proofs which in finite dimensions are rather simple. As this paper was being
written, an elegant spectral factorization approach to Willems results was given by
Molinari [15][16] and then applied to the stable regulator in [17]. His proof
involves some basically finite-dimensional methods such as determinants and
dimension counting while the key step in the proof here is subspace inclusion. The
article [14] is a good reference for infinite-dimensional discrete-time systems
having "positive cost operators". Our article gives a new approach to the
time-invariant regulator results in that paper and extends them in several direc-
tions.

The results in this article apply to most least squares problems associated with
the discretization of systems governed by a heavily damped variable coefficient
wave equation (including the heat equation). A thorough list of applications of the
finite-dimensional theory appears in [25]. Since we do not require our "cost
operators" to be positive, the systems studied are capable Of storing energy, that
is, "cost". The basic principal which emerges in [25] and which is true to a large
extent in infinite dimensions is that one can use the standard feedback approach to
a control problem provided the zero state stores no energy. Roughly speaking,
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conventional approaches suffice even when the system can store energy, but not
when it can spontaneously produce energy.

1. Definitions and setting. We shall consider a system

(1.1) Xi+l Axi h- Bui,

where the xj are vectors in a Hilbert space Y( and the uj are vectors in a Hilbert
space R. The cost of running the system from initial state x0 for N time units is

N

(1.2) JN(xo, u)= Z [(x,, Oxi)+(ui, Rui)].
i=0

Here O: Y and R :R- R are bounded self-adjoint operators. The basic
infinite time interval problem is: given a state x0, determine exact or approximate
a control sequence u which minimizes J(xo, ). The admissible class of control
sequences u =(ui)il in this paper will be those in /2(0, c, ), the set of all
sequences from R whose norms are square summable. Also one usually requires
that xn 0 in some sense as n -. We shall always assume that A is stable, i.e.,
I[A[I <M for all n, and that B is bounded.

Frequently in what follows it will be convenient to look at our system as one
having an output. The natural choice for the output operator is 1011/2 Thus the
problem is equivalent to minimizing the cost

E (Yi, [sgn O]yi) + (ui, Rui)

of running the system

(1.4) Xi+l Axi + Bui, Yi --]O]l/2Xi"
Here sgn O is the operator P+- P_ on , where P+(P_) is the projection onto the
positive (negative) spectral subspace of O. The frequency response function for
the system [A, B, [OI 1/2] is

(1.5) W(z) zlQI1/2(I zA)-IB.

Since A is stable, the spectrum of A is contained inside the disk, and so W(z) is
well-defined and analytic inside the disk. It will be assumed that all systems we
study have a uniformly bounded frequency response function. Let /2(0, ,
denote all sequences (ui)i=o from 0//with square summable norm.

If O => 0, then it can be shown (see equations (2.2) and (2.3)) that the cost
J(0, u) of running the system initially at state 0 with 12 input u is finite if and only
if the frequency response function W is uniformly bounded on the disk. In dealing
with the signed O problem, we shall always assume that the cost J(0, u) with
replacing O is finite. This is also equivalent to the statement W(z) is uniformly
bounded on the unit disk, and we shall say that any (1.1) and (1.2) with this
property have absolutely finite cost. This assumption will obviously be satisfied
when A is very stable, for example, if (1.1) arises from discretizing a variable
coefficient heat equation or heavily damped wave equation. This assumption can

certainly be relaxed but the author suspects that the basic structure and proofs will
change little while the technical complication will greatly increase. Thus it seems
unwise to do so without first making a systematic li,t of compelling examples.
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Henceforth, assume that (1.1) and (1.2) have absolutely finite cost. It is well
known (see, [18, Chap. V]) that radial limits of such functions exist almost
everywhere onto the unit circle, so we may consider W as being a function W(e i)
defined for almost all 0.

The mathematical notation will be as follows. The unit circle will be denoted
by T, the set of all complex numbers by C. If is a separable complex Hilbert
space, then L2() denotes the Hilbert space of norm square integrable Lebesgue-
measurable -valued functions. We let H2() [resp., /.r2()] denote the closed
subspace of functions in L2() with zero nonpositive (positive) Fourier coeffi-
cients. The operator P [resp., P] is the orthogonal projection of L2 onto this
subspace. If and 2 are separable complex Hilbert spaces, then (, 2)
denotes the Banach space of bounded linear transformations from Y( to Yg2. We
abbreviate o(, ) as 5(). MoreoverL(, 2) denotes the Banach space of
essentially bounded weakly-measurable (, 2)-valued functions on T, while
/-(, 2) (resp.,/7/(1, 2)) denotes the subspace of functions with negative
(resp., nonnegative) Fourier coefficients equal to zero. When the context prevents
ambiguities, we will only write/-F and H2.

Functions in the Hardy spaces HZ(ff) [resp.,/q2() and H(Y(, Yg2)] can be
identified with boundary values of functions analytic inside [resp., outside] the
unit disk; see [18, Chap. V]. If q is a function in L(Y(, Y(2), then is the
operator from L2(fftl) to L2(a2) defined by (l’[f)(ei)=qo(ei)f(e i) for f in
L2(gg). A function o in H(, Y(2) is called outer provided thatM restricted to
H2(gg) has dense range in H2(gg2). A function q in /2/(, Y(2) is called
conjugate outer provided that it has the analogous properties on/2(y() and
/2(y(2). Such a function is called invertible outer if its pointwise inverse is
uniformly bounded. The invertible outer functions are precisely those in
H(gg, 2) whose inverse is in H(2, ).

2. Olfimalily. In an infinite-dimensional problem, it is reasonable to expect
the frequent occurrence of unbounded operators. This is so here. In fact, more
unwieldy objects are necessary. For example, the cost of optimally driving a state

Xo to zero may not be finite on all states Xo of the system, while it will frequently be
finite for all states which actually occur in the running of the system. Thus it is only
reasonable to expect the optimal cost functional to be a densely defined (quadra-
tic) functional on the state space, and indeed that is what will be obtained. A good
reference on such objects is [20, Chap. VIII]. The controllability map of a system
[A, B] is the densely defined map c :/2(0 oo, 0).__> o given by

C(Uo, ul, ") Z A kBuk.
k---0

We set range c and c (all sequences with only finite number of nonzero
terms). These are domains which will be commonly used.

A trajectory of the system initially at 0 is a sequence of states {Xn}n_-0 which
results from feeding some input sequences { ui} into the system. Unless otherwise
specified, .trajectory will refer to something arising from a 12(0, oe, oR) input. The
finite cost assumption implies that J(0, u) is well-defined and finite for all u in
/2(R). In this section, we shall deal only with JN for which J(0, u)>0, all u in
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12(/). In this case, we may think of the quadratic functional J(0, u) as giving a
second degenerate norm on 2(R). Let cr be the completion of the orthogonal
complement of .;V the nullspace of J in the J-norm. This describes a space of
input strings having finite cost. The elements of o- are not necessarily sequences;
they are equivalence classes of sequences. However, under many circumstances
they may be identified directly as sequences. This will be the case if R is
finite-dimensional or, more generally, if E(e i) has closed range for almost all 0.

We shall approach the problem in the usual way (see [1], [2]), namely, by
completing the square to put the cost functional JN in a reduced form from which
the optimal control law is apparent. This section is devoted to determining when
this procedure is possible.

DEFINITION. The cost functional JN for system (1.1) and (1.2) is in reduced
form when there exists an auxiliary Hilbert space 1 with inner product ,. ), a
continuous operator G" R - 91, an (possibly unbounded) ,operator F" Y(1,
and a symmetric bilinear form K(, whose domain contains such that for all N,

(2.1)
N

Ju(xo, u):= Y’, (Gu +Fx,, Gui +Fx,)+.K(xo, Xo)-K(xu+, xu+)
=0

for u (ui), an input to system (1.1), and xi the corresponding states of the system.
If K(xu, xN)- 0 along trajectories, then J(0, u) is always ->_0, and the finite

cost assumption implies that the map defined on/2(R) sequences by t{u}
{Gui-t-fxi} satisfies cllull2>-_Joo(o, u)-ET_011( u),ll ,; thus /x"/2()/2(y(1). A
reduced form is called outer if Ix has range dense in/2(y(). One could view the
map Ix as taking a dense subspace of o- isometrically to a dense subspace of/2(),

onto
and so we may extend/x to a unitary map 2 cr --/2(1).

Proceed formally for a moment. Once the reduced form is obtained, then to
minimize Joo over inputs u with trajectories xu on which K(xu, xu) - 0, one
would solve Gu -Fx to obtain a control sequence {u}. If K(XN, XN)-- 0 on the
resulting trajectory, then clearly {ui} is the optimal control and the optimal cost is
K(xo, xo). To make this argument rigorous, let xo be the initial state to be
controlled and let v be an input sequence of finite length n whose associated state
sequence has x,/ x0. The approach just described consists of extending v to an
element w (v0," ", v,, u0, Ul ") abbreviated (v, u) in cr with the property that
each entry of the sequence 2u beyond the nth is zero. Such a u can be obtained by
solving/2u =-(y,+, Yn+2, ") where (Y0, Yl," ")=/2,v. This is because/2(v, u)
/x(v, 0)+/2(0, u) (yo, y," .)-(0, .., 0, y,+, .). The element u of r is an
optimal control (also the unique one in or) provided that K(x, xu) 0 on the
trajectory arising from u. It turns out that about the best we can expect is
K(xN, xu)-O along trajectories coming from 12(0//) input strings. Under this
circumstance, given e >0, any u(e) in 12(/)with Jo(O, u-u(e))<e is a control
sequence which runs the system at within e of K(xo, Xo), the optimal cost. Thus we
have a reasonable sense in which to think of u as the optimal control. The
approximate control is an approximate solution to Gu -Fx in the rather strong
sense that Y=0 ][Gum(e)+ Fxi(8)]]2 < f.. Conversely, any 12(-//)control u’ within e of
being optimal satisfies e > Jo(O, u’)- K(xo, Xo) >- Y=0 ]]Gul + Fx]l2. Thus the con-
trol problem is solved provided that Ju can be put in outer reduced form with
K(x, x)O along any trajectory coming from an/2(//) input. The goal of this
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section is to show when this can be done. After that is finished, we give some
conditions under which the actual controlling sequence u(e)can be expressed
concretely in terms of u.

The results of this section are given in terms of the power spectrum operator"

(2.2) E(e i) R + W(ei)*[sgn O]W(e)

which is defined for almost all e i on T. In particular, we shall be concerned with
spectral factorizations of it. Recall that an () function P(e i) has a spectral
factorization if it can be written in the form

p(eiO) M(eiO),M(e io),

where M is in/_(a//, Y(1) for some auxiliary Hilbert space 1. Given a nonnega-
tive operator or matrix-valued function, a spectral factorization may or may not
exist. This is a classical question, and the answer is that a factorization usually
exists. In recent engineering literature, the results of Gohberg-Krein [10] are
usually cited; however, necessary and sufficient conditions are available (see [18,
Chap. V, 4], [23]). The more applicable sufficient conditions for nonnegative P
are

(I) P(e o)>= 6(eO)i with 6 a log integrable function [18. Chapt. V, 7].
(II) For P matrix-valued log det P(e 0) is integrable [11, Thm. 18].

(III) P has a (pseudo) meromorphic continuation to C [23, Thm. 3.1]. This
includes the case where P is a rational function.

Thus there are quite a few ways to check if a function has a spectral factorization
and so the hypotheses of the theorems appearing in this section are hopefully easy
to apply.

Next we shall observe that placing JN in reduced form is related to spectral
factorization of E. Let u(e) denote the Fourier transform of {Un} in /2; it is a
function in H(?/). Fourier transforming (1.1) and the definition (1.2) of the cost
function J gives

(2.3) Joo(0, u)= (u(e), E(eO)u(eO)) dO.

Thus E is closely related to J(0, u). Suppose that JN is in reduced form with
K(xu, xN) 0 on each trajectory. Then (2.1) can be Fourier transformed to give

J(O, u)= (u(ei), M(ei)*M(ei)u(ei)) dO,

where M is the uniformly bounded function

(2.4) M(z) G + zF(I-zA)-IB.

Comparing this with expression (2.3) for J(0, u), we find that the Toeplitz
operator generated by E-M*M is identically zero; thus (see [19]) we get that
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That is, E has a spectral factorization. The main theorem of this section says that
not only this but its converse is true.

THEOREM 2.1. Suppose that the reachable states for the system [A, B] are
dense in its state space and that the cost functional JN is absolutely finite. Then the
power density function E(e i) has a spectral factorization if and only if the cost JN
can be put in outer reduced form with an optimal cost functional K satisfying
K(xN, xN) 0 on trajectories {xN} of the system arising from 12(R) inputs.

Proof. One side of the theorem has already been proved. The converse
requires the rest of this section. By hypothesis, E has a spectral factorization.
Spectral factorizations are not unique and not all of these factorizations have the
required form (2.4). However, since E has a factorization, it has 18, Chap. V, 4]
an outer factorization M H(, Y() which is unique up to a constant multiple
and which we will now prove has the form (2.4). The proof relies on realizability
theory, in particular, on that developed in [8] in the one-dimensional case, in
greater generality in [12], and surveyed in [13].

We begin with a quick sketch of realizability theory. The system [A, B] is
called approximately (exactly) controllable if the range of is dense in Y( (is all of
Y). It is continuously controllable if q is a continuous map. Exact controllability is
equivalent to the standard pseudoinverse q- of c being a continuous operator.
This follows immediately from the open mapping theorem. Similar considerations
with adjoint systems give the obvious notions of approximate (exact) observability.
A slight modification of Theorem 3C.1 of [12] is the

REALIZABILITY THEOREM. Any ’(R, Y()-valued function F(z) analytic
and bounded on the unit disk is the frequency response function of some exactly
observable and approximately controllable system [A, B, C, D].

The operators A, B, C, D in the theorem are given explicitly" A is the
restriction of Pu(e)d/l-,o to the subspace X cl PHZ(yg,)a[/[,FI2(O), B li -> X is
given by Buo Pn(,)d/tF(%uoe -i, C is the projection of X onto the subspace of
constant functions in H2() and D is F(0). The space X is the state space for the
system. This particular realization of F is called the restricted shift realization by
Fuhrmann. A fact critical to our control problem can be read off from this
construction.

LEMMA 2.2. If two functions T(z) and Tz(z) with (, ,_/92) and o(,_03, ’2)
values, respectively, satisfy the hypotheses of the Realizability Theorem, if in the
above representation, T2(z) D + zC(I- zA)-B, and if the state spaceX for T is
contained in the state space X2 for T2, then T(z) can be written in the form
T(z) D + zC(I- zA)-Ba.

It is now easy to show that M has the realization (2.4). Since M is in
/4(, Y), the function/Q defined by/Q(ei) M(e-i)* is in/q(YI, 9/). We
now compare//to the function IY defined by (1.5) using Lemma 2.3. Since M is
outer,

X/ cl (PH2(O)]/2(l))--cl (PH2(O)///2())

which, in turn, by the definition of E, is contained in

x. d (P,tcta()).
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If r has restricted shift realization [0, A, A], then//has a realization [q, a, A, p].
The function W has two realizations [q*,A*, A*] and [A,B, IQI1/2]. A

straightforward infinite-dimensional version of the state space isomorphism
theorem [12, Thm. 3b.1] says that if [A, B, [OI 1/2] is approximately observable,
there exists a 1-1 densely defined operator/3 Y( - X such that

*fl =flA, A*=flB, [QI 1/2=

This implies that M has the realization [A,B, a*fl, p*], that is, M has the
representation (2.4) with F a*/3 and G p*.

To finish the theorem, we require some fine structure from Theorem 3b. 1 of
[12]. It is shown there under the assumption of continuous controllability and
approximate observability that/3 is @-1, where c (resp.,) is the controllability
operator of [A, B, IQI 1/2] (resp., [q*, A*, A*]) and
These results extend immediately to the case at hand and validate this definition of
/3 provided that it is interpreted as follows. If y , there is u such that Cgu y
define fly @u. To check that this is not ambiguous, note that by the lemma in
[12] null c null* null Hankelw null* and since * is 1.-1 this equals
null ; thus if u 0, then u =0. The construction in the theorem can be
completed by setting F a*fl. Note that when one does not have approximate
controllability, /3 will not be 1-1; in finite dimensions, for example, null/3
(range )-. Also observe that U a* which is a continuous operator.

Now we must show that having the appropriate factorization for E implies
that JN can be put in reduced form. To see this we first observe

LEMMA 2.3. The cost functional JN can be written in reduced form (2.1) if and
only if there exist appropriately defined F, G and K( which satisfy

(2.5a) (Guo, Guo) (Uo, Ruo)ou + K(Buo, Buo),

(2.5b) (Fx, Guo)= K(Ax, Buo),

(2.5c) (Fx, Fy) (x, Oy)e + K(Ax, Ay) K(x, y)

for x, y in .
Proof. One simply substitutes (2.5) into the right side of (2.1) and observes,

after using (1.1), that (1.2) the definition of J has been obtained.
As one might expect, the operators F, G, A, B and the space Y(1, appearing in

the representation (2.4) for M, will turn out to be the operators required in the
lemma. Here we let , denote the inner product on Y(1. The optimal cost form
K(. ,. is yet to be constructed. Formally, it is, for x, y ,

K(x, y)= Z (AJx, [Q-F*F]AiY),
=0

and it is not too difficult to check that this formally satisfies (2.5). For example, if
this were a finite-dimensional problem, a very simple manipulation would finish
the proof. However, our task is a bit tiresome.

Now we give the precise definition of K(.,. ). Set

(2.6) L(e) E(e) -[M(e) G]*[M(e) G]-R

G,M(eo) + M(eO),G G*G- R.
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Formally one should think of this as

L(e i) B*(e-i A*)-I[Q F*F](ei A)-IB.
Define

(2.7a)

and

K(A Buo, Bvo)=--- (Uo, L(e Vo)ou e dO

I.___ -ilO(2.7b) K(Buo, A tBvo) (Uo, L(e iO)’l)O)Ol e dO

for ->_ 0. Next we use (2.5c) to define K(,) inductively; it is

K(A +IBuo, AJ+Bvo) (FA Buo, FAJBvo)
(2.7c) (A lBuo, OAlB)o)ge K(A lBUo, AYBvo)

for u0, v0 in 0//. Note that the term involving F is well-defined on, and so we have
defined a function. After some tedious work, which we leave as an exercise, one
can show that K is a consistently defined bilinear functional on .

By construction, K(,) satisfies (2.5c). The identity (2.5a) follows by setting
l= 0 and performing the integration on the right side of (2.7a) while observing
that 1/27r [._.M(e i) dO G. The identity (2.5b) follows from (2.7) and the fact
that

(FA lBto, Guo) (Vo, L(ei)uo)ou e (/+1)0 dO.

Only one property of K remains unverified; that is, K(x,,, x,,) --> O. This follows
because Joo(0, u)= (1/(27r)) I_= (u, M*Mu)= .,,,= o IlGui + Fx ll2, and so (2.1)
implies that K(x,,, Xn)--> O. The proof of Theorem 2.1 is finished.

The theorem just completed shows that an approximate control sequence
always exists. During the remainder of the section, we describe ways for identify-
ing approximate control sequences explicitly. By the discussion preceding
Theorem 2.1, we are confronted with the problem: Given the outer factorization
M of E and y(e i) in H2(X) (actually, we may take y to be a polynomial in e i0), for
each e >0, find ue(e i) in L2 such that J[lY-Mull2x< . The Fourier transform
u(e) of u is an /2-sequence which yields an e-approximate optimizing con-
trol. We know that such u must exist, but the problem is to give a method for
finding them explicitly.

We begin by treating the case where E is scalar-valued. The function
u(z) a__ M(z)-ly(z) is analytic on the disk, but can have fearsome boundary values
u(ei). Standard ways to approximate u(e i) with L2-functions are

(i) [Aru](e i) u(rei), Abel approximation,
’r-,N ijO(ii) [PNu](ei.)= L--o ue ,Fourier approximation,

e ’) N
(iii) [Fru]( (1/(N+ 1)) Y’.:--0 P:, Cesaso approximation,
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and the question before us is: Does 02= IlY -MArull2,etc., go to zero? Since y Mu
and E- M’M, an alternative phrasing of this question is" Does Aru - u;
PNu u, or FNu -. u in L2(E dO)? Fortunately, these are standard questions in
harmonic analysis, and the answers are known.

Necessary and sufficient conditions on E for Puf - f i.n L2(E dO) are
(a) (Helson and Szego [26]) E has the form E eg+h where g and h are

bounded functions with sup ]hi< r/2 and/ equals the harmonic conju-
gate of h;

or equivalently
(b) (Hunt, Muckenhaupt and Wheeden [27]) there is a constant C, inde-

pendent of I such that for every interval I,

ii
E(e ’) dO-[ E(eOi dO <-_ C.

Here II[ is the length of L
This settles approximation theory questions surrounding Prq. The first thing to
note is that these conditions are extremely restrictive. They allow E to be singular
or to vanish like E(e i) 0 only if 1 < v < 1 thus rational E with zeros or poles
on the unit circle are eliminated. Traditionally, Cesaro or Abel summation is
much more likely to converge than simple Fourier approximation, and our rather
negative conclusion suggests that we turn to them as being more practical.

The first thing we mention is a theorem of Rosenblum [22, Thm. 2] which says
that Cesaro summation converges on LZ(E dO) if and only if Abel summation
converges on L2(E dO). Thus we restrict attention to Abel summation. A neces-
sary and sufficient condition [22, Thm. 1] for Arf to always converge in LZ(E dO) is

2,w

Io Pr(ei(-q’)) M(ei)
M(re ’)

2

dO<K

for all 0<r< 1 and . Here P(e i) is the Poisson kernel. Thus a sufficient
condition for the Abel approximation to always work is for

sup
r,0

M(e i)
M(re iO)

that is, M belongs to a class of functions discussed in Chap. 3, 1.3 of [ 18]. This
class does include the rational functions.

In the multi-input case where E is an operator, similar structure holds for
Abel convergence, and we now derive the sufficiency condition, just used,
directly.

{I0
2"n"

}1/2 {f0
2"rr

}1/2]IY -MA,uI[2 <= ]lM(e)u(e)-M(re)u(re)ll2

+ II[M(re)-M(e)]u(re)ll /2.
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The first majorizing term is .20=l]y(e’)-y(re’)]]2 which goes to zero since
H2(X). The second term is

o

2=

]][l M(ei)M(re i0)- 1]y (re

which goes to zero for y in H2(X) if

ess sup I]1-
0

goes to zero or, for y in/4, if 2ollI-M(e)M(rei)-’[12 O. Since M(rei)
M(ei) pointwise, the dominated convergence and uniform boundedness theorem
imply that the first condition is equivalent to M(e)M(rei)- being uniformly
bounded.

Now we turn to a formal question. Recall that the coefficients of the power
series expansion for u(z) M(z)-y(z) give formally our control sequence. The
following proposition gives a reasonable condition on the power spectrum E
which guarantees that M(z)- exists for Izl < 1 and consequently that this formal
sequence exists.

PROPOSITION 2.4. If M in /_(01/, y() is outer, and if M(e)*M(e)>=
N(ei)*N(ei), where N is also outer but with Range N(z)= Y( for some [z[ < 1,
then Range M(z)= Y(. In particular, if M(ei)*M(e) >= 6(ei)I+ T(e i) where
6 => 0, log 6(e i) is integrable and T(e) is a trace class operator with log det [1+
T(e)/6(ei)] integrable, then Range M(z)= Y( for any [z[ < 1.

Proof. The first statement follows immediately from the fact that
M(z)*M(z)>=N(z)*N(z) (see [18, Chap. V, Prop. 4.1]). The log integrabiiity
conditions imply that 3 and I+ T(ei)/6(e) have outer spectral factorizations

0 6 H(C) and q9 analytic with a lenient growth condition (see [23, Thm. 3.8]).
Since q is outer, det q, is outer or identically zero. If it is identically zero, then we
can write q as an infinite matrix with respect to a basis, one subset of which spans
cl (Range q). The determinant of the minor derived from this basis is outer and
so its value at the origin is not zero. Since the pseudoinverse (z)- can be
constructed by Cramer’s rule; this says that it is in fact bounded, and consequently
Range q(z) is closed. The function N qp has closed range and satisfies the
majorization hypothesis of the first part of this theorem. Consequently
Range M(z) .

We now give examples to show that Theorem 2.1 is in several senses the best
possible. Theorem 2.1 says that Ju has reduced form if and only if E has a spectral
factorization. Since E has the special form R + W* sgn OW, it is conceivable that
a weak assumption such as E >- 0 actually forces E to have a spectral factorization.
The following example shows that this is not the case. Take 0-// to be one-
dimensional R 1, sgn Q =-1 and set W*W n _<- 1. By the realization
theorem, any function W in H(C) with W(0) 0 comes from a system and so can
arise in this context. By Theorem 18 [11], _,log n(e) dO>-oo if and only if n
has a factorization n W*W with W in H(C). However, if E 1 n _-> 0 has a
spectral factorization, then [._,log(1-n(ei))dO>-oo, and this is simply not
guaranteed by the fact that log n is integrable.
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The second example is of a system for which no exact optimal control law
exists. Let = a//=/2(0 00, C), R 0 and O 1. We shall take W(ei), and
consequently E(ei), to be diagonal in the natural basis for 12(0, oO, C) and denote
the diagonal entries of E(e i) by ej(ei). The outer factor M of E is diagonal with
entries mj(e) each of which is an outer factor of % i.e., rimi ei. The function M
has the representation G + zF(I-zA)-IB, and the system has an exact optimal
control law only if Range G contains F0}. To see this, suppose that for each x
in there is an input v0, vl,’" which gives the optimal performance of the
system. Let Uo, u 1," , un be a control which drives the system from 0 to Xo and
set u =(Uo, ul,. -., u,, Vo, vl,. .). By optimality, J(0, u) is finite. Thus
K(xi, x) - 0 and J(0, u)= Y-,"--o ]lGu, + fxil]2 -]-2j=o ]lal.)j + Fxj+n+l]l2. However,
for each e > 0 we can find a control sequence so that the resulting cost is within e of
the ]n term. Thus the 2oo term is 0, and so we can actually solve Gvo FXn+l
Fx*o, that is, Fx’o Range G.

Range G contains F if and only if for {x}, any trajectory of the vector
I_Fx(e) e-" dO for each 1, 2, 3, belongs to Range G. This is equivalent
to the statement I_,M(e)u(e) e-il dO belongs to Range M(0) for each u
H2(R) and > 0, and this in turn is equivalent to the statement that

Range M, Range Mo,

where M(z)=k=o M,z The operator M, is multiplication by the sequence
{(1/n’)(d"/dz)njl=o}o on 1:2(0, co, C). Now Range M Range Mo if and only
if M MoY for Y a bounded operator (see [5]). Thus (d/dz)mi(O)/mi(O)=-6i
must be a bounded sequence. The functions mj are outer and consequently can be
written

Thus

and

1 If e"it if Z
log ej(e it) dt.mi(z) =exp eit-z

mi(0) exp log ei

d 1 I --it it)
dz mi(0) e log ei(e dt mj(O).

To obtain the example, choose a sequence l of functions with l](e it) <=0 with
_

l >-oo and I_ e-"l(e") dt --> -oe. Set ej --exp l, let w be a spectral factori-
zation of e which vanishes at z 0, and use the realizability theorem to determine
a system which gives rise to W. By construction 6 --> oe and so Range G F.

Remark 2.1. The case where J can be reduced with K(xN, xN)-A 0 is
analyzed in 4.

Remark 2.2. If O and R are both nonnegative, then (1.2) and (2.1) together
imply that K(.,. is a nonnegative bilinear form.
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Remark 2.3. The feedback law we have obtained can frequently be expressed
in terms of the optimal cost functional K. If Range G l and G-1 denotes the
standard pseudoinverse of G, then formally

ui -G-1Fxi G* G)-1 G*fxi,
(2.8)

ui (R + B*KB)-IB*KAxi.
This expression has a reasonable interpretation even when K is a bilinear
functional. As a further aside, we note that the feedback law can be expressed in
terms of L. Namely, if xi i.=o AJBjvj, then

U "4r"G L(e i) dO 1 L(ei)vi e -i(y+l) dO.
j-=O

3. Stability of feedback systems. In this section, we give some stability
theorems which are suitable for analyzing the behavior of the control systems
found in 1. We shall not belabor this, since our results are near to existing results
(see [4], [3]). Consider the system

(3.1) xi+ Axi q- Bui, Yi Cxi,

with feedback law ui=.Qyi The frequency response function is R(z)--
zC(I-zA)-IB. Define a function (z) 1-OR(z) and note that if M and R(z)
are scalars, then the classical Nyquist stability criterion (which we shall presently
extend) is expressed in terms of the set {(ei) all 0}. Set C I and note that the
formal feedback law 12=-G-IF, obtained in 2 from the spectral factor M,
satisfies

(3.2) GC(z)= M(z).

If Range G , then is outer. Let G- denote the standard pseudoinverse for
G.

The crux of this business is an easily verified identity

(3.3) (I- z[A -BC])-IB,.(z) (I-- zA )-lu.

If u is an admissible input in 12[0, 0(3, 0/] with Fourier transform u in H2(/), then
the Fourier transform of the trajectory associated with u is x(z)=
z(I-zA)-lBu(z). Thus relates trajectories of the original system to those of
the feedback system.

THEOREM 3.1. Suppose that the power density function Efor the system [A, B]
with absolutely finite JN satisfies E(e i) >- 6I > O. Then the outer factorization M of
E gives rise to an optimalfeedback law F via 2 with the property that the feedback
system [A, A +BF] has the same trajectories as the original system. Furthermore,
the ranges of the controllability operators for the two systems are equal.

Thus if all trajectories of the original system tend to zero, then all trajectories
of the controlled system tend to zero. This will also guarantee a weak form of
asymptotic stability; namely, if x is a state of the feedback system which is
reachable in a finite amount of time, then (A + BF)"x
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The first part of this theorem is an immediate consequence of the fact that G
is invertible when E _-> 8I > 0 and of the following

PROPOSITION 3.2. The function (e) (resp., (e)-) is in H(, l) if and
only if the trajectories of [A +BfIC, B] are contained in (resp., contain) the
trajectories of [A, B].

Proof. One side is obvious. To do the other side, suppose that the trajectories
of the feedback system contain those of the original system. If u is a/a-input
sequence, let x(u) be the corresponding trajectory of the original system. By
assumption, there is an input Lu to the feedback system with trajectory x (u), and
clearly this determines Lu uniquely. So L is a map of/(0, m, ) into itself. It is
trivial to check that the graph of L is closed. Consequently, L is a bounded
operator. However, (3.3) implies that L is just the operator "multiplication by
5(ei) ’’, and so 5 is in/-(). The same type of argument applies to 5-1.

Next we look at (3.3) in terms of controllability operators. Let and
denote the controllability operators for the original and the feedback system. Let
pq2 and Pn denote the orthogonal projection of L2 onto H2 and/2. If L L,
we define 3-L H2 -> H2 by

3-j P,eMj.

It is called the Toeplitz operator with generating function L. The best reference
for scalar Toeplitz operators is [6]; for Hilbert Toeplitz operators see [19]. Let TL
denote the operator induced on 12 by Fourier transforming on H2. Let
3+(ei) 3(e-). If 5 /-, then 5+. The second part of Theorem 3.1
follows from

PROPOSITION 3.3. If (Z) is in H(R, ), then

%T+=
/f ..-I(z) is in/-(, 0//), then

%T(y+)-,.

The operator Ts+ is invertible if both + and (+)- are in H(,
Proof. We do the second relationship first. Observe that

{u}=o E ABui =lim
1 -ioA o)

j=0 rl
(I-re )-lBu(e dO.

Equation (3.2) implies

%{u.}=lim
1 I -iOA)-i -io)-i ciO

r’l
(I-re BS(re u( dO.

Since 5(e-i)u(e i) is in L2(/, 0/), it can be written as the sum of its projection V
onto /2 and its projection, Ts+u on H2. Since (I-YA)-lBv(z) is in /, its
integral over T is zero. This gives the desired result. The first part of the theorem
follows similarly. The last statement in the theorem is a standard fact about
Toeplitz operators.

Now that Theorem 3.1 is proved, we make a few remarks. The identity

(3.4) do(z)C(I- z[A B’C])-1 C(I- zA)-l,
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where 50(z) I-R(z)O is the analogue to (3.3) which allows one to connect all
statements about trajectories and controllability in Propositions 3.1 and 3.2 to
statements about observability. Another remark is that one can lift the hypothesis
E >-6I > 0 and get a palatable theorem. Namely, if E has a spectral factorization
and the feedback law F comes from an outer factor M, then there is a set of inputs u
to the feedback system dense in 12(0, oo, 0) whose trajectories are precisely the
trajectories of the original system. This is obtained by strengthening Proposition
3.1 in the obvious way.

Also note that continuous exact controllability and observability imply
stability (see [8, Appendix] or [12, 4, Remark]). The structure is

PROPOSITION 3.4. If a system [F, q] is continuously exactly observable, then p
is asymptotically stable. Ifa system [q, D] is continuously exactly controllable, then
q* is asymptotically stable.

Remark. Suppose that [A, B] is a finite-dimensional controllable system and
that the eigenvalues of A lie inside Iz[ < 1. Then Theorem 3.1 can be strengthened
because of these additional assumptions. One obtains that the state operator
A +BF for the feedback system has no eigenvalues on [z]= 1 if and only if
E(ei)>=6I>O. The eigenvalues of A +BF always lie in ]z[-< 1.

The last statement follows trivially from (3.2) since M(z)- exists for Iz] < 1.
The absence of eigenvalues on Iz[ 1 follows from Theorem 3.1. Conversely, if E
has a zero on ]z 1, then M-1 has a pole there. Since (1- zA)-lBvo # 0 for any Vo
or ]zl--< 1, equation (3.3) implies that (I- z[A + BF])-I/3 has a pole on the circle,
and so A +BF has an eigenvalue there.

4. The algebraic Riccati equation. With the control problem we have studied
(when R is invertible), one associates the formal linear fractional map

(4.1) (P) A*P(I+CP)-IA +O,

where C BR-1B* and expects that the optimal cost "operator" K will be a fixed
point ,(K)= K of it. In this section, we give a fairly thorough study of when a
fixed point exists. Although everything done is intimately linked with the original
control problem, we try to present the forthcoming results as a study of the
fixed-point problem for its own sake.

Throughout this section, we shall work with a slightly more general class of
than those given by (4.1). Any self-adjoint operator C can be written in the form
C B*R-1B, where R is an invertible self-adjoint operator. Provided that the
appropriate inverses exist, a simple manipulation converts (4.1) to

(4.2) (P) A*PA A*PB[R +B*PB]-’B*PA + O.

This formula is more symmetric than (4.1) and consequently easier to use. Also R
need not be invertible in (4.2), so it is more general than (4.1). Henceforth, we
work with of (4.2). The self-adjoint operator R +B*PB plays an important role
in the study of ; we denote it by Ap and call it the indicator of P. When, for
example, Y( is finite-dimensional, the natural domain of definition for is
precisely the set o of those matrices P satisfying Range Ap Range B*PA since
these are the matrices for which the second term of (4.2) is well-defined.
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Not too surprisingly, spectral factorizations play as big a role in this section as
they have previously. In fact, we shall require a type of signed factorization. A
signature operator J is a self-adjoint operator with the property that j2 L We say
that the self-adjoint (-, Y(, Y()-valued function E has a (outer) signed spectral
factorization if and only if there is a signature operator 5 on a Hilbert space
1 such that for each u in 12(/), the limit as r’ 1 of
,2 (u(eO), M,(reiO)M(eO)u(eO)) dO exists and is t (u(ei), E(e)u(ei)) dO;
here M is a (bounded outer) (Y(, Y()-valued function analytic in the unit disk.
The question of which functions have such factorizations was studied by
Symeninco (cf. [10]), and he obtained that in many situations E has a signed
spectral factorization if and only if E AB for some outer functions A in and
B in H. This is consistent with the fact privately observed by A. Devinetz and
R. G. Douglas that a uniformly invertible E has a signed spectral factorization if
and only if the Toeplitz operator generated by E is invertible. Neither of these
conditions are practical to apply, and it is fortunate for control theory purposes
that only positive factorizations are interesting. Although the main theorems of
this section concern the infinite-dimensional situation, the following corollary (of
Theorem 4.7) is new in finite dimensions and describes the behavior there.

THEOREM 4.1. Suppose that A, B, R, Q are finite-dimensional matrices with
R, Q self-adjoint and all eigenvalues of A less than 1. Then the map has a

self-adjointfixed pointK ino with nonnegative indicator ifand only if the function
E(e i) R + B*(I-eA),-1Q(I-eA)-lB’

is nonnegative. The map has a fixed point in o (if) and only ifE has an (outer)
signed spectral factorization.

By (2.5a) the optimal cost functionals from 2 have positive indicator. These
are the important ones and the author suspects without an improved theory of
signed factorizations that the first part of Theorem 4.1 is the only part of real
interest. It is analogous to the condition of Willems [25] for the continuous-time
Riccati equation although here no controllability assumption is required.

4.1. Decomposition of a map into linear and quadratic parts. The fixed-point
problem for is, to a superficial glance, a quadratic problem, but it can also
contain affine linear fixed-point problems of the form K NKD + Q, one example
being when B 0. These problems have been studied [21 ] and can be treated by
quite a different approach than a purely quadratic problem. Fortunately, the
fixed-point problem decomposes neatly into what we may think of as purely
quadratic and purely linear parts. This we now demonstrate.

Let and R be Hilbert spaces and suppose that A, Q acting on Y(, R acting
on , and B:Y Y( are bounded operators with R and Q self-adjoint. Let
l(0, , ) denote the -valued sequences of finite length and define lZF
by C{xi}=Yq=o ABxi. Set 5 Range c; denote its closure by Ytl and its
orthogonal complement by 2. If P is any self-adjoint operator on , then in the

[P P2] with Pl and P3 self-adjoint., 2 basis it can be written as a matrix p P3
We would like to see how acts on such 2 2 matrices. If F and F2 are the
orthogonal projections of (3 onto and 2, respectively, then AF FAF1 and
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A*Fa=FaA*Fa’WewriteA=[Ao1Aa]A3 andO=[Ol Oa]andbegincm-o03
puting FiS(P)F."
(4.3) Flffs(P)FI=APIA-APIB(R+B*P1B)-IB*P1AI+Q1;
that is, 1 (PI) F18(P)F, where 8 is the linear fractional map defined by (4.3),

F(P)FE=[A(-A;PB(R + B*PB)-B*]PEAa
(4.4)

+ O2 +[A,:_ APB(R +B,PIB)_IB,]PIA2
that is, F1 c(P)F2 is an aftine linear function of P2,

r(P)r. APaAa+[A-APB(R +B*P1B)-B*]
[P1 + P2]A F2

(4.5) + A* *3P).[B(R + B*PB)-B*PA2-A2]
A* *B[R +B* *P2A3,3P2 PIB]-IB

which is an affine linear function of P3. Thus. we see that the only truly quadratic
part of the fixed-point problem o(P) P is the equation o1 (P1) P1. Also this is
the only part of the problem which is interesting from the control theory point of
view. We shall call the map of (4.2) purely quadratic if and only if is dense in. Such maps will take our main attention, and treatment of the linear maps is
postponed to the end of this section.

4.2. Purely quadratic maps. Throughout this section, we assume that o is
purely quadratic. The map is clearly defined on all bounded operators with
invertible indicator. It also will extend continuously to many unbounded
operators, and so it is not clear offhand just what should be the natural domain of
definition. However, the control problem strongly suggests that the natural space
on which should act is the space of all possible cost functionals. We formalize
this: Let denote the space of all symmetric bilinear forms P on with the
property that

N(4.6) e(Cg{u.}-0, v)= P(v, g{u.Ij=o)
is for fixed N continuous in u and v belonging to/2(07/). If P e , then bilinear form
Ae(x, y) (x, Ry) + P(Bx, By) for x, y in og is actually continuous on 0//, and so by
the Riesz representation theorem, there is a bounded operator Ae such that
Ae(x, y) (x, Aey). Naturally, Ae will be called the indicator of the bilinearform P.
Given P in , the bilinear form P(Bx, y) for y in is continuous in x, and,
consequently, there is an operator Ee defined on so that (x, Eey)= P(Bx, y).
We want to have defined on as big a subset of as is reasonably possible. With
this in mind define

o {P there exists a decomposition Ae NSN with S a signature
operator and N a nonnegative self-adjoint operator satisfying

Range N = Range EeA}.

The map is defined on 0 by

(4.7) *(P)(x, y)= P(Ax, Ay)-(N-E,Ax, SN-EeAy)+(x, Oy)
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for x, y in . Here N-1 denotes the standard pseudoinverse of N. This is clearly
consistent with (4.2) when P is a bounded operator, and it is straightforward to
check that the definition of o% depends only on Ae and, consequently, is
independent of which factorization NSN is used.

All results on fixed points will be given in terms of the function W(z)--
zlO[1/2(I-zA)-lB, which we henceforth assume to be in /-(, ), and, in
particular, they will involve

(4.8) E(e i) R + W(ei)* sgn OW(ei).
An operator A will be called asymptotically stable if A nx - 0 for each x. If B is an
operator with one-dimensional range, then E is a real-valued function on the
circle and we shall prove

THEOREM 4.2. Consider a purely quadratic map as in (4.2) with B a rank
one operator and A asymptotically stable.

(i) If Y( is finite-dimensional, then has a fixed-point in o if and only if E
has one sign. The indicator for the fixed point has the same sign as E.

(ii) If Y( is not finite-dimensional, then has many fixed points in Po. Some
fixed points will have positive and some will have negative indicators.

This theorem sets down the basic behavior of the purely quadratic fixed-point
problem. The problem of higher-dimensional B is simply a mixture of these cases.
In Theorem 4.6, we sort out this mixture to a large extent, and Theorem 4.2 will be
an easy consequence of it.

It turns out that fixed points of in 0 fall into two categories, those for
which P(xr, yN) - 0 along trajectories xN, yr of the system [A,B], called
standard points, and those which are not standard. Clearly, P(A"x, Any) - 0 for
x, y if P is standard, and one can show that up to terrible pathologies, fixed
points for of this type are standard. If P has positive indicator, this is always
equivalent to being standard. Standard fixed points are the only ones of obvious
control theoretic interest, and they correspond to signed spectral factorizations as
the following theorem states.

THEOREM 4.3. The map o% has a standard fixed point (if and) only ifE has a

(outer) signed spectral factorization.
In finite dimensions for asymptotically stable A, all points are standard, and

so this theorem describes that situation completely. Before stating our most
complete theorem on fixed points, we give the proof of this theorem since it is
instructive.

Proof. We begin with the observation that the bilinear functional (-,.)
defined on the space Y(1 which was used throughout 2 (see (2.1) and (2.5), in
particular) need not be nonnegative. In fact, had we assumed that Y( has inner
product [.,. and that (x, y)= [, x, y] for some signature operator 5; then the
proofs in 2 would have gone through with the modification that E M*M.
Then Lemma 2.3 and Theorem 2.1 combine to give

PROPOSITION 4.4. There exist G, F and K satisfying (2.5) with signed (. ,.
and having K(ANx, ANy) 0 ifE has an outer signed factorization. Conversely, if
such G, F, K exist, then E has a signed factorization. In the above statement, K
satisfies AI >-0 if and only if "signed" is removed from the statements about
factorizations.
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One thing which requires clarification is that the existence of G, F, K implies
a signed factorization for E. The function M(z)= G + zF(I-zA)-IB is analytic
inside the disk. If io)U) 12(11), then set y(re) M(rei)u(reg). We wish to show that
[.2o (9y(rei), y(re dO converges to I= (u(ei), E(e)u(ei)) dO. If the power
series for y (z) is 2n

n=o yrZ then the first integral is n=o r (9y,, y,). Finiteness of
the second integral forces the sequence (x, Ox)+(uRui) to be summable, and
since K(XN, XN) --> 0, this implies that (Gui + Fxi, Gui + Fx) is summable. How-
ever, y Gu +Fx and so (5y, yi) is summable; its sum is
[.2o (u(e), E(ei)u(ei)) dO. An Able summation argument (cf. [24, 1.22]) gives
2,--o ra"(Y-, Y-) -> Y’f--0 (Y-, Y-) as r]’ 1.

The next thing to prove is that families of three objects G, F, K satisfying
(2.5) correspond precisely to fixed points of .

PROPOSITION 4.5. The bilinear functional K in o is a fixed point of if and
only if there exist G and F and possibly signed (. ,. so that (2.5) holds.

Proof. Suppose that (2.5) holds. From (2.5a) you see G*G A/. By (2.5b)
the operator E:A is G*5F. If G UN denotes the polar decomposition of G,
then since Range G is dense, U* is an isometry with Range U* c cl Range N
and u*U-(I- U* U)= ’ is a signature operator. Now An Nh’N, but E:A
NU*5F, and so An is in 0 and we have

(K)(x, y)= (N-1NU*Fx, 5eN-INU*Fy)+ K(Ax, Ay) + (x, Oy)

=(Fx, Fy)+K(Ax, Ay) +(x, Oy).

By (2.5c) this is just K(x, y).
If K in o is a fixed point of 0%, then A: NN. Set G Nand take N-1 to be

the standard pseudoinverse of N. The bilinear functional K(BN-I,x, Ay) for
fixed y in and a dense space of x’s equals (N-15x, EI,:Ay)= (x, N-EI,:Ay)
and so is continuous in x. Thus there is an operator F on for which this equals
(x, Fy). One can reverse the brief computations above and get that G, F, 0 and K
satisfy (2.5).

The general situation is described by
THEOREM 4.6. Suppose P in ’o is a fixed point ofo%for which limN-O P(XN, XN)

exists for each trajectory of the system [A, B]. (Note that for any fixed point with
positive indicator this limit either exists or is infinite.) Then there is a bilinearform
A(;) defined on so that limN_,ooP(ASx,ASx2)=A(x,x2), and there is a
self-adjoint function A 6 L(R, oR) so that

(4.9) A (C{u./}, {vi})= -- (u(ei), A(ei)v(ei))ou dO.

The function A has the properties

(4.10a) if both u(e i) and (I-eiA)-lBu(e i) are vector-valued
polynomials in e, then A (ei)u(e i) 0;

(4.10b) E + has a signed spectralfactorization
(4.10c) if u /(0, eo) and u O, then A (e-i)u(e i) H2(R).
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Conversely, if A is an L(, o//) function for which

(4.11a) property (4.10a) holds,

(4.1 lb) E + A has an outer signedfactorization,

(4.11c) i[ u(ei) H2(ll) satisfies W(e-i)u(ei) H2(y(), then
(e-)u(e) H2(),

then has a fixed point P in o which satisfies

P(ANXo, A Nyo) -- h (Xo, Yo),

where A is given by (4.9) and Xo, Yo o.
Pro@ Suppose A 6 L(?/, 0//) is a function which satisfies (4.11). We shall give

a construction for associating a fixed point of o% with ,. The set of u H2 such that
W(e-i)u(e i) H2 is invariant under multiplication by e i, and so by the Lax-
Beurling theorem, there is a qH(a//,//) for which W(e-i)q(e)6
H(I, ) and q(ei)*W(e-i)*e(Y(, 111) is outer. Since (4.11c) is equi-
valent to q(e*A(e-i)f-(,l) we have ClPg2(oU)(dl/la(e-O)ffI2())c
cl Pn2(0u)(elQ2()). This along with (4.11b) is the crucial fact in the proof o(
Theorem 2.1 which yields that there are operators G and F so that the signed
outer factor M of E + A has the representation M(z) G + zF(I-zA)-IB. Now
we can follow the construction in Theorem 2.1 to obtain a bilinear functional K so
that G, F, K reduces JN. Consequently, K is a fixed point of .

To see this, we began by associating a bilinear functional A(.,-) on
with the function ,(e i) by equation (4.9). To see that this is well-defined we
only need A(Xo, X0)=0 whenever x0 or yo=0. That is, if Xl=

_
(I-eA)-Bu(e)e-" dO =0 for u(e) some polynomial of order _-<l in e i,

then I_= (V(eg), A (e)u(e)) dO 0. This is equivalent to (4.1 la). It is immediate
from the definition that A(Ax, Ay)= A(x, y) for x, . Formally, if we set
Kl(x,y)=,,=o(x,A*"(Q-F*F)A"y)+A(x,y), then the fact that K1, etc.,
satisfies (2.5c) is a straightforward consequence of E + A M*M. It is, however,
unclear that such a K1 can be rigorously defined. To see that K actually does exist
define L by (2.6) and use L + , in (2.7) to define a function. With a bit of work one
can check that this function actually has the properties (2.5) required of K.

Now we do the converse direction. Suppose K is a fixed point of .
Associated with K we have operators G, F, as in (2.5) and the function M(z).
From (2.2) we see that if Ap > 0,

lim K(xrq, XN)
1 (u(e), E(eg)u(ei)) dO

N-.
P

N--1

+ lim 2 IlGui + Fxill2,N--, j=0
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where {XN} is the [A, B] trajectory corresponding to input u, and consequently
limN_ K(xN, xN) exists or is + c, In general,

1 f (cio iO u(e dOlim K(x,xN)=- (u ),[-E(e )+M(ei)*SeM(ei)] io))
/’qoo

is finite for all trajectories if and only if the function )t =M*M-E is in
L(?/, ), thus establishing (4.10b). We also get limu_,oo K(xN, yu) exists. From
(2.1) one can also see that

Y (A nXo, OA"yo) E (FA nXo, FAnyo) + K(xo, Yo)- lim K(ANXo, ANy0),
=0 =0 N-oo

and so the last limit exists and serves to define ,k (.,.) on . Now , (.,.) will
clearly be given by (4.9), and the fact that A (0, Xo)= A (Yo, 0)= 0 for Xo in is
equivalent to (4.10a).

Finally we verify that , satisfies (4.10c) and in the process show that (4.10c)
and (4.11c) are closely related. Suppose that u e l(0, oo) and CCu 0. Then

and

1 I _iOA)_ eiO)u =GI (1-re Bu( dO=O

1 I_" -ioA iO)ACu 1!11 ei[(I re )- I]Bu(e dO O.

Since j_ eiBu(e i) dO 0, one has limr ’[’11--W.rr ei(I- re-iA)-’Bu(ei) dO O,
and by a similar manipulation of A"u 0, one obtains

lim ei"(I re-A)-Bu(e) dO 0
rtl

for n =0, 1, 2,.... Thus if N is any operator defined on for which N(I-
e-A)-B6, then N(I-e-A)-Bu(e) is in H2 and has the 0th Fourier
coefficient equal to zero. In particular, by taking N [O] 1/2 or N F we get that
W(e-)u(e) or M(e-)u(e) is in H(). Since A (e-)
M(e-i)*M(e-) W(e-i)* sgn OW(e-i)-R, the function A(e-)u(e) is in
H2(); thus (4.10c) holds. Also one sees that statement (4.10c) implies statement
(4.11c) for u 6 10, ). The converse will be true under strong observability
assumptions on the system [O[a/2, A] provided that acts continuously on
12(0, ).

Proofof Theorem 4.2. If is finite-dimensional, then E is rational and so has
a signed spectral factorization if and only if E has one sign. Thus Theorem 4.3
applies. The statement about the indicator is clear from the proof of Theorem 4.3.
If has a fixed point P in 0, then since is finite-dimensional, P is a continuous
functional and the stability of A implies that K(A "Xo, A"yo) 0. Thus Theorem
4.4 implies thut is 0; that is, E has a signed spectral factorization and
consequently has one sign.
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If g) is not finite-dimensional, then (1-zA)-IB cannot be rational. Thus
(1-zA)-lBp(z) can never be a polynomial in z when p(z) is a polynomial in z.
Thus property (4.11a) holds for any real-valued AL(C). Set A(ei)
sup0 [E(ei) + 1 A. The function E + A _-> 6 > 0 certainly satisfies (4.1 lb). Since A
is a constant, (4.11c) is vacuously satisfied by A. The resulting fixed point has a
positive indicator. The function E A gives a fixed point with negative indicator.

4.3. The linear part. Finally we shall consider maps which are not purely
quadratic. In a formal sense, the linear and quadratic parts of the map have a
very nice relationship as we shall see. Technically speaking, the problems might be
incompatible because the space } is crucial to the quadratic problem, and the
operator F1AF2 A2, which links the linear and quadratic parts of the equation,
might have range very much disjoint from . Note that if P1 satisfies (4.3) and
Range A2 does not strongly intersect the domain of definition of P1, then the last
term in (4.4) is not well-defined. Throughout most of this we shall assume that
Range A2 C and call the linear and quadratic parts of compatible whenever
this happens. This assumption is certainly satisfied when Y( is finite-dimensional.
Although weaker assumptions will do, we shall assume that B has finite-
dimensional range in order to avoid annoying details. If IIA"ll_-< Ka" for some
a < 1, then A is called exponentially stable.

Suppose that A is exponentially stable, that E has an outer signed factoriza-
tionM*Mand that P1 is the fixed point of o%1 which corresponds to it. Clearly, P1
satisfies (4.3). Next we seek a solution to (4.4). A formal solution is

(4.12) P2 E N*’PIAaA-1+ , N*’O:A ’3
k=2 k=l

where N* A " AP1B(R +B*PIB)-B*. Note by (2.7) that N miraculously is
A f + (G-1F*)B and so it is the adjoint of the operator which propagates the states
of the feedback system. We have, in 3, a stability analysis for this operator. If M
were invertible outer, then by Theorem 3.1 Nkx-, 0 for x. Thus
IPI(Nkx, Ay)I<-_CllA][<-C’a ", and so (4.12) makes good sense. If M is not
invertible outer, then given u(z) in H2 there is a function g(z) such that
M(z)g(z) u(z) for ]zt< 1.

The identity (3.3) which underlies Theoren 3.1 implies that any trajectory
{x,} of the feedback system satisfies IIxll-< cr for any r> 1. Thus IINx ll_-<
C(1/(a + e)) ", and this is clearly enough to guarantee that (4.12) defines a bilinear
functional on x 2.

The final step is to obtain a solution for (4.5). The final solution is

P3 E AkTA,
k=l

where

7"= F:N*PA+t’N*PA-APNF-AP[R +*P]-*P:A.
The first three operators are, in fact, bounded primarily because range NF2 c .
Also B*P2A3 is bounded because of its construction and the continuity of P.
Thus P3 is a well-defined bounded operator and we have
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THEOREM 4.7. Suppose the mapof (4.2) with finite rankB and exponentially
stable A has compatible linear and quadratic parts. Then E has an (outer) signed
spectral factorization (if and) only if has a fixed point.

The fixed point in this theorem is a bilinear functional on the obvious
subspace of Y(, namely, (fg;) (’). It is continuous on +/- and has the
continuity properties of 0 on .

Appendix. Symplectic maps. The linear fractional maps (4.1) we studied are
close to the class of symplectic maps of C. L. Siegel [28] except we work with
complex rather than real matrices. Complex symplectic maps have the form

(A.1) (K) (Yd +K)(+ K)-’,

where the coefficient matrix d/t | M* orc ]satisfies [_ 10]d//=[_ 10]
0 ;]=[ 0 10], These intertwining conditions are equi-equivalently

I_- 1 1
valent to 0//@, @,, c@, c,, 0//@*_ @, I which, in turn, are equival-
ent to @*@ @*@, ,07/= c, @*9/-@* L If @ is invertible, a straightfor-
ward computation shows that A is invertible; then in (4.7) equals G if and only if

(A.2) A =, Q ?-1, C -1c,
or equivalently, if

(A.3) R QA-1C+A*,

This computation in fact shows
PROPOSITION A.1. The map of (4.2) is symplectic if and only if A is

invertible. Any symplectic map with if) invertible can be written in theform (4.2) with
A invertible.

The function E which determines the fixed-point behavior of G is

E(ei) =sgn @-1 +1)-1c]/2() cio)-1,),() io)-11-c([1/2;
the indicator for a point K is AK=sgn-lcg+l@-lc]l/ZKl@-l[ /2 and
Theorem 4.1 translates to

THEOREM A.2. If is the symplectic map (A.1) and the eigenvalues of @ lie
outside of [z] 1, then has a self-adjoint fixed point K in o with nonnegative
indicator if and only irE >=0. It has a self-adjoint fixed point (if and) only ire has
an (outer) signed factorization.

Even though the class of maps given by (4.2) is not the same as the symplectic
maps, these maps do take the set of matrices K with Im K> 0 into those with
Im K->_ 0. This is true because, formally,

(K)- (K)* A*(1 + CK)-I*(K K*)(1 + CK)-IA,
and a glance at (4.2) reveals that is well-defined when sgn C+ ]cI /2KICI is
invertible; Im K> 0 implies such invertibility.
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BOUNDARY CONTROL OF PARABOLIC DIFFERENTIAL
EQUATIONS IN ARBITRARY DIMENSIONS: SUPREMUM-NORM

PROBLEMS*

KLAUS GLASHOFF AND NORBERT WECK

Abstract. The temperature distribution of a given body f in [N, N 1, is controlled via the
temperature u of the medium surrounding fl. The task is to choose u (subject to certain restrictions) in
such a way that the temperature distribution at time T of 1) comes as close as possible (with respect
to the supremum-norm, i.e., the norm in C(I)) to a fixed given function. We study the question of
existence of optimal controls and prove the bang-bang principle for two different control problems (in
the first case, the control u is time- and space-dependent and in the other one u is only time-
dependent). In the last part of this paper, we formulate an abstract minimum-norm problem and
derive general theorems on the existence and characterization of optimal controls.

Introduction. The temperature distribution of a heated body can be
described by a well-known parabolic initial-boundary value problem. In this
paper, we consider some control-theoretic questions arising in connection with
such a heating process.

We give a short explanation in technological terms. Suppose that we can vary
(subject to certain restrictions) the temperature u(t, ) (t [0, T], s e 0) of the
medium which surrounds the body . Here [0, T] is a fixed time interval. The task
is to choose u under the given restrictions in such a manner that the temperature
distribution y(T, x) (x fl) of the body at the time-level T comes as close as
possible to some desired temperature z(x), x .

Problems of this type have been considered by Yegorov [1], Plotnikov [2],
Butkovskiy [3]. Related questions were studied by many authors. Let us mention
only Fattorini [4], [5], Lions [6]. The main distinction between these publications
and ours is that as a measure for the deviation of y(T, x) from z(x), we take the
supremum-norm (the norm in C(I)) of y(T,.)-z(.)). This leads to some
interesting questions both in analysis and optimization theory.

The paper is organized as follows" In 1 we formulate the parabolic initial-
boundary value problem and collect some facts about its solutions which can be
developed in a series with respect to the eigenfunctions vk of the corresponding
elliptic eigenvalue problem. (The proofs of some auxiliary theorems are given in
Appendix A). In 2 we formulate the minimum-norm control problem (P1),
where u is restricted to the unit ball U of L(F), F (0, T)x O. We prove an
existence theorem by showing that the ’reachable set’ S(U) is compact in C().
Then we characterize the solutions of (P1) (bang-bang principle) which
immediately implies the uniqueness of the optimal control. The bang-bang
principle does not hold for arbitrary z L() as we show by a simple counterex-
ample.

In 3 we assume that the boundary control function is of the form g(s) u(t)
(: 01L [0, T]), where g is given and fixed and u can be chosen in the unit ball
of L(0, T). This model is seemingly better realizable in practical applications.
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Existence of an optimal control of the resulting problem (P2) is proven as in 2.
Uniqueness and the bang-bang property hold for z 6 C(I)) provided z and g have
the same symmetry properties which we formulate in terms of the eigenfunctions

In 4 we put our control problem into a more general framework. After some
comments on the existence of optimal solutions of the abstractly defined control
problem, we treat two different approaches to the bang-bang principle which
correspond to the methods used for (P1) and (P2) in 2 and 3, respectively. The
first method is based on the controllability and normality properties of the linear
operator S which appears in the definition of the general control problem.
Controllability and normality of S are defined by means of certain properties of
the range of S and the range of its adjoint S’, respectively. We use the separating
hyperplane theorem in order to prove a bang-bang principle for minimum-norm
problems with controllable and normal operators. The other method which, for
some minimum-time problems, was, for example, used by Fattorini [4] proceeds
as follows: one has to prove "strong controllability" of the operator S mentioned
above--this immediately implies the validity of the bang-bang principle by using
elementary calculations (this corresponds to the proof of Theorem 3). The section
is finished by showing the connection between the two methods of proof for the
bang-bang principle; we prove that strong controllability of an operator is
equivalent to controllability together with normality. We conclude the paper by
giving an example for problem (P2) in 3. We consider the boundary control for
the heat equation in the unit ball of R N, N--> 2.

1. The initial-boundary value problem.
1.1. Function spaces, norms and bilinear forms. The spaces Lp(S)

(1 -<p=<), C(S), C,(S) and Co(S) are defined in the usual way as is the notion of
"support of f (supp f)" if f belongs to one of these spaces (cf., e.g., [7]). Let us fix
some notations:

(f’ g)(S):= fs f(x)g(x) dx if either f, g L2(S)
or f 6 LI(S) and g Loo(S),

Ilfll.(s):--[fs If(x)lp dx] 1/p if p Lp(S),

II/llo(s):=ess sup If(x) if f Lo(S),

1 p<oo,

Ilflloo(S):=max If(x)l iff C(S), S compact,
xES

(a, f)(S):=a(f) if a 6 C(S)’, f 6 C(S),

where C(S)’ denotes the topological dual of C(S). We often write (f, g) instead of
(f, g) (S), etc.
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1.2. Formulating the initial-boundary value problem. Let L denote a sym-
metric and uniformly elliptic operator of second order in some bounded region-RN.

N

Ly(x):= E Oi(aq(x)Oiy(x))+a(x)y(x),
i,j=l

0i := x/’ a, aq C(), aq =aii,

Y, aq(x)pipi > Co]p[ 2 c0>0.

Furthermore we assume that 0D. is a Coo-manifold.
Remark. For part of what follows, a, aq and 0 actually only need to belong

to some class Ck, whereas, for some other considerations, they have to be analytic.
In the latter case, we shall say "all data are analytic". Given fl, T R+ let us
introduce

n():= outer normal in

0y(:):= n(c) aq(:)Oiy(sC), : e
i,j

By():=/3Oy (:) + y (:),

G :=(0, T) x f/,

F:=(0, T) x

F,:=(0, t) 0, e (0, T).

We shall consider a parabolic initial-boundary value problem:

(1.1) O,y(t,x)-Lxy(t,x)=O, (t,x)6 G,

(1.2) y(0, x) =0, x6f,

(1.3) Bey(t, ,)= u(t, :), (t, )6 F,

(O,:=O/Ot; the subscripts in L and Be indicate that these differential operators are

acting with respect to the space-variables only.)

1.3. The series solution of (1.1)-(1.3). Let Ak and Vk denote the eigenvalues
and eigenfunctions, respectively, of the following eigenvalue problem"

(1.4) Lv(x)+,v(x) =O,

(1.5) Bv() 0,

The following facts are well known (Agmon [7, Thm. 14.6, p. 103 if.I).

(1.6)

(1.7)

(1.8)

(1.8’)

{vk} is a complete orthonormal system in L2(.).

Ak --) --00, Ak C k

II  lloo(fi) O(k m) for some m N.

vk Coo(). Equation (1.8) holds for any derivative of vk, too.
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Let us introduce

We have

(1.9)

(1.10)

g(t, x; ’, ):= Y, e-(’-)kVk(X)Vk(),
k=l

O<_-<t<_T,

g(t, x; -, 5) O,

g(t, x;. ,. L,(F),

Ilg(t, x ;.,. )ll, (f’) --< 1.

These follow from the maximum principle [8] since

(1.11) y(u; t, x)= Iv g(t, x; ’r, :)u(’r, :) d’r d:

solves (1.1)-(1.3) for u e Co(F). Expressions (1.9)-(1.11) are discussed in Appen-
dix A.

2. Control time- and space-dependent.
2.1. Statement of the problem and an existence theorem. From (1.10) it is

clear that (1.11) makes sense for u L(F), too. So we can define the mapping

S" Loo(F) - Loo(fl),

uSu:=y(u; T,. ).

Given z C(fD, we want to solve the problem

IlSu zlG(fi) min,
(P1)

u g:=lu g (r)/llullc (r)_-< a}.

LEMMA 1. Let Xa denote the characteristic function of Fr-a.
Then

lim suPllS(xu)- Sulloo O.
,30 uU

Proof. From (1.9)we have

IS(xau)(x)-Su(x)l<=S(1-xa)(x)= y(1; a, x).

But Ily(1; 6,. )11oo--> 0 by Lemma A.2 (see Appendix A).
COROLLARY. S(Loo(F)) C C(f).
Pro@ For u E Loo(F) we have" S(Xau) is continuous by (1.7) and converges

uniformly to Su by Lemma 1.
The corollary shows that we can consider S as a mapping into C(1) which we

shall do in the sequel.
THEOREM 1. S(U) is compact. Problem (P1) is solvable.
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Proof. It is clear from (1.7) and (1.8) that

S" L:(F) - C(),

uS(xu),

is well-defined and compact for any 6 > 0. Since U is weakly compact in L2(F),
Lemma 1 implies that S(U) is compact. Therefore (P1) is solvable.

Remark. Compactness of S(U)--although it may be of some interest in
itselfmis not needed for proving (P1) to be solvable. Compare Lemma 3 and
Theorem 7.

2.2. Uniqueness and the bang-bang property ot optimal controls. The fol-
lowing is a special case (K NI) of Theorem A.1 (see Appendix A).

LEMMA 2. The finite linear combinations of the eigenfunctions v, of (14), (15)
are dense in C().

Next we want to determine the adjoint S’ of the mapping S L(F) -> C(O).
LEMMA 3. For a C()’ put

(2.1) w(t, x):= Z (a, V,)e-kT-’)V,(X).
k

Then
(i) w 6 Coo([0, T) 1),
(ii) -O,w(t, x)-Lxw(t, x)=0, Bw(t, )=0,
(iii) w[r L,(F),
(iv) (a, Su) (wit, u) for u L(F), i.e., S’a
Proof. By (1.7) and (1.8’), the series (2.1) converges uniformly together with

all its partial derivatives in any set [0, T- 6) x 1. This implies (i) and (ii) (because
of (1.8’) and (1.4), (1.5)). Let u be any element of L(F). Then Lemma 1 shows

(a, Su)= lim(a, S(Xo u))
0

lim(a,_o y’, v,(" fr e-(T-)kvk()X(’)u(’r’ ) dr d)

lim (X w Iv, u).

This implies (iii) (if we put u sgn w) and (iv) (for arbitrary u). Let us state two
results from the theory of parabolic equations.

LEMMA 4 (Mizohata [9]). Let wC([0, T)) be a solution of
-Otw Lxw O. If wlv Ow]v 0 for some nonvoid open subset y c F, then w O.

LEMMA 5 (Tanabe 10]). Let w C([0, T) ) satisfy -Otw Lxw 0 and
Bw O. If all data are analytic, then w]r is analytic, too.

From these lemmas we can deduce the next theorem.
THEOREM 2. Let all data be analytic and let y F have positive measure.

Then

A (y):={Sulu L(F), supp u

is dense in C().
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Proof. If A(y) is not dense, we have an aC(12)’,aO, such that
(a, A(T)) 0. Let w be defined by (2.1). Then for any u Loo(F) with supp u c /,
we have

o Su) (wl , (wl,,

This implies wlv 0. Since w]r is analytic, we find wit=0. Lemma 3(ii) shows
Owlr 0 and therefore w 0 (by Lemma 4). Since the vk are orthogonal, we find
(a, vk) 0 for all k which contradicts Lemma 2 and a 0.

THEOREM 3. If all data are analytic and if z S( U), then any solution of
(P1) satisfies [fi(-, :)[ 1 almost everywhere on F.

Proof. If the theorem were false, we would have an optimal/, some 6 > 0 and
a subset /c F of positive measure such that lul =< 1- 6 on 7. By Theorem 2 there
exists u L(F) with supp u c /such that

IIs( + Ul)- zlloo 1/2lisa z I1 o.

Defining :=llulllL we find

Since + r/u1 U this is not compatible with being optimal.
THEOREM 4. If all data are analytic, then there exists a unique optimal

solution of (P1).
Proof. Only uniqueness remains to be shown. Let u and u2 be solutions of

(P1). Then u:=1/2(ul + u2) is optimal, too. But u can have the bang-bang property
([u] 1 a.e.) only if ul u2.

Remarks.
1. One can also discuss the control problem (P1) in the case z L(f). Then

existence is a direct consequence of Theorem 1. But, in general, the bang-bang
property (Theorem 2) no longer holds as can be seen from the following simple
counterexample" Let 12 121U ’2, -1 ["] ’2 , Meas. (f) > 0. If z(x) equals + 1
for x 121 and -1 for x )2, then z cannot be better approximated by an Su than
by SO 0 because Su is always continuous.

2. All the preceding results are true for z Lp (1)) (1 _-< p < oo) if optimality is
defined with respect to the corresponding Lp-norm.

3. In the case of nonanalytic data, Lemma 4 still gives some information on
optimal solutions (cf. 4.4).

3. Control only time-dependent. In this section, we consider a slightly
modified control problem which seems to be important for technical applications
[2], [3]. Here the control function u depends on the time variable only.

3.1. Statement of the problem and existence of an optimal control. We use
the same notation as in 1. Let g L(OO) be a fixed given function, and consider
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the following initial-boundary value problem:

(3.1) Oty(t, x)-Lxy(t, x)=0,

(3.) y(0,x)=0,

(3.3) Bey(t, s)= g()u(t),

(t,x)G,

x,
(t, )V.

For u e Lo(0, T), the generalized solution y(u; t, x) of (3.1)-(3.3) in the sense of
2 is given by

(3.4) y(u; t, x)= gu(r) e-(r-’v(x) dr,

where

(3.5) gk := Ja g()vk() d..

By the Corollary to Lemma 1, we know that for all u LOG(0, T),

y (u T,.

and we can define the linear mapping

R L(O, T)

by (Ru)(x) y(u; T, x), x
Given z C(fl), we consider the problem

Minimize
(P2)

under the constraint u LOG(0, T), Ilulloo =< 1.

In this section, we denote by U the unit ball of LOG(0, T).
THEOREM 5. R U) is a compact set of C(O). Problem (P2) has a solution.
The proof can be given by exactly the same arguments as that of Theorem 1,

but we want to give another proof by using the general existence result (Theorem
7) which we prove in the following section. By this theorem, all we have to show is
that for ct C(O)’, the relation

R’a L(O, T)

holds where R’ is the adjoint of R. Now

R=SoG,

where S was defined in 2 and

G" L(0, T) - Loo(F)

is defined by (Gu)(, t)= g()u(t), (, t) F.
As R’= G’ S’ and (according to Lemma 3) S’(C()’) L(F), it remains to

prove that

G’(LI(F)) El(O, T).

But this follows at once by definition of G, because for all A LI(F), u Lo(0, T),
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we have

(A, Gu)= Iv A(sc’ t)g()u(t) dtd=
a

A(, t)g() d u(t) dt

and

G’A I0a A(sc’" )g(sC) dt LI(0, T)

by Fubini’s theorem. It is not difficult to prove an existence theorem if we replace
the C(O)-norm in (P2) by any Lp(f)-norm I1 I1 , a -< p--< oo and take z Lp(f).
Compare the remark following Theorem 7.

3.2. Uniqueness and a bang-bang principle. As a main tool for the proof of a
bang-bang principle for problem (P2), we use the following "maximum principle"
which we show during the proof of Theorem 8 in 4.

LEMMA 6. Let Loo(O, T) be an optimal solution of (P2). We assume
inf{llRu-zllo/l[ull<= 1}=t3 >0. Then there is a nonzero functional d C(()’
(independent of (t) such that

(3.6)
sup (R’d, u)=(R’d, a)
ug

Let

(3.9)

and

(3.10)

K(g) {k Nigh, Ia g()v,() d # 0}.

/, {y C(()/(y, vk) 0 if k K(g)}

Lg span {vk/k K(g)}.

LEMMA 7. The closure L- (in C(fi) of Le is equal to fu.
We give a proof for this in the Appendix A, Theorem A. 1. (The statement of

Lemma 7 would be trivial if we replaced C(I) by L2(O) in the definition of and
in Lemma 7 !)

and

(3.7) (&, Rg z) O.

We define )t LI(0, T) by R’&; by (3.6) we conclude that

(3.8) O(t) =sgn Z(t)

for all (0, T)\N, where N is the set of zeros of . So if we can show that N has
measure zero, we know by (3.8) that t is the unique solution of (P2) and that/ is
"bang-bang".

In contrast to the preceding problem (P1) in 1, the bang-bang principle
generally does not hold for (P2)--this depends on certain "symmetry-properties"
of the functions z and g.

We define the set K(g)c N by
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LEMMA 8. We assume
(i) Ai Ak for i, k K(g),
(ii) (z, Vk)=0 ifkeK(g)(i.e., z eg),
(iii) inf, tllRu zl[o > O.

Then the set of zeros of ,k has measure zero.
Remark. We do not require that the elliptic operator L has finite multiplicity

(compare the example in 5).
Proofo[Lemma 8. As in Lemma 3, one can show that A R’c is represented

by

A(t)- Z gk(, t)k) e
kNI

(3.11)

Z g,(&, Vk) e -x(r-‘),
k:(g) 6 [0, T).

A is analytic for < T, so if the conclusion of the theorem were not true, we would
have A (t) 0 for all < T. By standard analyticity arguments (see, for instance,
Tsujioka [11, Lemma 3]) this implies

gk(&, Vk)= 0 for k K(g)

and by definition of K(g),

Using Lemma 7, we get

(3.12)

(c, vk)= 0, for k K(g).

But this is impossible because from (ii) it is clear that

Rfi-zL
and by (3.7) (which is true because of (iii)), we get

in contradiction to (3.12). This proves Lemma 8.
We remark that (3.8) together with (3.11) gives us some information about

the "jumps" of the optimal control as the set of zeros of , can have an
accumulation point at most at the right endpoint of the interval [0, T]. So we have
proven the following theorem.

THEOREM 6. Under the assumptions of Lemma 8, there is a unique optimal
solution of (P2) which is piecewise constant equal to + 1 or -1 with finitely many
"jumps" on any interval [0, T-e], e > 0.

This theorem can be slightly generalized if we assume that the control on the
boundary is performed by the equation

M

(3.13) Bey(t, {)-- E gi()ui(t), (:, t)F,
i=1

which replaces (3.3). Here the gi are fixed Lo(0O)-functions, and the controls
u Lo(0, T) are subject to the conditions Ilu Iloo--< 1. The definition of K(g) and

(c, y} 0 for all y .
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the assumption (i) have to be altered appropriately. In this case, one can prove that
one of the components of each optimal control t (tl, t2,... oM) is bang-
bang. For further details see Appendix B.

4. A general approach to a class of control problems. In this section, we treat
an abstract version of the control problems (P1), (P2) given above. We prove an
existence theorem and introduce the concepts of controllability, normality and
strong controllability in order to prove an abstract bang-bang principle in two
different ways (this corresponds to the different proofs of Theorem 3 and
Theorem 6). In Theorem 10, we show the connectior., between these two methods.

4.1. Statement of the problem and an existence result. Let (X, -,/x) be a
finite measure space. Given a normed space F, an element z F and a linear
mapping

T" Loo(/x) F,

we consider the following optimization problem

(P)
Minimize Tu z II
under the constraint u Boo,

where B is the unit ball in Loo(/.t)"

B {u L()/llull<= 1}.

Let F’ be the topological dual of F. By T’ we denote the adjoint of T (which maps
the algebraic dual F* of F into the algebraic dual of Loo(/x)). We recall that
Loo(/) LI(/-t,)’ by the Riesz representation theorem.

THEOREM 7. If T’(F’) LI(tX), then there exists an optimal solution of (P).
Proof. We consider the weak topologies r(L, L) in L(/x) and r(F, f’) in F.

Now T’(F’) Ll(/Z) is equivalent to the fact that T is continuous with respect to
the weak topologies (cf., e.g., [12]). Because of L(/z) L(/x)’, B is r(L, L)-
compact by the Alaoglu theorem. So the set T(Boo) is r(F, F’)-compact in F. As
the norm 1]. ]IF is or(F, F’)-lower semicontinuous on F, the proof is complete.

We remark that the assumption of this existence theorem is met for the
operators S and R of 2 and 3 (see Lemma 3 (iii) and Theorem 5). The existence
of an optimal solution of (P1), (P2) does not depend on the compactness of the
"reachable sets" S(U) and R (U), respectively, but on only their weak compact-
ness which is implied by S’(C(fD’) L (F) and R’(C(O)’) L (0, T), respectively.

If F is one of the spaces L,(fD, 1 =< p =< oo, then C(O) is a subspace of F the
norm, 11.11, of which is stronger than the norm in F. This implies

F’ C(O)’.

By .this we see that we can replace both z C((D and I1" in (P1), (P2) by
z Lp(fD and I1" for 1 <_-p <_- and still have an existence theorem for these
problems.

4.2. Controllability, normality and the bang-bang principle. We consider
the general problem (P) and assume for the remaining part of this section, as in
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Theorem 7, that

T’(F’)c L,(t).

The operator T is called controllable if T(Lo(tx)) is a norm-dense subspace of F; T
is called normal if for any nonzero h 6 T’(F’) the set of zeros of h has/z-measure
zero. A function u B is called bang-bang if/(M) 0 for the set

M= {t 6 X/lu(t)l < l},

i.e., if u is an extreme point of B.
THEOREM 8. Under the assumptions

(i) inf {llTu-zllv/u S}= t >0,
(ii) T is controllable,
(iii) T is normal,

there exists a unique solution of (P), and is bang-bang.
Proof. First we prove the maximum principle (see Lemma 6). Part (i) implies

that there is a nonzero c F’ separating T(B) and the open ball O with radius t
around z ([ 12]):

(4.1)
(’ y) A, y 6 T(B),

(c, z)>A

for some real A. Let a be an arbitrary solution of (P) (which exists by Theorem 7).
Then IIT zll t3; i.e., Tt is in the closure of O. This implies

(4.2) (c, Tfi) => A,
and comparing (4.1) and (4.2), we get the maximum principle

(4.3) (c, TO)= sup (c, Tu) (=A)
Boo

and

(c, Tfi z) (&, Tfi)- (c, z) < 0.

We define h T’& and rewrite (4.3) as

f A(t)0(t)d, sup f A(t)u(t)d.(4.4)
uB

The controllability of T implies that is not the zero function on X (as the
nullspace of T’ is the orthogonal of the range of T and because T(L()) is Oense
in F). The normality of T then implies that the set of zeros of has -measure
zero. Therefore fi is uniquely defined by (4.4) as

(t) sgn Z (t), a.e. on X,

which proves the theorem.
We remark that the operator R in 3 is controllable for F L under the

conditions of Lemma 8. Normality of R is implied by analyticity of R’a, a C()’.
If an operator T" L() C(fl) is controllable and normal, then T has the
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same properties as a mapping into any of the spaces

Lp(-), 1 <-_p<,
as C(f) is a dense subspace of these spaces. So the conclusions of Theorem 8 hold
if in (P2) we replace z C() by z Lp(12) and I1" I1 by I1" lip, 1 =< p <, respec-
tively. The same arguments apply to (P1); compare the following 4.3. All this is
not true if we choose p =o and z L(O) as C(f) is not dense in L(f).
Although we have an existence result in this case too (see the remark following
Theorem 7) the bang-bang principle cannot be proved with Theorem 8. This is not
surprising in view of the counterexample given in 2.

4.3. Strong controllability. Let M be a ix-measurable subset of X. XM is the
characteristic function of M, and we define the operator TM L(ix)--> F by

TMU T(XMU).

T is called strongly controllable if TM is controllable for any ix-measurable Mc X
with ix(M) > 0.

THEOREM 9. Assume
(i) inf {llTu ZlIFI U B} > O,
(ii) T is strongly controllable.

Then there is a unique solution Ft of (P), and Ft is bang-bang.
We omit the easy proof (see Theorems 3 and 4).
Comparing Theorem 8 with Theorem 9 one may ask for the connections

between controllability, normality and strong controllability. This is explained by
the following theorem.

THEOREM 10. T is controllable and normal if and only if T is strongly
controllable.

Proof. (a) Let T be strongly controllable. Then T is controllable by defini-
tion, and we have to show normality. If T is not normal, there is a A 6 T’(F’), A not
identically zero such that

A(t) 0, ix a.e. onM

for a measurable subset Mwith ix(M) > 0. Now there is a nonzero a F’ such that
A T’a. We choose z F satisfying

(4.5) z>
which is possible by definition of I1" I1 ,. Then for each u

liT- ZMUlly >- I1 11; z- TMU) > 1/2
because of (4.5) and

(or, YMU)=(Y’a, XMu) fX h(t)XM(t)u(t) dix =0

(as h (t)xM(t) O, ix a.e. on X). Thus TM is not controllable in contradiction to the
assumption of strong controllability of T.

(b) Now assume that T is controllable, but not strongly controllable. We
have to show that T is not normal. By assumption there is a ix-measurable set
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M X, (M)> 0, such that the subspace

{TMU/U L(I)}

is not dense in F. By a well-known corollary to the Hahn-Banach theorem, there is
a nonzero functional a F’ such that

(4.6) (a, TMU) 0 for all u

We define ,k 6 L() by T’a. is not the zero function on X as Tis assumed to
be controllable. We choose u(t)= sgn (t), t6X, in (4.6) and obtain

0=(a, TMU) (T’a, XMU)

which shows that T is not normal.
By Theorem 10, we see that it would have been possible to prove the

bang-bang principle for (P1), 2 with the arguments used in the proof of the
bang-bang principle for (P2) in 3 and vice versa.

4.4. -normality and -controllability. Normality of an operator T can
often be verified by using analyticity arguments, but the controllability-normality
approach of Theorem 8 is of some interest also in "nonanalytic" cases: Let us
assume that the conditions (i), (ii) of Theorem 8 are met. We weaken assumption
(iii) in the following manner. Let dr/be a set of measurable subsets of X. We call
the operator T yll-normal if for any nonzero
does not contain a member of ://. If is the set of all measurable subsets of Xwith
/z(M) > 0, then each rift-normal operator T is normal in the terminology intro-
duced in 4.2. If we replace the condition (iii) of Theorem 8 by

(iii’) T is A-normal,

then the proof of this theorem shows that under the assumptions (i), (ii) and (iii’),
we get for any solution fi of (P),

It(t)l 1 a.e. on X\N,

where N is a subset of X which does not contain a member of .
Let us look at an example" If the data in (1.1)-(1.3) are not analytic, we know

by Lemma 4 (in connection with Lemma 3) that S is -normal if we take as the
set of all nonvoid open subsets of F. In addition to that, we know that S is
controllable, for if (S(L(F)) is not dense in C(), there exists an a C(l))’, a 0,
such that

S’a wit O,

where w is defined as in Lemma 3. Arguing as in the last part of Theorem 2, we get
a contradiction to a 0.

Thus by the preceding remarks we get the following result for the nonanalytic
case of (P1)" any solution fi of (P1) is not bang-bang (i.e., lu(t)l < 1) at most on the
union of a set of measure zero and a nowhere dense set.



SUPREMUM-NORM PROBLEMS 675

Remarks.
1. The last result does not imply uniqueness of an optimal control 8 because

the set of points where a(t, )1-1 can still have arbitrary small measure.
Therefore it would be interesting to sharpen Lemma 4 without analyticity
arguments!

2. The same arguments as in the proof of Theorem 10 show that T is
controllable and -normal if[ 7" is "eg-controllable," i.e., if[ TM is controllable for
any M .

3. In some cases, it may be easier to prove a bang-bang-type result by means
of controllability and -normality arguments than by proving it "directly" by the
(equivalent) -controllability property as it was performed in the "strong" case in
Theorem 9 (Theorem 3).

5. Example. Let f be the unit ball in R, N-> 2. We consider the Laplace
operator L AN and suppose that 11 is heated uniformly on ; i.e., we choose

(5.1) g() 1, sc 012,

and consider problem (P2) in 3. In this case, it is convenient to formulate the
initial-boundary value control problem with respect to spherical coordinates

(0, r)= (O,,- .., 0v-1, r).

We get the equations

0 1 C) ( N_

at
y(t, O, r) rN-1 Or

r

y(0, O, r) 0, (0, r) 6

flOO--y(t’r O, 1)+ y(t, O, 1)= u(t),

)_1r"0- y(t, ,9, r) + By(t, O, r)= O,

(O, 1)ea, te(O, T),

where B is the Beltrami-differential operator.
The eigenfunctions of the corresponding elliptic boundary value problem are

given by

{v,,,,,/k 1, 2, 3,. ;/=0, 1, 2,. m 1, 2,. ., VN(1)},

where

l)k,l, S(lm)(O)r-N/2+1 JI+N/2_I(K+N/2-1)r);
here VN(1) denotes the number of linear independent spherical harmonics S(m/) of
order I. Jl+N/2-1 is the Bessel function of order + N/2-1. The eigenvalues are
given by

//,k (K (k/+N/2-1)) 2,
where K, is the kth solution of the equation

(5.2) <S’,(<) + 1 + J(<) 0.
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(We remark that for N => 3 the Laplace operator AN is of infinite multiplicity as
each A,k has multiplicity

N-1 N-1

See [ 13, p. 424].)
Now we determine the subspace of C(fi) defined in 3.1.

() s)()
by definition. Using the orthogonality relations of the system {S)/I 0, m
1,. , VN(1)} in L2(O) we get

(5.3)

for all l>0 and all m 1,..., VN(l). So the case 1=0, m 1 VN(0) is left; we
get by definition of g and vk,0,1 for k => 1,

(5.4) gk,o,, f g()Vk,o,,(s) d= wN" JN/2_ K (kN/2-1)),
where o is the surface area of the unit sphere. We see that

g,o,1 0

for all k => 1, because g,o,1 -0 for some k _-> 1 would imply

J/_,(U-’>) =0
and by (5.2) also

J’N/2_ K (kN/2--1)) O

which is impossible as JN/2-(r) is a nonzero solution of a linear differential
equation of order 2.

Let us take a "desired end-temperature" z defined on which is indepen-
dent of 0 (i.e., it depends only on the distance r from the origin). In this case,

(2, t.)k,l,m) 0 for > 0, m 1,. , VN(1),

which implies that z g. Thus if, in addition, z is "not reachable" in time T (i.e.,
condition (iii) in Lemma 6 is met), then the conclusions of the bang-bang principle
(Theorem 8) hold in this case.

Appendix A: On the initial-boundary value problem (1.1)-(1.3). For
f C(2) put

(A.1) H(t)f(x):= 2 e-kt(f, v)v(x).
k=l
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For >0 this defines a bounded operator H(t) from C(f) into C(f). It is
convenient to introduce

(A.2) Fp := {f e Coo(h)/Bf BLf BLp-lf 0}

which is a dense subspace of C(f) for each p e N.
LEMMA A. 1. If p is large enough and f Fp, then

satisfies
(A.3)

w(t, x) := H(t)f(x)

w 6 Cz(G),

(-O,+L)w(t,x)=O,

(A.4) w(O,x)=f(x),

Bew(t, ) O.

Proof. For f Fp we have

(f, vk)=-A{l(f, LVk)=-AI(Lf, vk)

(-A)-P(LPf, vk).

Therefore using 1.4)-( 1.8’), we see that the series (A. 1) converges uniformly in G
together with its derivatives up to the second order and solves (A.3).

Lemma A. 1 and the maximum principle [8-1 show

(A.4’) IIH( t) gll(fi) --< IIglG(fi), g fp,

(A.5) IlH( t)g gll(h)- 0, g Fp.
By a well known argument (A.4’) and (A.5) imply

(A.5’) IIH(t)f-fll(fi)- 0, f C().
(So H(t)f(x) is a solution of (A.3) belonging to C(G)C((O, T]I2) for

f C(f), too).
THEOREM A. 1. For some subset K define

LK:= span {Vk]k K},

::= {u 6 C(fi)l(u, vk)=0 ifk K}.

Then the closure (in C(h)) of LK is .
Proof. f clearly implies H(t)f K. Therefore (A.5’) shows K /SK.

The opposite inclusion being trivial, this proves the theorem.
Let us now prove the assertion (1.9)-(1.11). If u Co(F), we have a solution

y (u; t, x) of 1.1 )-( 1.3) which satisfies

(A.6) y(u;.,.)C(G)fCoo((O, T] x 12),

(A.7) u ->_ 0:ff y(u; t, x) _-> 0,

(1.8) Ily(u ;.,. )lloo(d,)--< Ilulloo(P).
The last two inequalities follow from the maximum principle. Using (1.4)-(1.8’)
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we find

(A.9) y(u; t, x)= Z f e:-Xt-’v,(sC)u(r, ) dr dVk(X).

Therefore in order to verify (1.11), we must show that we can interchange
summation and integration here. (The corresponding formula is not true in the
case of Dirchlet boundary conditions.) By(1.7) and (1.8) if supp u = [0, t-6] x O,
we clearly have

(A.9’) y(u; t, x) [_ g(t, x; r, )u(, ) dr d.
1"

Because of (A.7’) this proves (1.9). Now let us choose a suitable h C[0, T] such
that

0<h<l

l0 ifz.>t-6/2,
h()

1 if

Then 0Ny(h; t,x)N 1 which implies (1.10) (use (1.9) and the monotone con-
vergence theorem). Finally we want to prove (1.11) for u C(F). By the triangle
inequality and (A.9’) we have

]y(u; t, x)- y(u, h; t, x)]

[ g(t, x; r, e)(1-hz))ur, e)+

By (1.10) the second term converges to zero. From (A.8) we see that the first term
can be estimated as follows"

]y(u(1-h); t,x)lllull" y(1; ,x).

Therefore (1.11) follows from Lemma A.2.
LZMMA A.2.

Pro@ For := sup a(x), there exists v C(O) satisfying

Introducing

we see that z solves

Lv IV O, Bv 1.

z(t, x):= y(1; t, x)-e v(x),

Otz -Lxz
Bz O,

z(O,x)=-v(x).
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Therefore

and we find

z(t, x) -H(t)v(x),

Ily(1; ," )lloollH()v-vllo/(e- 1). I111 o.

Appendix B. We consider the control of the parabolic equation by means of
the boundary condition (3.11). The corresponding control problem can be written
in the following form"

(PM) Minimize Riui-z under the constraints u U, 1,..., M.
i_=|

Here Ri is the operator defined by (3.1), (3.2), (3.3) when g(s) is replaced by g().
With the same arguments as those used for the proof of Lemma 6 (given in
Theorem 8) one can show" If ( 1,... M) is an optimal solution of (PM) and if

then there is a functional c C()’ (independent of fi) such that

and

tl., isup (R iOl., U) (R
uU

,,Rii-z #0.

We definel6Ll(0, T) byl=R ...,ia, 1, M, and conclude that

(B.1) (t) sgn li(t), i= 1,..., m,

for all (0, T)\Ni, where N is the set of zeros of 1.
Let{}1 be the sequence of distinct eigenvalues of (1.4), (1.5). It is known

that each has finite multiplicity m(k): there are m(k) linear independent
eigenfunctions

(B.2) Wkl Wk2,’’" Wkm(k

spanning the eigenspace belonging to . Let {vi}i be the sequence of all
eigenfunctions in the following order"

Wll Wlm(1) W21 W2m(2) W31 W3m(3) W41

We define

K(g)={j f g()v()d#Oforsomei{1,2,.

The spaces g and Lg are defined by means of K(g) as in (3.9), (3.10), and Lemma
7 holds also in this case.
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Now we write down the sequence of eigenfunctions which is obtained from
(B.2) by omitting the functions vj, K(g), and get (possibly after a renumbering)
the sequence

Wll .., Wlo-(1) W21, . W2o-(2) W31, . W3o-(3) W41, ..,
where 0_-< o-(k)=< m(k). With these eigenfunctions, we define for each k -> 1, the
M o-(k)-matrix Gk by

gJ= f g’()wki() d, i= 1,..., M, j 1,..., o’(k).

Then we have the following analogue to Lemma 8.
LEMMA B.1. We assume

(i) rank Gk o-(k), k 1, 2, 3,. ,
(ii) (z, v) 0 ifk K(g),
(iii) inf [lY. Riui- z][ fi > 0, u 1, uM e U.

Then there is an index rh { 1, ., M} such that the set of zeros of l, has measure
zero.

Proof. By definition of li R’&

li(t)-- Z E id -t(Y-t)

k[ j=l

gg(a,wi) e t<Z liM.
ke j=l

If we assume that l(t)O for all I,...,M, then we get with the same
arguments as in the proof of Lemma 8:

(k)

g <a, w> O,
i=I,...,M,

for any k -> 1. Because of (i) this implies

(&, wi> 0, k=1,2,3,..., 1, 2, 3, , o-(k).

Now the proof can be completed with the same arguments as in the proof of
Lemma 8.

We remark that assumption (i) of Lemma B.1 is a generalization of the
controllability conditions given by Fattorini [5] (see also Sakawa [14]):

{Rlul+R2u2+ "+RMuM/u 6Loo(O, T), i= 1,...,M}

is densewith respect to the C(h)-normin g.
Using (B. 1) and Lemma B. 1 we get immediately the next theorem.
THEOREM B.1. Under the assumption of Lemma B.1, to each solution

t/=(t/l, M) of ((PM) there is an index rh {1, M} such that ’ is
piecewise constant equal to +1 or -1 with finitely many "jumps" on any interval
[0, T-e], e >0.

The theorem holds also in the case of a p-norm (1 _-< p < oo) in the formulation
of (PM) and z Lp; compare the remarks following Theorem 8.
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THE GENERALIZED PROBLEM OF BOLZA*

FRANK H. CLARKE

Abstract. We consider the problem of minimizing a functional of the type

l(x(O),x(1))+ L(t,x, 2) dt,

where and L are permitted to attain the value +eo. We show that many standard variational and
optimal control problems may be expressed in this form. In terms of certain generalized gradients, we
obtain necessary conditions satisfied by solutions to the problem, in the form of a generalized
Euler-Lagrange equation. We also extend the necessary condition of Weierstrass to this setting. The
results obtained allow one to treat not only the standard problems but others as well, bringing under
one roof the classical (differentiable) situation, the cases where convexity assumptions replace
differentiability, and new problems where neither intervene. We apply the results in the final section to
derive a new version of the maximum principle of optimal control theory.

1. Introduction. This paper will be concerned with problems of the follow-
ing kind:

Minimize

(1) /(x(O), x(1)) + L(t, x(t), (t)) dt,

where x is an absolutely continuous function from [0, 1] to R with derivative
(almost everywhere), and where

L:[0,1]xRnxR"(-oo, oo] and l:

are given functions. The form of this problem is superficially that of a problem of
Bolza in the calculus of variations. Note however that and L are extended-real-
valued; this fact greatly increases the versatility of the problem. As we shall see,
many apparently different classical problems and problems of optimal control
may be placed within the framework of the above generalized problem of Bolza.

Our main concern will be the derivation of necessary conditions satisfied by a
solution to the problem. We shall not impose differentiability; the conditions we
obtain are given in terms of certain "generalized gradients" developed by the
author in [2]. These generalize the usual derivative as well as the subgradients of
convex analysis [9]. The main result (Theorem 1) incorporates as special-cases
necessary conditions for the following situations" classical problems incorporating
various types of constraints, problems involving differential inclusions, optimal
control problems (see Examples 1-3). The theorem also permits consideration of
otherwise standard problems in which nondifferentiable functions appear.

* Received by the editors February 4, 1975, and in revised form August 4, 1975.
] Department of Mathematics, University of British Columbia, Vancouver, Canada. Now at

U.E.R. Math6matiques de la D6cision, Universit6 Paris IX (Dauphine), Paris 16me France. This
research was supported in part under the National Research Council of Canada Grant A 9 082.
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An extensive theory (including duality) for a generalized problem of Bolza
was developed by R. T. Rockafellar in [7] and [8], under the assumption that
L(t, .,. and l(.,. are convex functions. We shall see ( 2) that Theorem 1
subsumes the part of that work dealing with necessary conditions. It should be
pointed out, however, that the convex case lies at the heart of the proof of our
result; Rockafellar’s results were used in the Author’s paper [4] which provides
the main tool used here.

The plan of the paper is as follows. In 2 we discuss the generalized problem
of Bolza and some well-known problems reducible to it; we state the main result
and discuss the hypotheses. Section 3 is devoted to proving Theorem 1. In 4 we
generalize the necessary condition of Weierstrass to our problem (Theorem 2),
and in 5 we combine this with Theorem 1 to obtain a form of the maximum
principle of optimal control theory (Theorem 3).

We now complete the introduction by stating a few facts about generalized
gradients. Details and proofs in the same notation may be found in [2].

Let C be a closed nonempty subset of Rn: and let c be a point in C. We define
the normal cone to C at c, denoted Nc(c), by

Nc(c) cl co {lim si(xi -ci)},

where we consider all sequences of points (si, xi, ci) [0, oo) R R such that xi
converges to c, xi has closest point ci in C, and the indicated limit exists. We obtain
in this way a closed convex cone. The cone dual to Nc(c) may be looked upon as a
cone of tangents. Although the above notions of tangency and normality are
distinct from the several such notions found in variational theory, we may show
that Nc(c) reduces to the classical normal space if C is a C manifold, and to the
normals in the sense of convex analysis if C is convex.

Now let f R" (-oo, oo] be a lower-semicontinuous (1.s.c.) function, and let
x be a point where f is finite. We define the generalized gradient of f at x, denoted
Of(x), by

Of(x)={pR" (p,-1)Nc(x,f(x))},

where C is the epigraph of f, i.e., the set

epi f= {(s, r) R R f(s) <-_ r}.

Then if f is C at x, Of(x) {Vf(x)}, and if f is convex, Of(x) is the subdifferential of f
at x [9].

Among the properties of this set-valued gradient are the following:
(2a) Let f be locally Lipschitz. Then c3f(x) is the convex hull of all limits of the

form

lim Vf(xi),

where X is such that Vf(xi) exists, and where X converges to x.
(2b) Let f be the indicatorfunction of a closed set C;i.e.,f(x) is 0if x belongs to C

and +c otherwise. Then for c in C, Of(c)= Nc(c).
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2. Discussion of the problem. Main results. We now give three examples of
problems which may be reframed as that of minimizing a Bolza functional of the
form (1). As mentioned earlier, the minimization problems we consider involve
the class of absolutely continuous functions x [0, 1 R". We call such an x an
arc, and we denote the class of arcs A,.

Example 1. A problem of Lagrange. We seek to minimize

go(t, x, i dt

subject to the following constraints on the arc x:

x(O)=a, x(1)=b, gl(t,x,.)<-O,

where go and gl are, respectively, real- and vector-valued functions. We define
and L as follows:

L(t, s, v)= go(t, s, v) if gl(t, s, v)--<0,

and L is +c otherwise;

l(xo, Xl) 0 if (Xo, xl) (a, b),

and is +oo otherwise.
It is easy to see that the resulting generalized problem of Bolza is equivalent

to the given problem of Lagrange.
Example 2. Differential inclusion. We are given a multi]unction E :[0, 1]

R" R" (i.e., for each (t, s), E(t, s) is a subset of R"), and a subset C of R" R ".
The problem is to minimize g(x(1)) over the arcs x satisfying

(x(O),x(1))eC

and also the differential inclusion

(t) e E(t, x(t)) a.e.

We set

L(t,s,v)=O

and L is +oo otherwise; we define by

l(xo, xl)=g(xl)

if v E(t, s),

if (Xo, Xl) C,

and +oo otherwise.
Example 3. Optimal control. To every integrable function u(t) taking values

in a given subset U(t) of R" we associate the solution x to the differential
equation

Yc(t) f(t, x(t), u(t))."

The problem: minimize over all such pairs (x, u) satisfying

(x(O),x(1))C
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the functional

o
g(t, x(t), u(t)) dt.

We reframe the problem to one on R"/m by the following definitions ((s, s*)
represents a point in R" R"):

l(so, s*o, Sl, S*l O

if (So, s l) lies in C, and + otherwise;

L(t, s, s*, v, v*)= g(t, s, v*)

if v* lies in U(t) and v =f(t, s, v*), and +c otherwise.
Then the pair (z, ,) solves the optimal control problem iff (z, z*) solves the

above generalized problem of Bolza, where

z*(t) v(r) dr.

DEFINITION 1. The function L is epi-Lipschitz at the arc z if there exists an
integrable function k [0, 1] R and a positive e satisfying the following condi-
tion: for almost all in[0, 1], given two points s and sa within e of z(t) and v such
that L(t, s, v) is finite, there exist a point v and a _->0 such that L(t, s, v) is
finite and

I(v,-v2, L(t, s,, v,)-L(t, s2, ve)- 8) <= k(t)lSl- se I.
The above definition is equivalent to saying that the multifunction

E(t, s)=epi L(t, s,

is Lipschitz in s in the Hausdorff metric, which accounts for the terminology.
We shall adopt the following convention: if for a given arc x the integral or

the sum in (1) is not defined, we set the functional (1) equal to +c. To say that the
arc z solves the generalized problem of Bolza will mean the following: for x z
the integral in (1) is defined and finite and l(z(O), z(1)) is finite; for any other arc x
for which l(x(O), x(1)) is finite and the integral in (1) defined, the value of the Bolza
functional (1) is no less than its value at z. We do not rule out the possibility that
the integral in (1) equals- for some arc x. However, if a solution to the problem
exists, this can only happen for an arc x for which l(x(O), x(1)) equals +.

With the above convention for evaluating the Bolza functional, and for any e
in (0, ] and s in R n, we define

(s)=inf{l(x(O)+s,x(1))+Io L(t, x, it) dt x cAn, Ix zl < e a.e.},
and we define l(s) similarly for l(x(O)+s, x(1)) replaced by/(x(0), x(1)+s).

The infimum in the original problem is then (0) (0), which we assume
finite.
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DEFINITION 2. The generalized problem of Bolza is calm at z if for some e in
(0, oo], for 0 or 1, we have

lim inf [(s)-’(0)]/Isl > -.
s0

We now give the measurability hypothesis we shall be imposing.
DEFINITION 3. L is said to be epi-measurable (in t) if for each s in R" the

multifunction E(t, s)=epi L(t, s,. is Lebesgue measurable in (we refer to [6]
for relevant definitions).

The above is equivalent to L(., s,. being measurable with respect to the
g-field generated by products of Lebesgue sets in [0, 1] and Borel sets in R. A
sufficient (but not necessary) condition assuring that L be epi-measurable is that it
be l.s.c, in and v.

The notation Ol will denote the generalized gradient of with respect to both
its variables. The notation aL will denote the generalized gradient of the function
L(t, .,. ); we shall not have occasion to consider gradients with respect to t.

THEOREM 1. Let the arc z solve the generalized problem of Bolza, where the
problem is calm at z. Suppose that is l.s.c., and thatL(t, s, v) is epi-measurable in t,
l.s.c, in (s, v) and epi-Lipschitz at z. Then there exists an arc p such that

(3) ((t),p(t))OL(t, z(t),,(t)) a.e.,

(4) (p(O),-p(1))Ol(z(O), z(1)).

Remarks. The generalized gradient relationships (3) and (4) are counterparts
of, respectively, the usual Euler-Lagrange equation and what are referred to in
the theory of optimal control as transversality conditions.

Although Theorem 1 appears to apply only to global minima, it is easily
adapted to local minima. Suppose, for example, that the arc z is optimal only with
respect to the arcs x satisfying

Ix(t)-z(t)[<-,.
We may redefine L(t, s, v) to be +oo if [s-z(t)[> 8 (which preserves the lower-
semicontinuity of L(t, , )) and obtain a global minimum. Note however that the
hypothesis that L be epi-Lipschitz rules out "state constraints". That is, for all
points s near z(t), there must be some point v (possibly depending on and s) such
that L(t, s, v) is finite.

Theorem 1 applies to "fixed-time problems"; of course the normalization to
the interval [0, 1] is merely a convenience.

In the remainder of this section, we shall single out some special cases in
which the requirements of Theorem 1 are met, and then give a specific example of
its use.

PROPOSITION l. Ifeither of thefollowing is satisfied, the generalized problem of
Bolza is calm at z:

(a) l(xo, x)= lo(xo) + l(xo, x),

where ll is finite and Lipschitz in Xl in a neighborhood of (z(O), z(1));

(b) l(xo, x)= l(x)+ lo(xo, x),
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where l0 is finite and Lipschitz in x0 in a neighborhood of (z(0), z(1)).
Proof. (a) We choose e such that 11 is finite and Lipschitz in x within 2e of

(z(0), z(1)). If K is the Lipschitz constant, we derive easily

for all s within e of 0. Calmness follows. The proof of (b) is similar. Q.E.D.
The following gives a condition that may be used instead of the epi-Lipschitz

hypothesis.
PROPOSITION 2. Let the hypotheses of Theorem 1 hold, with the epi-Lipschitz

condition replaced by the following: there is a positive e, a measurable positive
function (t) and an integrable function k(t) such that for each t, the function
L(t, s, v) is Lipschitz in s on the set

{(s, v) :Is z(t)l <_- Iv z(t)[ <- t3 (t)},
with Lipschitz constant k(t). Then the conclusions of Theorem 1 remain valid.

Proof. Define L* as follows:

L*(t,s,v)--L(t,s,v)

if Iv 2(t)] _-</3(t), and +o0 otherwise. The arc z continues to solve the problem of
Bolza with and L*, and it is easy to see that all the hypotheses of Theorem 1 hold,
once we establish that L* is epi-Lipschitz at z. This we do now.

Let Sl and s2 within e of z(t) be given, as well as (Vl, L*(t, s, Vl)). We have
necessarily Iv1 (t)l <--/3 (t). Let v2 Vl. Then L*(t, s2, v2) L(t, s2, Vl) and hence

I(v-v2, L*(t, s,/)l)-L*(t, $2,/92))1 -<

We may now apply Theorem 1 for L* and z. But L(t, , and L*(t, , agree on
a neighborhood of (z(t), 2(t)), and hence

OL(t, z(t), 2(t))= OL*(t, z(t), 2(t)). Q.E.D.

The condition in Proposition 2 requires that L be finite near z. This is
certainly not necessary for the function L to be epi-Lipschitz at z, as the next result
shows.

PROPOSITION 3. Let L have the form of Example 3, where for each and u in
U(t), f(t, u) and g(t, u) are Lipschitz within e of z(t). We suppose also that the
Lipschitz constant k(t) (the same for each u in U(t)) is integrable. Then L is
epi-Lipschitz at (z, z*).

Proof. Let (Sl, s*) and (s2, s) lie within e of (z(t), z*(t)), and let a point
(vl, v, rl) in the epigraph of L(t, s, s, .,. be given. Then for some u in U(t)
and nonnegative 6 we have

v*=u, v=f(t,s,u), r=g(t, sl, u)+6.

Let us put

v*2=u, v2=f(t, s2, u), r2=g(t, s2, u)+6.

Then (v2, v2*, r2) is in epi L(t, s2, s*2, "," and

I(v2- v, v*2 -v* r2-ra)l<- 2k(t)l(s-s2, s* -s*2)l. Q.E.D.
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The following result gives a Lipschitz condition on L that may replace both
the calmness and epi-Lipschitz hypotheses of Theorem 1.

PROPOSITION 4. In Theorem 1, let the epi-Lipschitz and calmness hypotheses
be replaced by the following: there exist a positive 6, a positive measurable function
c(t) and an integrable function k(t) such that a.e., on the set

the function L(t, ,. is Lipschitz with constant k(t). Then the conclusions remain
valid.

Proof. We may suppose a integrable, bounded by 1, and

(t) dt 6 < 1.

The argument used in Proposition 2 shows that the function L* defined there
for/3 a/2 is epi-Lipschitz. As is again the case, the conclusions of Theorem i for
L replaced by L* are equivalent, so we need only show that the new problem is
calm at z. Let x be any arc within 6/2 of z for which L*(t, x, ic) is finite a.e., and let
s be any point within 6/2 of 0 for which l(x(O), x(1)+ s) is finite. We set

y(t) x(t)+(s/6) a(r) dr.

Then y(0) x(0), y(1) x(1)+ s, x and y are within 6 of z, and a.e. we have x and
y within a(t) of 2(t). Thus

i0 iol(x(O),x(1)+s)+ L*(t,x, 2) dt=l(y(O), y(1))+ L(t,x, 2) dt

=>/(y(O), y(1)) + Io L(t, y, 3) dr- k(t)l(x y, c )] dt

--> t(z(), z())+ I L(t, z, 2) dt-Klsl,

where K (2/6) jl0 k(t) dt. If1 corresponds to the new problem, with e 6/2, we
thus derive, for all s small,

(s)>-l(O)-Klsl.
It follows that the new problem is calm. Q.E.D.

The following result shows that Theorem 1 subsumes the part of Rockafel-
lar’s work dealing with necessary conditions for convex problems of Bolza
[8, Cor. 1].

PROPOSWON 5. We assume the following hold:
(a) conditions A-D of [8];
(b) ri(dom l) ffl ri(FL) # ,

where
dom {(So, sl) l(so sl) c},

FL [(So, Sl) for some x, x(O) so, x(1) sl and lo L(t, x, ) dt < oI,
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and ri denotes "relative interior" (see [9]);
(c) for some positive e, for any s within e of the set

{z(t):O<-_t<=l},

there exist integrable functions v and k such that

L(t,s,v(t))<-k(t).

Then the hypotheses of Theorem 1 are satisfied.
Remarks. We omit the proof, which is given in 1, Thm. 5.25]. Hypothesis (a)

is essentially that and L(t, .,. are convex, plus some mild regularity assump-
tions; (b) yields calmness, while (c) together with the convexity implies that L is
epi-Lipschitz. In this case by [2, Prop. 3.19], relations (3) and (4) are in terms of
subgradients of convex functions.

Concerning epi-measurability we note two cases, the first without proof.
PROPOSITION 6. Under the hypotheses of Propositions 2 and 4, the epi-

measurability hypothesis of Theorem 1 is satisfied ifL is Lebesgue measurable as a

function of t.
PROPOSITION 7. Let the function L be defined as in Example 3, where
(a) f is measurable in t, continuous in u,
(b) g is l.s.c, in u,
(c) for each s, g( s, is measurable with respect to the tr-field generated by

Lebesgue sets in [0, 1] and Borel sets in R (see Definition 3),
(d) the multifunction U is measurable and closed-valued.
Then L is epi-measurable.
Proof. Suppressing the fixed (s, s*), we wish to show that the multifunction

epi L(t, s, s*, , is measurable in t. This last set equals the intersection of the sets

Fl(t) {if(t, u), u, r) u U(t), r R},

Fz(t)={(p, u, g(t, u)+6) p6R", 6_->0}.

Condition (c) implies the measurability of F2. Since the intersection of measurable
multifunctions is measurable, we need only show that F1 is measurable. This is
easy if one uses the fact that there exists a countable family {ui} of measurable
functions such that

U(t)=cl {ui(t)} a.e.

(This is a consequence of (d).) Q.E.D.

Example 4. We seek to minimize

Io -Ix(l ,
where x(0)=-4 and 2(t) is constrained to the interval [5, 6]. Following the
pattern of Example 1, we find that

l(xo, Xl) 0 if Xo -4,

and +o otherwise, and L is given by

L(t, s, v) =-Is[ if5_-<v_-<6,
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and L is +o otherwise. We verify easily that the hypotheses of Theorem 1 are
satisfied (calmness follows from Proposition 1). Note that L is the sum of a
Lipschitz function of s and an indicator function in v. Using (2a) and (2b), we
derive from (3),

/0(t) =-1 if z(t) > 0,

1 if z(t)<0,
[-1,1] ifz(t)-0,

p(t)=0 if5<2(t)<6,

-<0 if 2(t) =5,

=>0 if 2(t) 6.

These relations allow us to determine the motion of (z, p) with time. For example,
if on an interval, (z, p) is interior to the first quadrant, we must have on that
interval 2(t)=6 and /0(t)=-l. Hence (z,p) moves along one of the lines
z + 6p -const. The other paths of motion are indicated in Fig. 1.

FIG.
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Relation (4) yields p(1)= 0. It now remains to find what (z, p) arcs can begin
at 0 on the line z -4 and, traveling as indicated above, terminate at 1 on
the line p 0. We may easily show that the only way to do this is to begin at the
point (-4, -1/2), and that the arc z is then the one having 2(t) 5 for 0< < 1/2
and (t)= 6 for 1/2 < < 1.

3. Proof of Theorem 1. We assume that and L satisfy the hypotheses of
Theorem 1.

LEMMA 1. If s(t) is a continuous function, the multifunction

F(t)=epiL(t,s(t), .)

is measurable.
Proof. The lemma follows immediately from the following result 1, Lemma

3.8]: if a multifunction E(t, s) is measurable in and continuous in the Hausdorff
metric in s, then E(t, s(t)) is measurable. We omit the proof, since the usual proof
for functions (via step functions) can be mimicked. Q.E.D.

LEMMA 2. For any arc x, the function f defined by

f(t) L(t, x(t), it(t))

is measurable.
Proo[. The multifunction F(t)=epi L(t, x(t),. is measurable by Lemma 1,

and for any real number r the multifunction

is measurable. We have

G(t) {(t)} (-, r]

{t f(t) > r} {t F(t) f3 G(t)

and this set is measurable by [6, Cor. 1.3]. Q.E.D.
We now begin the proof of Theorem 1, with the following simplification: we

shall assume that the calmness condition of Definition 2 holds for 1. Were this
not the case, we could return to this situation by replacing by 1- throughout,
and L (t, s, v by L 1 t, s, -v). The equivalent transformed problem would satisfy
the calmness condition at 1.

We set o- equal to the following finite number:

-min{O, lim_,oinf [(s)- (O)]/[s,
and we call tr the sensitivity of the problem. The e occurring here may be taken as
the same that intervenes in Definitions 1 and 2.

We now adopt the following convention" s* will refer to a point of the form
(s 1, s 2, s 3, s4) in R R R R. Similarly, an arc x* has component arcs x and
3

X
2
X
4x in An and in A1. We define a multifunction E by

U(t, s*)={(v, r, O, O)Rn R Rn R r>=L(t, s 1, v)}
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for [s 1- z(t)l <-e/2, and E is empty otherwise. We also define

z*(t) (t), L(r, z, .) dr, z(1), l(z(O), z(1)

Co {s*" l(s 1, s 3) <-_ s4},
C {s*" s= s}.

We set m 2(o-+ 1).
LEMMA 3. For some positive 6, the arc z* minimizes

2x (1)+x4(1)+ md(x*(1), C1)

over the arcs x* satisfying"

Pro@ Let us note first that z* is feasible for the above problem. Suppose the
lemma false. Then for each positive integer j there is an arc x]’, satisfying the
conditions stated in the lemma for 6 1/j, such that

(5) x](1) +x(1) + md(x(1), C1)< z2(1)- Z4(1).

We have
.2xi(t) >=L(t,x),2)),

so by Lemma 2 we conclude that Ilo L(t, x], 2]) dt is defined, possibly as -oo. From
(5) and the fact that x, x are constant, we deduce

(6)

l(x](O), x(1)) + Io
Io< l(z(O), z(1)) + L(t, z, .) dt- md(x[(1), C1).

If we set s1 equal to x(1)-x](1), we have

Isil<-_2d(x[(1), C1)<-21(x](1)-z(1), x.(1)-z(1))l<4/].
Substituting into (6), we arrive at

l(x)(O), xi1(1)+ si)+ L(t, x) ,2)) dt < p(o)-lslm/2.

Since si converges to O, we deduce from this,

lim inf [O(s)- o(0)]./Isl <-m/2 -o-- 1,
s->O

which contradicts the definition of o-. Q.E.D.
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The multifunction E is measurable in and Lipschitz in s* near z*, and the
sets Co and C1 are closed. These facts, along with the calmness (as defined in [4]) of
the problem in Lemma 3, allow us to make use of [4, Thm. 1] to conclude that an
arc p* exists such that

(7) (/)*(t), p*(t)) is normal a.e. at (z*(t), 2*(t))

to the set

{(s*, v*) v* E(t, s*)},

(8)

(9)

(0)

p*(0) is normal to Co at z*(0),

p2(1) p4(1) =-1,
(-p(), -p())(z(), z ()),

where g is defined by

g(S S 3) rod(s*

We deduce from (7) that/i, 3, 4 are 0 a.e., since E depends only on s 1. We
derive

(/1, pl, -1) is normal a.e. at (z, 2, L(t, z, .))

to the set epi L(t, .,. ).

This gives (3), for p pl. Because we have p3(1) equal to -pl(1) as a consequence
of (10), we may conclude from (8) that (pl(o),-pl(1), -1) is normal at (z (0), z(1),
/(z(0), z(1))) to the set epi l, whence (4). Q.E.D.

In view of the fact that a distance function is Lipschitz with constant 1,
relations (10) and (2a) imply the following extra fact which will be used later.

COROLLARY 1. In Theorem 1, we may take p satisfying

Ip(1)l--< 2(o- + 1).

We now state two lemmas which will be used later. The first is Theorem 1.21
of [1]; the method of proof is essentially the same as that of [2, Lemma 3.15]. The
second is Lemma 6.8 of [1], and may be proved by means of [2, Prop. 3.2].

LEMMA 4. Let f" RnR be C and g" RnR be Lipschitz. Suppose that
the point (a, , r) in R R (-a3, 0] is normal at (x, f(x), g(x)) to the set

{(s,f(s), g(s)+6) seR", 6_-->0}.
Then

a + flf’s(x) O(-rg)(x).

LEMMA 5. LetE be a closed and convex-valued multifunction from R" to R’,
and let (a, ) in R" R be normal at (So, Vo) to the set

{(s, v) 6 R" R" v E(s)}.

Then is normal at Vo to the set E(so).

4. A Weierstrass-like result. We denote by coL the convexification of the
function L(t, s, v) in the v variable. That is, for each and s, the function
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coL(t, s, is the convex hull of the function L(t, s,. ), the largest convex function
majorized by L(t, s,. (see [9, Cor. 17.1.5]). In general, coL may have to equal
-oe; we always have coL-_< L.

THEOREM 2. Under the hypotheses ofTheorem 1, we may assert the following:

(11) coL(t, z(t), (t))= L(t, z(t), (t)) a.e.

(12) the arc z solves, ]:or some positive & the problem:

minimize{l(x(O),x(1))+ coL(t,x, 2) dt’lx(t)-z(t)l<6 a.e.}.

Remarks. This is an extension of Theorem 1 of [3], where it was shown that
condition (11) is the essence of the necessary condition of Weierstrass in the
calculus of variations. Statement (12) is to be interpreted within the convention of
2. Thus for any arc x within 6 of z (as in (12)) for which the integral in (12) is

defined, and for which l(x(O),x(1)) is finite, the corresponding value of the
functional in (12) is no less than its (finite) value at z.

Proof. We apply Lemma 3, 3, to conclude that z solves the problem given
there, where we may assume less than e. This problem falls within the context of
[3, Thm. 2], where the W there is in this case the set

{(t, s*) lsl z(t)l < 6,

We conclude therefore that z* continues to solve the problem of Lemma 3 with E
replaced by its convex hull. By definition,

coE (t,s*)=epicoL (t, sl, {0}{0}.

Were it true that coL (t, z, 2) is strictly less than L(t, z, .) on a set of positive
measure, a standard argument (employing [6, Cor. 3.3]) would produce a measur-
able and integrable function u(t) satisfying

coL(t, z, .)<-u(t)NL(t, z, ,),

with the second inequality strict on a set of positive measure. Then the arc x*
defined by

x*(t)-- z(t), u(r) dr, z(l),/(z(0), z(1))

would be admissible for the convexified problem of Lemma 3, and in fact strictly
better than z*. This contradiction yields (11).

Now let any arc x within 6 of z be given with l(x(O), x(1)) finite.
For any integrable function u(t) satisfying

coL (t, x, 2) <= u(t),

we may define an arc x* as follows:

x*(t) (t), u(r) dr, x(1),/(x(0), x(1)

Note that this arc is feasible for the convexified problem of Lemma 3.
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(13)

The optimality of z* implies

l(x(O), x(1))+ u(t) dt >- l(z(O), z(1))+ L(t, z, ) dt.

From Lemma 2 and [9, Cor. 17.1.5] we deduce the measurability of coL (t, x, 2).
If I1o coL(t, x, 2) dt is defined, the value of this integral cannot be -oo, otherwise
we could find u as above with I1o u(t)dt arbitrarily close to -eo, making (13)
impossible. Thus the value of the integral is either +oo or a finite number. In the
latter case we obtain (13) with u(t) equal to coL(t, x, 2). Statement (12) of the
theorem follows. Q.E.D.

We recall that we are assuming, without loss of generality, the validity of the
inequality in Definition 2 for 1.

as in Definition 2 forL replaced by coL, c 6/2 forCOROLLARY 2. Define
the of Theorem 2. Then, if m is as defined in Lemma 3,

lim inf [l(s)-<0)]/Isl -m.
0

Hence the relaxed problem is calm at z and its sensitivity is no greater than m 2
(o’+ 1).

Pro@ Let x be any arc and s any point of R such that l(x(O), x(1)+ s) is
finite, Ix-zl<, Isl<, and Ilo coL (t, x, 2)dt is defined and less than oo. The
same argument as in the proof of the theorem above shows that the value of the
integral cannot be -oe. Hence we may define an arc x* by

x*(t)=[x(t), coL (r,x, 2) dr, x(1)+s, l(x(O),x(1)+s)],

an arc feasible for the convexified version of the problem of Lemma 3. Since

d(x*(l), C)lsl,

we have, by the optimality of z*,

iOl(x(O),x(1)+s)+Io coL(t,x, 2) dt+mlsl>-l(z(O),z(1))+ coL(t,z,)dt.

By Theorem 2, the right-hand side of this last inequality is (0). We thus derive,
for all s small,

~1

whence the corollary. Q.E.D.

5. Optimal control. We consider the following problem of optimal control
(see Example 3, 2): to minimize

l(x(O), x(1)) + g(t, x(t), u(t)) dt
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over the couples (x, u) such that x is an arc, u an integrable function such that

u(t) U(t) a.e.,

(where U [0, 1]- R is a given multifunction) and

:(t) =f(t, x(t), u(t)) a.e.

The calmness of this problem is defined in a manner completely analogous to
Definition 2. We shall assume the following:

(14) f(t, s, u) is measurable in and continuous in u;

(15) g(t, s, u) is 1.s.c. in u and satisfies condition (c) of Proposition 7 ( 2);

(16) R R (-o, ] is 1.s.c.;

(17) U is measurable and closed-valued.

We shall refer to the above as the (1, f, g, U) control problem.
THEOREM 3 (Maximum principle). Suppose the couple (z, v) solves the above

problem locally, where

(18)

(19)

(2o)

the problem is calm at z,

for almost all t, f(t, v(t)) is C near z(t),

for every positive integer there exist a positive e and an integrable function k
(depending on i) such that, for almost all t, given two points Sl and s2 within e

of z(t) and u in U(t) within of v(t), we have

If(t, s,, u)-f(t, s2, u)l <----k(t)ls- s2],
]g(t, S1, U)- g(t, s2, u)l <- k(t)]s,

Then there exists an arc p such that

(21) f(t)+p(t)f’s(t,z(t), v(t))Osg(t,z(t), v(t))

(22) p(t) f(t, z(t), v(t))-g(t, z(t), v(t))

(23)

max {p(t)- f(t, z(t), u)-g(t, z(t), u)" u U(t)}

(p(0),-p(1)) Ol(z(O), z(1)).

Remarks. The word "solve" has the same unrestrictive meaning it had in 2
and 4. That the arc z is a local solution means it is optimal relative to other couples
(x, u) for which Ix(t)-z(t)l is less than some positive number 8. In relation (21), f
refers to the usual Jacobian matrix with respect to s, and O.g to the generalized
gradient with respect to s. Relation (23), the transversality condition, is suscepti-
ble to various interpretations, depending on the nature of I. For example, if is
defined as in Example 3, 2, (23) says that (p(0),-p(1)) is normal to C at
(z(0), z(1))(see (2b)).

Although there have been many versions of the maximum principle since
Pontryagin’s [5], Theorem 3 has something new to offer. The regularity assump-
tions on f and g are considerably weaker, the function (and the corresponding
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transversality condition) is quite general, and the control set U varies with t. Note
also that we do not assume that the optimal control is bounded, as is usually done.
This hypothesis is made in the classical case, along with the hypothesis that f’s and
g’s exist and are continuous in t, s and u. These conditions imply (20). The
necessary conditions obtained are "normal"; there is no undetermined constant
factor multiplying g in (21) and (22) as is usually the case. This is a consequence of
(18). We may thus make the statement "calm problems are normal".

Subsequent to this research, J. Warga [11], [12] has obtained results which
resemble Theorem 3 in spirit.

.Proof of the theorem. Let r be a given positive integer. We define Ur(t) as
follows:

Ur(t)={u U(t)" 1/rlu-u(t)lr}{u(t)},

and we note that (z, u) solves the control problem (/, f, g, U).
Using the notation of Example 3’, 2, we reformulate this problem as a

generalized problem of Bolza. The function L is as defined there; we label l* the
function which to a pair of points (So, So*) and (Sl, Sl*) in R n+’ assigns the value
l(so, Sl). It is easy to see (Propositions 3, 7) that the hypotheses of Theorem 2 are
present, so that the arc (z, z*) solves (locally) the new "relaxed" problem in which
L is convexified in the variable (v, v*). Let U(t) be the set of points of the
following form:

(24) tT(t) (A, A2, ", Ak, Ul, ", Uk),

where k m + n + 2, Ai (i 1, 2, ., k) are nonnegative numbers whose sum is
1, and ui (i 1, 2, ., k) are elements of U(t). We define f and , for (t, s) in
[0, 1] R" and fi in t)(t) as follows:

]7(t, s, t) Y’. A.0f(t, s, ui),

(t, s, fi) Z Aig(t, s, ui),

and h(fi) is defined to be Y Aiui (all sums are on from 1 to k).
It is a consequence of Caratheodory’s theorem that the set epi

coL (t, s, s*,., may be expressed as follows:

{ft’(t, s, t;(a), s, a)+ a _->o}.

Since (z, z*) solves the relaxed pr,oblem, we deduce that the pair (z, ) solves
the optimal control problem (I, f, , Ur), where (t) in Ur(t) is defined by

(t) =(1/k,. ., l/k, v(t), ., u(t)).

This in turn implies that a.e. the following set is empty"

(25) {a Or(t)" f’(t, z(t), )= :2(t), ,(t, z(t), fi)< ,(t, z(t), (t))}.

Suppose now that the function g is replaced by the function

gr(t, S, U)-- g(t, S, hi)+ Ibl- u(t)l/r.
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The hypotheses of the theorem remain in force, including the optimality of (z, ,)
for the problem (l, f, r, U).and the same argument as above shows that (z, )
solves the problem (l, f, r, U). Viewing this as a problem of Bolza, we may apply
Theorem 1 to obtain an arc (p, p*) satisfying (3) and (4). Here, these become

(26) (p(O),-p(1))Ol(z(O),z(1)), p*(1) 0,

(O(t), p(t), O,-1) is normal a.e. at the point

(27) (z(t), 2(t), v(t), ,(t, z(t), k(t))) to the set

{(s, ft, s, a), fi(fi), (t, s, fi)+6) s 6R", fi 6 0(t), 6 0}.

We now apply Lemma 5 to conclude that (p(t), 0, -1) is normal (in the sense
of convex analysis) a.e. at the point ((t), (t), (t, z(t), k(t))) to the convex set

{(t, z(t), a), fi(a), (t, z(t), )+) (t), 0}.

We obtain from this the inequality a.e.

(28) p(t). f(t, z(t), u)-g(t, z(t), u)p(t). 2(t)-g(t, z(t), v(t))+]u-v(t)]/r,
valid for u in U(t).

Suppose now we have the following situation" we have two sequences of
points

Qi=(ai, bi, ci, di),

for a certain (suppressed here) for which the set (25) is empty, where fii 6
U(t), Q and R both converge to (z, , v, g(z, )), 6 O,

(Q-R)/IQ-R](a, , V, 6),

and Q has closest point Ri in the set occurring in (27).
Claim. + f’s(Z, u) Os[-6g(z, u)]. Since U is ompaet, we may, if neces-

sary, take a subsequence and assume that i fi in U. We have (z, fi)= and

(z, ) g(z, ).

From the fact that the set (25) is empty, we deduce (if fi is given by (24))

(29) ZA]u- v(t)] 0.

By the definition of generalized normals we have the vector defined by

(, , v,
normal at R to the set

{(s, (s, a), fi(a), (s, a) + a). s R", a 0}.

From Lemma 4 we conclude:

(o) +fs(S, a) Os[-a(s,
The equality (29) implies that either A 0 or else, for all ]’large, (ui) u. Taking
limits in (30), we consequently obtain the relation claimed (the upper-
semicontinuity of the generalized gradient is used here).
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The point is that, because of relation (27), (,6, p, 0,-1) is the limit of convex
combinations of points like (a,/3, y, 6) above [2, Prop. 3.2]. This allows us to
conclude the following:

(31) fg(t)+p(t)f’s(t, z(t), v(t))6Osg(t, z(t), v(t)) a.e.

The arc p satisfying (26), (28) and (31) actually depends on r, so let us label it
Pr. We may assu.rne Ip.( 1)l bounded above by 2(-r + 1), where &r is the sensitivity of
the problem (l, f, r, Ur) (Corollary 1). In view of Corollary 2, we have tL bounded
above by 2(o- + 1), where tr is the sensitivity of the problem (l, f, g, U). It is easy
to see in addition that O’r is bounded above by tr, the sensitivity of the problem
(1, f, g, U). Thus the solutions p to (31) are uniformly bounded at 1, and by a
theorem of Valadier 10] there exists a subsequence converging uniformly to an
absolutely continuous solution p of (21). This p continues to satisfy (23), and
satisfies (22). Q.E.D.

Acknowledgment. The author would like to thank Professor R. T. Rockafel-
lar for his assistance and encouragement.
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GLOBAL CONTROLLABILITY OF NONLINEAR SYSTEMS*

RONALD M. HIRSCHORN?

Abstract. This paper examines the relationship between the structure .of the reachable set for
nonlinear systems and the properties of the Lie algebras of vector fields associated with nonlinear
systems. An expression for the reachable set at time is obtained for a large class of nonlinear systems
using unbounded controls.

1. Introduction. In this paper we study the controllability of nonlinear
systems of the form

dx
A(X)+ UlBI(X)+" "+ UmBra(X)

dt

which evolve on a real analytic manifold M. There is a considerable amount of
literature which examines some of the basic structural properties of nonlinear
systems (see, for example, Brockett [3], [4], Elliot [6], Hermann [9], Haynes and
Hermes [7], Hirschorn 11], 12], Lobry 15], Palais 16], Sussmann and Jurdjevic
17], 18]). In contrast with the linear case, the problem of obtaining an expression

for the reachable states at time from some initial state remains unanswered. This
question is of practical as well as theoretical interest, and in two special cases, a
useful expression for the reachable set at time is knownthese are the
symmetric systems, where A (x) 0, and a class of systems where the vector fields
A(x), B(x),..., B(x) generate a finite-dimensional Lie algebra . This is the
case, for example, with bilinear systems, but the assumption that w is finite-
dimensional is quite restrictive. In particular, the series interconnection of two
bilinear systems is a nonlinear system for which is infinite-dimensional. The
purpose of this paper is to extend these results to a far larger class of systems where

is possibly infinite-dimensional. The global properties of the state space M are
exploited by associating with each nonlinear system a Lie algebra of vector fields

and transformation group G of the state space. The relationship between the
structure of this Lie algebra, the group G and the reachable set is examined, and
we obtain a Lie-algebraic criteria for exact time controllability. This global result
considerably generalizes the known results.

The organization of this article is as follows- in 2 we introduce notation and
describe some basic results which are used in later sections. Section 3 contains the
main theorem and some examples.

2. Preliminaries. We assume that the reader is familiar with the basic notions
of differential geometry and Lie theory (cf. [13], [14], [19]).

We shall consider systems of the form

dx
(*) td--7(t)= A(x(t))+ ui(t)Bi(x(t)), x(O) Xo6 M,

i=1

* Received by the editors June 16, 1975, and in revised form September 26, 1975.
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where x e M, a real analytic manifold, A, B1,"" ", B,n are real analytic vector
fields, and the controls ui , the class of piecewise constant functions from [0, )
into R. This last restriction is not necessarywthe results remain unchanged if
piecewise continuous controls are allowed.

Let V(M) denote the set of real analytic vector fields on M. We regard V(M)
as a Lie algebra over the reals. Thus V(M) is a vector space over R with a

nonassociative "multiplication" defined as follows: for X, Y V(M), the Lie

bracket ofX and Y is

[X, Y](m)= X(m) Y- Y(m)X

(see [19]). In the case where M= R n, we can consider each vector field X as a
mapping from R into R. Then for each X V(R n) and each real analytic
function f on R", X(m)(f) (df),,(X(m)), where (dr),, is the Jacobian of f. In this
case,

[X, Y](m) (dY)mX(m)-(dX)Y(m).

Let o//. be a subset and and Lie subalgebras of V(M).

T’(x) { Y(x) Y e V};

{V}Ls linear span of V in V(M);

{ //’}LA the Lie algebra generated by
that is, the smallest Lie subalgebra of
V(M) containing

[o%8, ?(] {[L, H] L , He (}.

If S is a subset of a group G, we set

{S}o the subgroup of G generated by S.

Let X, Y V(M). We define

ad:Y Y, adxY IX, Y] and ad:Y= IX, ad-1Y].

Suppose X V(M) is a complete vector field. Then there is a one-parameter
group Xt of X, i.e., for each tl, t2 R, Xtl and X, are diffeomorphisms of M
(X,, Xt2 diff (M)); Xt, X2 X,+, and for all m M, Xo(m) m and

d-d-xt(m) X(Xt(m)).
dt

Assume that the solutions to the differential equation (*) are defined for all
=> 0. We denote this solution by r(x0, u, t).

If x, y M, we say that y is reachablefrom x at time if there exists a u such
that y r(x, u, t). We denote by ,(x) the reachable setfrom x at time t, the points
in M reachable from x at time t. (x) denotes the reachable set from x in positive
time, i.e., (x)= Ut>o (x).
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It is known that the structure of the reachable set is related to the structure of
the Lie algebras:

={A, B1, ",B,,}LA,

0={adBi" i= 1,’’’, m and k =0, 1,... }LA,

={B1,""", Bm}LA.

We illustrate the construction of these algebras for linear systems of the form

(1) d__x= Ax + Bu,
dt

where xRn, A is an n xn matrix over R, B is an n Xn matrix over R, and
u(t)R". Let B1, B2.-.,B, denote the columns of B and u,..-, u,, the
coordinates of u. We can rewrite (1) in the form

dx
Ax + UlB 4c-. .+ umBra.dt

Thus A(x)= Ax, Bi(x)= Bi are linear vector fields. It follows directly from the
definitions that [Bi, Bi] O; adaBi(x) [A, Bi](x) (dBi)xA (x)-(dA)xBi(x)
0 ABe(x)" adOBe(x) (-1)AB(x); [adABi, adBi] 0, and so

={A,A"Bi k=O, 1,..., n-l; 1,- .., m}Ls,

Lo={AkBi k =0, 1," "’, n-l; i= 1,..., m}is,

={B1,""", Bm}LS.

Here consists of complete vector fields.
Throughout the rest of this article, we shall assume, as in 18], that consists

of complete vector fields. This is the case, for example, when M is compact. This
assumption is not essential but it considerably simplifies many of the proofs.

Let be a lie subalgebra of V(M). For each x M, I(, x) will denote the
maximal integral manifold of through x; i.e., I(, x) is the largest connected
submanifold N of M which contains x and has the property that for all y N, the
tangent space to N at y is (y). Its existence follows from Lobry’s global version
of Frobenius’ theorem [15].

Suppose that @ is a subset of V(M). An integral curve of is piecewise
smooth curve c with d/dt(c(t))@((t)) for each where the derivative is
defined. We will call @ symmetric if for each vector field X , -X .

THEOREM 2.1. Let V(M) be symmetric and let x M. Then ]:or every
y I(, x), there is an integral curve [0, T] ---> Mof with (0) x and (T) y.
In particular, every point in I({}LA, X) can be reached from x along an integral
curve of @ (cf. [9], [ 18]).

LEMMA 2.2 (Sussmann and Jurdjevic [18]). Let {Xt} and {Yt} denote the
one-parameter groups of vector fields X and Y 5g, where 5g, o and are the Lie
algebras associated with a nonlinear system (*). Then ]:or all x M and
R, X(I(0, x))= Yt(I(o, x)). In particular, A(I(o, x)) is the unique maximal
integral manifold for o through At(x).
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This result motivates the following definition:
DEFINITION. Let Y( be a Lie subalgebra of . Then for all >0, we set

I’(Y(, x)= I(Y(, A,(x)).
THEOREM 2.3 (Sussmann and Jurdjevic [18]). Consider the nonlinear system

(*). For all x 6M and t>0, ,(x)= I’(o, x), and with respect to the topology of
1’(o, x), ,(x) is contained in the closure of its interior.

We conclude this section with a version of the Campbell-Hausdorff formula:
Let X, Y V(M). Then

Xtl Yt2(x)=Zl(X), where Z=tlX+tzY+[X, Y]+""

is a formal series which converges for tl and t2 both in some neighborhood of 0.

3. Controllability of nonlinear systems. As noted in 2, gt(Xo) has a
nonempty interior in It(o, Xo). This result follows from the decomposition
o of . To determine those nonlinear systems for which

,(Xo)= I’(o, Xo),

it is necessary to examine the structure of in greater detail. We will construct a
new Lie subalgebra of 5, which we call the A-radical of , (A; ), where
=o (A ) =, and prove the following theorems:
THEOREM 3.1. Consider the nonlinear system (*), where

dx
d--(t)-- A(x([))---

i=1

with associated Lie algebras of vector fields , o, (A; ), and . Then
cl t(x) = I (t(A ), x) for all x M and > 0. (cl closure in I (o, x).)

THEOREM 3.2. Consider the nonlinear system (*) with associated Lie algebras
L, o, (A; ) and 3. If o(x) (A; 3)x for all x in M, then

,(x): ’(o, X)

for all x M, t> O.
COROLLARY 1. Consider the system (*) with associated Lie algebras, o, (A ) and 3. Ifo (A 3), then

,(x) It(o, x)

for all x M, t> O.
COROLLARY 2. Suppose(A )(x0) 5(o(X0) for some Xo in M. Then t(Xo)

and the boundary of cl t(Xo) are disjoint [or all > 0. (cl closure with respect to
the topology of It(o, Xo).) In particular, t(Xo) is a closed subset of I (o, Xo) iff
,(x0) I’(o, Xo).

Remarks. 1. Let y M. If (A; )(x)= o(X) for all x in 1(, y), then it
follows directly from Theorem 3.2 that t(x) It(o, x) for all x I(, y). It is
not known if this condition is necessary.

2. One can verify that the above theorems holds for systems of the form
dx/dt(t) A (x(t)) + Y’,i= [i(ui(t))Bi(x(t)), where [i are surjective functions fr.om R
onto R.



704 RONALD M. HIRSCHORN

3. The problem of obtaining an expression for t(x) has been studied in [11]
under the assumption that is finite-dimensional, and a "finite-dimensional"
version of Corollary 2 is proved. The assumption that is finite-dimensional
greatly simplifies the situation. The system can be reformulated as evolving on a
Lie group and described by right-invariant vector fields [ 11].

The remainder of this section will be devoted to proving this result and
presenting some examples. Let be a Lie subalgebra of V(M) which consists of
complete vector fields. The group of diffeomorphisms of M,

a() {x7- x ,
is called the transformation group generated by , and for x M,

G(). x {g(x) g G()}

is the orbit of x under G(
LEMMA 3.3. Suppose that is a Lie subalgebra of V(M) which consists of

complete vector fields. Then for all x M, G(I() x I(l(, x).
Proof. V(M) is symmetric. Theorem 2.1 asserts that G() x

I({}Lg, X) I(, X) for each x M, which proves the lemma.
Remark. If contains a vector field X which is not complete, one can

associate with X a local one-parameter group {Xt} [19]. One can then form a
pseudo-group G() analogous to the group defined above and G().x
I(, x) as before. In this manner, the results of this section can be carried over to
the case where contains incomplete vector fields.

Thus I(o, x)= G(). x, I(0, x)= G(o) x, and t(x)c G(o) At(x)=
It(o, x). Clearly the action of G() on M is related to the Lie algebraic
properties of . Our aim is to relate the properties of &e to the structure of t(Xo),
so it is natural to treat t(Xo) as the orbit of x under some subset of G(Sf). Since we
allow only piecewise constant controls, the appropriate subset of G() is

St ={(A +cB + -k ClmBm)t, (A 4- c1B1 q- "+ cg,B,,)t,. ci R

tl, ", tk 3> O, tl +" + tk t}.

By definition, St .x =t(x) for all x M, t>O, but the proofs are simplified
considerably if we consider instead the subset

of G(). The following lemma relates Gt and t(x).
LEMMA 3.4. Consider the system (*) with associated Lie algebras , o, ,

and let cl Ytt(x) denote the closure of the reachable set for (*) with respect to the
topology of I (o, x). Then for all x M, > 0,

cl ,(x) cl G, x.

In particular, cl t(x) contains I(g, x).
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Proof. We begin by showing that cl R(x) contains It(J,X) for all t>0. By
definition, ,(x) contains points of the form

where k {1, 2, ., m}, c R, > 0 and t +. + t < t. Taking the limit as
q, t, -, t, 0, we see that it follows from the Campbell-Hausdorff formula that
cl (x) contains points of the form

{(Bk,)cl(Bk2)c, (B,.,),:,. At(x)" c; R, ki C {1,- ’’, m}}.

Theorem 2.1 assets that this set is 1(, At(x))= lt(, x).
To prove that cl t(x) cl G, x, it suffices to show that cl t(x) :z, Gt x. Let

y c Gt x. Then

y go(A,glA-,)" (At,+...+t,.g,.,A_,, t.)" At(x)

(goAtl)(glAtz)(gzA,3)’" (g,,-iAt,.)(g,.,At-,, ,.)" x,

where g;G(). Since cl,(x)It(,x)=G(). At(x) for all t>0,
we see that (g,,At-t, t.)(x)clt_, t.(x), (g,,-At,.)(g,,At-, t,.)(x)
cl t-,, ._,(x), and after n steps we have y cl t(x). Thus cl t(x) D cl Gt x.

To complete the proof, we need to show that cl Gt" x t(x). By defini-
tion, Gt x contains points of the form p,,(x) (Bt/,,At/,,)"(x)
(Bt/,At/n)(B,/,At/,) (Bt/,At/n)(X), where B c 3. As n -oo, p,(x)
(A + B)t(x) as a consequence of the Campbell-Hausdorff formula. Thus cl Gt x
contains all the elements of St- x, and St" x t(x). This completes the proof.

Thus it suffices to study the action of G, on M and try to isolate those
algebraic properties of which result in G, x It(o, x) for > 0 and x in M.
This is the case for linear systems, where a direct computation shows that
I’(o, x) e’atx + Range (B, AB, ., A-B). The Lie algebra associated
with linear systems was described in 2, and for this special case, 5go is Abelian
and hence 3 is an ideal in o. That is, for all B 3, L o, [B, L] o. Thus one
is led to the natural conjecture" if (*) is a nonlinear system and 3 is an ideal in
then ,(x)= I’(o, x). The proof of this result requires the following lemma:

LEMMA 3.5. Suppose that is a Lie subalgebra of o,go
{adH" H, k 0, 1,.-"}IA and G’ is the group of diffeomorphisms Gt=

{A,)H,A_,) 0 < v < t, u R, H }. Then G’ x I(o, x) for all x M and
t>0.

Proof. We begin by showing that G x c l(Yo, x). Since G’ is generated by
diffeomorphisms of the form A,H,A_,.,, it suffices to show that A,H,A_,. y
I(Y(o, x) for all u, v R, x M, H Y( and y I(Y(o, x). Lemma 3.3 asserts that
I(Y(o, x)= G(o) x D G(). x I(Y(, x). Thus H,A_. y c G(). A_(y)
I(o, A_(y)) and AH,A_ .y A. I(Y(o, A_(y))= I(Y(o, y) by Lemma 2.2.
Since y e I(o, x), I(o, x)= I(Y(o, y).

We will complete the proof by showing that G x 1(0o, x).Fix x M, >
0. By definition, G contains one-parameter groups of the form t--> AHTA_
where H , 0_-< v < t. Let X’’ denote the vector fields on M induced by those
one-parameter groups and let o denote the Lie algebra generated by these
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vector fields. Since G’ x I(o, x), it suffices to show that I(o, x) I(o, x).
Now corresponding to each H Xa, 0_-< v < t, is the vector field X’ o, and
thus (X’’(x)-X’’(x))/Vo(X). Taking a Taylor series expansion for
X’(x), we find that

lira (X"’(x)-X"’(x))/v
0

=lim i! adH(x) -U’(x)/v
v0

-[A, H"](x) )o(X).
Repeating this procedure, we see that o(X) E(x), where E {adH He g(,
k 0, 1, }. Theorem 2.1 implies that I(o, x) is the set of points which can be
joined to x by integral curves of E. We have shown that for all y e M,
o(Y) E(y). Thus I(o, x) I(o, x), and the proof is complete.

THEOREM 3.6. Consider the nonlinear system (*) with associated Lie algebras
r(o,ool. If[o, J](x)c(x)forallxM, then:t(x) x)forallxM

and > O. In particular, if NJ is an ideal in o, thent x I (o, x) forx M, > O.
Proof. Suppose that t(x) is a dense subset of the manifold It(o, x) for each

t>0.
Claim. t(x) It(o, x) for each >0: let y It(o, x). The reachable set at

time 5t from y for the system 2 -A(x)- uiBi(x) has a nonempty interior //in

It/2(oo, X) from Theorem 2.3. Since :,/2(x) is dense in It/:Z(o, x), there is a point
p common to t/2(x) and . The control which took the negative system from y to
p takes the original system from p to y, hence y ,(x).

We now prove that t(x) is a dense subset of It(o, x) for all >0. Lemma
3.4 shows that cl :t(x)= cl Gt x, so it suffices to show that Gt x It(o, x),
where

DG, {B,o(A.B,,A_.) (Atl+...+t.,B,.A-. t,)At

B d, tiO,ti<_l, aiR}.

If we let G {A,BuA_, O<_- v < t, u R, B N}, then G At(x)
I(o, At(x)) It(&#o, x) by Lemma 3.5. Thus Gt x I(o, At(x)) if G,-. x
G At(x), and this is the case if for each y in M; B , B2 ’, t, t2, a, ae 6 R,

2(A.+tB,.A_._t)(At,B,.,A_t,) y (A,bA-t,)(Atl.tB ot2---tl-t2,’.e,A v

where b is a diffeomorphism of M, with b(z) I(, z) for each z M. This has the
effect of allowing the elements in G to appear in any order.

2We set p (A,Bo,A_t:,_)Bo,(AtB2_,_A_t.) and observe that

2(At,.tB,A_._t)(At,B,,A_.)" y

o,A-t:,)B,., (At:zB2o,A_t)(AtB2A.(At:,B2 o,A_t2)A_a y

o,,A-t).)A_, "y-A.p(At2B2

2(A. pA_a)(At+t2Bo,:zA_t_t:z)" y.
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This implies that the proof will be complete if we show that p x I(, x) for all
x M. The curve a Xt AtBZA_t is an integral curve for a vector field X, and

t2 yo,tp. x X’. BI, X-,,2 .x. Let denote the vector field with integral curve
Ca’t

T XBX_ ’x. Lemma 2.2 implies that the curve C’t lies entirely in
I(o, x), or equivalently, Y’t(x)e o(X) for all x e M. We will now show that
Y"(x)e (x) for all x e M, t, a e R, which implies that C’t lies in I(, x) and

2,/2hencep.x=_ x s I(,x).
Since A, B 1, B2 are real analytic vector fields, we can express y,t by its

Taylor expansion in a neighborhood of a 0 where

Y’ ad),B (x)

for all in this neighborhood. Similarly, for each x Mthere is a neighborhood of
0 such that

X(x) adB (x).
]-

Using the fact that A, x is jointly analytic in x and [5], we conclude that for any
x M there is a neighborhood N of (0, 0) in R a such that for all (t, )N, the
above series representations are valid. Combining these two expressions lets us
express Y"(x) as a sum of.vectors of the form

V [adB, "a ...](x)aa ,...,[adBa B]
=[L[L,[...[L,B] ...], whereL,...,Lo.

Assuming [o, N](y) c N(y) for all y M, we see that [L, B 1] is a vector field in
V(M) with [L, B](y) N(y) for all y M. A straightforward computation shows
that if B(y) N(y) for all y M and L0 o, then [Lo, B](y) N(y) for all y M.
Thus [Ln_,[Ln, B]](x)N(x), and repeating this argument, we find that
[L,[-..[Ln, B] .](x)N(x). This means that Y’t(x)N(x) for (t, )N.
Since this analytic function is contained in N(x) for (t, )N, it follows from
analyticity that Y’(x) N(x) for all , t. This means that p x I(N, x), which
proves the main part of the theorem. If is an ideal in o, then [N, o] c N, so
[N, o](X)c N(x). This completes the proof.

This result reveals a basic link between the structure of and the structure of
the reachable set. In gneral, [o, N](x) is not a subset of N(x) for all x M, but
some Lie subalgebra of N may give rise to a subsystem" with this property;
i.e.,

= (x + u(xl + + Up(Xl
dt

where {, .,}c N, generates a Lie subalgebra of N and is an ideal in
o {ad : , k 0, 1,.. "}A, or more generally, the distribution corres-
ponding to [o, ] is contained in the distribution of . Theorem 3.6 asserts that
the reachable set at time for this subsystem" is ,(x)= I(o, x). This implies
that cl (x)I(o, x), and Lemma 3.7 shows that cl ,(x) I’({o, N}A, x).
Before going on, we formalize the above constructions.
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Let go be a Lie subalgebra of o and suppose go is a Lie subalgebra of
with the property that o(X) D [o, o](X) for all x M, where o {adB Bo, k 0, 1,.. "}cA- In this case, we say that Ydl {go, 5o} is A-generated from
go. For example,flor those systems with g an ideal in o, set go go g. Then
o is an ideal ino {adB B g, k 0, 1,. "}eA o, and so o {g, 0}eA
is A-generated from g. The following lemma shows that if gl is A-generated
from gg, then

Cl rt(X I (1, X).

LEMMA 3.7. Consider the system (*) with associated Lie algebras
L’et be a Lie subalgebra of o which is A-generated from g. Then for all
t>O,xM,

el ,(x) It(, x).

Proof. Since is A-generat@ from , it follows that for some Lie sub-
algebra of ,(x)[o,](x) for all x in m where o
{adB" B , k =0, 1,-. "}CA and , {, oO}eA. Replacing by in the
proof of Theorem 3.6 yields the result that cl ,(x) I’(o, x) 1(o, A x) for
all x M and > 0. We know that cl ,(x) = 1’(, x) 1(, A, x) from Lemma
3.4. Thus cl ,(x) contains the set S(x), where

S(x) 2 X{X,,X,: X,(A, x) X o or , o G R}.

Theorem 2.1 states that S(x)= I({0, N}eA, A. x)= I(N, A,- x)= I’(N, x),
which completes the proof.

Now suppose N1 is A-generated from N, so that cl ,(x) It(N, x), and let

2 be A-generated from N, so N N1 c 2 oo. Repeated application of
Lemma 3.7 yields the result that cl t(x) D It(l:d2, x). More generally, if

0 c 1C2c" "C n
is a chain of Lie subalgebras of o with A-generated from

_
for i=

1, 2,. , n, we say , is A-related to . Clearly

cl ,(x) I’ (,,, x).

DEVlNITION. The A-radical for , t(A; ), is defined as the smallest Lie
subalgebra of o which contains every subalgebra of 0 that is A-related to
i.e.,

(A; )={: is A-related to

We are now in a position to prove our main results.
Proofof Theorem 3.1. Let {9g c #} be the collection of Lie subalgebras of

o which are A-related to . By definition, t(A;) { :c e #}cA- As noted
above, Lemma 3.7 implies that cl t,(x) I’(, x) for all >0, x e M and
Since I’(2(, x)= G() A,(x), we know that

cl t(x) {glg2 gn At(x) g/ G() for some a e #}.

By Theorem 2.1, this set is G({, a e #}LA) A,(x)= G((A ))" A,(x)=
I’((A N), x), which completes the proof.
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Proof of Theorem 3.2. If (A; ) and o define the same distributions on
M, then I(5(A 3), x) I(5o, x) for all x M. Thus cl ,(x) It(o, x) from
Theorem 3.1. In proving Theorem 3.6, we showed that this implies that t(x)--
It(ooo, X).

Proof of Theorem 3.2, Corollary 1. If o-- (A; 3), then the conditions of
Theorem 3.2 are satisfied and the proof is complete.

Proof of Theorem 3.2, Corollary 2. Assume that. (A; 3)(x)= o(X) for
some fixed x M, and set -(A; 3). Since co it follows that I(, x)
contains an open neighborhood 0// of x in I(Sqo, x). Theorem 3.1 implies that
cl ,(x) contains It(, x) I(, At(x)) for all >0. Moreover, if c T(x) is a
trajectory for the system (*), then for all 0 < e < t,

T,_(Z(, A(x))) = c ,(x).

Suppose that y t(x) fq 0(cl ,(x)). Then there exists a trajectory T,,(x) for
the system (*) with To(x)=x and Tt(x)=y. Thus for 0<e<
t, T,_(I(5, A(x))) c cl ,(x), and taking the limit as e 0, we see that

Tt(I(,x))cl,(x).

Since I(, x) contains an open neighborhood of x in I(0, x), cl :t(x) contains
the open neighborhood Tt(ll) of y, so y int (cl t(x)), which contradicts the
assumption that y 0(cl ,(x)). Thus t(x)O(cl ,(x))= , which proves the
main assertion. To complete the proof, we note that t(x) is closed iff :t(x)=
cl,(x). By assumption, :(A;J)(x)=o(X), hence t(x)O(clt(x))
cl t(x) O(cl ,(x))= . Moreover, O(cl ,(x))= cl ,(x)-- int (cl ,(x)), thus
0(cl t(x)) and cl t(x) int (cl t(x)). Since It(o, x) is connected, the only
nonempty open and closed subset is I (%, x) itself. Thus cl t(x)= I (oLFo, x). As
we noted in the proof of Theorem 3.6, this implies that t(x) It(o, x), which
completes the proof.

Example 1. This system fails to satisfy the hypothesis of Theorem 3.6, but
(A ) and0 define the same distributions on R 3, and Corollary 1 of Theorem
3.2 shows that ,x) R3 for all > 0 and x 6 R 3. Consider the system

dx
A(x)+ uBI(x)+ uzBz(x),

dt

where x (Xl, x2, X3) R 3, A (X) (0, XlX2, X2) BI(X) (0, x, 0) and B2(x)
(1,0, xl). By direct computation, B3=[B,B2]=(O,-1, O) and IBm, B3]
[B2, B3]---0. Thus 3 has a basis {B1, B2, B3}. Also,

aa,e,tx- t0, -x+1, -l)x),
so w is an infinite-dimensional Lie algebra. Since

[adAB1, B2] (0, 2x 1, 1)

it follows that [adaB, B2](0, 0, 0) (0, 0, 1) 3(0, 0, 0), so the hypothesis Of
Theorem 3.6 is not satisfied; however,

[adB, B](x) (0, 0, 0) for all x in M-- R 3.
This means ={B1}Ls is an ideal in o={adkBa I’k----0,1,’’’}LA, SO 1--
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{, 0}Ln is A-generated from and (A; ) dl. Thus [adAB1, Ba](X)
(0, 2xl, 1) Yt(A; 0])(x), and because {B., B3. [adAB, Ba]}LS(X)= R3 for all x
R3, (A; )(x) R3 for all x R 3. This means that (A; ) and o define the
same distributions on R 3, and Corollary 1 of Theorem 3.2 implies that gt,(x) R3

for all > 0 and x in R 3. Note that dim (x) 2 for all x R 3.
Example 2. This system passes the "standard linear test", but

(A; ). (Xo) o(Xo) and t(Xo) A,(I(.o, Xo)). This points out the relevance
of the global object (A; ) to the global controllability problem and the
irrelevance of the local "standard linear test". Consider the system

(1)

where

Here

dX
td
--7(t) AX(t)+ u(t)BX(t), X(0)= Xo 1,

A= 0 B= 1 0 I= 1

0 0 0 0

[A,B]=AB=BA= 0 and [[A,B],A]=0,
0

[[A, BIB] -[A, S]. Thus ={A, B}LA has a basis {A, B, [A, B]}, o
{adA3 k 0, 1,. "}Ln has a basis {[A, B], B} and {}Ln has a basis {B}. In
this example, 3 is not an ideal in o (i.e., [[A, B], Big ), and (A; ) 3 #

o and (A; 3)(Xo) # o(Xo).
On the other hand, the "standard linear test" is satisfied, i.e., o

{adB k 0, 1,. "}LS; hence

dim o(Xo) dim {adB(Xo) k 0, 1,. "}LS.

We now show that t(I)# eAt{e}G At(I(o, Xo)). If u is the constant
control c, then the corresponding solution to (1) is

X(t)=e

e’ 0 0

,(A/cB) , 1 ,
0 1e

c

0 0 1

and for each _->0, X(t) is a matrix with nonnegative entries. It follows that
trajectories of system (1) evolve in the space of matrices with nonnegative entries,
and Yt,(Xo) contains no matrix with negative elements.

Let L -2B + 2[A, B] o. Then by direct computation,

A L e 2 e 2e e 2
0 1

Since eAeL6A,(I(o, Xo)) is a matrix with
2 AeLe e ,(Xo), and thus

negative entry 2-

At o,(Xo) A,(I(o, Xo))= e e .
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INPUT-OUTPUT DESCRIPTION OF ROOMY SYSTEMS*

P. DEWILDE+

Abstract. In the classical dynamic systems theory, precise information about a system can be
deduced from its input-output map. In fact, for minimal systems, a complete pole-zero theory can be
constructed using polynomial coprime factorization techniques, together with algebraic properties 0f
the state space module. In this. paper, an infinite-dimensional theory in the same style is presented
whereby the input-output maps are assumed to exhibit some energy conservation properties and
whereby these maps are ascertained to belong to a class of systems with nontrivial nullspace, called
"roomy" systems. As a result, a coprime factorization theory can be deduced based not on properties
of polynomials but of analytical functions, a complete polar description of the system can be given and
a zero description for a somewhat more restricted class. The mathematical tools used lean heavily on
Helson and Lowdenslaeger’s invariant subspace theory of Hardy spaces which quite naturally comes
into play through the Bochner-Chandrasekharan and the Beurling-Lax theorem. The result, however,
is a compl.ete systems description of a Roomy input-output function.

This paper is situated entirely at the input-output level, and avoids using system realizations, to
concentrate on properties which can be directly deduced from the input-output map.

1. Introduction. We will investigate the dynamical system properties of an
input-output map"

(1.1) 5- L2R,,[(--O, c)]- L-[(-eo, oo)]" a(. )- #a(. ),

where Sf satisfies following assumptions:
(1.2) 5 is linear.
(1.3) 50 commutes with translations. Let T be a translation operator Tf(t)=

f(t-z) on any space L [(-, c)]; then T T.
(1.4) be is bounded as a Hilbert space operator.

A natural setting for this kind of map is obtained by Fourier transformation.
Let be the imaginary axis in C; then we define the Fourier transform

" L((-oo, oo)) - L()"
f(t)-F(joo) lim f(t) e -y’t dt

N N

and by the reverse Fourier transform (to be used later),

N

f(t) ff(jw) lim [ f(t) e dt.
N->c 3--N

Clearly/3(jw)- F(-jo), and are Hilbert space isomorphisms (Plancherel’s
theorem). In the sequel we will have to distinguish between a function as a
member of some space (e.g., f Lk((a, b))) and its functional value as a member
of a different space (e.g., f(t) Ck). We will try to use consistently the simple
symbol ("f") for the first case, and the functional value "f(t)" for the second. Also

* Received by the editors October 10, 1974, and in revised form June 18, 1975.
? Faculty of Engineering, Katholieke Universiteit te Leuven, Afdeling Toegepaste Wiskunde en

Programmatie, 3030 Heverlee, Belgium. This work was supported by the Belgian National Fund of
Scientific Research (NFWO).
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while using norms, we will have for Ilfll, the norm of f as a member of Lk, while
I1 ( )11 is the norm of f as a member of Ck (Euclidean norm). Other norms will be
indicated by suffixes, unless it is clear to which space the element belongs.

By the theorem of Bochner-Chandrasekharan ([1 p. 140 ft.]) and a trivial
extension of it to multivariable systems, we have that 90 can be represented as a
multiplicative operator acting on the Fourier transform of the input function
A ,a to the Fourier transform of the output function B b, so that B(rio)=
S(j)A (j), whereby S(j) is an n x m matrix function of the frequency , S(j)
is essentially bounded (hence with entries belonging to L of the imaginary axis)
and

whereby the left-hand side indicates the norm of as a Hilbert space operator,
and the right-hand side the m-norm
(1.6) []SII ess sup

the essential supremum being taken over the values of the norm of S(jw) as a

Euclidean map cm C. S is called the "transfer function" of the system and
belongs to the subspace L,(fl) of matrices with essentially bounded entries on
and norm (1.6).

It should be noted that the Bochner-Chandrasekharan theorem provides the
means to avoid distribution theory at the (reasonable) cost of knowledge of
Hilbert space theory. The proceeding could, of course, be axiomatized com-
pletely, thereby avoiding Fourier transforms, or at least introducing them in an
abstract way, but since our purpose is mainly practical, we will not indulge in
undue abstraction.

We will always think of anyL ((a, b))-space or Lc% ((a, b))-space as natural
subspaces of L ((-, )) or Lc% ((-, )).

For all input-output functions considered in the sequel, we will add a
fourth property, the property of causality:

(1 7) L([0, )) L2,.([0, )).

By the Paley-Wiener theorem, we have thatL ([0, ))= H, where the
Hardy space H is defined as the subspace of L ((-j, j)) of functions f for
which there exists an analytic continuation f(p) to the open right complex plane
(ORP) with the properties that

(i) f( +jw) is quadratically integrable in w for all > 0 and
(ii) f(jw) is the limit a.e. of f( +jw) for 0.
Functions belonging to H will be called "analytic". Likewise K can be

defined symmetrically for functions having analytic continuations to the open left
complex plane (OLP) satisfyingmutatis mutandisconditions (i) and (ii). Func-
tions belonging to K will be called "conjugate analytic". It is well known [2] that

L((-j, j)) HK, so that only the zero function is analytic and conjugate
analytic. We can also distinguish "analytic" and "conjugate analytic" functions in
L, (fl). By the Hardy space is understood the subspace of n x m matrices
in L which are uniform limits a.e. of bounded analytic n x m matrices in ORP.
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Functions in /-,n will again be called analytic. Likewise for bounded analytic
OLP functions, we have Kn,,, the subspace of Ln,, (!1) of conjugate analytic
functions. It is well known I-2] that Kn,f)Hm are exactly constant matrices.

Returning to a causal system 5, we will have, because of (2.7), that SA Hen
for all A H2,,, or for each component Sq of S, that S6F H2 for all F H2. We
would like to conclude from this that S H, and for that we would need to put
F= 1. The trouble is that FHe. One way out is to consider a new measure

dl &o/(14-toa) on the imaginary axis, and the corresponding subspaces, L2(fl)
2 H2 2 H2 2and H. Clearly c H, and moreover, is dense in H, (this is easy to prove).

2 2It follows that SiF H2,, for all F e H,. Now 1 H2, and hence S e H. Since
2Sij L(D), and H=H, f-) L(D) [3], we finally have that Sij /-. Thus, for a

causal system, we have that S Hnm.
There is no need to require input and output spaces to be real. We will use, as

the input space" L-, ((-o, )) and as output space" F L- ((-c,
For a general introduction to these spaces, and the related Hardy spaces, the

reader is referred to the excellent textbooks [2], [3], [4], [5], [6]. Bounded
input-output maps in the sense described above, arise especially in network
theory (see [7], [8], [9]).

2. Roomy systems. Following Kalman’s 10, chap. 10] original methodology
in constructing an abstract state space from the input-output map, we restrict our
attention to the map

(2.1) geo ao L((- oo, O)-+Fo L-([0, 00))- a(t)- geb(t)[to,oo)
from the space of input functions 0 L-, ((-00, 0]) to the space of output
functions Fo L- ([0, 00)), whereby the action of the system on an input up to
time zero (representing, in fact, any t, by shift invariance) is investigated. The
information which the system gleams from an input is referred to as the state, and
in a very natural way, two input functions f(t) and f2(t) in 0 will produce the
same state, if there is no way in which the output (observed after 0) will
distinguish between these two, whatever input one may subsequently (i.e., for
> 0) apply. Because of linearity, a zero input for > 0 is as good as any, and we

can simply say that fl and f2 in 0 generate the same state or are Nerode
equivalent, written

f, f2 if 0fl of2.

Let

(2.2) ,/1---{f t "(," f’N 0}.

We will call E1 the "nullspace" of the system. The natural state space then is the
set of Nerode equivalent classes. In this case, 1 is a closed linear subspace of the
Hilbert space 0, and the natural state space Y(1 can be taken as its orthogonal
complement j/11 (for a module discussion of this result see 11 ]).

If m 1 (so called monovariable systems) either 1 {0}, or there is a
nonzero f rio such that f .
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DEFINITION 2.1. A monovariable system with ddl nontrivial will be called
roomy.

More generally, let P be a projection of C on a one-dimensional subspace
Ap, and consider the monovariable system

DEFINITION 2.2. A system 5 will be called roomy if be is roomy for all P.
Note. If P is a projection in Ck, then it can trivially be used as a projection in

L:, by putting (Pf)(jto)= Pf(jto).
To characterize roomy systems in a more useful way, we transform the spaces

considered by means of the reverse Fourier transform ft. Let

(2.3)

Then tl is a subspace of H, and 1 1 -. J/l is left shift invariant since,
if f(t) 12o produces a zero state, then obviously Tf(t)(-< 0) will. Hence _1 is
invariant for multiplications with e-i’(e-JO’tl 1), and more generally,//tl is
invariant for multiplication with/T functions (ftl 3/1, f /-/) by a standard
density argument [3]. It follows that 1 is an "invariant subspace" in the sense of
Helson-Lowdenslaeger [2, p. 7]. At this point, we want to use the Beurling-Lax
theorem to characterize :g 1. An operator A lk(fl) Lm(fl) will be called "mul-
tiplicative" if it is represented by an Lk(l) matrix A, so that (with a slight
confusion in notation) (AF)(jto)= A(jto)F(jto) for all F6Lk(O). Its~adjoint is
indicated by A*, and it is easy to see that A*(jto) (/’to), where the indicates
Hermitian conjugation. A is an isometry if A*A 1 or if ,S,(jto)A(jto)= 1 a.e.
(to). By the Beurling-Lax theorem [2, p. 61], we now have that 1-- V1Hk for
some k -< m, with V1 a multiplicative isometry H H. Hence V1 Hk, and
V1 (jto) V1 (jto) 1 k a.e. to. We obtain the following simple characterizations of a
roomy system.

PROPOSITION 2.1. A system is roomy if and only if k m, i.e., if tl. has
pointwise full dimension a.e. (such tl are said to have "full range" [2]).

Proof. The proof is in Appendix A.
Let {el} be a basis in C and ff} a basis in (C")*, and consider one-

dimensional systems" ffP, where P is the orthogonal projection on e in
Cm. We have the following corollary.

COROLLARY 2.1. 9 is roomy if and only if the systems ii are.

Proof. Again the proof is given in Appendix A.
For roomy systems such that m n 1, we have that /1--bH2, where

b /T and ]b(jto)= 1. Such a function is called "inner". More generally, if 5f is
roomy, and thus E1 U1H, then U1 is unitary in L-(i). Also, Ul(jto) is a.e.
unitary in C". Such a U1 is likewise called "inner".

Suppose 5 is monovariable. Then, either tl is empty (and the system is not
roomy) or///1 is infinite-dimensional and the system is roomy. So either the
natural state space fills the input space or there is an infinite-dimensional
nullspace.

3. Coprime factorization of roomy systems. Very useful to the subsequent
results will be the notion of coprime factorizations. Polynomial coprime factoriza-
tion has been used extensively in systems theory [12], [13], [14]. Roughly, the
technique is based on factoring a rational matrix R(p)=L-((p)Al(p)=
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Az(p)Ll(p), where Li, Ai (i 1, 2) are polynomial matrices, and the factorization
is "minimal" in a certain sense. This minimality is expressed by a notion of
coprimeness: L1 and A are left coprime, while A2 and L2 are right coprime. We
will use a similar technique, replacing "polynomial" by "analytic". It will turn out
that our factors are closely related to the inner functions defining nullspaces.

We first introduce some notions about coprime factorization of H matrices.
Let A 6 Hnk and B /-/,,,,. We will say that A and B have a common left inner
divisor (CLID) if there exists an n x n function U(jto) such that

(3.1a) A=UA, B=UB, AH, Bnm.
(3.1b) Uisinner, i.e., UH, and U’U= 1.

U will be called greatest common left inner divisor (GCLID) if, for any CLID U,
there is an inner function U2, such that

(3.2) U U U2.
The above definitions make sense only if the rows of the matrix [A, B] span C
almost everywhere (which will always be the case in our theory). We have then
(with "v" indicating the sum of subspaces) Proposition 3.1.

PROPOSITION 3.1. Let the columns of the matrix [A, B] span C almost
everywhere. Then A and B have a unique GCLID U. With J/IA AH, and

BH m,2 we have that "/A V "/B- UH.
Proof. The proof is in Appendix B.
Note. U is unique except for a trivial right constant unitary factor. A and B

will be called left inner coprime (LIC) if their GCLID is a constant (obviously
unitary) matrix. We now have the following theorem.

THEOREM 3.1. A and B are LIC ifand only if there exist sequences of matrices
M and 1V with entries in H such that

(3.3) lim (AM/+BN)= 1

the limit standing]or columnwise L2(&o/(1 + 0)2)) convergence (and hence point-
wise convergence a.e., or uniform convergence on compact subsets of the ORP as
well).

Proofi The proof is in Appendix B.
THEOREM 3.2. Let T(jeo) be an n m matrix function of to and T(jto)-

U-(jw) A(jw), where U is n n inner and A is analytic. Then if A and U are left
coprime, the factorization is unique up to a left constant unitary matrix.

Proof. The proof is in Appendix B.
We are now in a position to discuss the coprime factorization theory for a

roomy system .
THEOREM 3.3. Let be be a roomy system and I,1 U1H2m. Then

S(-to) U(jto) A(jto)/s analytic, and U and A are right inner coprime (RIC).
Proof. The proof is in Appendix B.
Hence S(-jto)= A(jto)U(jto)-= A(jto) Ol(jw) or

(3.4) S(j(.o) ml(--j(.O)Ul(--j(.o)-1 a.e.
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Formula (3.4) is peculiar in the following sense: S(jto) is/4m and has an
analytic continuation to the ORP. Both AI(-jto) and U(-jto), however, are
conjugate analytic and thus have an analytic continuation to the OLP. Moreover,
Ul(-jw) is unitary (in L2m()) so that its inverse U]-(-jto) is quite well behaved
in the OLP. Formula (3.4) provides a "pseudo-analytic" continuation 15], 16] of
S in the left half-plane. U contains all the "polar" information about 9. It
describes its natural state space completely (through ), and from 4.4, it appears
that it describes completely the singularities in its pseudo-analytical continuation.
We have obtained the following result.

THEOREM 3.4. A roomy system 5 has a pseudo-analytical continuation of the
form Al(-jto U]-(-jto), where A and U are analytic functions with entries in H,
U1 is inner and A and U1 are right coprime. Any other pseudo-analytical
continuation of the type A.(-jto)UI (-jto) is such that U1 is a left divisor of U. (or
there is an inner U3 such that Ue Ul U3 and A A2U3).

Of all the factorizations given by formula (3.4), the one with A and U is the
minimal one in the sense of the coprime theory developed with analytical
functions. It is clear that if S(jto)-A2(-jto -1Ue(-ltO) IS a pseudo-analytical
continuation of S, then t U2H2,,, so that /1 is the largest subspace of 0 which
is mapped by 5 in L((- 0]). A left coprime factorization can be obtained by
producing a right coprime factorization on the dual system 5d T_5* T_ where
"*" indicates the usual Hilbert space dual and T_ indicates time reversal. The
transfer function for5d is of course S(-jw), and by the previous theory we have

(3.5a)

or

(3.5b)

(--j(.O) A2(--j(.D) U2(-j(.o)-1

with 2(-jto) and z2(-jto) left coprime. The relation between U2 and U is given
by the following theorem.

THEOREM 3.5. Given the right and the left coprime factorization for S
Al(--jw)U-((--jo)) [/)2(jo))]-1 z2(jw), we have that det UI(-jo)) det

Proof. The proof is given in Appendix B.
Note. Theorem 3.5 and the theory of coprime factorization in this context was

developed independently by P. Fuhrmann 17]. Fuhrmann bases his approach on
an elegant theory of Smith-like canonical forms due to Nordgren [18]. Our
approach is more elementary, and the proof of Theorem 3.5 does not use any of
the deeper properties of H algebras.

Since A and U are analytic, we have analytic continuations Al(p), UI(p),
pORP for them. The pseudo-analytic continuation for S is then
Al(-p)U-l(-p), and the singularities of U-(-p), p 60LPUfl are characteristic
for the system and will be discussed in the following paragraph. It will appear that,
because of Theorem 3.5, the singularities of U]-(-p), pOLPUfl, and of
U2(-p*), where p* is the complex conjugate of p, are essentially the same. In fact,
we have, by analytic continuation, that

(3.6) det U,(-p) =det tQ2(-p*)
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for all pOLPUO. We will see that the determinant of an inner function
characterizes completely its behavior.

4. Pole-zero theory of roomy systems. We start off with a "degree theory"
for inner functions. Such a theory is very similar to a classical "index" the6ry, but
we will view it more from an applied point of view, and we will take care to stick
closely to the classical system theoretical notion of degree. Consider the class of
n x n inner functions -,. -n is a monoid for ordinary matrix multiplication.

We will call 8 a "degree" map if following conditions are satisfied:

(4.2) 8(U, U2)= 6(U)6(U2); and 8(1.)= 1,

(4.3)

(8 is a semigroup isomorphism).

1
6 -o

1

PROPOSITION 4.1.8(U1) det U1.
Proof. The proof is in Appendix C.
In systems with finite-dimensional state space, we have for U -, [9, p. 229]

that deg U deg (det U) and that the poles of U coincide with the poles of det U
and have same degree. For a rational inner function U, it is also easy to define
zeros as the poles of U- O(-p*), and hence for every pole P0 of U, we have a
zero -p of same degree. This definition of zero will be coherent with a more
general one to be given below.

The justification for the extension of the notion to infinite state systems is
given mainly by properties (4.1)-(4.3) and by the theory of product decomposition
of inner functions 19].

We conclude this discussion with the next proposition.
PROPOSITION 4.2. When the state space of is finite-dimensional and a

coprime factorization is given so that

then

dim =deg [8(U1)] deg [det

Proof. The proof is in Appendix C.
The preceding propositions show several things:

(i) In finite-dimensional systems, the classical degree (in the Smith-
Macmillan sense) is exactly equal to the degree of det U1, or U2. It is also the
dimension of the natural state space g(1 (or of

(ii) In infinite-dimensional systems, the notion of isomorphism of state
spaces is not anymore useful, because subspaces with very different state spaces of
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infinite dimension can be made isomorphic. However, det U1 and det U2 stay
good measure of systems complexity, because of (4.2). Using them as a measure of
degree makes good sense, especially in view of embedding realization techniques
which will be discussed later on.

(iii) In Fuhrmann [20], this same notion is used in connection with shift
realizations. There, the notion of quasi-equivalence of shifts as introduced by
Moore and Nordgren [21 is found to produce the same kind of characterization.

Next we consider the notion of natural response and "natural frequency" in
this more abstract set up. We show, first of all, that the "natural" res,ponse for a
state x by a roomy n x m transfer function S with nullspace l U1H2.,,
2 U2H2.,, is, in a very natural way, a member of the space 2 Jt-2, where
/2 21UzH,) In fact, let x(t) L;-, [(-oo, 0)] be an input function which reaches
the state x at time 0, and let yl(t) e L;- ([0, oo)) be the response function with
no excitation: yl(t)= 5foX(t). We use a left coprime factorization for S"

S (j,o) U*(yo)]-I +/-, (jo)
(4.4)

U2(jo) A2*(jo),

and with 9x(t) yl(r) + y2(t), y2(t)--0 for =>0 we have"

(4.5) S(joo)X(jw) U2(jw) A*2(jw)X(jw)= Yl(joo)+ Y2(jw),

where Yl(jw) and Y2(jo) are Fourier transforms of y(t) and y2(t). Hence,

(4.6) A*2 (flo)X(joa) U*2 (joo) YI(1"o) + Y*2 (jw) Y2(jo2).

In (4.6), only the term U*2(joa) Yl(jw) might not be conjugate analytic, but since it
is equal to the difference of two conjugate analytic terms, we have

(4.7) U*2 (jo)) Yl(Yo)) K2,,.
It follows that Yl(jw) 92 since Yl(joo) is analytic and orthogonal, by (4.7) on

UaH2..
Furthermore, the set of responses {Yl(t)}, which is not necessarily a closed set,

is dense in 2, for suppose on the contrary that there is an

F(jra) e H2, such that F6 2 and (F, SX) 0 for all X K2,,.
Then clearly G A2U*2F6 Ham. Now, since U2 and A2 are right coprime, there
exist, by Theorem 4.1, sequences M and N with entries in/- such that

(4.8) lim [NiU2 -+m A2] 1.

or

(4.9) |im [Ni + MiS*] U*2.

Using (4.9) on F we get

lim [NiF+MS*F] U* F.(4.10)
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The right member of (4.10) is conjugate analytic while the left member is analytic.
Hence,

U*F=O, F=O.

We have obtained the following proposition.
PROPOSITION 4.3. The closure of the set ofnatural responses ofhas as Fourier

transform, the set

[UH2n.]+/-

Next, the question of natural modes arises. The physical eeling one has here
is that a natural response exhibits a natural mode if it stays equal to itself (modulo
a constant) under the action of left shifts, followed by restriction of the shifted
function to Fo.

This physical insight turns out to be capable of mathematical formulation. Let
2 (2) be adjoint state space (or its Fourier transform). Since M2 (/2) is right
invariant (invariant for multiplication with analytic functions), we have, denoting
right shifts by T, that

T,c2 (e-:c /2)
and hence that

T,*2 f2 ((e-’)*2 2),
where the *-operator refers to Fo (HI) and not L:- ((-o0, o0)). In fact, T*f(t)=
f(t + r)lr,, T,* so defined is a strongly continuous semigroup of operators which
we restrict here to 2. Using ideas of Moeller, Lax-Phillips and Helson sum-
marized in [2], we gave for the spectrum of the generator A of the semigroup
Theorem 4.3.

THEOREM 4.3. The spectrum ofA acting in 2 consist exactly of those complex
numbers p such that Re p <0 and U2(-p*) is not invertible, and those p with
Re p 0 such that U2(p) cannot be continued analytically across p.

Proof. The proof is given in Appendix C.
It should be noted, that since U2 is unitary, it has a pseudo-analytical

continuation U2(p)=/)(-p*), and hence the poles of S coincide with the poles
of U2 in the open left half-plane. It is also true that, for the eigenvalues in Re p < 0
(poles of U2 in Re p < 0), the multiplicities coincide as well, but the proof of this
fact is too technical to be given here.

We have thus interpreted the poles of the pseudo-analytical continuation of S
as eigenvalues of the generator of the semigroup of the adjoint shift operator
acting on the space of natural responses which we have called the adjoint state
space. Similarly, the eigenvalues of the generator of the semigroup of the adjoint
shift operator acting on the state space as a subspace of fo generates the
singularities of U(-p).

We obtain a dual notion (with a little more evolved physical interpretation): a
function x(t) 1)0 is a "natural state generator" if the state which it generates in
the interval (-oo, 0] stays proportional to itself. These notions link the sin-
gularities of the pseudo-analytical continuations of S to the spectral properties of
shift operators. We have already discovered two invariant subspaces defined by
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our system. There are two more which we now proceed to introduce and which are
related to the notion of "zeros" of .

Let.A/’1 {O(g), g 1} in L2,((-oo, 0]). Then is an invariant subspace for
left shifts. Also, let ag2 be the set of inputs in L2,, ([0, oo)) such that Sf is in the
closure of the set of natural outputs (2), i.e., the set of outputs resulting from a
certain state with not subsequent excitation. Also, in the coprime factorization

(4.11) S(jw) AI(--j60 U]- (-j(.o)

we can factor zeros out of A(-jw) and Az*(joa), but, in view of the fact that S might
be a rectangular matrix, we have to be a bit careful. Let m => n. Then A2 is n x m
and can be factored canonically into its inner and outer parts

zx v)./.

As for A, we have that AH2, is an invariant subspace of less than full range and
hence generates a range function [2, p. 91] which we will call . +/- is also a
range function and we have the next proposition.

PROPOSITION 4.4. +/- is an analytic range]unction ifand only if A is roomy.
Proof. The proof is given in Appendix C.
Since - is analytic, there is an m (m n) isometric operator W such that

I_1_ 2W2Hm-,. In the class of analytic invariant subspaces contained in -, let us
take the maximal element W2H2,,,_,. Also, let A1H2 VH2. V is analytic and
isometric by the Beuling-Lax theorem.

Then

(4.12) W=[V, W2]

is inner, and c WH2,,. Hence W- A A’ is analytic, and we have

s(j,o) w(-j,o) a’ (-j,o) u;’ (-jo)
(4.13)

[ u*(jo)-i-1

THEOREM 4.4. 3C and "/2 are invariant subspaces such that1 VlH2m and
2 V2H. Moreover, in the case m n, we have

6( W(-p)) 6( (/2(p*)).

Proof. The proof is in Appendix C.
It is obvious that U-((-p) and 2(-p*)-1 do not produce any zeros in the left

half-plane. Moreover, there is no cancellation between A and U2 or between A2
and U2 so that the singularities of and W22 are "genuine". In analogy with the
finite-dimensional state space case, we call, when m n, 6(W(-p)) 6(Q2(-P*))
the "left half-plane zero degree maps" because they characterize the "zero"
behavior of the system in the left half open plane. In analogy to Theorem 4.3, we
can consider here also the spectrum of the cogenerator of T* acting in
and find coincidence between the spectrum and singularities of V1 and V2. The
physical interpretation of this is again in terms of "natural zero modes"; e.g., in
the case of 3c-, we have that a "natural zero mode" induces a "natural output" to
stay proportional to itself.

Zeros located in the right half open plane (and incidentally a zero measure
also) can also be dealt with as follows. Let’s suppose (for definiteness) that n _-< m
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and that is not outer (if n m, one has to work on 0a). Then = S(jw)H=
W.H2,,, where W is a nontrivial inner function. Also, let S(jw)=
Uz*(jw)]-1 Az*(jw) be a coprime factorization of d, and let2 UzH2,. As we will
prove in the sequel, W consists essentially of two parts (or there is an inner
factorization of W corresponding to two different types of behavior): one part
produces a "genuine" degree reduction in the sense that the action of factoring
that part out reduces both S(jw) and its state space by the same inner function; the
other part, however, does not reduce the state space (keeps it equal), but, when
factored out of S(jw), just replacesa right half-plane zero Po (or zero measure
/x(jw)) by a left half-plane zero (-P0*) symmetrically located with respect to the
imaginary axis (a zero measure -t(jw) which procludes a conjugate analytic zero
measure), and hence reduces the analysisto the case of left half plane zeros.

PROPOSITION 4.5. Let /2 v o VH] H2,, V inner. Then V is the GCLID of
S and U2. Let Uz VU’2 and W= VW’. Then SI(jw) v-l(jw) S(jw)=
[U*(jw)]-’ A(jw), U’z*(jw) and A*z(jw) form a coprime factorion of la and
^v t___ 2/2 Vl H2,, with /2 UaH, and ’1 S,(jw)H.

Pro@ All the facts stated are obvious from the previous discussion and
previous theorems.

It should be noted that the relation U2 VU’, shows that the state space
(which is taken to be Y(2 here) is strictly reduced by V, since 6(U2) 6( V)- 6(U).

Now let’s study a system such that "ff/2 V ’-- H2,. Then Sl(jW) I’v-l(jw)S(jw)
is of course still analytic. Then we can claim the following.

PROPOSITION 4.6. The state space f’l of51 is equal to the state space f(1 of .
Proof. The proof is in Appendix C.
Hence, with W VW2, where VH2c-=2 v, we obtain all right half-plane

zeros as (i) zeros (and zero measure) belonging to the strict unitary part of 5 and
(ii) zeros which do not belong to any degree reducing unitary part of and which,
in the context of circuit theory, have been called as "nonminimal reactance" zeros
[9, p. 150].

In classical circuit theory, there is a third kind of zero, namely, a zero on the
imaginary axis. The strict H2 theory is unable to cope with those. They can be
dealt with in a more general setup using so called J-unitary coprime factorization.
In 6, we will discuss these applications to a somewhat greater extent. However,
when S(jw) is boundedly invertible on the imginary axis, the theory is complete as
presented. This is the case in the theory of optimal (Wiener) filtering.

5. Examples. A few examples are presented to illustrate the theory.
(I) Let S(p)=(p+ 1)/(p+2). Then

S(p)=p+l 1 p-1
p-l (p+2)/(p-2) "p-2"

Hence , =2-((p-2)/(p+2))H2 and , 2-= ((p- 1)/(p + I))H2. The sys-
tem is roomy and has a complete poleand zero description.

(II) Let S(p)-p/(p+ 1). Again 1 =2=((P-1)/(P + 1))H2, but the zero
spaces N N . Also, there are no zeros in the right half-plane, and the
theory as presented is not able to deal with the ]w-axis zero p 0.
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(III) Let S(p) e -p (pure delay). S(p) is unitary. Hence1 ,/2 e-PH, or
21 2- Lc(- ,-1]. The zero set is entirely in the right half-plane and is, in

fact, a zero measure; we have that the V of Proposition 4.5 is e -p in this case.
(IV) S(p)=(p-1)/(p+2). Of course, as in example I, we have that /1:z (p + 2)/(p-2)H2. However as far as the zeros are concerned, we have no

unitary part in S; hence the Vof Proposition 4.5 is 1. Proposition 4.6 applieswith
W=(p-1)/(p+ 1), and S(p) has the same state space as S(p)=(p+ 1)/(p+2)
but a right half-plane zero.

(V) In the time domain, we have

=l{k" et(t =< 0)}

L2(-1, 0)

P
for S(p)=-

p+l’

for S(p) e -p.

(VI) To illustrate Theorem 3.5, let

p+l’ p+l

Right and left coprime factorizations are

=[1

p 1

+1 p+
O] p

+1 p+

p 1
p Pp+l -1 -1

Hence

p 1

p+l p+l

U2 =p-1 Up+l’ P
p+l p+l

and det U(-p)=det U*2(-p*). Also [ p 1 ]p- 1 p- 1
and [1 0] have very different

zero behavior as pointed out at the end of the proof of Theorem 4.4
(VII) There are nonroomy systems. An easy way to construct them is given

by following principles: (a) If S0’w) is roomy, then there is an inner 4(jo)) such
that b(jw)S*(jo)) is analytic. Hence &(jo))[S*(jw)+S(jw)] is analytic, and
Re S(]w) cannot be zero on a set of nonzero measure. Hence, any S(]o)) with
Re S(]o)) 0 on a set of nonzero measure is not roomy. (This construction is in [2,
p. 92]. (b) If S is roomy, then it has a pseudo-analytical continuation. Hence S
cannot have branch points in the left half-plane.
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Examples. For (a)"

J P-J,S(p)=cot-p=- lnp+]
for (b):

1s(p)
,/p + 1"

The real part of S is zero on Re p 0 for Jim p] ) 1, while Sb has a branchpoint in
the open left half-plane.

(VIII) The introduction of a limiting procedure with H functions in
Theorem 3.1 is essential. Compare this with the following property ([3 p. 96,
Problem 9]. Let fl and f2 be analytic functions in the open disc, which have no
common zeros in that disc. Then there exist analytic functions g and g2 in the
open disc such that flg +f292 1. This result is of an entirely different nature than
the one presented here. For example, e -p and e -2p have no common zero in the
open right half-plane, and

-p ep -2p 2pe +1/2e e --1.

However e -p and e -2p are not coprime having a common factor e -p.

6. Some applications ot the theory. We will discuss two major applications of
the theory, one dealing with the polar structure and the other dealing with the zero
structure. Suppose that S is an n n contractive transfer function. A unitary
embedding for S is a 2n 2n inner function Z so that

-’12](6.1) Z=
Z21 Z22J

and S E. We want embeddings for S such that (i) "-’21 is outer and (ii) Z is
minimal. It will turn out that, in case S is roomy, such an embedding does
exist, moreover, has the same degree as S. First, E21 is obtained by outer spectral
factorization. Ez*Z2 1,- S’S, where Z2 is outer. Uniqueness and existence of
Y-,2 is well known [2, Chap. 10]. There is more however.

PROPOSITION 6.1. If /1 is the nullspace of S, then the nullspace l of Z21
contains 1. The two coincide if and only if S is outer.

Proof. See Appendix D.
This means, in fact, that the degree of E21 is smaller than the degree of S, since

U divides U and det U divides det U.
Consider now the matrix

(6.2) Y--= N
If S is roomy, then, by Proposition 6.1, N has a full range nullspace
UH. Of course, Ze is also roomy, and there is a 2n x 2n inner matrix U so

that . U.H,. It turns out that U is precisely a minimal inner embedding for
S
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THEOREM 6.1. Suppose that S is contractive and roomy and ’21 is an outer
spectral ]’actor for S. Then a left coprime factorization for

is given by

(6.3) -’1-xrmlI_O,,J’

whereby Z is a minimal embedding for S (with outer ---21).
Proof. The proof is based on the foregoing theory and is given in Appendix D.
The zero theory, on the other hand, also provides for a similar theorem, but in

the context of J-unitary spaces. This allows for a mechanism to deal with jto zeros
as well. The theorem to be introduced now, produces an interesting side result: a
mechanism to compute a spectral factor for S as well. Let

(6.4) J
-1,

then

[ ’-111](6.5) 01
kSXl J

is J-expansive in OLP, e.g.,

(6.6) O1JO1 In --> 0 for p ORP.

We will say that a 2n x 2n is J-unitary, if JO J 0 for p 6 !1. Suppose Z21 not
identically singular; then to the unitary

S X21 ](6.7)

there corresponds a J-unitary

o=[ -z Is 1(68) [ s-
If Z is analytic, then O is moreover J-expansive in ORP. Such a O will be called
"passive". Clearly,

(6.9) 01 =0
0

and (6.9) is a "coprime" factorization for 01 in a sense analogous to (6.3), but with
unitary E replaced by J-unitary O corresponding to it. It should be noted at this
point that the singularities of O exhibit the zero structure of E21 (a roomy outer
contraction). The structure of O is well known [19]. The interesting point,
however, is that O can be obtained directly from S, without reference to E21.
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THEOREM 6.2. Suppose S is a roomy contraction, and let

(6.10)
0, [ (ln S*S)-I

Then there exists a unique factorization

(6.11) 0 IA

whereby

(i) [/1 ] is J-contractive in ORP, and I is passive, J-unitary.
2

are coprime in the sense that, for any factorization
A

01 =1
2

with J-expansive in the OLP, we have that O1 003, with O3 passive and
2

J-unitary.
(iii) O is the passive, J-unitary matrix corresponding to the minimal embed-

ding with outer 21.
Note. 0 is unique except for a trivial constant J-unitary factor on the right.
Proof. The proof is in Appendix D.
Theorem 6.2 shows several things: (i) the spectral factor -’21 for S can be

obtained by coprime factorization of the matrix (6.10). This produces a novel
algorithm for coprime factorization and is exploited in [22]; (ii) the zero structure
of the spectral factor Z21 is completely contained in the product structure of O
[19]; (iii) the minimal embedding for S can be obtained simultaneously through
coprime factorization of 01. Theorems 6.1 and 6.2 are striking examples of the
strength of coprime factorization techniques in this context. Some further applica-
tions in the same vein can be found in [23], [24], [25].

7. Discussion. The present theory, which the author believes is quite com-
plete as far as coprime factorization and polar behavior is concerned, has been
inspired, on the one hand, by systems ideas like polynomial coprime factorization
[12], [13], input-output state space description as developed by Arbib, Kalman
and others [20], [10], and, on the other hand, by invariant subspace theory as
developed in Helson [2] and Nagy-Foias [6]. The first attempts at this kind of
description appeared in [26] where the important synthesis theorem (inner
embedding theorem) is formulated, which was later generalized in [16].

The author believes that the present paper contains several new mathemati-
cal and systemic results: (i) Theorem 3.1 on the analytical characterization of left
inner coprime matrices is new; (ii) Theorems 3.2, 3.3 and 3.5 on the existence, the
uniqueness and the interpretation as pseudo-analytical continuations of coprime
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factorizations for bounded L2 systems seem to have been deduced independently
in [22] and in 17]; (iii) Theorem 4.3 is well known in other contexts and has been
used also in systems theory, in connection with the construction of shift models for
bounded input-output functions [20], [27], [28]. Its salient feature is that, to find
the spectral properties of the system one must look to the spectral properties of a
restricted shift acting in a state space or zero space rather than to the spectral
properties of the system function itself. The idea to do so is probably due to [29] in
a different context; (iv) the idea to use the determinant of an inner function as
measure for system complexity dates back to the early days of network theory:
Propositions 4.1-4.2 merely adapt that idea to the present context; (v) proposi-
tions 4.3, 4.4, 4.5, 4.6 and Theorem 4.4 on the zero structure are new; (vi)
Theorems 6.1 and 6.2 are new also [25] and show the importance of coprime
factorization in the context of cascade synthesis.

The terminology "roomy systems" has been used first in [26]. In [27] the
notion of roominess for a system having a representation [A, B, C, D] (most
systems don’t) appears as "noncyclicity" in the sense of 15]. This notion is more a
property of some vectors in a representation than of the system itself and is akin,
but not identical, to the notion of cyclicity inherited from module theory (see 10,
Chap. 10]). In fact, as used by Baras, cyclicity refers to the input space, while in
Kalman it refers to the state space. Kamen [31] has extensively developed
structure theories for infinite systems in the case of distribution spaces. To obtain a
valuable structure theory, he is forced to restrict the theory to so called "torsion-
systems", where the notion of torsion also comes from module theory. "Roomi-
ness" is very akin to "torsion", as discussed in 11 ], and is, in fact, a generalization
of the term for non-Noetherian modules. It seems that the use of the term
"roomy" (justified by its interpretation that a system is roomy, roughly, when its
state space does not fill the input space) is justified to avoid confusion with
"torsion" and "cyclicity". Torsion refers to a module, cyclicity to a vector (or set
of vectors) in a space and roominess to a system.

This paper was situated purely on the input-output level. We did not discuss
any realization theory [20], [27], [28] although the results have some bearing on it.
A wealth of information can be deduced from the input-output map alone,
without any reference to a realization. More specifically, it follows from the theory
that the system has a lossless cascade realization if and only if it is roomy, and that
the cascade can be obtained by means of a coprime factorization on an appro-
priate matrix (Theorems 6.1 and 6.2). Also, polar and zero-degree properties can
be deduced directly from input-output considerations without reference to a
realization. Of course, it can be argued that there is a subjacent hidden shift
realization, but there is no need for explicitation. The only successful attempts to
date to deal with zeros on the imaginary axis are through J-unitary factors
(Theorem 6.2), and there is still work to be done on the connection between zero
and polar degree characteristics.

The theory as presented produces several secondary facts of interest: there is
no LZ-system with finite nullspace different from zero; the notion of roominess
governs the ability of finding analytic complementary range functions; the degree
theory can be extended to nonfinite systems. It is hoped that many more results
will follow from this, e.g., in synthesis theory and stability theory.
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Appendix A.
Proof of_Proposition 2.1 and Corollary 2.1. First, given a basis {ej} of C" and

an appropriate set of projections {Pj} and a basis {f*} of Cn, we have that 5e is
roomy if and only if every one i,nput-one output system ik focYPi is. Indeed,
suppose that ow is roomy; then l UH2,, and (det U). H2c 1, so that Aj
(det U).ei ll, and hence f’Pai with ai -,1A. zero for t>0. Conversely,
suppose that all k ]’*oWPi are roomy. Hence ()ik CbikH

2 for some inner bik.
It follows that 4 IIj, kdajk is such that b H-,c.

Next by the former paragraph, we have reduced both criteria of Proposition
2.1 to the same criterion.

Appendix B.
Proof of Proposition 3.1. We havea a v J//B andB a v J//n. Hence

U-1A and U-B have entries, and A UA, B UB so that U is a CLID. If
V is another CLID, we have that VH2, vso that U- V is analytic, and
hence there exist W such that V UW.

Proof of Theorem 3.1. The "if" portion is trivial. As to the "only if" part, let

A Vn= H2,. Let {el} be a set of basis vectors in Cn, and let us first prove the
property for the Hardy spaces of the unit circle. Consider the sets el + 2I/[A andn
in H2,. They are closed convex sets. Let d be their distance. I claim that d--0.
Suppose on the contrary d >0. Let UI be a neighborhood of el such that its
diameter is smaller than d. Then, it follows from the hypothesis d > 0 that UI d_oes
not interest ,/AV "//B for else one would have an x =fl +f2 UI so that el--f1
et + d//a, f2 G ,ff/2 and d <= d(eg-f, f2) [lel-fl-f[I Ile- x[I < d. Hence d 0.
Now e + A/-/ and B/q are dense in et + AH2 so that d(e + AIq, BI) O.
Hence there exist sequenc6s --iF) and ._.,-!1) in and H such that

(B.1) lim [AFII) + BGIl)] el

for the L- topology of the unit circle. Let Mi [FI/)] and N [GI/)] be matrices
with/th column FIt), respectively, GI), then we have

lim AMi +BN l,,.(B.2)
i-->

A conformal transformation z-+ (p- 1)/(p + 1) from the unit circle to the right
half-plane establishes the result.

Proof of Theorem 3.2. Suppose T= U]- A U A2, where U1, A and U2,
A2 are left coprime. We have, by Theorem 3.1, the existence of sequences Mi and
N of analytic matrices such that

(B.3) lim [U2M -I- m2Ni] 1

Premultiplying this with U1U2* we get

(B.4) lim [UM + U1 g2 A2b/i]-- U1 U2
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or

(B.5) lim [U1Mi -[- AINi] U1U.

Every column of UIMi + A1Ni is in H(do/(1 + o2)) for all i, hence the limit also. It
follows that U1 U2* is analytic. Likewise, U2 U* is analytic, and hence U1 U* is
constant. Hence U2 UI* U, a constant unitary matrix.

Proof of Theorem 3.3. For any G H2m, we have U G /1, and hence
-a(U1G) 1. Thus5- U1 G) L.(-oo, 0]) and5--1 (U1 G) H2,,. Hence
(taking Fourier transform) we have

(B.6) S(-jo)) U1 (rio)G 6 HI for all G H2,,.
Hence S(-joo)U1- A1 is analytic and S*=[U*(-fio)]-1 A*(-joo). To show that
U*(-jw) and A*(-]o)) are left coprime, suppose that they are not. Then there
exists an inner W such that:

(B.7) U’(-joa) W*(-jw)]- U’(-fio) and A’(-jca) W*(-jw)]-1 A(-jca)

are analytic. Then S* [U2*(-jca)]-1A(-fio). It follows that for all G H, we
have that S(-joa)U2 is analytic. Hence UeH UH2m. Henee U2 U.

Proof of Theorem 3.5. Let X be the minimal inner annihilator of , i.e., the
smallest inner function such that S(-jca)X is analytic (for a complete definition see
[11]). Then X*(-jo) is the minimal inner annihilator of the state space 2 of Sea,
and we have

S(jw) X- (-jca) A(-jo), where A is analytic.

Also, of course, S*(-jw)=[x*(jca)]- A*(joa). These factorizations are not co-
prime, and hence there exist inner A1 and A2 such that

A*(-jo)) A (jw A*(-flo),
(B.8)

X*(-jo l A (jo U (-jo

(B.9)

or else

(B.10)

(B.11)

with

(B.12)

A(joa) Az(jw) A*z (-j(o),
X(jo,) 1. A2(jw) U*2 (-joo),

[X*(-j(o)lm, A*(-j(o) ALP,,

(rio) 1 A(jw a_ A2P2

Pl U* (-joo), A* (-joo)],

e U*(-o), *(-,o)].
The submatrices of P1 and P2 are coprime by construction, and hence P1 and P2
are outer [6, p. 190]. Hence (B.10) and (B.11) are just inner-outer decompo-
sitions. I claim that det A1 (det A2) is the greatest common inner divisor of all the
minors of largest dimension in the matrices (B. 10) and (B. 11). First, every minor
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of largest dimension of the left hand side has det A (det A2) as an inner factor by
the Binet-Cauchy theorem; hence det Ai (i 1, 2) divides the minors of the
right-hand sides. Moreover there are, by Theorem 3.2, analytic Mi and Ni such
that (for an appropriate topology),

(B13) limP|M|=l[]

i--> L JNi

Hence,

(B.14) lim det PllMil=l.g3
I

Now, the limit on the left-hand side of (B. 14) can be expressed homogeneously in
terms of the minors of highest rank in P1.

Suppose these minors have a common inner factor b. Then each det P
Ni

lies in 4H2 and hence the limit as well.
This contradiction proves that det A1 (det A2) is the GCID of all the minors

of largest dimension in the matrices (B.10), (B.11). But these are in fact the
greatest common inner divisors of the following collection: (suppose for definite-
ness n >_- m):

(for (B. 10))

(B.15)

[x*(-jo,)]m,
[Minors of order i in A*(-fio)]" [X*(-jo)]m-l,

Minors of order m in A*(-jo);

(for (B. 11))

(B.16) [Minors of order 1 in A(jw)]. [X(jOD)]n-l,

[Minors of order m in A(]o)].

Hence with det A1- b(]o)), we have

(B.17) det Az X(]w)"-"dp*(-flo)

and

(B.18) det Ul(-jw)=det U*(jw)=
L4*(-jw)J

Appendix C.
Proof of Proposition 4.1. The property is obvious for constant unitary

matrices. Next, 6(U) depends only on the entries in U, and because of (4.2) only
on an antisymmetric form of the entries. Hence it depends only on [det U]. Let
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6(U) f(det U). For all inner 4a, b2, we have

by (5.2) so that

f(det U)= [det U]k

for some k which must be a positive integer if functions of the type

2a0ufi(C.1) 1, P+P0*" a0 Rep0, flu 1,

are to have an analytic 6(. ). By (4.3) clearly k 1.
Proof of Proposition 4.2. We will show that dim Y( deg &, where Y(1

[UxH2,,]+/- and & =det Ua. For Ue ,, the map Udim (UH) is a monoid
hpmomorphism to the additive monoidof nonnegativ integers. Indeed, let

212 (U1U2Hm) and NlZ (12) Let i uin and { (i 1, 2); then
X H fl U f is a Hilbert space isomorphism mappipg12 onto
2. Now 2 is finite-dimensional (by hypothesis), and hence 1@2 also with
,the same dimension. It follows, for 12=1@[1@12], that dim12
dim 1 +dim 2.

Next, the homomorphism U 6(U) coincides with it on (i) the constant
unitary matrices and (ii) the unitary matrices of type (C.1). It is known [8] that
elements of the form (C. 1) generate the rational unitary matrices as a multiplica-
tive monoid. On the other hand, if 1 is finite-dimensional, then all one-
dimensional systems fP are finite-dimensional (their state space is in a
natural .way, embedded in 1) and hence are rational, since their nullspace
ij H2 can have neither an infinite Blashke product nor a singular part. With
all q rational, automatically is rational as well.

Proof of Theorem 4.3. We will reduce the proof of Theorem 4.3 to the
Theorem 13 of [2]. Let T, be the right shift acting in L-. The generator of T, is
d/dt, its Fourier transform multiplication by -], and the cogenerator [6, p. 141
ft.] in the HI space, multiplication by (-] + 1)(-]-1)-1. This amounts to
multiplication by (p-1)(p+ 1)-1 in H. The cogenerator of in HI is then
[(p- 1)(p + 1)-1]* acting in HI.

Using the conformal transformation z =(p-1)/(p+ 1), we have that HI is
isomorphic to the HI(T) space of the unit circle
2/(1-z)f((l+z)/(1-z)). Under this iomorphism, the cogenerator becomes
(z)*. The invariant subspace UzH] simply becomes 2
U2((1 + z)/(1 -z))H](T) U(z)H(T). We are now in the situation of Theorem
13 of [10], and conclude that the spectrum of the cogenerator of T is given by
those complex numbers A such that U(A)= U2((1 + )/(1-)) is not invertible,
and those A with lAl 1 such that U2((1 + z)/(1 z)) cannot be continued analyti-
cally across z A. The spectral mapping theorem says that, if A belongs to the
spectrum of the cogenerator, then (A + 1)/(i- 1) belongs to the spectrum of the
generator. Hence, Po spectrum of the generator if either -p is in the right half
open p plane and Uz(-p) is not invertible or po lays on the imaginary axis and U
cannot be continued across po.
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Proof ofProposition 4.4. Suppose A1 is roomy, and let UH AIH2,. We have
to show that U can be augmented to an inner function. Let the n U be
partitioned as follows"

(C.2) U=[ Ull ]U2
where U21 is (71- l)I and Ull is l I. Let us try to augment U to an inner V
supposing U roomy. Then V is of the form

g2](c.3) v=

U2 can be computed directly by spectral factorization [2, p. 111] U22U2*2
1,_- U2 U2*. Next U]2 can be obtained through

(C.4) UII U2 -[- U21 U2 0.

(Note Ull can always be chosen nonsingular (a.e.)). We have U2
-UI*-1U2*l U.2. Since Ull and U21 are roomy, we can find a b 6/4 such that
4 UI*-1U2"1 is analytic, and hence there exist a minimal (n 1) (n I) inner W
such that U*-1 U2"1 U2W is analytic. Hence,

(C.5) V[ II V] [ wll UIW-t0 U12 U22 W.
is analytic and produces an augmentation.

Prooj of Theorem 4.4. We have Al(fio)U-f(jtO)l=Al(jW)H VIH.
Hence 1 VIH. Next, let f (VeilS) +/- or VfK. Then S[= U. A*g for
some g K2,,, and U*2 Sf KZ,, so that S[ +/- 2 _L

2. This shows that (V2H,). =2.
Conversely, let f 6 - so that Sf J/I. or U*2Sf K2,,. Then there is a g 6 K2, such
that Sf U2g U2 A*2f. It follows that A2*f AVf K2,,. Now, let Vf h + h2
with h 6 K2,, and h2 6 H. Then g A*hl + A*h2 so that A*h2 6 K2,. For all
g 6 H2, we have (A*h2, g) 0 so that (h2, A2g) 0. Since 2 2AzH is dense in H.. we
have h2=0. It follows that VfK2 and f(VzH2)z. This proves that

V2H,,) The remainder of the theorem is based on Theorem 3.5 and the
fact that, for m= n, we have that det (A](-]o)) and det (A*(jo)) are outer.
Hence in U*2(-]o) wO’w)A(joo)= M2*(-]oo V(-]o)Ua(jo) one must have
det U(-]o) W(]o)] det V2(-]o) U(]o)], this. being the inner part of the
whole expression. It is not true in general that (i) 6(V2(p*)) GCID [n x n minors
of V] or that (ii) 6(2(p*))= 6(W(-p)).

Proof of Proposition 4.6. First, if f6/, then S(-]oo)f is analytic. Then
S(-]oo)f= W-(-]oo)S(-]w)f is analytic a fortiori. It follows that . Con-
versely, suppose there is an f’. Then W*(-jw)S(-jto)f is analytic. Let
S(-jto)f g + g2, g K2, g2 H2. We have W*(-jto)S(-jto)f
W*(-jto)gl + W*(-jto)g2. Hence W*(-jto)gl H2. Also, gl + g2

Uz(-jto) Az*(-jw)f, or Az*(-jto)f U*z(-jto)gl + U*z(-jto)gl. Hence, U*z(-fio)gl
H2,,. It follows that gl(-fio) H2 and gl(-jto)3-= W. H2,, as well as gl(-jw)3_
2 UzH2,. Since2 v .= H2,, gl 0, and S(-jto)f is analytic. Hence ’1,.
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Appendix D.
Proof 0]: Proposition 6.1. We show that if FI, then also F/. Or

equivalently, if S(-joJ)F is analytic, then Z21(-joJ)F is. If S(-joJ)F is analytic, then
so is S(SjoJ)S(-joJ)F and following, of course, also Z21(-jo)Z21(-]w)F. We show
that, if 21(-o)G is analytic, then so is G. Suppose not. Then there is a G1 such
that 21(-o)G1 is analytic with G1 conjugate analytic. It follows that Gl(-joJ) _1_

E21H2,,, and since Gl(-jo) is now analytic and Z21 outer, G 0. This shows that
lC ’1. If S is outer, then also ’lC.

Proof of Theorem 6.1. Let U. [A, A’I]r be a left coprime factorization for
1 with U inner (lossless) of dimension 2n 2n and [A, A’I]r conjugate
analytic. Since U and [A *1, A2*l] are right coprime, we have by Theorem 3.1,
analytic matrices Mi and Ni such that

(D.1) lim {Mi[A*ll, A*21]+NiU} 12n.

Postmultiplying this with [A (1, Afl]r we get

(D.2)

since

ll] lim {Mi + N/Z},
A21 i--,

[A*,, A2]
A2

=fAd*l, A21]UU A
A21(D.3)

;*; 1,.

It follows that [A(, All]r is both analytic and conjugate analytic, and thus
constant. Since it is of rank n, there is a constant unitary matrix C with

(D.4) [A
and UC. [1, 0]r is clearly also a left coprime factorization for N. It is clear that
UC has the form

s
(D.5) UC [1, 2]

21 22J
and that deg Z =deg S because Z and Za have exactly the same natural state
space.

Proof of Theorem 6.2. For brevity, we will call a 2n n matrix A "antipas-
sive" if AJA- 1, 0 in OLP.

We have

A1

where N is the cofactor for S. It is clear that
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is antipassive so that the O obtained from the minimal embedding with outer ’21
satisfies the requirements for being a factor. It will be the cofactor if we prove that,
for O1 such that

is antipassive and whose corresponding (E)2 is outer, there is a J-unitary passive
03 such that

(D.9) 01 O. 03.
Of course O3 O- 0 is well-defined the question is whether or not it is passive.
Clearly we have

so that, denoting

J[ 0o ]’

and the corresponding unitary

021 022-1

3 [0-11 0"12],0"21 0"22

we have

10, r ]’=A2 I-022" 0"21"

Since (D. 10) is supposed to be antipassive, it follows that 0"21’’-21 has to be analytic.
Since Y-,21 is outer, 0"21 has to be analytic as well. Also, 0"22 has to be analytic
because of the antipassivity of (D.10). From the fact that (R)1 19193, we deduce

+ X’Z120-11 (1 Wz-’220"l 1)-1’21 Z12(1 0-11’22)-1
(D.11) El

,- 0-12

0-21 (ln Y-220-11)- 1Z22 0"22 + 0-21Z22(1 0-11Z22)--1 O’12
Xl is analytic and such that (Xl)21 is outer, so that we can deduce that

(i) 0-21(ln--’"220"11)--1’z-’21 is analytic and outer,
(ii) 0"22(1 ’220"11)-1W/-220"12 is analytic,

(iii) Z120"11(ln--’220"11)-1 is analytic,
(iv) /-12(ln 0"11"22)-1 0"12 is analytic.
At this point we have to use two properties of outer functions (A, B and C are

n x n square matrices).
(a) Suppose A BC is analytic and either B or C is outer; then B and C are

analytic.
Proof. Suppose that B is outer. Then by Theorem 3.1, there is a sequence M

of analytic functions with limi_,oo MiB 1,. It follows that C lim_,oo MA must
be analytic.
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(b) Suppose that B and C are analytic matrices and that B and C are outer.
Then BC has to be outer.

Proof. A matrix A is outer if and only if its determinant is outer.
From (i) and (b) it follows that O’21(1. ’’-220"11)-1 is analytic and outer, so that

(D.12) 0"21 T(1. ’-’220"11)

with T outer. It follows that 1 K’z220"11 and also ’-’220"11 are analytic. From (iii) we
have that E120"11 is analytic as well. From (ii) /-’220-12 is analytic because 0-21(ln-
/-22o-11)-1 is outer, and we have that

120"12-- 12(ln O’1122)-10-12 120"1 l(ln /-220"11)-1.220"12
is analytic because of (ii) and (iv).

Now, z12 and -’22 belong to a minimal embedding of S, so they have to be
right coprime, for otherwise E2 Z]2 U, -22 "Y-2 Uwith E]2 and E2 analytic and

would be a minimal embedding with smaller determinant and hence with smaller
(generalized) degree. Thus, there are Mi and Ni such that

lim (mi.12 -}- Ni-22 ln,

and it follows that"

(D.13)
0"11 lim (Mi,120"11 -}-Ni’220"11),

0-12 lim (Mi’Y.120-12 + N/’220-12
i-+oo

are analytic. This proves the theorem.
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RELAXED CONTROLS AND THE CONVERGENCE
OF OPTIMAL CONTROL ALGORITHMS*

L. J. WILLIAMSON" AND E. POLAK$

Abstract. This paper presents a framework for the study of the convergenceproperties of optimal
control algorithms and illustrates its use by means of two examples. The framework consists of an
algorithm prototype with a convergence theorem, together with some results in relaxed controls
theory.

1. Introduction. Most optimal control algorithms construct a sequence of
controls whose correspondingcosts form a monotonically decreasing, converging
sequence. Because of this, it suffices to require that the sequence of controls and
initial states constructed have at least one accumulation point and that any
accumulation point of this sequence satisfies an optimality condition, rather than
to require that it converges.

In studying the convergence properties of nonlinear programming
algorithms, to which the preceding remarks also apply, it is assumed that the
sequence of points constructed by the algorithm remains in a compact subset of
R n. This guarantees the existence of an accumulation point. With the exception of
penalty function methods (which are not iterative procedures; see, for example
[1], [3], [11]), it has been common among inventors of iterative optimal control
algorithms to assure that the sequences of controls constructed remain in Loo-
bounded sets, and to show that any L2-accumulation point satisfies the Pontryagin
maximum principle or some relating necessary condition of optimality. (In the
absence of constructive, generally applicable necessary and sufficient conditions,
one cannot expect proofs of convergence to an optimum.) Unfortunately, there is
no mathematical basis for assuming that a sequence of controls in an L-bounded
set has an L2-accumulation point.

The purpose of this paper is to present and illustrate a convergence theory for
optimal control algorithms using iteration formulas of the form Ui+l A (ui), 0,
1, 2,..., where the u are the successively constructed controls and A is a
set-valued iteration function. This class of algorithms includes gradient and
gradient projection methods, feasible directions methods, strong variations
methods and so forth. (It does not include penalty function type methods whose
analysis requires a totally different approach). Our theory does not prove that
existing optimal control algorithms always construct controls converging to an
optimal control. This is clearly false. Instead, our theory examines the properties
of accumulation points of control sequences constructed by optimal control
algorithms. In particular, it shows that these accumulation points satisfy some
optimality condition for the relaxed problem. The optimality condition satisfied

* Received by the editors February 15, 1974, and in final revised form June 24, 1975. This
research was sponsored by the National Aeronautics and Space Administration under Grant NGL-05-
003-016, the National Science Foundation under Grant GK-37672, and the U.S. Army Research
Office--Durham, under Contract DAHC04-73-C-0025.

" Sandia Laboratories, Livermore, California.
$ Department of Electrical Engineering and Computer Sciences and Electronics Research

Laboratory, University of California, Berkeley, California 94720.
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differs from algorithm to algorithm. The theory is based on an extension of results
in [9] and on the use of a topology, based on relaxed controls [14], [12], [12a],
which ensures that accumulation points always exist for L-bounded sequences.

The theory found in Young 14], with some minor modifications, seems to be
the most appropriate one for analyzing optimal control algorithms. There were
two reasons for the modifications. The first is that Young specifies a priori a fixed
set U in which all controls must take their value. This is extremely inconvenient in
analyzing algorithms for problems without control constraints. We have therefore
changed a number of definitions to make them independent of such a set U. The
second reason is that we felt it very important to preserve a connection between
the old (L2f-)L) and new convergence results and have, therefore, modified
slightly Young’s definition of convergence of relaxed controls.

We illustrate the manner in which this new convergence theory is to be used
by means of two examples" an analysis of a strong variations algorithm due to
Mayne and Polak [7] and of the Pironneau-Polak dual method of feasible
directions [8]. The latter, as well as gradient methods, require the development of
a special directional derivative. Finally, in Appendix A, we give a short discussion
of the use of optimality conditions in the construction of optimization algorithms,
and in Appendix B, we establish the relation between the new and the old
convergence results.

2. Compactness properties of the relaxed optimal control problem. The
algorithms which we are about to discuss solve optimal control problems of the
form:

(1) min go(, u) -a-- Io
subject to the constraints

L(x(t, , u), u(t), t) dt + ho(x(1, :, u)),

d
(2) -tx(t,,u)=f(x(t,,u),u(t),t), [0, 1] a.e.,

(3) x(0, , u)=,

(4) gj(, u) --a hi(x(1, , u))-<_0, j= 1, 2,..., p,

(5) gj(, u) & hi() <- O, j p + l, p + q,

(6) u(t) Uc R for all [0, 1],

where f R" x R x [0, 1 R" and L R x R x [0, 1 R 1. The functions
j 0, 1,..., p + q, are real-valued, and u is assumed to be measurable.

The following hypotheses are commonly made, with T-a--[0, 1].
Assumption 1. The functions f R x R xTR" and L R" x R x T

R and their partial derivatives Of/Ox, OL/Ox xist and are continuous on R"x
R x T. The functions h R - R 1, j 0, 1, p + q, and their derivatives
Ohi/Ox, j 0, 1,..., p + q, exist and are continuous on R .

Assumption 2. For each compact fc R ’n, there exists an M> 0 such that
Ill(x, u, t)l[--< M(l[xll + 1) for all (x, u, t) R" x 1) x r and [If(x, u, t) -f(x’, u, t)]l -<
Mllx -x’ll for all x, x’ R", u f, t Z.
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With the original problem (1)-(6) we associate a relaxed problem, following
Young 14], as will be shown after the necessary definitions have been introduced.

As already pointed out in the introduction, the study of optimization
algorithms is substantially simplified when a number of definitions used by Young
[14] and Warga [12], [12a] are somewhat modified. This is done to avoid the a
priori selection of a compact set Uc R such that u T U, since an a priori
selection of a U contradicts the absence of constraints on u(t) in control
unconstrained problems. The reader is therefore cautioned that our definitions
differ from those of Young and Warga. However, the following results can be
deduced directly from those of Young [14] and Warga [12], [12a] and are
presented here, without claims of originality, so as to make the paper readily
accessible to the large number of specialists in computational methods who are
not familiar with the theory of relaxed controls.

DEFINITION 1. Let V be the set of nonnegative unit measures (probability
measures) on R and let TA [0, 1 ]. A relaxed control is any function v(. T V
with the property that for some compact set Uc R", the measure v(t) is wholly
concentrated on U for all T (this will be referred to as "v(. vanishes outside of
U").

Throughout the paper a relaxed control will be denoted by a boldface u or v
and an ordinary control (measurable function) by an ordinary u or v.

DEFINITION 2. Given a continuous function 4(’) defined on R and a
measure 06 V, we shall write 4r(0) for its integral in the measure 0, i.e.,

A4r(0)=n,, 4(u)dO, whenever that integral is well-defined. More generally, if
4(x, u, t) is continuous in (x, u, t), the symbol 4r(x, 0, t) denotes, for fixed (x, t),
the integral on R of )(x, u, t) with respect to the probability measure 0, i.e.,
4 r(X, 4 (X, U, t)

DEFINITION 3. A relaxed control v(- will be termed measurable if for every
polynomial p(u) in (the components of) u, the function pr(V(t)) n" p(u) dr(t) of

is measurable.
Remark. From Young [14, p. 290] it follows that if v(.) is a measurable

relaxed control and g(t, u) is a continuous function of (t, u), then the function
g,(t, v(t)) &n,, g(t, u) dr(t) of is measurable.

The relaxed problem is obtained from the original problem (1)-(5) by
substituting the cost

(7)
go(, v) Io L(x(t, :, v), v(t), t) dt + ho(x(1, , v))

for the cost (1), the differential equation

(8) (t)--fr(X(t), V(t), t) fR" f(x(t), U, t) dr(t),

for the differential equation (2), and the requirement that

(9) v(. vanish outside of U

for (6).
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We now give an existence and uniqueness theorem for the solution to the
relaxed differential equation (8). The proof is found in Young [14, pp. 291-292
and 298] where the theorem is proved under weaker assumptions.

THEOREM 1. Suppose that Assumptions 1 and 2 are satisfied. Then for any
measurable relaxed control v(. ), which vanishes outside some compact set U
and any initial state Xo, there exists an absolutely continuous function
x(., Xo, v) T- R" that is the unique solution to (8), satisfying x(O, Xo, v) Xo.

In our analysis, in addition to the relaxed optimal control problem, we will
also need associated multiplier functions, defined as follows.

DEFINITION 4. For j =0, 1, 2,..., p, let j(., s, v): T- R ", denote the
solution of

(10) (] t, , v, vt) ;t, , v), t)lj t v)= \-X /
X

OX/
(X(1, , V)),

where the superscript T denotes transposition and R" x R" x R" T R 1,
j=0, 1,...,p, is defined by

(12) t-I.(x, u, A, t) - A Tf(x, U, t)+ 6ioL(x, u, t),

where 6io is the Kronecker delta.
The relaxed optimal control problem leads to two crucial sequential com-

pactness theorems, as we shall shortly see. The first one of these two theorems is
due to Young [14], the second one to Warga [12a].

DEFINITION 5. A sequence {vi( )}7=0 of measurable relaxed controls con-
verges in the sense of control measures (abbreviated i.s.c.m.) to a relaxed control
(. if for every continuous, real-valued function g(t, u) defined on TR" and
every subinterval A of T the values Ja gr(t, vi(t)) dt converge to a gr(t, i’(t)) dt.

Notation. If {vi( )}, e K, converges i.s.c.m, to i’(. ), we denote that by
K

(.)-. (.).
The first compactness theorem which we need is proved in Young [14, pp.

301-303].
THEOREM 2. Let {vi( )}=o be a sequence of measurable relaxed controls

which vanish outside some fixed compact set U. Then them exists a relaxed control
(.) which also vanishes outside of U and a subsequence indexed by a set
K c {0, 1, 2,. such that vi( ) ,(. ).

Notation. Given a sequence of initial states {i}=o and a sequence of relaxed
controls {v( )}_0, we shall denote the corresponding sequences of trajectories
and multipliers (determined according to (8) and (3), and (10), (11), respectively)
by {xi( )}i=0, {/(" ", u,)}=o, j 0, 1,. p. We shall also use the notation x x
}’ to denote solutions to (2), (3), (8), (3) and (10), (11) corresponding to a
measurable control u or a relaxed control u.

Equation (1O) degenerates into an ordinary differential equation when u is an ordinary control.
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DEFINITION 6. If {(’, i, x i, h6,. h p)}i=o is a sequence of initial states,
relaxed controls, corresponding trajectories and corresponding multipliers such
that (} converges to , {vi} converges to rv i.s.c.m., {x } converges to 2 uniformly,
and {hi] converges to h-_uniformly, j 0, 1,. , p, then we denote this by (i, vi, x i,
,o,’’’, x)- (, ,, x, ,o,’’’, 2).

DEFINITION 7. (, , 2, ’.o,’’’, Ap) is called an accumulation point of
{(:, vi, x , ho, ,X)}=o if there exists a subsequence, indexed by some K

K
{0, 1,2,...} such that (, v, x , 2o,""", ,X) --) (, , , ,o,""", ,).

The second compactness theorem will be established as a consequence of the
following lemmas.

LEMMA 1. Let C, Ube arbitrary compact sets in RP, R ", respectively, and let S
be the set of measurable relaxed controls which vanish outside of U. Let g be a
continuous function from Rp R" T into Rq. Let Y(. ), "(. be continuous
functions from T into Csuch that yi(. converges to (. uniformly. Let {v( )}=o
be a sequence of relaxed controls that converges i.s.c.m, to a relaxed control (. ).
Then for each subinterval A of T,

(13) gr(Y/(’r), vi (’r), "r) d’r-. g(Y(’r), i’(’r), "r) d-r.

Proof. Follows immediately from Definition 5 and the uniform continuity of
g on CU T.

The following lemma found in Filippov [3a] will also be needed to establish
the second compactness theorem.

LEMMA 2. Let {yi(.)}, where I is some indexing set, be a collection of
absolutely continuous functions from T into R" such that {yi(o)}ieI or {yi(1)}i is
contained in a compact set of R n. Let functions Y T R, L be defined by

(14) Y(t)=lly’(t)ll+ 1.

If there exists anM> 0 such that [i(t)] _--< Myi (t), for almost all T, I, then the
set {yi(. )}ii is equibounded and equicontinuous. Furthermore, if I {0, 1, 2,. .},
then there exists a subsequence indexed by a setK {0, 1, 2, .} and an absolutely
continuous function ( such that yi converges uniformly to ( for K.

Now making use of Lemmas 1, 2 and Assumption 2 it is straightforward to
show that the following compactness result, due to Warga 12a], holds.

THEOREM 3. Let C and U be arbitrary compact sets in R n, R", respectively,
and let S be the set of measurable relaxed controls which vanish outside of U. If {(soi,
v, x, Ao, , A p)}i--o is a sequence of initial states, relaxed controls, corresponding
trajectories and corresponding multipliers such that {i}=o c C, {vi} c S, {sci} con-
verges to , {vi} converges to i i.s.c.m. 2 {x i} converges to 2 uniformly, and {A
conver_ges to A uniformly, j=O, 1,...,p; then 2(.)=x(-,:,re) and Ai(.)=
Ai(’, sc, ), j 0, 1,’’., p. Furthermore, given a sequence
{(’, vi, x i, Ao, ., Ap)}i=o such that {sci}i=o C and {v }i=o S, there always exists
a subsequence that satisfies the above hypotheses and conclusions.

If v - i.s.c.m., with {vi} c S, it follows that S also.
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3. Algorithm prototypes and convergence theory. The convergence
theorems which we find in [9], as well as in other sources, require that the limit
points of sequences constructed by .an algorithm lie in the domain of the
algorithm. Since this may not be true for optimal control algorithms, it is necessary
to modify the existing convergence theory just slightly. We now show how it is
done for the simplest case treated in [9]. The more complicated cases discussed in
[9] can be modified similarly.

The algorithm prototype below extends the algorithm prototype 1.3.9 in [9].
Let Z be a topological space, if" be a subset of Z, and Wbe a subset of if’.3 We use
two functions, the search function, A W2w, and the stop function, c" ff’
R 1. Finally, we let the set of desirable points, A, be a nonempty subset of if’. The
problem then is to find any point in A where it is assumed that we have some way of
recognizing points in A.

Algorithm prototype.
Step O. Compute a z W.
Step 1. Set i= 0.
Step 2. Compute a point y A (zi).
Step 3. Set z i+l

Y"
Step 4. If c(zi/l)>--_c(zi), stop; else, set + 1 and go to Step 2.
The proof of the following convergence results is the same as that of Theorem

1.3.10 in Polak [9], except that one uses sequences instead of closed balls.
THEOREM 4. Consider the above algorithm. Suppose that
(i) for every nondesirable Y. if’and every sequence ’i7=0 Wconverging to, {c(zi)}=o converges to c();
(ii) ]’or every nondesirable Y. if’and every sequence {zi}-=o Wconverging to

Y., there exists an infinite subset K {0, 1, 2,. .}, an integer N >- O, and a () > 0
such that

(15) c(z")-c(zi)<-_-6(y)<O li>-_N, fi6K, /z"6A(z).
Then, either the sequence {z}_-o constructed by the algorithm is finite and its next to
last element is desirable, or else it is infinite and every accumulation point in W of
{z }i--0 is desirable.

With the proper choice of Z, W and W this algorithm prototype and
convergence theorem can be applied to a large class of optimal control algorithms.
This will be demonstrated in the following sections.

4. A strong variations algorithm. In this section, we shall present a proof of
convergence for a strong variations algorithm developed by Mayne and Polak [7].
This algorithm is an "LfqL2 stabilized" version of a differential dynamic
programming algorithm due to Jacobson and Mayne [5]. Differential dynamic
programming algorithms are based on fairly complex relationships between
changes in Hamiltonians and changes in cost in optimal control problems. The
interested reader is referred to the book by Jacobson and Mayne [5], Mayne [6],
and to [7] for background material. The gist of these algorithms is generally as
follows. Given a control ui, an approximation to the optimal control, one

Prototype 1.3.9 in [9] applies only when W ’, and its convergence is established only in terms
of a normed topology.
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computes the corresponding trajectories and multipliers x"’, A’ by solving (2),
(10), (11). Then one constructs a Hamiltonian H(x"’(t), w, )t "’(t), t), where A ’ is a
certain convex combination of the A j, and is an approximation at the optimal
costate. By minimizing H with respect to w E U, one obtains an intermediate
function /i(t).4 For the algorithm to. converge, one now has to use a rather
complex way of constructing the next control, ui+l, by setting it equal to ui for
some points in T and to for some other points in T. The specific rule used in [7] is
derived from the Armijo [9] step size selection procedure commonly used in
nonlinear programming. Figure 1 will perhaps help the reader in understanding
the algorithm. Although strong variations (or differential dynamic programming)
algorithms are difficult to understand, they have two distinct advantages: (i) they
are computationally efficient, and (ii) they solve certain classes of problems which
cannot be solved by other algorithms. (In principle all optimal control problems
can be solved by means of penalty function methods, but, at least in our
experience, penalty function methods have been found to perform unacceptably
on quite a few occasions.)

The algorithm to be described solves the problem (1)-(6) under the addi-
tional restriction that the system (5) is replaced by sCo, that the functions hj 0
for j 1, 2,- , p + q, and that the set U in (6) is compact. In other words, our
initial state is fixed, and we have no initial or terminal inequality constraints.
Because of this, we will drop any reference to the initial state. In the discussion
below, we shall denote by G the set of measurable functions u :[0, 1] U.

aO(u) + ca2

cO(u)/2

A go(Ua,U)
e0(u),

0(u)/2

m(u)
FIG. 1. Variationo]" Ag0(u,, u)and Ago(u,,, u) witha

4 Thus we can think of these algorithms as being derived from the Pontryagin minimum principle.
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To insure that Algorithm 1 is well-defined, we need the following theorem
which is a consequence of the McShane-Warfield halfway principle 14].

THEOREM 5. For any u G, there exists a fi Gsuch thatfor almost all T,

(16) (t)60(u, t)AargminHo(x"(t), w, A(t), t). 5
wU

Next, let " G TR be defined by

(17) ISI(u, t)-a min Ho(x"(t), w, A(t), t),
wU

where Ho was defined in (12) and let 0 G - R be defined by

(18) O(u) a-- J0 [/-(u, t)-Ho(XU(t), u(t), A)(t), t)] dt.

For any u 1, u 2 G, let Ago(u2, u ) and Ao(U2, u ) be defined by

(19) Ago(u 2, u ) ___a go(U2) go(u )
and

(20)

[Ho(xl(t), u2(t), A(t), t)

-Ho(xl(t), ul(t), A(t), t)] dt,

where go is defined as in (1). (It is shown in [6] that Ao is, in a certain sense, a first
order estimate of Ago.)

Next, for every u 6 G, let/](u), i,n,,, and re(u) be defined, respectively, by

(21)

(22)

and

10(u) & {v G" v(t) 6 arg min Ho(x"(t), w, A(t), t) for almost all T};
wU

I", a--{t Zl ff-I(u, t)-Ho(x(t), u(t),A(t), t)<=O(u)}

Ho(23) m(u) a tx(I, ),

where/, is Lebesgue measure.
For every u e G and c e [0, 1 ], let I, be any subset of T having the following

properties.

(24)

(25)

(26)

(27)

(28)

Thus 0(u, t) is the set of minimizers.
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Next, for any u .G, for any a [0, 1], us G will denote a function with the
following properties:

(29) us(t) O(u, t), Vt

(30) us(t) u(t) Vt

Finally, let a G - 2t()’ be defined by

(31) a(u)={ala =max {/3 6[0, 1]lAgo(u,, u) <= ’O(u)/2, V/3’ [0,/3]}},
where u, G is any control that satisfies (29), (30).

ALGORITHM 1 (Mayne and Polak [7]).
Step O. Select a u G.
Step 1. Set i= 0.
Step 2. Compute x by solving (2), with
Step 3. Compute A o by solving the ordinary control versions of (10) and 11 ).
Step 4. Compute fi such that fii(t) U(fii, t).
Step 5. Compute O(u ) A,o(fi , u ) using (20). If O(u) 0 stop. Else go to

Step 6.
Step 6. Compute an a c (u).
Step 7. Set u+ us ,. Set + 1. Go to Step 2
Algorithm i constructs a sequence of ordinary controls. However in proving

convergence, we must use relaxed controls. Therefore with each ordinary control
u we associate a relaxed control which has the property that the measure n(t) is
wholly concentrated at u(t), i.e., (,(0).du(t)= 1 for all T. We then see that
Algorithm 1 defines a map A W 2w, where W is defined by

(32) W& {(u, x u, ,) u G}.

In other words, for any (u, x , i) W, the set A((ui, x i, )t)) consists of the
possible (+, x+, i+1) which the algorithm can construct from the given point
(ui, x i, ). We will now establish our convergence result for Algorithm 1 using the
theory developed in 2 and 3.

As before, let S be the set of measurable relaxed controls which vanish
outside of U. We also have to make the straightforward extension of the domain of
definition of functions such as 0, H, etc., to include relaxed controls.

For example,

O(u) & [/-(u, t)-Ho(X"(t), u(t), Ag(t), t)] dt

(33)
& | [min Ho(x"(t), w, A(t), t)-Ho(X"(t), u(t), A(t), t)] dt.

wU

The following lemma is proved in Mayne and Polak [7].
LEMMA 3. Let A W- 2w be the map defined by Algorithm 1. Then there

exists a c > 0 such that for all u G,

(34) Ago(u Ill) < [O(u)]2/C V(U’, u’’, x A’) 6 A ((u, xu, A))).
/uileoLEMMA 4. Let (u, x , )- (f, , o) where =o c S. Then 0(u) 0().
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Proof. This follows from Lemmas 3 and 4, the continuity of
minwc Ho(x, w, A, t) in (x, A, t), Lemma 1 and Theorem 3.

We can now prove the convergence result. Let W be as in (32), and let Z and
W be defined by

(35) Z= S x C,,[T] x C,,[T]

and

(36) w= {(u, xu, s},

where Cn[T] is the space of continuous n vector-valued functions on T, with the
uniform convergence topology. Let the set of desirable points, A, be defined by

(37) A {(u, xt, A))E /r 0(u) 0}.6

THEOREM 6. Suppose Algorithm 1 generates a sequence {(b/i, X i, ho)}i= 0", then
either the corresponding sequence {(ui, x ho)}i=o is finite, in which case the last
element is desirable, or it is infinite and every accumulation point in W (at least one
exists) is desirable.

Proof. The above Algorithm 1 is obviously of the form of our Algorithm
prototype. Letting W, Z, W and A be defined, respectively, as in (32), (35), (36)
and (37) and c be go, we only need to verify conditions (i) and (ii) of Theorem 4 in
order to invoke this theorem" (i) If (ui, x i, A)-- (1, , Ao) Lemma 1 immediately
implies go(Ui) go(fl). (ii) If (ui, x i, A[) + fit, 2, A-o) with 0() < 0, Lemmas 3 and 4
immediately imply that there exists an N> 0 such that

(38) (,(Ui’) -<-=<-<O,
2c 4c

Vi >= N, V(Ui’, X ui’, A ui’) e A ((ui, x i, A ))).
Thus Theorem 4 can be applied. The existence of at least one accumulation point
follows from the second half of Theorem 3.

5. A dual method of centers. We shall now consider an algorithm due to
Pironneau and Polak [8]. Unlike the algorithm presented in the preceeding
section, this one cannot be treated by simply cannibalizing its convergence proof
in L2 f’l L+. A special directional derivative must be developed for its analysis.

The algorithm in [8] solves the problem (1)-(6) under the restriction that
h0 0 and U R m.

Assumption 3. We will assume that f, L and hi, 1, , p + q, are such that
their partials up to second order with respect to x and u exist and are continuous in
(x, u, t) on the sets on which they are defined.

The following algorithm is derived from the F. John condition of optimality,
as explained in detail in [8]. It is called a "dual" method of feasible directions
because it uses multipliers. The "primal", Zoutendijk type methods of feasible
directions [9] are derived from the F. John condition in multiplier free form (see
[9]), and do not extend to optimal control problems, because the direction finding
problems become as difficult as the original problems.

6 It is shown in Appendix A that 0(u) 0 is an optimality condition.
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AGOIrrIaM 2 (Pironneau-Polak [6]) (/3 (0, 1) is a step size. parameter).
Step O. Compute a :o R and a measurable ordinary control u such that

hi(:)-< 0 for j=p+ 1,..., p+q, hi(x(1, :0, u0))_< 0 for j= 1,..., p..Set i=0.
Step 1. Compute z (, u g, x 0, ) according to (2) and the ordinary

control versions of (10) and (11).
Step 2. Compute Vgi(, u), j 0,. , p + q, according to

(39a) Vg](i, ui) (Aj(O, i, ui), @(X(" i, ui), ui(. ), A(’, i, ui), )),
j=0,1,2,... ,p,

(39b) Vgj(i, ui)=(Vhj(i), 0), j=p+l, p+2..., p+q.

Step 3. Compute/x(z i) - (/xo(z), ix,+q(Z)) Rp+q+l as a solution of

4(z) max /xihi(x(1, :’, u ))

P+q [[P+q 2

(40) + ]hj(i)_(1/N)n] jgj(i, U i)
j=p+l 2

P+q }2 i=l,O,j=O, 1,’’’,P+q,
/=0

where 11 denotes the L+m[0, 1]-norm.
Step 4. If (z i) 0, set (= i and a u and stop; else go to Step 5.
Step 5. Set

P+q

i)
P

(4) Z m(z)a(o, ’, u Z

(42a) ui(t, u)=- i(z i) OHf Ai(t, i, u
:o (x(t,’,u’),u, ,)

-i(42b) u (’) --/]i(. u (’)).

for all (t, u)6 Tx R’,

Step 6. Compute the smallest integer k, such that

Iomax { {L(x(t, i +%oi, u +,i), ui(t)+i(t), t)

-L(x(t, i, ui), ui(t), t)} dt; hi(x(1, i + flgto , u + fl’f,)), ]= 1, p;

hi(, + ktoi), j p + 1,’’’, p + q --- dp(z i) <= O.

Step 7. Set i+l:iql"[3k(.oi" set ui+l(’)--ui(’)nt-ki(’), and go to Step 1
Before proving any convergence results for the above algorithm, we must

develop some more theory to make the transition from ordinary controls to
relaxed controls. Again this is necessary because we want to study relaxed controls
which are accumulation points of a sequence of ordinary controls. In particular,
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we need to construct a special directional differential, and we develop a varia-
tional equation for this purpose. We first define the following functions which are
generalizations of the differentials for functions of ordinary controls.

DEFINITION 8. For any : R" and v a measurable relaxed control, let
Vgj(, v) TRmR"Rm, j=O,"" ,p+q, be defined by

(43a) Vgj(, v)(/, u) (Ai(0, , v), (x(t, , v), u, Ai(t, , v), t))

for j=0, 1,-..,p, and

(43b)

for j =p + 1,..., p + q, where &i and are as defined in Definition 4.
It will be shown in Theorem 9 that the Vgi(, v) are analogous to Loo gradients

(see (56), (57)).
DEFINITION 9. Let v be a measurable relaxed control, let , :’ 6 R", and let y,

y’ be continuous functions from TR" into R m. Then ((s% Y), (’, y’)), and I(,
will denote

(44)

and

(45)

((, y), (’, y’)),=(, ’)+ (y(t, u), y’(t, u)) dv(t) dt

I(:, y)l,-- (, :)+ Ily(t, u)ll2 dr(t) dt

where (.,.) denotes the Euclidean scalar product and II" denotes the Euclidean
norm.

DEFINITION 10. Let W and W be defined by

(46)
W=a {, v, x , A0,’" A )l where v is a relaxed control associated with

the ordinary control v, sc 6 R" and gj(, v) <- O, j 1,. , p + q}

and

(47)
if, a_ {(, v, x v, A;," , A)lv is a measurable relaxed control,

sCaR" and g.(, v)=<0, j= 1,..., p+q}.

DEFINITION 11. Let A, the set of desirable points, be defined by A=
{(, v, x*, A,. , A) ff’lthere exists multipliers/x, j 0, 1,. , p + q, such that
(i)/x _-> 0, j 0, 1, , p + q, (ii) Y.’__+g/xj 1, (iii)/xg(sc, v) 0 for ] 1, , p + q,

p+q
(iV) IEj=0 IdqVgj(, V)lv2 --0}.

Assumption 4. The set {(sc, u, x u, )t, ) wlg(, u)< o, y-- 1,..., p +
q}#.

The following definition is an extension of b in (40) to relaxed controls.
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iDEFINITION 12. Let z (, vi, x i, Ao, A 1," , Ap). Then

49(z i) =max /xihi(x(1,
(48)

=p+l

p+q

-(1/2) iVgi(,v) 2 i=l,ie0,]=0,1,’’’,P+q
/=o v’ ]=o

Thus Algorithm 2 defines a map A W W.
We can establish convergence properties only for bounded infinite sequences

{i, ui, xi, 0,’’" p+q} constructed by Algorithm 2. We therefore introduce an
arbitrary compact set Cc R" which will be assumed to contain {} and an
arbitrary compact set Uc R which will be assumed to contain {u(t)}, T. In
addition, we shall make use of an arbitrary compact set D containing C in its
interior, and we shall denote by S the set of measurable relaxed controls which
vanish outside of U.

LEMMA 5. Let {i}=0
(, , , o, ", hp). Then there exists a subsequence indexed by K c {0, 1, 2,. .}

K
such that (z’) (), where z (’, , x , o, p) and z
(,, x, 0,--" ,p).

Pro@ Let ’ be a solution to (48). Since {}io is contained in a compact set,
there exists a subsequence indexed by K c {0, 1, 2,...} and a e ep+q+l such

i% vp+qthat ,
i=o i 1, and i 0 for ] 0, 1, , p + q. By Lemma 1, we obtain

K
(z’)(Ef=, ih(x(1 ))+wp+" hi() P+q

.]=p+l -(1/2)12i=o iVg(, a)l). Now

{ = P+q

4,() >- h(x(, , )) + Y,
j=p+l

&hi(so:) (1/2)

Suppose the inequality is strict and let/ @0," , ip+q) be a solution of (48), for
z i, that gives 4(). Then we must have that

P+q

]-1-
p

/2ihi(x(1, sc’, Ili))d-]:p+ly" h(’i)-(1/2)
p+q

=0

2

)X4,(e).
But this implies that for sufficiently large K,. P+q

ihi(x(1, i,u))+ Z ihi(sc’)-(1/2)
j=l /=p+l 1=0

This is a contradiction of (48). Therefore,

P P+q P+q 2

(49) b(Y)=
j=l j=p+l

K
Thus

The following lemma can be deduced from an analogous result in [8].
LEMMA 6. Let ff’- R be defined as in (48), and let z if’ be arbitrary.

Then rk (z) <- O, and (z) 0 if and only if z A.
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LEMMA 7 (see [8]). Suppose that z W is such that b(z)<20 and that
/x(z) (/Xo(Z),’’’, IXp+q(Z)) is a solution to (40) for z i= z. Then

max Vgo(, u), Y I(z)Vg(, u)
j=O 2

(50) g(, u)+ Vg(, u),- (z)Vg(, u) ,]= 1,.-.,p+q
]=0 2

(zl-(/l,,2 (zg(, ul <0.

The following corollary to Lemma 7 is obtained by application of Lemma 1.
CooA 1. Suppose that z W is such that (z) < 0; then there exists a

(z) such that

max o(, v), E j(z)Vgj(, v)
j=O

(51) g(, v) + Vg(, v), 2 (z)Vg(, v) j 1,- , p + q
/=0

p+q 2

4(z)-(1/2) 2 (z)Vg(f,,) <0.
j=0

At this point we develop a set of variational equations defining a special
directional differential which we shall need to show that Algorithm 2 satisfies (ii)
of Theorem 4.

DEFINITION 13. For any R, any measurable relaxed control v, any
a e[-1, 1] and any y C[Tx R], let x(t, , v, a, y) denote the solution of

dGX(, , , , y)= d(x(t, , , , y), u + y(t, u), ) d,(t),
R

(52)
x(0, , ,, a, y)= .

The following results can be established by lengthy, but straightforward
calculations. For a proof see [13].

DEFINITION 14. For any R ", any measurable relaxed control v, any
a e[-1, 1], any y C[Tx Rm] and any 3R, let x(/)= x(t, , v, 0, y) and let
3x(x, 3, y, a) (.) denote the solution of

i(x, , y, )()= G(x(t), u, ) x(x, , y, )()

(53)
+--(x(t), u, ). y(t, u) d(t), e T,
Ou

and

(54) x(x, , y, )(0)= f.

Note. If z z, where z e W, then a/x(z) that is an accumulation point of {]d,(z i)} satisfies (50).
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THEOREM 7. There exists a K> 0 such that ]lc(t, : + 6, v, c, y)-
x(t, , v, 0, y)ll<_- K(I, I +118 11) fo all T, for all [-1, 1], for all C, for all
v S and for all R such that + D.

THEOREM 8. Let y(.) and x(.) be as in Definition 14. Then there exists an
M>0 such that ][6x(x, 6, y, a)(t)-(x(t, +, v, a, y)-(x(t, , v, 0, y)))l[
M(II6]+ 1])2 for all T,for all [-1, 1], for all C, for all v S, and for all

R such that + D.8

The following theorem is a consequence of Theorem 8.
THEOREM 9. Let L R x R xTR and R R 1, hi R R, j

1, 2, , p, be functions whose partial derivatives with respect to x and u exist and
are continuous in (x, u, t) up through second order; then there exists a P > 0 such
that for all a [- 1, 1], v S, C and such that + D,

L(x(t, +, v, a, y), u + ay(t, u), t) dv(t) dt

+ (x(1, +6, v, a, y))

(55)
L(x(t), u, t) dv(t) dt-(x(1))

(x(t), u, t), y(t, u)  v(t)

hi(x(1, sc+6s, v, a, y))-hi(x(1, , v, O, y))

(56) -c

where the A# ] 0, 1, 2,..., p, and/-//are defined as in Definition 4.
To relate Theorem 9 to Gateaux differentials in L2 71Loo, we observe that

Theorem 9 implies that there exists a P’ such that with gi defined as in (4), (5) and
Vg as in (43a), (43b),

(57) [hi(x(1, +a6, v, c, y))-hi(x(1, s, v, O, y))- a(Vgi(, v), (6, y)),l_-< P’c 2,
j=l,2,...,p

and

fo ((
R

L(x(t, + a6, v, , y), u + ay(t, u), t) dv(t)) dt

+ th(x(1, so+ c6sc, v, a, y))
(58)

fo (IR" L(x(t’ ’ v’ O’ y)’ u’ t) dv(t)) dt-4)(x(1))

a(Vgo(, v), (6, y)), _-< P’a 2.

Thus 6x(x, 6s, y, a)(. is a. kind of directional differential.
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DEFINITION 15. Let 0 R,1 (R C,[T]) C S- R be defined by

0(,, (, y), , v)

=maxtjo I_ ,(L(x(t,+,,, Y), U +y(/), t)

(59)
-L(x(t, , v, 0, 0), u, t)) dv(t)] dt; h(x(1, +a, v, a, y)),

d

j= 1,..., p; h(+a 8), j=p+ l, p+.q.
A i, h o, h iv)} Wbe a sequence con-PROPOSITION 1. Let {z }i=o ={( vi, x

verging to ( , , , ), with {v} S and ()< O. en there exists an
integer k() such that

p+q

(60) O(fl k(), E i()Vgi((, ), , )- k()(e) 0,
j=0

where () is an accumulation point of a sequence {(z’)} corresponding w {z}.
Proof. This result follows directly from the definition of Vgi(2), j=

0,...,p+q, Theorem 9 and the fact that by inequality (50), (Vgo(Y),-
+q

=o ()Vg(,))() and (Vg(), -vP+,_ =o (e)Vg(, )) () for all j
{1,---, p + q} such that g(, )= 0.

The following lemma is obtained by repeat utilization of Lemma 1.
LEMMA 8. Let {zi}=o a {(i, vi, x i, ho," h p)}i=o W be a sequence con-

verging to e ( , , h, h)), where {v’}oc S, {’}-o C, ana suppose that
a corresponding sequence of solutions to (48), {(zi)}=o, converges to a (). Then
for any a [-1, 1], there exists an infinite subset J(a) {0, 1, 2,. .} such that

(61 o , 2 (z)g(, ’,
(, o , (eg(,, ,.

j=0 =0

LE 9. Lel (v x o )}=o be a equence in converging o
( o’") ha aifie he hypohee of Lemma 8. Suppose ha
()< O. Then here exi a () < O an ineerM> 0 and an infinite ubeK
1, 2,- .} such that

(62) go(i+1, vi+l) go(, vi) < () Vi K, Vi > M,

where +1 and v+1 are, respectively, the initial state and the measurable control that
Algorithm 2 would construct from the control v and initial state .

Proof. For j 0, , 2,... p, let yi(t, u)= (OH/Ou)(x(t, ), u, hi(t, , ), t),
and let yi(t, u)= (OH/Ou)(x, t, , v ), u, h(t, , v ), t). Then by Proposition 1,
there exists an integer k()0 such that

olIR (L{x(t,@’k()

(el(o ,
=p+ ()

j=0

=o =o

-L(x(t, , , O, 0, u, 0 (t) t

0 ", 2 (eg(g, , ((e< O.
]=0
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By Lemmas 8 and 1 and inequality (63), there exists an integer M’ > 0 such that

L(x(t, i--[3k(z)o.) i, Vi, bl, [3 k(2), vi), tt-- flk(2)V (t, u), t)dvi(t) dt

(4 2 m(zl(l ,, 2 m(z

(z)

-L(x(t, ’, , O, 0), u, t) d(t) dt

N(4(z) < 0 Vi M", Vi e J(().
Now consider the control and initial state and the control+ and initial state

+ which Algorithm 2 constructs. The control+ is associated with

(65) u+( )= u( )+"(’("
and initial state by

(66) +=+ (’)w,
where k(z ) is the integer computed in Step 6 of Algorithm 2. It follows from (64)
that ’) (). Therefore by construction, we get

go(+,*-go(,0 (’, 2 m(z)g(, ), ’,
]=0

(67)
N (’(z) N((z)

Vi M’, Vie J(().
Since (z) (), there exists an integer M M’ such that

(68) gO(i+1, vi+’) go(’, vi) <= fl k)&(e) Vi >= M, Vie J(flg)),

which completes our proof.
We now give the main result of this section.
THEORZM 10. Let {(i, vi, x , Ao," Ap)}=o be a sequence of initial states,

measurable controls, corresponding trajectories and corresponding multipliers con-
structed by Algorithm 2. If there exist compact sets Cc R", U R" such that C
and u (t) U, T, for all O, 1, 2,. , then either the sequence is finite, in which
case the last element is desirable, or it is infinite and every accumulation point of this
sequence is desirable. Furthermore, at least one accumulation point exists.
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Proof. The above Algorithm 2 is basically of the form of our Algorithm
prototype. With W, W and A defined as in Definitions 10 and 11, c g0, we only
need verify conditions (i) and (ii) of Theorem 4 in order to invoke Theorem 4.
Lemma 2 immediately implies (i) and Lemmas 7 and 9 immediately imply (ii). The
existence of at least one accumulation point is guaranteed by Theorem 3.

Conclusion. The two examples we have included in this paper illustrate the
use of the new convergence results for optimal control algorithms. Many other
and much more complex algorithms can be analyzed in a similar way. The
interested reader can find further results in [9]. The net effect of our work is to
show that optimal control algorithms are very well-behaved, contrary to the
misgivings felt. by some theoreticians.

Appendix A. Optimality conditions in optimization algorithms. A careful
examination of nonlinear programming algorithms (see, e.g., [9, chap. 4])shows
that they are frequently derived from variants of some basic optimality condition.
For example, Rosen’s gradient projection method is based on the Kuhn-Tucker
conditions in standard form. The Zukhovidskii-Polyak-Primak method of feasi-
ble directions is based on the Kuhn-Tucker conditions stated as a multiplier free
constrained optimization problem. The Zoutendijk and Demyanov methods of
feasible directions are based on the F. John condition stated as a multiplier-free
min,max problem, and the Pironneau-Polak method is based on the F..John
conditions stated as a max problem with multipliers, which also happens to be the
dual of a multiplier-free min-max problem. Many more such examples can be
cited.

The same phenomenon holds true in optimal control algorithms, as illus-
trated by the two algorithms presented in this paper. We shall now show the
relationship between the optimality conditions 0(zi)=0, (Zi)---O used in
Algorithms 1 and 2 with the relaxed minimum principle.

TIaF.ORFM A. 1 (the relaxed minimum principle). If u is optimalfor the relaxed
optimal control problem (7), (8), (9), (4), (5) and x" is the corresponding optimal
trajectory, then x"(1) satisfies (4), xU(0) satisfies (5), u(. satisfies (9), and there
exist a scalar , o and a costate trajectory , ", with ()t o, & ,,( t)) O, such that , o >__ 0
and

(A. 1) -A"(t) -A (x"(t), u(t), t) x
with

p

(A.2) A"(1)= Z mVh/(x"(1)),
j=O

p+q
(A.31 X"(0)=- Y /xiVhi(x"(0)),

]=p+l

where txj>-O for j=O, 1, 2,...,p+q, Ixjhi(x"(1))=O for j--l, 2,...,p,
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pqhj(x"(O)) 0 for j p + 1,. , p + q, and for all admissible relaxed controls,

AH(x"(t), u(t), u(t), (t), t)

(A.4) - ,L(x(t), u(t), t)+(’(t), fi(xU(t), u(t), t))

-(AL(x(t), (t), t)+(A(t), fi(x(t), (t), t)}) N 0.

Now consider Algorithm 1, which solves the fixed initial state, free terminal
state problem. Since (see (33)) O(z)0 for all admissible z and since whenever
O(z) < 0, the algorithm will construct a z’ resulting in a lower cost, it is clear that if
z is optimal, then O(z) 0. The relationship of O(z) 0 to the relaxed maximum
principle is as follows.

THEOREM A.2. Consider the optimal control problem solved by Algorithm 1
with the accompanying assumptions. Suppose that W is defined as in (36) and that
z =(u, x, h) is such that 0(z)=0", then h o satisfies (A.1) with h 1, h(1)
satisfies (A.2) with o 1, i=0, j= 1,...,p and (A.3) with =0, j=
p + 1,. , q, and for all admissible relaxed controls fi,

(A.5) AH(x"(t), A "(t), u(t), (t), t) dt O.

Thus, O(z)= 0 is seen as an integral form of the relaxed maximum principle.
Now consider the problem solved by Algorithm 2. Again by construction, it is

clear that (z) 0 (see (40)) is a necessary condition of optimality. Its relation to
the relaxed minimum principle is as follows.

THEOREM A.3. Consider the optimal control problem solved by Algorithm 2,
with the accompanying assumption. Suppose that W is defined as in (45) and that
z (u, x, Ao, -,A) is such that (z) =0, and let i(z), j=0, 1,...,p+q be
computed according to (40) Then the costate A (t) p:o i.(z)A(t) satisfies (A.1)
with A= o(Z)0, (A.2) with i i(z), j=0, 1,..., p, and (A.3) with

(z), j p + 1,. , p + q. Furthermore,

(x"(t), u, t)+ (x"(t), u, t)x"(t) du(t) dr= O.

Thus the condition (z)=0 is seen as a weak, or "differential," form of the
relaxed minimum principle.

Appendix B. Convergence in Lz and i.s.e.m. We will now present the link
between the convergence of a sequence {u } of controls in L[0, 1] L[0, 1] in
the L2-norm and the convergence of the associated sequence of measurable
relaxed controls {u}, in the sense of control measures. We first give the definition
of almost uniform convergence of measurable function defined on a closed
interval T.

DEFINITION B.1. A sequence of measurable functions, {u( .)}o, is said to
be almost uniformly convergent to a measurable function a(. if for each > 0
there is a setE in Twith (E) < 6 such that u( converges uniformly to a(. on
T/E.

The following theorem is found in Bartle [2, chap. 7, p. 75].
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THEOREM B. 1. If a sequence of measurable functions, {Hi( )}i0, converges to
a measurable function (. in the L2-norm, then there exists a subsequence which
converges almost uniformly to ft(. ).

In the standard L2 theory of convergence of optimal control algorithms, one
assumes that the sequence of measurable controls {Hi( .)}=0 constructed by an
optimal control algorithm, has a subsequence which converges in the L2-norm to a
measurable function t7 (.). Theorem B. 1 shows that when the above assumption is
made, it is automatically assumed that there exists a subsequence of {u’(.)}=o
which converges almost uniformly to the function t7 (.).

The following theorem shows that almost uniform convergence of measur-
able controls implies i.s.c.m, convergence of the associated measurable relaxed
controls.

THEOREM B.2. Let {ui}i=o c L[0, 1]fq Loaf0, 1] be a sequence of uniformly
bounded measurable controls which converges almost uniformly to gt, and let

’[:,=o, ’ be associated measurable relaxed controls. Then v converges i.s.c.m, to .
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BEHAVIOR OF OBSERVATIONS OF LINEAR
CONTROL SYSTEMS*

ROGER C. McCANN

Abstract. Given two linear control systems with reachable sets Rl(t), R2(t), respectively, and a
constant matrix M, directly verifiable necessary and sufficient conditions are obtained for the
coincidence Rl(t) MRz(t) for all >0.

1o Introduction. Consider a pair of linear, autonomous control systems
described by

(1) 2(t)=Ax(t)+u(t), u(t) U,

(2) ))(t) By(t) + v(t), u(t) V,

where the dimensions are n and m, respectively, and the constraint sets U, V are
polytopes; i.e., U and V are each the convex span of a finite number of points. The
reachable set and controllability space of (1) are

Rl(t) e-aSu(s) ds measurable u "[0, t]

and

(-91 linear span of U+AU+. +A n-1U.
The reachable set Re(t) and controllability space qg. of (2) are defined analog-
ously.

An observed (linear, autonomous) control system may have various state
space representations, as in

(t) Ax(t) + u(t), u(t) U,

z(t) mx(t).

In interesting cases, the elements A, U, M and possibly even the dimension of x
are not given in advance. Common to all descriptions of the observed system are
the sets MRI(t), >0. (As the control functions u(t) are not necessarily given in
advance, one cannot necessarily identify the observations z(t).)

It is natural to inquire into the following question: given two such systems,
what conditions on the data A, B, U, V, M1, M2 are necessary and sufficient for the
coincidence

(3) MIRI(t) MzRz(t) for all >0.

As a first step, the case M1 I M2 has been studied in [3] and [4]; and the
case that M1 I and M2--M has linearly independent columns (i.e., x Mx is
one-to-one) is treated in [1]. In the latter case, (3) holds, if, and only if,

(4) U=MV

* Received by the editors March 17, 1975, and in revised form July 18, 1975.
? Department of Mathematics and Statistics, Case Western Reserve University, Cleveland, Ohio

44106.
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and
(5) AMy MBv for all v 2.
If M does not have linearly independent columns, then (4) and (5) are sufficient,
but not necessary, for (3) as the following example shows.

Example 1. Let n=l, m=2, A=[-2], B=
0

m=[2,2], U=

[-2, 2] and V be the parallelogram in R with vertices
0 0

A

simple calculation shows that R(t)= MR(t) for all >0, but AM MB on

This ppr trts th nt stg o th problem, in that I and2 is
llod to rprsnt a singular mapping. ssntil to th studyo this problem ar
th olloing properties o rachabl sts, sa, o system (1): th limit theorem

RI(t)
(6) lim U

t_,0

and the additive formula

(7) Rl(t + s)= Rl(t)+ e-AtRl(S)
[2, Proposition 1 and Lemma 1].

2. Results.
LEMMA 1. Let S R be a polytope and M an n x m matrix. Then

(i) MS is a polytope,
(ii) ifz is an extreme point ofMS, then there is an extreme point x ors such that

Mx z,
(iii) ifm n andMis nonsingular, then x is an extreme point ors if, and only if,

Mx is an extreme point of MS.
Proof. Since S is the convex span of its extreme points {x l, x2, , Xk }, MS is

the convex span of {Mx1, Mx2,’", MXk}. The assertions follow directly.
LEMMA 2. R l(t) MR2(t) ]or all > 0 if, and only if, there is an a > 0 such that

e-Atu-- Me-ntVfor all 6[0, a). In particular, if Rl(t) MR2(t) for all >0, then
U= MV.

Proof. Suppose that R(t)=MRz(t) for all t>0. Applying the addition
formula (7) we have

(8) R(t)+e-atR(s)=Rl(t+s)=MRz(t+s)=mRz(t)+me-tRz(s)
for all t, s >0. Since all summands in (8) are compact and convex and Rl(t)
MR2(t), we conclude that e-AtR(s)=Me-mR2(s) for all t, s>0. Applying the
limit theorem (6) we have

e-Atu lim e -At
RI(s___) lim Me-B’ R2(S_____) Me_B,V

s0 S s--)0 S

for all > 0 and

U lim
s--0

R,(s)
sO

R(s)
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Now suppose that e-Atu--Me-Btv on an interval [0, a). Let tl (0, a) and
u "[., tl] U be measurable. Then there is a measurable function v [., tl] V
such that e-ASu(s)=Me-BSv(s) for every s[0, tl]. Hence Ioe-ASu(s)ds--
Mto e-nSv(s) ds. It follows that MR2(t) Rl(t) for every (0, a). The opposite
inclusion is proved in a similar fashion. Thus R(t) MR2(t) for every 6 (0, a).
Then (8) is valid for all t, s > 0 such that + s < a. A simple induction using (7)
yields the desired result.

LEMMA 3. Suppose thatR l(t) MR2(t) for all > O. If u is an extreme point of
U, then there exists an extreme point v of Vsuch that e-Atu Me-tvfor all > O.

Proof. Let W denote the set of all extreme points of V. For each s-> 0, the
extreme points of Me-SV are among {Me-nSw’w W}. Also e-aSU is an
extreme point of e-asu for each s =>0. Since e-asu= Me-BSV on a nonvoid
interval [0, a), we have that for any s [0, a) there is a w e W with e-ASu
Me-Sw. Since there are only finitely many points w in W, we conclude that, for
some v W, e-ASu Me-Sv holds for infinitely many s [0, a). By analyticity
e-aSU Me-USv for all s R 1.

LEMMA 4. If U R and v Rm are such that AJu MB for ] =0, 1,
2,. , m, then Aiu =MBY for ] =0, 1, 2, .

Proof. We proceed by induction. Suppose that Au MB for some ] _-> m.
By the Cayley-Hamilton theorem, B may be written as a linear combination

h=O ahB for some coefficients ah. Then

AJ+ u AMBer A . ahMBhv A ahA hM1)
h =0 h =0

rn--1 m--1 m--1

ahnh+lMv , ahMBh+lv=MB ahBhv
h =0 h =0 h =0

MBBV MB+lv.

It follows that AJu MB for ] 0, 1, 2,. .
THEOREM 5. Let {Ul, //2,""", Uk} be the extreme points of U. Then Rl(t)=

MR2(t) for all t>0 if, and only if, there exists" a>0 and extreme points
v2, Vk} Of V such that, for 6 [0, a],

(i) {Me-vi i- 1, 2,..., k} are all the extreme points of Me-BtV,
(ii) Au MBi for l, 2, k and j=O, 1, 2, m.

Pro@ Suppose that Rl(t) MR2(t) for >0. Since U has only finitely many
extreme points, the existence of points v with property (i) and such that
--At -Btl)e u=Me for t>0 follows directly from Lemma 3 Then for i=

1,2,-.. ,k,

.d
Aui (-1 )(e-a’Uidd

=0 =0

.d
(-u)’-(Me-ntvi) MBiv.

Now suppose properties (i) and (ii) hold. By Lemma 4, we have AJu MBv for
1, 2,’.’, k andj=0, 1, 2,.... Hence for any t->0,

_Atl,li
(- 1)iA it (- 1)iBJt

ui M ’ vi = Me-Btvi.
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Then

e-atu conv {e -Atui 1, 2,- k} cony {Me-Btv 1, 2,. , k}
Me-ttV

for every => 0. The desired result now follows directly from Lemma 2.
COROLLARY 6. Let vi be as in Theorem 5. If Rl(t) MR2(t) for all t>0, then

]:or 1, 2,..., k andS=O, 1, 2,...,

AiMv MBivi
Proof. From Theorem 5 (ii) we have ui Mti when j 0 and MBivi Aiui

AiMvi for j 0, 1,. , m. The desired result follows from Lemma 4.
It is of interest to determine when conditions (4) and (5) are necessary for

Rl(t) MR2(t) for all >0. In what follows, Vwill denote the convex span of Vl,
v2,’", Vk, where the vi are as in Theorem 5.

LEMMA 7. Suppose Rl(/)= MR2(t) for all >0. Then every v V can be
written in the form v w + W2, where W Vr and w2 ker M f"l V- I7"] (i.e.,
Vc V+ker M).

Proo[. Let v V. Since {Mv 1, 2,- , k} are the extreme points of MV,
there exists a l, a2,’’-, ak -> 0 such that Y_I ai 1 and My i=laiMvi. Set
w i= aiv and w2 v wl. Evidently w I7" and w ker M 71 V- I7"].

THEOREM 8. Suppose Rl(t) MR2(t) ]:or all >0. Then AM=MB on c2 i]:,
and only if,

(9) Bi(ker Mf’I[V- Q])c ker M

forj=O, 1, 2,..., m.

Proof. Let v V. Then v wl + we where Wl 6 Q and we M [V- I7’]
(Lemma 7). Suppose (9) holds. Then for 0, 1, 2,. , m we have

AiMv AiMw +AiMw2 AiMw
and

MBiv MBiwl +MBiw2 MBiwl.
it follows directly from Corollary 6 that AiM MB on I’. Hence AiMv
AMWl MBiw MBiv. This proves AiM MB on V for j 0, 1, 2, , m.
Let w c2. Then w i- aiBiwi for some w V and a 6 R 1. We have

m--1 m--1 m--1

MBw= aiMBi+wi aiAi+lMwi=A aiAiMwi
j=O =0 =0

m--1 m--1

A , aiMBiwi AM , aiBiwi AMw.
=0 =0

Now suppose AM--MB on ce. Since V 2, AM MB on V. Suppose that
AiM MBion V. Then, for every v e V,

MBi+lv MB(Biv) AMBiv AAiMv Ai+lMv.
It follows that MB AiM on V for j 0, 1, 2,. . Since Q V, we also have
that MB AiM on V- Q. Let w (ker M 71,[ V- Q]). Then 0 AiMw, since
w e ker M, and AiMw MBiw, since w V- V. Hence MBiw 0. This verifies
(9).
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Henceforth R3(t) and 3 will denote the reachable set and controllability
space of the control system

(10) (t)=By(t)+v(t), v(t).6 /.

LEMMA 9. IfRl(t) MRz(t) forall >0, thenMR2(t) MR3(t) fo.rall >0.
Proo]:. Since {vi’i 1, 2,..., k} are the extreme points of V, we have

conv{Me-BSvi’i- 1, 2,..., k}=Me-B" for every s0. Also, by Theorem 5
(i), conv {Me-Sv" i= 1, 2,..., k} Me-ZV for every s in an interval of the
form [0, a). Hence for every s [0, a), we have Me-ZV Me-ZQ. Let < a. For
every measurable v [0, t] V, there exists a measurable Vl [0, t] Q such that
Me-v(s)=Me-Vl(S) for every s[0, t]. Then M’oe-v(s) ds
M e-v(s)ds. This proves MR2(t) MR3(t) for all t6[0, a). The opposite
inclusion is proved similarly. Hence MR2(t) MR3(t) for all 6 [0, a). An induc-
tion argument using the addition formula, (7), yields the desired result.

Assembling the properties of V we have
THEOREM 10. Suppose R(t)= MR2(t) for all >0; then there is a polytope
V such that
(i) the extreme points of V are extreme points of V,
(ii) Rl(t) MR3(t) for all >0,
(iii) U MV,
(iv) AMy MBv for all v 3.
Proof. Only (iv) remains nproved, and it follows directly from Theorem 8.
It should be noted that V need not be unique.

Nxample2. LetA=[1],B=
0

,M=[1,0], U= [-1,1] and Vbethe

(1) (1)(-1)(-1)AshortcalculationshowsthatsquareinR with vertices
1 -1 1 1

e-AtU=Me-V fr all t>O’ that Me-t(1 =Me-(1) -t

-1
=e and that

1
Me-

1
e Thus could be chosen as the convex of v and

(1) (1) (-1) (-1) Therearefourv,where v=
1

or v= _1 andre= 1 orv= 1
choices for .

If v is an extreme point of V and My is an extreme point of MV, it is not
necessarily true that Me-’v is an extreme point of Me-’V.

Nxample3 LetA=[2],B=[2 ]0
,M=[1 -1], U [-1,1] and Vbe the

square in R a with vertices
0

A short calculation shows that

Me-BtV [_e-t -t] --At _,(1,,o/ -2, () -,
,e =e U, Me =e and Me-nt =e

Me_nt(0) is an extreme point of Me-tV for all t>0, while Me-nt(1) is an
-1 __0

extreme point of Me-tV only when 0.
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A BOUNDARY VALUE CRITERION FOR SEMIPASSIVE
HILBERT PORTS*

L. P. D’AMATO" AND A. H. ZEMANIANt

Abstract. Necessary and sufficient conditions on the boundary values of an operator-valued
analytic function Y defined on the open right half-plane are given which ensure that Y is the Laplace
transform of the unit-impulse response of a linear time-invariant causal semipassive Hilbert port.
Similar results are also obtained for the more restricted case where the Hilbert port is linear
time-invariant and passive.

1. Introduction. The theory of linear passive systems encompasses various
facets of a number of physical phenomena such as the dispersion of nuctear
particles, the behavior of electrical networks and viscoelasticity. A recurrent
theme in that theory is the characterization of a system function that is the Laplace
transform of the unit-impulse response of such a system. See, for example,
[1]-[10]. One way of doing this is by using the boundary values of the system
function on the imaginary axis. Beltrami and Wohlers [1, Thm. 3.17] have
established the principal result in this direction for the case where the system is a
linear time-invariant passive n-port. The present work extends the result of
Beltrami and Wohlers in two directions. It merely requires linearity, time-
invariance, causality and semipassivity, this being a weaker set of restrictions than
linearity, time-invariance and passivity. It also allows the system function to take
its values in the space of continuous linear operators in an arbitrary complex
Hilbert space;in other words, it encompasses Hilbert ports [10, 4.2].

2. Some preliminary considerations. Let and be two topological linear
spaces. IV//; 7/’] will denote the linear space of all continuous linear mappings
supplied with the bounded topology. We will also employ at one point a weaker
topology, namely, the pointwise topology of [0-//; 7/’]. For definitions of these
topologies, see 10, p. 208]. According to this notation, if H is a complex Hilbert
space, [H; HI is the space of continuous linear operators in H supplied with the
uniform operator topology. (. ,. denotes the inner product for H. On the other
hand, (f, b) denotes the value that a distribution f assigns to a testing function b.

(H) is the space of smooth (i.e., continuous derivatives of all orders)
H-valued testing functions on the real line R; (H) is assigned its customary
Schwartz topology 10; p. 50]. When Hhappens to be the complex plane C, (C)
is denoted by . b is the customary testing-function space of smooth complex-
valued functions of rapid descent on R; too has its usual topology [10, p. 66].
Thus if A is any complex Banach space, [; A] is the space of all A-valued
distributions ori R and [; A is the space of all A-valued tempered distributions
on R.

* Received by the editors February 4, 1975. This work was supported by NSF Grant GP
P033568-X001.

Computer Services Directorate, Naval Air Test Center, Patuxent River, Maryland 20670.
$ Department of Applied Mathematics and Statistics, State University of New York at Stony
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J will denote the immittance operator of a Hilbert port; in particular, R is a
mapping of (H) into [@; H]. The linearity, time-invariance and causality of
are defined in the customary way [ 10, pp. 93, 112 and 196]. As for semipassivity
and passivity, we have the following definitions. is called semipassive on (H) if
for every v@(H) and for u=v, we have that (u(-), v(. )) is Lebesgue
integrable on R and

Re (u(t), v(t)) dt >=0.

is called passive on (H) if in addition
T

Re | (u(t), v(t)) dt >=0

for every T R. Thus the passivity of T on (H) implies its semipassivity on
@(H); however, the converse is not true in general [10, p. 151].

The following are known facts about an operator T from (H) into [@; H].
If is linear and semipassive, then it is continuous. If is linear and passive, then
it is causal. is linear, continuous and time-invariant if and only if it is a
convolution operator y ,, where y is an [H; H]-valued distribution on R that is,
v is the convolution product y v for at least every v (H). Moreover, s3 y
is causal if and only if the support of y is contained in the semi-infinite closed
interval [0, ). (Proofs of these results are given in [1 0, 5.10, 5.1 1, 8.2 and
8.3].)

We shall make use of a representation due to Hackenbroch [2, Thm. 3.6],
which can be stated as follows. (An integral sign without limits, as in (2) below, will
denote an integration over all of R.)

Proposition. 92 is a linear, time-invariant causal semipassive mapping on
(H) if and only if 92 y ,, where
(1) y PD’6 +j(O)DP-6 +jl+-DP(jl+).

k=0

Here, n is a finite nonnegative integer. P [H; H] and P (-1)+P,, where the
prime denotes the adjoint operator, p 2 rn, where rn is a positive odd integer. 6 is
the delta functional. D denotes kth order generalized differentiation. 1/ is the
function on -oo< < oo equal to 1 for t_->0 and to 0 for < 0. j is the [H; H]-
valued function on R defined by

(2) j(x) f dPn e ’"x,

where P, P is a positive-operator measure on the Borel subsets of R. That is, P
maps each Borel subset into a positive member of [H; H] and satisfies the
customary axioms for an operator-valued measure (see [10, p. 26]). j l+ denotes
the function t--)j(t)l+(t).

Moreover, is a linear time-invariant passive mapping on (H) if and only if
.= y *, where y is given by (1) with the additional restrictions that n 1, p 2
and Pk is a positive operator for k 1.
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3. An exchange formula. [ and will denote, respectively, the direct and
inverse Fourier transforms of any tempered vector-valued or scalar-valued
distribution f, where g(t) e -i’’ dt is taken as the form for the classical Fourier
transform of a function g. Our objective in this section is to establish the exchange
formula

1
(3)

where as before denotes convolution.
The generalized derivative DP of the positive-operator measure P is a

distribution in low; [H; HI] defined by

(DP, O)= f dP,fl(n), 0

Indeed, the integral on the right-hand side exists for every 0 6 5e and satisfies the
following inequality 10, 2.2]

(4) <= P(R) sup 10(r/)

(Here, I1" denotes the norm in [H; HI.)
Therefore we may apply the definition of the distributional inverse Fourier

transformation to DP to obtain

By virtue of 10, Thm. 2.5-2], we may interchange the order of integration to get

1 IIdt ein’O(t) 1
dP, g-L-_ (], 0).

2at

Thus ] 2rDP, or equivalently, )’= 2rrDP [; [H; H]].
It is also a fact that

where Pv(1/i’q) is the pseudofunction defined by the Cauchy principal value of
-i (4) d, 4)6 . [9, p. 18]. Therefore we may formally write

(5) 2---1 (]., rl+)()=(Dpn),[.rr6(rl)+Pvi_]..
Obviously, (DP) has a sense and is a member of [; [H; H]]. On the other
hand, by the customary definition of a convolution,
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where 4 . We wish to show that the right-hand side has a sense and that
(DP.) Pv(1/in) is a member of [; [H; HI].

Set

(6) q,(rt) (pv .1--, ck(rt + o)).
q, is a regularization and is therefore a smooth function. Moreover, by the
definition of Pv(1/irt),

f_, (f_-I(7) q(rt)
b(rt + o)- b (rt)

do + + do.
io

Clearly, the first integral on the right-hand side has a bounded support. Also, for
each rt, the second integral is bounded by

(8) sup 14,(t)l

where In is the intersection of the support of b(rt + with the complement of the
interval between -1 and 1. Therefore that second integral in (7) tends to zero as

Irtl--> c. These results show that (DP,, q,(rt)), which is equal to dPn(), exists
and is a member of [H; HI.

Next, replace by and & by in (6) and (7), where k 1, 2,- .. Assume
that 0 in . By the standard property of a regularization, the first integral in
(7) tends to zero uniformly on every compact interval. Moreover, there is a single
interval containing the support of the first integral for every value of k. On the
other hand, the bound (8) shows that the second integral tends to zero uniformly
on R. Therefore so too does . The estimate (4) now implies that (DP,, ())
0 under the uniform operator tgpology. So truly, (DP,) Pv(1/i) is a member of
[; [H; H]]. Thus, by (5), 1+ also exists as a member of [; [H; H]].

We next note that j is a bounded strongly continuous function on R and may
therefore be multiplied by 1+; moreover, jl+ is a member of [; [H; H]]. (See
10, 8.10]). Therefore we may apply the distributional Fourier transformation to

We are finally ready to establish (3). For any 0 ,
(j+, 05=(11+, 5 j(x)(x) dx dx dPn inX(x).

By [10, Thm. 2.5-2] again, we may interchange the order of integration to get

IodPn dxO(x) e inx dn(l+(x e inx,

This proves (3).
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4. A realizability theorem. In view of our preceding results, we may apply
the Fourier transformation to (1) to obtain

(oo) (io0)kPk +(ioo)p-lj(o)+ l---[1--(io)P](f * i+)(O).
k =o 2r

This may be converted into the following expression by using (5) and the facts that
j(O) P(R) and p is two times an odd positive integer.

(9)

This result coupled with the proposition yields the following.
THFORFM 1. 92 is a linear time-invariant causal semipassive mapping on

(H) if and only if --y *, where the Fourier transform of y is given by (9).
Furthermore, is a linear tirne-invariant passive mapping on @(H) if and only if
92 y ,, where the Fourier transform of y is given by (9) with n 1, p 2 and P1
being a positive operator.

Other realizability theorems can be obtained by taking the Laplace transform
Y of (1). See [10, Thms. 8.10-2 and 8.12-1]. In this case, Y is an [H; H]-valued
analytic function on H and has the following representation for each sr in the open
right half complex plane C/.

(10) Y(C) , PgC + f dPn 1 ip-1

:o . ’- it/
sr C+.

Every [H; H]-valued analytic function Y on C/ having the representation (10)
will be called semipositive*, and it will be called positive* in the special case where
n 1, p 2 and P1 is positive. Thus 92 has the properties indicated in the first or
second sentences of Theorem 1 if and only if 92 y ,, where the Laplace transform
of y is either semipositive* or positive*, respectively.

5. A boundary value criterion. We can in turn obtain necessary and suffi-
cient conditions for Y to be semipositive* or positive* by characterizing the
boundary values of Y on the imaginary axis in conjunction with a growth
condition on the half-plane C/.

An [H; HI-valued analytic function F on C/ will be said to be of polynomial
growth if, for every closed half-plane Ca ={st :Re ’_->a>0}, there exists a
polynomial Pa (depending in general on a) such that

for all sr Ca. It is a fact that every such F is a Laplace transform with a region of
definition that contains C/, and, conversely, every Laplace transform whose
region of definition contains C/ is of polynomial growth 10, 6.5].

We will need two lemmas. Their proofs are much like that of the first theorem
in [1] and are therefore omitted.

LEMMA 1. Letf [; [H; H]] and assume that the support off is contained in
[0, oo). Then f has a Laplace transform, whose region of definition contains C.
Moreover, as o" 0 +, F(r + f in the bounded topology of [; [H; HI].
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LEMMA 2. Let F be an [H; H]-valued analytic ]:unction on C/ ofpolynomial
growth. Assume that, as tr- 0+, F(o" + converges in the pointwise topology of
[; [H; HI]. Then the limit is f, the Fourier transform of the inverse Laplace
transform of F.

Now, assume that Y is semipositive*. Then Y is a Laplace transform on C/
and is therefore of polynomial growth. Moreover, the inverse Laplace transform y
or Y has the representation (1) and therefore satisfies the hypothesis of Lemma 1.
So, as cr - 0+, Y(o" + converges in the bounded topologyof [5; [H; H]] to the
Fourier transform (9) of y. Conversely, assume Y satisfies the hypothesis of
Lemma 2. Assume furthermore that its boundary value on the imaginary axis has
the form (9). Then by Lemma 2, that boundary value is the Fourier transform of
the inverse Laplace transform y of Y. Consequently, y has the representation (1),
and Y is semipositive*. Similar arguments hold in the special case where Y is
positive*. Thus we have proven our second realizability theorem.

THEOREM 2. Y is a semipositive* [H; H]-valued function if and only if Y is
an [H; H]-valued analytic function on C+ of polynomial growth and, as cr
0+, Y(tr + converges in the pointwise topology of [0; [H; H]] to a limit having
the representation (9). This theorem remains true when we replace "semipositive*"
by "positive*" and let n 1, p 2 and P1 be positive in the representation (9). It
also remains true when "pointwise topology" is replaced by "bounded topology".
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CONTROLLABILITY SUBSPACES AND FEEDBACK SIMULATION*

MICHAEL HEYMANN

Abstract. The concepts of input chain and controllability chain are introduced, and the structure
of controllability subspaces of a linear system is investigated. It is shown that the input and control-
lability chains are the fundamental feedback invariants of a linear system.

The feedback simulation problem (a generalization of the feedback equivalence problem) is
defined and solved.

1. Introduction. Consider a time-invariant, linear multivariable system

E Yc Ax + Bu,

where x [n and u Em (m =< n) are, respectively, the state and control vectors,
and A and B are constant real matrices with B of full rank. Assume E is con-
trollable and let

E’ ,= A’z+ B’w

be another controllable linear system where z e Nn’ and w [m’ (tn’ =< n’) are the
state and control vectors for E’, and A’ and B’ are also constant and real matrices
with B’ of full rank. Suppose there exists a triple (F, G, T) of real matrices, where
F is m x n, G is m x m’ and T is n’ x n such that the system

Yc (A + BF)x + BGw,

y= Tx

has exactly the same input-output behavior as the system ’; that is, given that
x(O) O and z(O)= O and given any input function w(t), then the responses
z(t) and y(t) are identical for all >__ O. It is then said that I2’ can be (feedback)
simulated by I2. The class of all controllable systems E’ which can be simulated
by a given controllable system E is called the simulation orbit of E and is denoted
O{22}. In view of the controllability condition imposed on elements in O{2}
and the rank condition on B (and B’) it is readily verified that E’e O{E}, if and
only if there exists a triple (F, G, T) with G of full column rank and T of full row
rank such that

T(A + BF)= A’T,
(1.1)

TBG B’.

Let E{E} denote the subset of O{E} consisting of all elements E’ O{E}
for which n’= n and rn’= m. The relation E’eE{E} is then an equivalence
relation (that is, E eE{E}, E’eE{E} implies E eE{E’}, and E’eE{E} and
E"eE{E’} implies Y"eE{E})and E{E} is an equivalence class. Accordingly,
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two systems Z and E’ have been calledfeedback equivalent if and only if E’ e E{E}.
The problem of characterizing E{E} for any given controllable linear system E
was first solved by Brunovsky [1] who showed that E{E} is uniquely and completely
determined by a list of positive integers called the controllability indices of E.
Subsequently, this problem received a great deal of attention in the literature and
various authors studied the relation of the controllability indices to other concepts
in linear system theory (see, e.g., [2], [3], [4] and [5]).

An interesting and more difficult problem than that of characterizing E{E},
is that of characterizing O{Z}. This problem has not been treated in the literature
to date and is one of the main objects of the present paper.

In our initial examination of the feedback simulation problem, it became
apparent that a major role is played by certain "chains" of subspaces which are
uniquely specified by the given parent system ;. Central therein is the concept of
controllability subspace, first introduced by Wonham and Morse in [6]. While
this concept was originally defined in connection with a specific regulator synthesis
problem (that of decoupling with pole assignment), it has since become increasingly
evident that controllability subspaces are major building blocks in a variety of
synthesis problems of linear feedback systems and, in fact, have a direct bearing
on the "structural modifiability" of a given linear system (see, e.g., [4], [7]).
Nevertheless, it seems that many questions pertaining to the structure of control-
lability subspaces remain as yet unanswered, and their properties are still not
very well understood.

In [2], it was shown that there is a close relation between the controllability
indices and the controllability subspaces of a given system E. Specifically, it was
shown that given a controllable system E, the state space can be decomposed
into a direct sum of singly-generated controllability subspaces whose (ordered)
list of dimensions is precisely equal to the (ordered) list of the controllability
indices of E. However, although this list of dimensions has been shown to be
uniquely specified by the system (and is actually a complete invariant for E{E}),
the decomposition itself has no uniqueness properties and many decompositions
with the same dimension list can, in general, be exhibited. This fact strengthens
the suspicion that in the study of feedback (in contrast to realization theory),
direct sum decompositions of the state space into singly generated controllability
subspaces are not the "right way" to split the system into its elementary structural
components. Still, one might expect that some kind of decomposition (or partial
decomposition) of the state space into controllability subspaces would be unique
and invariant under feedback.

It will be shown in the present paper that there exists a natural "chain"
of controllability subspaces, called the controllability chain, which is uniquely
specified by the underlying system and is invariant under feedback. It will also be
shown that the controllability chain is strongly related to another natural chain
of subspaces called the input chain, which is also unique and feedback invariant.
Moreover, the two lists of dimensions of the subspaces in these chains are in
one-to-one correspondence and each is derivable from the other. These dimension
lists are also in one-to-one correspondence with the list of controllability indices
of the system and hence are each a complete invariant for E(E). Much of the paper
is devoted to a study of the structure of the input and controllability chains and
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their properties. The results are then applied to the solution of the feedback
simulation problem.

2. Notation. The field of real numbers will be denoted E. Script capital letters
M, of, ,... will denote finite-dimensional vector spaces over E with elements
b, x, y, The dimension of of will be denoted dim (of). The vector space spanned
by a set of vectors {Xl, x2," .} will be denoted sp {xl, x2," "}. The zero vector,
zero space,.., will be denoted 0. Capital Roman letters A, B,... will be used to
denote linear maps. (While no notational distinction will be made between a map
and its matrix, it will be clear from the context whenever reference is made to a
matrix.) If M’Of---, is a linear map, we denote the image of M by Im (M),
the nullspace ofM by ker (M), and if of is a subspace, then M’ ____a sp {y IY

Mu, u g}. The restriction of M to ’ will be denoted M[q/, the codomain
being taken as M#. If of and M/Z q/, then the codomain of M[’ will be
understood to be q/. A sequence of subspaces {i}i=, uTli of, is called a chain
in case U Ui+1 for all >= and is denoted [k’i]. The least integer k for which
gk /j ’k for all j > 0 is called the length of the chain, and the subspace q/k is
called the limit of the chain. Sometimes we will denote a chain [’i]] to emphasize
that its length is k. If M of is a subspace, we denote by /(M) the class of all
linear maps M" of---, of for which Im (M) M. Finally, for an integer k > 0,
we write k ___a {1, 2, ..., k}.

3. Preliminaries. Let E be a given linear system and let of [" and ’ m
denote the state and input spaces, respectively. Henceforth A and B will be generally
regarded as linear maps rather than matrices, and denote M Im (B). Write

(3.1) (AIM)g=M+ AM+ + Ai-IM, i= 1,2,....

It is readily noted that the following simple relations hold"

(3.2) (AIM), M + A(AIM),_ I, 2, 3,...,

(3.4) (AIM),+j (AIM),,, j 1,2,....

Hence, the sequence {(AIM)i} is a chain which we call the fundamental
chain of E. The length k of the fundamental chain then satisfies k =< n, and we
denote by (AIM) its limit which is simply the controllable subspace of E. The
following lemma summarizes some immediate consequences of (3.2) and (3.3).

LEMMA 3.1. Let A’Of - of be a linear map and let U of and M of be any
subspaces. Then for any , ////(M) the following hold"

(i) (AIMi (A + lMi, i= 1,2,...,

(ii) <A + fi-I>,+, <Al>i+, + <AIM>i, i= 1,2, ...,
(iii) <A + 21/>i+1 = <AIM>i ifand only if

<AI’/>i+I <AI>,.
By definition [6], a subspace of is a controllability subspace of E,

provided there exists a linear map F" of such that (A + BFI f-) M).
Clearly, for any map F, Im (BF) M, and it is also well known (see, e.g., [8])
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that if " f f is any linear map such that //(), then there exists a map
F’f ---, q/such that , BF. Hence, the system E is completely specified (in so
far as controllability subspaces are concerned) by the pair (A, ), and from now
on we regard a linear system as such a pair. A subspace c f is then a control-
lability subspace of (A,), whenever there exists a map ,2. ///() such that
(A + 21 N )= .

The following lemma is elementary.
LEMMA 3.2. Let A’Y" f be a linear map and let and c be

subspaces. Then there exists l() such that / ker (A + ) if and only

Proof If ,2. exists, then AY/ M is immediate. Conversely, assume A ,
and write f for some subspace c f. Let P be the projection of
f onto M along Y. Then PA e ///(N) and c ker (A PA). [3

THEOREM 3.3. Let (A, ) be given and let l be a subspace. Then l is a
controllability subspace of (A, B) if and only if given any such that
@ ( N ) , there exists , g(t) so that t (A + 11 N ).
Proof. The "if" part is immediate since g(//) c ///(’) for any c ’. To

prove the "only if" part, assume is a controllability subspace. Then there
exists 2 g() such that (A + 21 n ). Let satisfy /" ( n )

and write f 03 6e for some subspace 6e c . Let P be the projection
of onto n along 03 6e. Then P$ E //( n ) so that by (i) of Lemma
3.1,

<A + 2- P21 N 5 <A + (I- P)21 N >
and it is readily noted that Im (I P)$ c . Iq

We conclude this section with two well-known and important facts, the proof
of which can be found, e.g., in [7].

THEOREM 3.4. Let (A, 9) be given and let b be any vector. Then for an
integer k > 0 there exists (9) such that (A + )kb--0, /f and only if
Akb (Al>k.

THEOREM 3.5. Let (A, ) be given. Then the class C(A, ) of controllability
subspaces in (AI) is closed under subspace addition. Hence any subspace
6e (AI) contains a unique supremal controllability subspace.

4. The input and controllability chains. In the present section, we will
investigate some basic properties of the fundamental chain of a linear system
(A, ’).

Fix an integer k __> l, and consider the class of all subspaces / c ’ that
satisfy

(4.1)

It is readily verified that this class is closed under subspace addition, and hence for
each k _>_ 1, there exists a unique supremal subspace of ’ for which (4.1) holds.
Accordingly denote

(4.2) ___a sup {( I(AI(>+ (AI>},
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and consider the sequence {’k}" This sequence is clearly a chain, since

and hence c +a for each k >__ 1. We call this chain of subspaces the input
chain of (A, ). The following theorem summarizes several interesting propertie
of the input chain.

THEOREM 4.1. Let (A, ’) be a given linear system. Then there exists a unique
chain of subspaces [k], k C7. , called the input chain of (A, ), with the following
properties"

(i) for each k >_ 1, 3k satisfies (4.2);
(ii) the input chain is feedback invariant, i.e., it is the same for all systems

(A + 2, ), 2 //();
(iii) the length of the input chain is the same as the length of the fundamental

chain, and lim []
(iv) set o 0 and for each k >_ 1, let = dim (). Then for k >= 1,

k-1

(4.3) dim (<AI>) k. dim ()
i=0

Proof (i) follows from the definition, and (ii) is an immediate consequence of
Lemma 3.1. To see (iii), let k* be the length of the fundamental chain. Then
<Al3>,+x <AI’>,, so that , and consequently, lim [’] ’ and
s <= k*, where s is the length of []. That s k* is an immediate consequence
of the definition of k* and (4.1). To see (iv), first note that it trivially holds for
k= 1. Assume now that (iv) holds for all k-1,2,...,t-l, and write

t t for some subspace t c . Then

At-<Al>t At- aM + <Al>t-1 + <Al’>t-x,

and hence

dim (<AI>,) dim (a’-1,) + dim (<Al>t-1)
t-1

dim (,t) + dim ((Al>t-1) dim (’)
i=0

as required.
In view of the feedback invariance of the input chain of (A, ), it is clear that

the sequence {yi}, where the y’s are defined as in Theorem 4.1 (iv), is also feedback
invariant. We call this sequence the input list of (A, ) and denote it sometimes by
{7}s to indicate that we refer to the truncated sequence {71, ’s}-

Let (A, ) be a given linear system, and let ( c be any subspace. For
each integer k > 0, define

(4.4) /k() & sup {// c /l(Al0//)k+l c

Clearly, k() is uniquely determined for each k and the sequence {k()}
is a chain. We call this chain the (A, M)-induced chain of . It is readily noted that
//k() r f) k, and hence the length s(U) of the (A, )-induced chain of
is less than or equal to the length of the input chain of (A, ). Define yo(/) 0,
and for each k > 0, let Vk() ___a dim (k(’)). The list {Vk(/)} is called the (A, )-
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induced list of /’, and the integer Lm(#" defined by

s()

Lm(/’) __.a i[y,(/) Y,-
i=1

is called the (A, )-cover dimension of /. We will see that the cover dimension
is the least dimension which a controllability subspace of (A, ) must possess
in order for to be contained in
there always exist controllability subspaces containing f whose dimension
equals the cover dimension. However, while the cover dimension is uniquely
determined by , it is not true, in general, that there exists a unique controllability
subspace containing with this dimension. Subspaces with this property are
quite special and we will return to this question later.

An immediate consequence of the definition of cover dimension is the follow-
ing.

LEMMA 4.2. Let (A, ) be given and let and be subspaces of. If/
properly, then L(/’) < L(t).

We now have the following.
THEOREM 4.3. Let (A, ) be given, let /" 9 be a subspace, and let be a

controllability subspace of (A,) such that /" . Then dim(A)=> L(/).
Moreover, if e ///() is any map such that t (A + ,[t f’l ), then dim ()
L(/) if and only if the following two conditions hold"

(i) f’l ,
(ii) (A + $lt/(]))k+ (A + "[)k for all k sm(//’), where [//(0)] is the

(A, 3)-induced chain of
Proof First observe that L(W) can also be expressed as

L(W) s(/) dim ()
s()-

i=0

Let $ e///(’) be any map such that (A + $1 n ), and let [/k], be the
input chain of (A +/, /). Then by Lemma 3.1, c (), and hence dim ()
__< dim(()) for all k > 0. Also, (,(N), so that >__ s().
Consequently,

(4.5)

dim ()= dim (<A +/]l f] ))>_- dim (<A +
t--1 t--1

t. dim () dim (’k) t. dim (/) dim (k())
k=l k=l

s(/’) dim (/’)
s ()

2 ),k(/’) Lm(/’).
k=O

Assume now that dim (N) L(/). Then also L(N f’l N) dim (N), and hence
by Lemma 4.2, (i) must hold. By (4.5), dim (N) L(U) also implies that dim ()

dim ((N)) for all k, and hence (N) for all k. But this together with
(i) implies that (ii) holds. Conversely, observe that (i) and (ii) imply that dim ()
=< L(), so that equality must hold. I-]

THEORFM 4.4. Let (A, ) be given, and let U be any subspace. Then
there exists a controllability subspace 1 such that U 1 and dim () Lm(U).
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Proof Let [//()] be the (A,)-induced chain of U. First note that
(Ala())2 c and hence Aa() c . By Lemma 3.2, there exists //()
such that ()= ker(A + 3,). Setting 1 (A + 3.1()), it follows that
dim (1)= L(())= 7(U)- 7o(U), and by Theorem 4.3, x ().
We proceed by induction on k and assume there exists A /(M) such that

k-1 =A (A + 1/_ ()) satisfies dim(k_ 1)= L(/_ ())=x i(i(/’)
-i-()). Write ()

_
1() * for some * c , and let v’, ..., v’

be a basis for *, where q ’k() k- 1(). Let $is ///(M) be chosen according
to Theorem 3.4, and denote (A + ]ilsp{v’}), i= 1,..., q. Then
dim ()=< k, and by Theorem 3.5, the subspace k ____a k-1 + #1 +’’" + Cq
is also a controllability subspace of (A, ). Moreover, /() c k and

dim (k) <- dim (tk-1) + dim
i=1

<- L(k-,()) + k(k(t/’) /k-1(//’))= L(k(’)).

Combining the last inequality with Theorem (4.3) completes the proof. []
Consider now the fundamental chain [(Al)k] of a linear system (A,).

By Theorem 3.5, each subspace (Al)k contains a unique supremal controllability
subspace , and it is clear that the sequence {} constitutes a chain. We call this
chain of controllability subspaces the controllability chain of (A, M). It is quite
natural to expect that there must be a fundamental connection between the input
chain and the controllability chain. This is indeed the case, and we devote the
remainder of this section to an investigation of the controllability chain.

LEMMA 4.5. Let (A, ) be given and let > 0 be any integer. Assume there
exists i ///() such that (A + ,[t)t+ (A + ilt),. Let [’] be the input
chain of (A + 2, ’). Then ’ k for all k t_, and hence dim ((A + 2lt))

L(,).
Proof. That for all k t, , *k k, is an immediate consequence of Lemma 3.1

Also, (A + $1,),+1 (A + .]), implies that (A + "]k)k+, (A +1
for all k < t. Hence k C ’, and we have ’ k for all k t. Combining this
fact with Theorem 4.3(ii) yields that dim ((A + lt)) L(), and the proof is
complete.

LEMMA 4.6. Let (A, ) be given and fix k > O. Let be any controllability
subspace in (Al)k. Then k, and hence dim () =< L(k).

Proof. If is a controllability subspace, then A c + , and hence
(al)j+l , + (A[)j for all j > 0. Consequently, = (Al)k implies

<AI f-I >k+l <AI>+x + <AI> <AI>,
so that f’) c k.

If f3 : k, let k satisfy f’l k ( ’ k, and let v 1,’", Vq
be a basis for /. For each vi, let i satisfy Theorem 3.4 and let gi _a

(A + il sp {vi}). Then #i (Alk) for all _q, and the controllability subspace
*=+#1 + +#q is also in (Al)k. Moreover, * fq=k. The
proof will be completed by showing that dim (*)= L(k) and then since

*, it will follow that dim()__< L(k). Let /() satisfy *-
(A + [k)- By Lemma 4.5, we will be done ifwe can show that (A + [Mk)k +
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(A + [/)k *" Write ,ik f k for some subspace k C .. Then
surely (A + [k)k+l c (A + .19k) + (A + [9k)k Assume there exist
vectors u(A + fi’lMk)k+l, ve(A + [Nk)k and we(A + [Nk)k such that
u v + w. Clearly both u and v are in 9*, so that also w e N*. But, if w :/: 0, then
for some integer j > 0, (A + }/w (AIM)k, a contradiction. Hence w must
be zero, and the proof is complete.

For a given system (A, ), a collection ofcontrollability subspaces 9 1, "’", ’k
is called compatible [7], if and only if there exists ft. e ’() such that Ni
(A + [i n > for all i k.

We now state the main result of this section.
THEOREM 4.7. Let (A, ) be a given system and let [] be its controllability

chain. Then
(i) for each k > 0, n ’;
(ii) for each k > 0, is the unique controllability subspace which contains

k and has the (minimal) cover dimension L(k);
(iii) the controllability subspaces 5e, 52, of the controllability chain are

compatible and hence induce a unique partial decomposition in (A, ).
Proof By Theorem 4.3, a necessary condition for a controllability subspace

containing k to have dimension Las(Y3k) is that

and

<A + 21>+ <A + 21> <AI>
for some //(). By Theorem 4.4, such a controllability subspace indeed
exists. By Lemma 4.6, L() is an upper bound on the dimension of controllability
subspaces in <AI>. Hence by the supremality of , (i) and (ii) follow.

While (iii) is a consequence of results in [7], in view of the fact that the form
a chain, (see, in particular, p. 245 therein), we shall give a detailed proof for the
sake of completeness.

Let s be the length of the input chain []. Then for any
(A + IN)+I (A + fi-lN) by Lemma 3.1. Hence /] e g() can surely be
chosen such that <A +/]IN,>, and -1 <A + IN,->-. We
proceed by induction and show that if 5fs," "., +1 are compatible, then so are, ..., . Accordingly, assume that e ///() satisfies

and define

@ <A + 21>j for j s,s- 1,..., k + 1,

sup { c N+ II<A + 21>+1 = <A + 21+ l>k}"

If is the supremal controllability subspace of (A + J, k+ 1) which is contained
in (A + "lk / l>k, then n k/ ’ an there exists #(k / 1) such
that =(A++Jl’>k+l =(A+j+’3-I’>k. Now by Lemma 4.5,

’ k, and hence . Since , ’(k+ 1) //(j) for all j > k + 1,
the feedback invariance implies the desired compatibility result, and the proof is
complete. 1--I
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Remark 4.8. The dimensions #k of the controllability subspaces are given
by

k

(4.6) # j(/3- 3_ ),
j=l

where [j] is the input list of (A, ). Hence, the list [#] is in one-to-one correspon-
dence with the input list, and each can be computed .from the other. We call the
list [pj] the controllability list of (A, ). As can be expected (and will be seen in the
next section), this list is also in one-to-one correspondence with the list of control-
lability indices of (A, 5) which so far have been considered to be the fundamental
feedback invariants of a system (A, 9). Yet, while the controllability list is tied
with a unique and naturally defined chain of controllability subspaces, the list of
controllability indices is associated with a (somewhat) arbitrary direct sum
decomposition of (A[) into singly generated controllability subspaces. As will
be seen later, it seems much more natural to regard the input list or the control-
lability list as the fundamental feedback invariants of which the list of control-
lability indices is a derived quantity.

Remark 4.9. Property (ii) of Theorem 4.7 deserves some special attention.
Since the class of controllability subspaces (A, ) is not closed under subspace
intersection, there do not, in general, exist infimal controllability subspaces which
contain given subspaces. Indeed, even the are not infimal elements in the class
of controllability subspaces which contain the g.

Theorem 4.7 yields a number of immediate corollaries which were some of the
results of the recent paper by Warren and Eckberg [9].

COROLLARY 4.10. Let be any controllability subspace of a given system
(A, ), and let k k(l) be the least integer such that k. Then

k _<_ dim (9) __< /k.

Proof That dim (9)=< Pk is immediate since 9 c and dim ()= #k.
If dim (5) < k, then

for some ,2. ///() and hence c , a contradiction with the minimality of
k.

COROLLARY 4.11. Let (A, 9) be given. Iffor some k, dim () < k- 1, there
exists no controllability subspace t such that dim (_ 1) < dim (9) < k.

Proof If dim () < k, then

_
1. Hence dim () =< dim (_ 1). l-!

COROLLARY 4.12. Let (A, 9) be given. If for some k, dim (-1) < k, then

-1 is the unique controllability subspace of (A,) that satisfies
dim (9) L(9k_ ).

Proof If for any controllability subspace of (A, ), dim (#t)< k, then
#t c

_
(Alga)k- 1. By the supremality of

_
in (Alga)k- 1, uniqueness

of dimension follows.

5. Splitting decompositions. It is well known [73 and is also an easy consequence
of Theorem 3.3, that if 91,’", is any collection of linearly independent
controllability subspaces of a system (A, ), then this collection is compatible.
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If (R) (AI> is a direct sum decomposition of (AI> into linearly
independent controllability subspaces, it does not necessarily follow, however,
that (1 f’) M) O) O) (k f’) M) M. Conversely, if 1 ff O) k M is a
direct sum decomposition of M, it does not necessarily follow that there exists a
direct sum decomposition of (AIM into controllability subspaces ,..., k
such that i f’l for all e k. Accordingly, we have the following"

DEFINITION 5.1. A direct sum decomposition q... @ k (A[) of
(AI) into controllability subspaces is called a split (or splitting decomposition)
of (AIM), if and only if( f’l g) @ (k f’l M) . A direct sum decom-
position 1 of is called a split of , if and only if there exist
linearly independent controllability subspaces ’, ..., k such that fq M
for all e _k.

The interest in splitting decompositions is self-evident since, in effect, a split
corresponds to a decomposition of the system into a set of completely independent
subsystems. Hence, splits should be of interest in connection with "decentraliza-
tion" problems. For one instance in which splitting decompositions (into two
subsystems) received some attention, the reader is referred to [10].

In the present section, we shall characterize splitting decompositions and
investigate some of the consequences of their existence. In particular, we shall
examine the connection between the controllability chain and the corresponding
controllability list, and the decomposition of the system into a direct sum of singly
generated controllability subspaces and the controllability indices.

THEOREM 5.2. Let (A, M) be given. Then a direct sum decomposition

ofM is a split, if and only if
k

L() dim ((AIM)).
i=1

Proof. First note that since L(/) is the cover dimension of
k

L() >__ dim ((AIM))
i=1

for any direct sum decomposition of M. For each e _k, let be a controllability
subspace of dimension L(/) such that / . Then surely (by Lemma 3.1)

+ + (AIM), and hence if= L() dim ((AI)), the must
be linearly independent, and the decomposition of is a split. Conversely, assume
that the decomposition is a split. Let (AIM) be a corresponding
direct sum decomposition of (AIM). Then by Theorem 4.3, dim () >_ L(//)
for all e _k, and it follows that =1 L(//) =< = dim () dim (AIM). Com-
bining this inequality with the reversed inequality above, implies that equality
must hold and the proof is complete, lq

The following examples illustrate the fact that a direct sum decomposition
of M may or may not be a split.

Example 5.3. Consider the system (A, M), where A" [ and dim () 2
as follows. Let e, ..., e5 be a basis for and define A by Ae e2, Ae2 e3,



CONTROLLABILITY SUBSPACES 779

Ae3 e,, Ae4 O, Ae e3. Let M sp {b 1,b2}, where bl ea and b2 es.
Then sp {b} sp {be} is a direct sum decomposition of M, and it is easily
seen that this decomposition is a split since L(sp {b}) 3, L(sp {b2}) 2 and
dim (AIM) 5.

Example 5.4. Consider the system (A, M), where A [6 _. [6 and dim (M) 2
as follows. Let e, ..., e6 be a basis for [6, and define A by Ael ee, Aee e3,
Ae3 =e4, Ae =0, Ae =e3, Ae6 =es. Let M=sp{b,be}, where b e
and be e6. In this case, L(sp {b})= L(sp {be})= 4, but dim (AIM)= 6.
Surely the decomposition sp {b l} 03 sp {be} M is not a split.

In the next theorem, we give a necessary and sufficient condition for a decom-
position of (AIM) into a direct sum of controllability subspaces to be a split.

THEOREM 5.5. Let (A,) be given and let M 03 k (AIM) be a direct
sum decomposition of (AIM) into controllability subspaces , k. Then the
decomposition is a split if and only if dim (li) L( f) M)for all e k_.

Proof. Assume first that the decomposition is a split. Then

( N)(R)...(R)(N)=,

and hence

(5.2) dim (<AI,>) =< L(,i fl M).
i=1

By Theorem 4.3, however, we have

(5.3) dim (i) --> L(i f-] M), 6 k

and hence

k k

(5.4) dim (<AIM>) dim () __>
i=1 i=1

Combining (5.2) with (5.3) and (5.4) we obtain that dim (i)= L( f3 M) for
all i _. Conversely, assume that __a ( f-] M) ( f] M) # M. Then
by Lemma 4.2, L() < L(M) dim ((AIM)) = dim (). But then by
Theorem 5.2 at least for some of the , dim () > L(i f’] M). !-I

An interesting question is to what extent do splitting decompositions of
actually exist. The key to the answer is provided by the following.
THV.ORM 5.6. Let (A, ) be given, and let U M be any subspace. Then

there exists a subspace U M such that the decomposition M is a
split.

Proof We need to show that there exists such that M U and
a i(M) andL() + L(/’)= dim((Al)). For each i> 0, denote =----a s (/), and let [] and [//]t (t =< s) be, respectively, the input chain of

(A, M) and the (A, )-induced chain of //. If / satisfies f] / 0 and
@ M for all i_s, where ___.a /(M), (i.e., [#/], (r =< s)is the
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(A, M)-induced chain of ), then
s-1

[
t-1

dim ((AIM)) L(//) s. dim (M) dim (Mi) t. dim (/) dim (V)
i=1 i=1

s-1

s[dim (M) dim ()] [dim (M,) dim (/)]
i=1

s--1

s. dim () dim (/)
i=1

r-1

r. dim () dim (/) L(//’).
i=1

Hence the proof will be complete if we demonstrate the existence of //. c M such
that

(i)

(ii) (/ ’ ’i) ) (/ f’ Mi) ’-i,

For 1, 2, ..., define / c such that /i + 1. Clearly, M f’l /-= 0
for all i, and for i= 1,2,..., define such that i 03 i@ M
Choose such that 03 M1 and for each 1,2,..., let //+
Setting t lim {t}, it is immediately seen that # f’l 0, and hence (i)
holds. Also, from the definition of the , it is clear that + /= M for all

1, 2, That also f3 0 is seen by induction on as follows. It surely
holds for i= by construction. Suppose it holds for all iN k- and let
v e // f) be any vector. Then v e [/_ @ ,/’k- 1] [k- t ,/’k- 1 and
hence v Wk- + wk- Vk- + vk- for vectors in the respective subspaces.

vk- wk- and Wk_Consequently, wk_ l)k- Vk- Mk- and vk-

wk- /’k- O) t/-k- 1. Since Mk- f’l [//k- O) /k- 1] 0, it follows that
Wk-1 /k-1 and vk- wk- 1. Since the assertion is assumed to hold for k 1,
we conclude that wk_ Vk-1 0, and since /k-1 f’l fk-1 0, we also have
Wk- vR- 0. Hence v 0 and the assertion also holds for k. To complete
the proof we only need to observe that I"1M /for all i. Indeed, f-) Mi

fq [ q /] f’) /0) /= /, since /c and since U 13

Consider now a system (A, M) and let m dim (M). Let 1 c M be any
one-dimensional subspace and denote trl L(I). By Theorem 5.6, there
exists a subspace 1 c M such that the direct sum decomposition
is a split, and hence a + L(/’1) dim ((AIM>). Let /]1 .///(M) be such that

N1 (A + ll/> and 1 (A + 111> satisfy N1 (AIM>. Next,
consider the system (A + 21,). By repeating the above procedure for
(A +/], f) (in the quotient space <AI> mod ()) we find a one-dimensional
subspace 2 and a subspace 1 such that (R) 2 and
02 + L(/’2) L(/I), where a_ L(2). Hence there exists a map
such that N <A + 22[/>, 1, 2, and N <A + 21/2> satisfy
1 (R) ’e <AI>. The above decomposition can be applied repeatedly
until finally we clearly obtain a splitting direct sum decomposition N’
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m of M into one-dimensional subspace //. Correspondingly, we also have
a splitting direct sum decomposition (AIM) 03 m, where R
and dim (i) L() ai for each controllability subspace i, i_m.

It is worth observing that the splitting decomposition of M that was demon-
strated above is by no means unique, and that the splitting decomposition of
(AIM) is not even unique relative to a given corresponding splitting decomposition
of M. We will see however that, regardless of the specific decomposition, the
list {al, ".., a,,} of dimensions is unique up to ordering. Without loss of generality,
let us assume that ai-> ai/l for all i m (otherwise we could simply relabel
the subspaces). For any integer k > 0, define the set I(k) as l(k) {i m_la <= k}.
In view of the definition of the input chain [-M] and the controllability chain
[], it is easily verified that ",ieI(k)i Mk and ,iI(k)i k" Hence if {])i} is
the input list of (A, M), then for each integer k > 0, there exist exactly (7k 7k-
elements in the list {al, -.., am} whose value is k (here as before we define o 0).
From the uniqueness of the input list, it is now a direct consequence that the
(ordered) list {a l, ..., am} is also unique and independent of the specific splitting
decomposition. However, as was noted, a splitting decomposition cannot be quite
arbitrary, since for each k > 0, ieI(k)i--Mk and ’il(k),i "-k, and the
subspaces Mk and 5{k are unique. We summarize the above observations in the
following.

THEORE 5.7. Let (A,) be given and let rn dim (M). Then there exists a
splitting direct sum decomposition M i @ @ Um ofM into one-dimensional
subspaces i. Correspondingly, there also exists a splitting direct sum decomposition
(AIM) 1 (R)"" (R) Ylm, where l f’) M i for each controllability subspace, 6 m_. Moreover, while thesiz decompositions are not unique, the following always
hold:

(i) the list {al, ..., a,,}, wherefor each i, a L(/), is unique up to ordering
ofelements;

(ii) for each integer k > 0, the list {al, a,,} contains exactly (Yk Yk-1)
elements whose value is k, where {i} is the input list of(A,

(iii) for each integer k > 0,

iel(k)

Z
ieI(k)

where I(k) a__ {i e m_lai <- k}.
Remark 5.8. Theorem 5.7 is essentially a generalization of several previous

results by various authors. The list of integers {a1,..-, am} is precisely the list
of controllability indices whose feedback invariance properties were already
proved by Brunovsky in [1]. The fact that there exists a splitting direct sum decom-
position of M whose list of cover dimensions are the controllability indices; was
shown by Wonham and Morse in [2]. The uniqueness of the subspaces 2il(k)
was also proved by Warren and Eckberg in [9] using different considerations.
They also relate these subspaces to the fundamental chain of (AIM) (although in
a different way, see [9, Prop. 3]). The connection between the corresponding
splitting decompositions of (AIM) and of M is new.
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We now introduce the following.
DEFINITION 5.9. A system (A, )is said to be in normal form, if and only if

for each vector v , v @i if and only if A iv 0.
Upon combining Theorem 3.4 and Theorem 5.7 we immediately have the

following.
THEOREM 5.10. For every system (A,) there exists ,/1’(,) such that

(A + ,21, ) is in normal form.
The normal form is clearly a "basis independent" version of the so-called

"Brunovsky canonical form" in which

A diag (A1,

where for each i,

.., Am) B diag (B, ..., Bin)

0 0

0 0

0 0

0 0 0

Indeed, it is easy to see that if a system (A, ) is in normal form and (A]) W
(where f is the state space), i.e., (A, ) is controllable, then one can find bases for
f and -# (o# is the input space) such that the matrices (A, B) are in the Brunovsky
canonical form. Theorem 5.10 then simply says that given a controllable pair (of
matrices) (A, B) there exist matrices (T, F, G), where T and G are nonsingular,
such that the pair (T(A + BF)T-1, TBG) is in Brunovsky canonical form, a fact
which is well known. However, it is not the direct sum decomposition of the system,
but rather the partial (chain) decomposition which exhibits the system’s essential
structural features. This important fact has so far been overlooked.

6. Proper lists. Let (A, ) be a given linear system, and denote by G{(A, )}
the class of all systems of the form (A + , U), where /] e ’(M) and U c M.
Let I{(A,)} denote the collection of all input lists for systems in G{(A,M)},
and by J{(A, )} the collection of all lists of controllability indices for systems
in G{(A, M)}. In the present section, we shall characterize these classes and will
use this characterization in the next section to solve the feedback simulation
problem. We begin with the following.

DEFINITION 6.1. Let (A, ) be a given linear system with (infinite) input list
{7i}. Then a nondecreasing sequence of positive integers {fli} is called proper with
respect to {7i}, if and only if the following relations hold:

(i) fli =< 7i for all >= 1,

(ii) i(fl fli- i) 2 i(Ti Ti-1)
i= i=

for allk__> 1, flo =7o =0.

DEFINITION 6.2. Let (A, 3) be a given linear system with list of controllability
indices {al, "", a,,}, ai _-> ai+ for m 1. Then a nonincreasing list of positive
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integers {1,"", l} is called proper with respect to {a l,-.., a,,}, if and only if
the following hold"

(i) l=< m,

(ii) i =<
i=1 i=1

(iii) If r < as for some r and some s m 1, then

i=r i=s+l

(iv) r O’r +m-l for all r _/.

The following proposition relates Definitions 6.1 and 6.2.
PROPOSITION 6.3. Let (A, ) and (A’, ’) be two linear systems with input lists

{7i} and {fli}, respectively, and with lists of controllability indices {trx, ..., tr,,} and
(1, i}, respectively. Then the list {fli} is proper with respect to {yi}; ifand only
!f the list {1, l} is proper with respect to {trl,

Proof By direct computation (see also Theorem 5.7 (ii)).
In the remainder of this section we will prove that for a given linear system

(A, ), a list is in I{(A, )} (resp. in J{(A, )}), if and only if it is proper with respect
to the corresponding list of (A, ).

One important property of proper lists which is easily proved and used in the
sequel, is stated in the following.

LEMMA 6.4. Let (A, ) be a linear system with input list {’i}" Let {fli} be a proper
list with respect to {7i}, and assume that lim fli lim 7i. Then fli 7i for all
i= 1,2,....

Remark 6.5. An immediate consequence of Lemma 6.4 and Proposition 6.3
which is also easily verified using Definition 6.2 directly, is that if {tr 1,...,
is a list of controllability indices and (,..., l} is a proper list with respect
tc {a,..., am}, then m implies O" i for all i.

THEOREM 6.6. Let (A, ) be a given system with input list {7i} and list of con-
trollability indices {try, ..., am}. Let (A + ,2i,//) be any system in G{(A,)}
with input list {fli} and list of controllability indices {g.,,... }. Then the lists of
(A + , I/) are proper with respect to the corresponding lists of (A, ).

Proof We will prove the theorem only for the input lists. The result for the
lists of controllability indices then follows from Proposition 6.3. If {,.} and {/}
are, respectively, the input chains of (A, M) and of (A + , ), then (as was seen
previously) /= i for all >= 1, and hence dim (/) =< dim (i) and (i) of
Definition 6.1 holds. That (ii) also holds follows from the fact that if is any
controllability subspace of (A +/], ) which is contained in (A + /]l)k, then
it is also a controllability subspace of (A,) and is contained in (AlM)k. The
terms in the inequality (ii) of Definition 6.1 are simply upper bounds on the dimen-
sions of controllability subspaces in (A + Al)k and (Al)k.

The proof of Theorem 6.6 relies on the fact that the chains of every system
in G{(A, )} are subchains of the corresponding chains of (A, M). The properness
conditions for the lists are thus nothing more than the dimensionality constraints
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thereby imposed. We will prove below that given a system (A, ), every proper
list is indeed realized by some element in G{(A, )}. Since we will use a construction
in our proof, it will turn out to be more convenient to use Definition 6.2 for proper
lists of controllability indices. By Proposition 6.3, the results then hold also for
proper input lists.

LEMMA 6.7. Let (A, ) be a given system with list of controllability indices
(al, "’", am}, (0.i 0.i+ 1)" Let {1, "’", m-1} be a nonincreasing list of positive
integers such that i >- ai, i-1,..., m- 1, and i > 0.i for some i6m- 1.
Then there exists with dim (/’) m 1 and an ,3i d() such that the
list {Sl, ..., s"_}, (si >=s/+a), of controllability indices of (A + , ) satisfies

(i) i Si 0"1 for all i tn 1,

(ii) s min i, 0"i
i=1 i=1 i=

Proof We shall prove the Lemma by construction. For each im- 1,
define qi i- 0"i. Let kl min(ql,0",,), and for each i= 2,3, ..., rn- 1,
set k min (q, 0"" -I k). Since we assumed that q > 0 for some i m 1,
it is clear that ki > 0 for some e m 1. Let be the maximal integer for which

kt > O, and set O 0" 0",, + )i=ki for all je_t. Assume (A,) is in normal
form and let v,..., v" be a basis for N such that L(sp {vi}) 0"g for all e_m.
Let () be defined by

fl(AJvi) =( v,, forj-0i, i= 1, t,

0 otherwise.

Let =sp{v,...,v,} and U’=sp{v+,...,v,,_} and define by
=’. It is then readily noted that (A+I)=(A+]I)(
(A + l’) and the list of controllability indices of (A +/1, U) is the union of the
lists of controllability indices of (A +/],) and of (A +/], ). Furthermore,
the list of controllability indices of (A + , f) is the same as that of (A, ),
i.e., {0"t+1, "’", 0",,-1}. Hence we confine our attention to (A + , Y/). We shall
distinguish between two cases"

,,-1i Then is the least integer such that(i) Assume i=1 0"i <= Zi=I
’;=1 (i- ai) >= a,,, and hence ,= (i a) < % for all r e 1, whence

-1(i 0"i)>r-0.r for all ret- 1 andt- a, > 0. We then have 0.,,- 7
consequently,

ki i 0.i for all 1,
t--1

kt 0""- ki.
i=1

The reader can verify directly that in this case the list
indices of (A + $1Y/) is given by

s for 1,

St fit + kt,

st} of controllability
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and

i=1 i=1

Hence we immediately conclude that si >= si + for all s 1 and, moreover,
o.i <= si <= i for all s_t. Also,

t--1 t

Si i-Jl- o.m + t- (i- o.i)-- o.i -- o.m
i=1 i=1 i=1 i=1

and hence,
m--1

i=1 i=1

Clearly, am > = (i o.i) for all k s m 1,(ii) Assume i=1 o.i > i=1 "so that k i o. for all is rn and is then the maximal integer for which
i > o.i"

Again, the reader can verify that si i for all is t and, consequently, s i
for all is m 1. We then have

i=1 i=1

and the proof is complete. [-I

We can now prove the following.
THEOREM 6.8. Let (A, ) be a given system with list of controllability indices

{o.1, "", o’m}, (O., >= O’,+1). Let {1, "", l} be a proper list with respect to

{o.1, .", o’m}. Then there exist , dim (/’)= l, and a map ,21 s ///() such
that the list of controllability indices of (A + A, ) is {1, "", l}-

Proof First note that if m, there is nothing to prove in view of Lemma
6.4 (see also Remark 6.5). Hence assume < m and let p be the least integer such
that 1 >= o.p. It is then easily verified that the list {1, "’", l} is also proper with
respect to the list {o.p,..., o’m}. Hence, since we can then split the system into a
direct sum of two sub-systems, one of which has controllability indices o.p,...,
we may assume at the outset, without loss of generality, that p 1 and
Let (A, ) be in normal form, and let v l, "", Vm be a basis for such that for each
is_m, L(sp {vi}) o.. Suppose that for some k > 1, k < o’k. It then follows that

l=ki ff’n=k+l o.i and hence the list {k, "’’, l} is proper with respect to

{O’k+ 1,’’’, o’m}" Write (A[’) (AI/) 03 (AI2), where sp {vl,’",
and 2 sp {Vk+ 1,’’’, V,,}. Apply Lemma 6.7 to the system (A, 1) with respect
to the list {1,’", k-1}. We then obtain a system (A + 2, U)(with dim ()
k- 1) with list of controllability indices {sl,..., sk_ 1} such that (i) and (ii)

of Lemma 6.7 hold. The system (A + A, 1 ) then has list of controllability
indices {s 1, ..-, Sk_ 1, o.k+l,..., o’m}, and it is readily verified that the list
{1,’", } is also proper with respect to it. However, this new list of control-
lability indices has only rn 1 elements. If rn 1, we are done by Lemma 6.4.
If l< rn- 1, the above reduction procedure can be repeated until either the
lengths of the lists coincide or we have a list {1, "’", or} (t > /) with respect to
which the list {1, "’", } is proper and >_ t for all !. We then apply Lemma
6.7 to the lists {1, "’", + 1} and {1, "’", }, and by repeating this procedure,
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the lists eventually coincide in length, and by Lemma 6.4, the lists coincide in
value. This completes the proof. [3

For the sake of completeness we summarize Theorems 6.6 and 6.8 in terms of
Definition 6.1 in the following.

THEOREM 6.9. Let (A, 5) be a given system with input list {),g}. Then a list {i}
is in I{(A, )}, if and only if it is proper with respect to {),i}.

We conclude this section with the following.
THEOREM 6.10. Let (A, ) be a given system with input list {yg}. Let {fig} be any

proper list with respect to {7i}. Then there exists another proper list {i} such that
the following hold:

(i) hi<- fli for all 1,

(ii) lim (i lim fli,

(iii) flag- ag_ x) i(2,- Yg- x), ao =2o =0.
i=1 i=1

Proof Denote p i__ i(/i ’))i-1) "i_-1 i(fli fli-1)" Let be the maximal
integer such that fl, > fl,_ and write fii fli for 1,.-., 1, 6 fl, for

t, ..., + p- 1, and fii fit for __> + p. An easy calculation verifies that
(i}-(iii) are satisfied. V1

7. Feedback simulation. In this section we shall investigate the feedback
simulation problem as was defined in the Introduction. In all our discussions of
feedback simulation, it will be assumed, without further mention, that the systems
under consideration are controllable. If E (A, 5) and E’= (A’,’) are two
systems defined over spaces 5c and W’, respectively, we shall frequently use the
terminology "T is a linear map of E into E’" in reference to a map T’f - .’.

In conformity with our discussion in the previous sections, we can rephrase
the concept of feedback simulation as follows.

DEFINITION 7.1. Let E (A,M) be a given linear system. A system E’=
(A’, 3’) is in the simulation orbit of E (denoted E’ O{E}), if and only if there exist
a map A /(M) and a linear epimorphism T’Z E’ such that

(7.1) T(A + .21)= A’T,

(7.2) o@’ TM.

The_following is immediate.
LEMMa 7.2. Let Z, (A,) be given and let Z,’ (A’, ’) be any other system.

Then E’ e O{Y.} if and only’O{} for every ’ E{’} and every E{}.
We can now prove the following.
THeOReM 7.3. Let (A, ) and 2’ (A’, ’) be given linear systems and let

{} be the (infinite) input list 4 (A’, ’). Then ’ e 0{2} and only there exists a
map A.e () and a subspace c with dim ()= dim (’), such that the
(infinite) input list {fli} of (A + ,) satisfies fli i for all i 1.

Remark 7.4. Theorem 7.3 has the following interpretation in terms of the
controllability indices. The system E’ is in the simulation orbit of E if and only if

has a controllability subspace N (A + [W) such that if (a, ..., a=,} is
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the (ordered) list of controllability indices of (A + 3., q/’), and {a’l, "., a,,) is the
(ordered) list of controllability indices of (A’, ’), then a’ =< a for all _m’.

Proof of Theorem 7.3. Assume first that E’ O{E} and that the maps T and
3. exist such that (7.1) and (7.2) hold. Surely then, there exists a subspace M
such that dim () dim (’) and .’ T. Let 3, .////’() be chosen such that
the system (A*, ) is in normal form, where A* A + + 3.. (That can be
selected this way follows from Theorem 5.10.) We then have

(7.3) Im (TA* A’T) TC

and

(7.4) ’ Tq/; dim (C) dim (’).

It is readily verified that (7.3) implies that for any integer j > 0 and any vector

(7.5) IT(A*) (A’)TJv (A’l’)i.
Let {i} and {}’be, respectively, the input chains of (A’, ’) and of (A*, ).
Then, since (A*, ) is in normal form, (A*)’v 0 for any v , and consequently
by (7.5),

(A’)Tv (A’IM’>

so that Tv e ’. We conclude that T// , for all k > 0, and combining this
fact with (7.4), we obtain flk dim (k) _< dim (,) ek for all k > 0.

Conversely, assume there exist 3, e //(N) and U c N such that dim ()
dim (N’) and the input list {fl} of (A*, ) (where A* A + 3.) satisfies fli <- e for
all _>_ 1, {} being the input list of (A’, N’). In view of Theorems 6.9 and 6.10, we
may also assume that (A*, ) is controllable. We wish to exhibit the existence of
a map T such that (7.1) and (7.2) hold. By Lemma 7.2, it is sufficient to demonstrate
the existence of Tunder the assumption that both (A’, ’) and (A*, ) are in normal
form. Let v l, ..., v,,, be a basis for such that for each >__ 1, the set v, ...,
is a basis for , and denote a L,(sp{v}) for all k e _m’. Similarly, let b , ..., bm’
be a basis for N" such that for each _> 1, the set b,..., b,, is a basis for ’, and
denote a, L,(sp{b}) for all keN’. Define the map T as follows" for each
e _m’, let

f (A’)b,
.T((A*),)

0

for j 0, 1, ..., ai 1,

for a’i, ai (whenever ai > a’i).

In view of the controllability assumption on (A*, ), the map T is completely
specified, and an easy calculation shows that (7.1) holds. This completes the
proof. [3

We can now combine Theorem 6.9 with Theorem 7.3 to obtain a complete
solution of the feedback simulation problem which is the main result of this section.

THEOREM 7.5. (Feedback simulation.) Let (A, ) be a linear system with input
list {/}. Then a system (A’, ’) is in the simulation orbit of (A, ), if and only if
there exists a nondecreasing sequence of positive integers {fl} such that the input list



788 MICHAEL HEYMANN

{i} of (A’, ’) satisfies the following conditions"

=< fli-<- min {i, Yi},(i)

(ii) lim fli lim ei,

(iii) i(..-_)__< i(7-7_) for all k >= 1, flo 0.
i--1 =1

Remark 7.6. Theorem 7.5 involves an auxiliary list of integers {fli}. One might
hope that this list can be somehow eliminated and that a simpler condition involv-
ing only the input lists {Tg} and {} holds. This however appears to be impossible.
The computational verification of (i)-(iii) requires finding a sequence {fig} (when-
ever such a sequence exists), which is essentially a combinatorial problem. How-
ever, since most practical linear systems are of relatively low dimension, the
computation is likely to be easily tractable even by exhaustive search procedures.
Theorem 7.5 cou}d of course also be stated in terms of the lists of controllability
indices, but the conditions in that case are much more complicated.

We conclude with an easy and interesting corollary.
COROLLARY 7.7. Let (A, ) be a linear system with input list {)’i}, and let (A’, ’)

be a linear system such that dim (’) dim (M). Then (A’, ’) is in the simulation
orbit of(A, ), if and only if the input list {i} of (A’, 3’) satisfies the condition that

i >-_ 7ifor all >= 1. If in addition, dim (<AIM>) dim (<A’I’>), then the condi-
tion is i Yifor all >= 1.

Proof Apply Lemma 6.4 to Theorem 7.5.
Remark 7.8. In terms of controllability indices, Corollary 7.7 reads as follows.

Let {al, "-, a,,} and {a’l, "-’, a,} be the lists of controllability indices, respec-
tively, of (A, ) and (A’, ’) (where the lists are of the same length). Then (A’, ’)
is in the simulation orbit of (A, ), if and only if a’l __< a for all _m. If, in addi-
tion, both (controllable) systems are in spaces of the same dimension, the simula-
tion condition is a’i ai for all it _m, which is precisely the feedback equivalence
result of Brunovsky.

Acknowledgment. The author wishes to thank W. M. Wonham for various
useful discussions.
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INCREMENTAL AND TOTAL OPTIMIZATION OF
SEPARABLE FUNCTIONALS WITH CONSTRAINTS*

LAWRENCE D. STONEf

Abstract. Functionals E (real-valued) and C (vector-valu6d) are defined by E(q) fx e(x, q(x))#(dx)
and C(q) x c(x, q(x))#(dx), where # is a Borel regular, nonatomic measure defined on a Borel subset
X of a complete separable metric space. Let co be the positive integers. Let qo, ql,’", be extended
real functions such that qo -o and q >= q_l for eco. A function q* is called optimal if E(q*)
max {E(q) C(q) C(q*)}. The sequence (q 1, q2, is incrementally optimal if E(q) max {E(p) "p _>_
q- and C(p) C(q)} for co and totally optimal ifq is optimal for co. Under appropriate measur-
ability assumptions, it is shown that if c(x,. is real-valued and increasing for x X, then an incremen-
tally optimal sequence such that IE(q)l < o and C(q)e interior range C for e co is totally optimal.
A counterexample is given to show that an extension of this result to multiple constraints fails even
if e(x,. and c(x,. are linear for x e X. In the case ofa single constraint, the existence of optimal functions
is proved under conditions which allow the range of C to be unbounded above.

1. Introduction. This paper investigates the relationship between incremental
and total optimality for constrained optimization problems involving a real-
valued separable effectiveness functional and a vector-valued separable cost
functional. Existence of optimal functions is also considered.

A primary motivation for this investigation arises from search theory. In
mathematical terms, the problem of finding the optimum distribution of search
effort to detect a stationary object located in a subset X of Euclidean n-space
becomes" find a function q* "X [0, o) such that .x c(x, q*(x)) dx <= t9 and

fxb(x,q*(x))f(x, dx= maX{fxb(x,q(x))f(x)dx’q>=O and

(1.1)

fx C(X, q(x)) <= dP}
In (1.1), the function f gives the probability density of the target’s location, b(x,.
is the local effectiveness function and c(x,. the cost density function. In prob-
ability terms, b(x, y) gives the conditional probability of detecting the target
given it is located at x and the effort density is y at x. The above problem has
an obvious analogue in case the search space X is discrete.

For the case where b(x,y) 1 e -y and c(x,y) y for xX and y => 0,
Koopman [6, p. 617] made the following observation. Suppose one allocates 1
amount of effort in an optimal fashion but fails to detect the target. An increment

2 of effort then becomes available. If one allocates this additional effort in an
incrementally optimal manner (i.e., optimal considering the previous allocation
of 1 amount of effort), then one obtains an optimal allocation of a + 2 effort.
That is, two incrementally optimal allocations produce a totally optimal allocation.
Koopman commented "This very convenient state of affairs seems to be a

* Received by the editors October 23, 1972, and in revised form January 3, 1974.

" Daniel H. Wagner, Associates, Paoli, Pennsylvania 19301. This research was supported by the
Naval Analysis Programs, Office of Naval Research, under Contract N00014-69-C-0435.
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characteristic property of the basic exponential law of search [i.e., local effectiveness
function] assumed throughout."

For the case where c(x, y) y for y >= 0 and x e X, the following results are
known. Theorem 2.1 of [7] shows that for virtually any local effectiveness function,
incrementally optimal allocations are totally optimal whenever the target’s
probability distribution is given by a density function as in (1.1). In the case where
X is discrete, it is proven that concavity of b(x,. for x e X guarantees that
incrementally optimal allocations are totally optimal, and it is shown by counter-
example that this property need not hold for discrete X if b(x,. is not concave.
Another paper on this subject is [3] (see discussion in [7]).

The results in [7] are very satisfactory for the case where c(x, y) y for y _> 0
and x e X. However, search problems are not limited to this situation. Thus one
is led to ask if these results hold for most general cost functions. In this paper,
two possible generalizations are considered. The first, Theorem 3.1, generalizes
the result of Theorem 2.1 of [7] to allow c(x,. to be real-valued and increasing.
In Example 3.2 it is shown by counterexample that the assumption that c(x,. is
increasing cannot be dropped. The second possible generalization is to allow for
multiple constraints. That is, we allow c(x,. to be vector-valued. For example,
one might consider a search in which there is a constraint on both cost (in dollars)
and time. For vector-valued cost functions, it is shown in Example 3.3 that no
extension of the results of Theorem 3.1 is possible even if one assumes the linearity
of c(x,. and e(x,. for x e X. Example 3.3 also shows that total optimality of
incrementally optimal allocations is not a consequence of the convexity of the
range of the functionals or of the satisfaction of the pointwise multiplier rule by
an optimal allocation.

While motivated by search theory, the results of this paper are stated in
terms of a real-valued "effectiveness" functional E subject to an equality or
inequality constraint on a vector-valued "cost" functional C. These functionals
are separable, which means they are given by E(q) .x e(x, q(x))#(dx) and C(q)
x c(x, q(x))#(dx), where q(x)e Y(x) for x e X and X, Y, #, e, and c are fixed. If we
take # to be Lebesgue measure on n-space and for x e X let Y(x) [0, oe), and
e(x, y) f(x)b(x, y) for y Y(x), then we obtain the search situation considered
above.

Section 4 of this paper concerns the existence of uniformly optimal search
plans. In search theory, a uniformly optimal plan is an allocation in time and space
which maximizes the probability of detection at each time t. This is the most
clesirable search plan since one can proceed with a plan which yields the long term
goal of maximizing probability of detection by the end of the time allotted for
the search without sacrificing any Short term gain. In Theorem 4.3, it is shown that
if b(x,. is increasing and right-continuous, c(x,. is extended real-valued and
continuous and the probability distribution of the target is given by a probability
density function with respect to a nonatomic measure, then a uniformly optimal
plan exists under very general conditions which cover most situations likely to
occur in search theory. In fact, the uniformly optimal plan is, in a sense, constructed
in Theorem 4.3.

Theorem 4.3 is stated in terms of general separable functionals (one-
dimensional) E and C. One feature of interest beyond search theory in Theorem 4.3,
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is that it gives an existence theorem for optimal allocations without assuming that
the range of C is bounded above. Theorem 4.3 is an extension ofTheorem 3.3 of [7]
to allow more general cost density functions c.

2. Preliminary definitions and assumptions. Throughout this paper, we assume
that X is a Borel subset of a complete separable metric space and # is a measure
on X. For x e X, we let Y(x) be a subset of the extended real line a with the usual
topology. In order to use the results of [4] and [8], we use the definitions of measure,
measurable set, and measurable function given in [4]. In order to use Corollary 5.2
of [8], we further assume that for each measurable P X for which/(P) > 0,
there exists a measurable Q c P such that 0 < #(Q) < . Following [4], we say
that # is Borel regular, if and only if all open sets of X are measurable and each
set A c X is contained in a Borel set B for which/(A) =/(B).

For definiteness, the reader may wish to think of X as a Borel subset of
Euclidean n-space and # as Lebesgue measure on X. This identification will satisfy
the measurability and topological hypotheses of all of the theorems in this paper.
The phrase x X is understood to mean almost every (in t measure) x X, and
a.e. stands for almost everywhere in t measure.

Let f {(x, y)’x X and y Y(x)} be a Borel subset of X a, and let
ca,..., c and e be extended real-valued Borel functions defined on f. Using a
framework very similar to [8] (which, however, does not permit e or c to assume
_+ ), we let

{q’q is a function on X and q(x) Y(x) for x X},
E {q" q q and c(., q(. )), c(. q(. )), e(., q(. )) are measurable},

{q" qE and ca(., q(.)),..., c,(., q(.)), e(., q(.)) are integrable},

and

Ci(q) Jsci(x’ q(x)) l(dx) for 1,..., k, q ,
E(q) fxe(X, q(x)) l(dx) for q .

Let o9 be the set of positive integers. For n o9, we let g, be Euclidean n,space.
If a,bg,, then a _>_ b means a >= b for i= 1,..., n. Let g,+ {a’ag, and
a >= 0 for 1, ..., n}. If a and b g,, we denote their inner product by a. b;
this is extended to vectors with + components in the obvious way, being
undefined if0. or if occurs. We let c (ca,..., ck), C (Ca,..., Ck).

We define q* to be optimal if

(2.1) E(q*) max {E(q)’C(q)= C(q*)},

and we say that q* is strongly optimal if

(2.2) E(q*) max {E(q)’C(q) <= C(q*)}.

In this and similar usage, it is understood that E(p) {E(q) C(q) C(q*)} implies
E(q) exists.
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An extended real-valued function f defined on a subset of the extended real
line is said to be increasing if y _> x implies f(y) >= f(x).

3. Incremental optimization. For s co, let q be such that ql =< q2 "’’,

Let qo(x) -oe for x s X, and define C(qo) (-oe, ..., -oe), whether or not
qo s q). If for iso9,

E(qi) max {E(q)" q >= .qi-1, q and C(q) C(qi)},
then we say that (ql, q2,’" ") is an incrementally optimal sequence. If for

(3.2) E(qi) max {E(q) q >= qi- 1, q e and C(qi_ 1) <= C(q) <= C(qi)},
then we say that (q l, q2,’" ") is a strong incrementally optimal sequence. If qi is
optimal (strongly optimal) for each e 09, then (q x, q2,’" ") is said to be a totally
optimal (strong totally optimal) sequence.

Conceptually, an incrementally optimal sequence (ql, q2, ") is one such that
for e og, qi+ obtains the maximum effectiveness from the increment of cost
C(qi+ 1)- C(qi) given the previous allocation qi. If for each i, qi is an optimal
allocation of C(q), then the sequence is totally optimal.

Under the primary conditions of a single cost constraint and increasing cost
function, we show that an incrementally optimal sequence is totally optimal.
Define

(3.3)
l(x, y, 2) e(x, y) 2. c(x, y)

M(x, 2) sup {l(x, y, 2) y.e Y(x)}

for (x, y) e f and 2

for xeX,

when neither nor 0. occurs.
Following [8], we say that q e satisfies (strongly satisfies) the pointwise

multiplier rule if for some 2 e gk (some 2 e g),

l(x, q(x), 2) M(x, 2) for x e X.

In order to make use of Corollary 5.2 of [8], we note that the extended real
line is a complete separable metric space under the following metric’

d(x, y) larctan (x) arctan (Y)I for x, y e oza,
where arctan (- ) n/2 and arctan () n/2.

THEOREM 3.1. Assume , e, and c are Borel. Let l be Borel regular and non-
atomic. Let e be real-valued and for x X, let c(x,. be real-valfied and increasing.
If (q l, q2,’" ") is a (strong) incrementally optimal sequence such that for i o,
IE(qi)l < and C(qi) is in the interior of the range of C, then (ql q2, ") is a (strong)
totally optimal sequence.

Proof By Corollary 5.2 of [8], there exists a 21 e gl such that for x e X,

(3.4) l(x, ql(x), 21) M(x, 21)

and )2 1 such that for x e X,

(3.5) l(x, q2(x), 22) _-> l(x, y, 22) for ql(x) <= y e Y(x).
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In order to prove that q2 is optimal (strongly optimal), it is sufficient, by
Theorem 2.1 of [8], to show that there exists 2 e N1(2 => 0) such that

(3.6) l(x, q2(x),/],) M(x, 2) for x X.

By (3.4) and (3.5),

(3.7)
22[c(x, q2(x)) c(x, ql(x))] =< e(x, q2(x)) e(x, ql(x))

-< 21[c(x, q2(x)) c(x, ql(x))] for xX.

If c(x, ql(x)) c(x, q2(x)) for x X, then by (3.7), e(x, ql(x)) e(x, q2(x)), and

e(x, q2(x)) 21c(x, q2(x)) e(x, ql(x)) 21c(x, ql(x)) M(x, 21) for x X.

Thus (3.6) is satisfied for 2 21. If c(x, q2(x)) > c(x, ql(x)) for x in a set of positive
measure, then 22 _< 21 by (3.7). Suppose y Y(x) and y < ql(x); then for x X,

0 <_ e(x, ql(x)) e(x, y) 21[c(x, q (x)) c(x, y)]
<_ e(x, q(x)) e(x, y) 22[c(x, q(x)) c(x, y)]

and

(3.8) l(x, y, 22) =< l(x, ql(x), 22) =< l(x, q2(x), 22) for ql(x) > y Y(x).

Combining (3.8) and (3.5), we obtain (3.6) with 2 22. Thus q2 satisfies the point-
wise multiplier rule and, by Theorem 2.1 of [8], q2 is optimal. By repeating the
above argument for q3, q4, the theorem is proved for optimality. The assertions
concerning strong optimality follow by observing that in this case, Corollary 5.2
of [8] yields 2x, 22 > 0. Thus the number 2 obtained to satisfy (3.6) is nonnegative.

Example 3.2. Theorem 3.1 does not remain true if one drops the assumption
that c(x,. is increasing for x e X. To see this, we consider the situation where
X [0, 1"] and for x X, Y(x) [0, 3],

e(x,y)={Y’ 0=<y=< 1, c(x,y)={ y’ y-C:1/2,
-y+2, =<y__<3, 2, y=.

For x e X, let qa(x) 1 and q2(x) 2. One may check that (ql, q2)is an increment-
ally optimal sequence by noting that for x e X,

l(x, 1, 1) M(x, 1),

e(x,2)+c(x,2)=>e(x,y)+c(x,y) fory_>_ 1.

However, by taking h(x)= 3, for x X, we find that

E(h) 1/2 > O E(q2) and C(h) 2 C(q2),

so that q2 is not totally optimal.
A similar example can be constructed even if one requires that c(x,. be

continuous for x X.
Example 3.3. We now show that Theorem 3.1 cannot be extended to multiple

constraints even when one requires that e(x, ), ci(x, be linear for 1, ..., k
and x X. Since a linear function is both concave and convex, this shows that
no combination of convexity/concavity assumptions will guarantee that incre-
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mentally optimal sequences are totally optimal. That strict concavity or convexity
may be sufficient is not ruled out by the counterexample; however, it seems
unlikely that these assumptions would suffice.

Let X [0, 4], Y(x) 0, oe) for x X. For y _>_ 0, let

e(x, y) y, cl(x, y) 4y, c2(x y) 2y for 0 x - 1,

e(x, y) 1/4y, c(x, y) y, c2(x, y) 2y forl x2,

e(x, y) 1/2y, ca(x, y) y, c2(x, y) -y for2<x__<3.

e(x, y) O, ci(x, y) y, c2(x, y) 4y for3<x__<4.

By Blackwell’s extension (see [2]) of Lyapunov’s theorem, the range of C is
convex. Let (z 1, z2) represent a point in 2-space. Then one can check that the
range of C is the region in the nonnegative quadrant of 2-space which lies between
the line zz 1/2z and the line z2 4y Let

0, 0_<x_< 1, 1, 0=<x=< 1,

ql(x)= 1, 1 <x=<2, q2(x)= 1, 1 <x2,

0, 2<x=<4, 0, 2<x<_4.

Note that C[ql] (1, 2) and C[q2] (5, 4) are in the interior of the range of C.
By choosing 21 (1/4, 1/4)and 22 (4-t6, ), one may check that for x X,

e(x q (x)) 21. c(x, q (x)) M(x )

and

e(x, q2(x)) 22. c(x, q:z(x)) >_ e(x, y) 22. c(x, y) for y >= ql(x).

Thus (qx, q2) is a strong incrementally optimal sequence. However, q2 is not
optimal, much less strongly optimal. To see this, define

h(x)= 0,

1,

0,

O x L,

l<xNl+,
l+<x3,
3<xN4.

19Then one may check that C(h)= C(q:z)= (5, 4), but E(h)= 1 +- > 1 + 1/4
E(q2).

Observe that this example satisfies the conditions of Corollary 5.2 of [8]
so that optimal allocations satisfy a pointwise multiplier rule. Although this is
the main tool used to prove Theorem 3.1, it is not sufficient for the analog of
Theorem 3.1 to hold for multiple constraints.

4. Existence of optimal allocations. In this section, we prove the existence of
uniformly optimal allocations for a single constraint involving a continuous,
increasing cost function under assumptions which are natural, for example, for
search theory. Lemmas 4.1 and 4.2 below will be used to prove the main existence



SEPARABLE FUNCTIONALS WITH CONSTRAINTS 797

result, Theorem 4.3. Throughout this section, we take c(x,. to be extended
real-valued (i.e., k 1) and denote c by c.

The following lemma is an extension of Halkin’s Proposition 8.3 in [5] which
is proved for totally finite measure spaces. The extension to a-finite measure spaces
stated in the lemma is routine.

LEMMA 4.1. Let # be a nonatomic a-finite measure on X. Then there is a family
{S : [0, 1]} of measurable sets such that

(4.1) (i)

(4.1) (ii)

(4.1)(iii)

St X and a < fl implies S c St
forO<_a<l,

lim/a(S) #(S,) for fl [0, 1],

(4.1)(iv) lim S S, for fl [0, 1].

For x X, let

(4.2)
T(x) inf {y" y Y(x)},
U(x) sup {y" y Y(x)}.

Suppose Y(x) is compact in ga, e(x, is real-valued, increasing and right-continuous
and c(x, is continuous and increasing for x e X. Then for x e X we define

qg(x, 2) sup {y" y e Y(x) and l(x, y, 2) M(x, 2)} for 2 > 0,

(x, 2) lim q(x, 2’) for 2 _>_ 0.

Note that Y(x) need not be an interval. Since Y(x) is compact and l(x,., 2) is upper
semicontinuous for 2 > 0, M(x, 2) is achieved on Y(x) and q(x, 2) is well-defined.
We let

I() fx c(x, qg(x, 2))#(dx) for2 > 0,

when the integral exists.
LEMMA 4.2. Assume f, e, and c are Borel. Let # be a-finite, nonatomic and Borel

regular. Suppose - < E(T) <= E(U) < , IC(T)I < , and for x X, Y(x) is
compact in g’a, e(x,. is increasing and right-continuous, and c(x,. is continuous,
increasing, and extended real-valued. Then the following hold"

(a) qg(., 2) 6 and 1(2) is finite for 2 > 0;
(b) q(x, is decreasing for x X and I is decreasing,
(c) p(x, is left-continuous for x X and I is left-continuous,
(d) For 2 > 0 we may find f" X x [C((., 2)), 1(2)] such that (i) f(x, is

increasing for x X, (ii) for [C((., 2)), I(2)], C(f(., t)) t, and (iii),

l(x, f(x, t), 2) M(x, 2) for x e X.

Proof Since Y(x) is compact for x e X, U e W. To see that U e E, let n(x, y) x
for (x, y)e f and R f f’l {(x, y)’y >= a}. Then R is Borel, and {x" U(x) >= a}
rt(R). Since X and a are complete separable metric spaces, so is X x a. Thus
by 2.2.13 of [4], r(R) is measurable and U e E. A similar argument shows Te E.
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Since -o < E(T) <= E(U) < , we must have e(x,. real-valued for x X.
The compactness of Y(x) and the upper semi-continuity of l(x,., 2) guarantee that
(p(x, 2) Y(x) and

l(x,q)(x,2),2)=M(x,2) forxX and 2>0.

To show that q(., 2) e -," take 2 > 0, a x and let

R f f’l {(x, y)’l(x, y, 2) > a}.

Since f, e, and c are Borel, R is Borel. By the same reasoning as above,
{x’m(x, 2) > a} r(R) is measurable, and by 2.3.6 of [4], m(., 2) is equal a.e.
to a Borel function r(., 2). Similarly,

{x" (p(x, 2) > a} rc{(x, y)’l(x, y, 2) ]t(x, y) and y > a}

is measurable and tp(., 2)e E.
By virtue of [C(T)I < c, we have c(x, T(x))is finite for x e X. Since e(x,.

is increasing, we have

Hence

e(x, U(x)) e(x, T(x)) >= e(x, qg(x, 2)) e(x, T(x))

>= ,[c(x, q,(x, )) c(x, T(x))].

oo < C(T) _< 1(2) =< (1/2) [E(U) E(T)] + C(T) < oo,

which shows that I is finite, and qg(., 2)e q). This proves (a).
Suppose 0 < 2 < 22. Let y(x)= q(x, 2) and yz(X) qg(X,/2) for x e X.

Then for x e X,

l(x, yx(x), 2 x) >= l(x, y:(x), 2x) iand l(x, y2(x), 22) >= l(x, ya(x), 22)

which implies

2[c(x, y(x)) c(x, y:(x))] =< e(x, yx(x)) e(x, Y2(X))
(4.3)

<= ;[c(x, y(x)) c(x, y(x))].

By virtue of the fact that 0 < 2 < 22, we must have c(x, ya(x)) >= c(x, y2(x)) for
x X; otherwise, (4.3) yields a contradiction. If c(x, y(x)) c(x, y2(x)), .then
e(x, y2(x))= e(x, y(x)), and using the definition of qg(x,. ), one may show that
y2(x) yx(x). If c(x, yl(x)) > c(x, y2(x)), then the increasing nature of c(x,
yields y(x) > y2(x). Thus (p(x,.) is a decreasing function for x X. Since c(x,.
is continuous and increasing for x X, one may show that ! is decreasing. This
proves (b).

To prove (c), we first show that for x X, M(x,. is continuous. Choose
0 < 2 < 22 < oe. Observe that qg(x, 2 a) => o(x, 22) and define

K(x) sup {Ic(x, Y)I" q(x, 22) <__ y <__ qg(x, 2)} for x e X.
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Suppose that M(x, 2x) _>_ M(x,/2). Since l(x, qg(x, Ra), 2)
IM(x, 2’) M(x, 22)1 _< II(x, q)(x, 2x), ’) l(x, q)(x, 21),

_<_ sup {l/(x, y, 21) l(x, y, 22)1 "qg(x, 22) =< y <= qo(x, 21)}

=< 121 221 sup {Ic(x, y)l’q)(x, 22) y (/9(X, /1))
<_ 121 A2IK(x).

Making a similar argument when M(x, 21) < M(x, 22), we show that M(x,. is
continuous for x e X.

Fix x e X such that M(x, is continuous. Let 2 ]’ 2o and define Yi qg(x, 2i)
for i= 0, 1, 2,.... Then {Yi}?=l is a decreasing sequence with a limit z Y(x).
Moreover, z > Yo, and

lim l(x, y, 2) lim M(x, 2) M(x, 20) l(x, Yo, 20).

However, by the upper semi-continuity of e(x, and continuity of c(x, ),

l(x, Yo, 2o) lim l(x, Yi, )i) <-- l(x, z, )o).

Hence l(x, z, 2o) l(x, Yo, 20), and by definition of Yo, z Yo. It follows that qg(x,
is left-continuous for x e X. Since c(x,. is continuous and increasing for x X,
we may apply the monotone convergence theorem to complete the proof of (c).

We claim l(x, (x, 2), 2) M(x, 2) for x X. This follows from the continuity
of M(x,. and c(x,. along with the upper semi-continuity of e(x,. for x X
as follows"

l(x, (x, 2), 2) => lim l(x, qg(x, 2’), 2’)

lim M(x, 2’) M(x, 2).

Thus l(x, (x, 2), 2) M(x, 2) for x X.
To prove (d) we use the family {S," a [0, 1]} of Lemma 4.1. Fix 2 > 0 and let

p(x, 2) for x e S,,
h,(x)=

(x,2) forxeX-S,, ae[O, 1].

Note that l(x, h,(x), 2) M(x, 2) for x e X. Since q(x, 2) >__ (x, 2) for x e X, one
may use (i) and (iv) of Lemma 4.1 and the monotone convergence theorem to show
that C(h,) is a left continuous function of e. A similar argument using (i)-(iii) of
Lemma 4.1 shows that C(h) is a right-continuous (hence continuous) function of e.
The existence of f in (d) now follows readily. This proves the lemma.

Theorem 4.3 below proves the existence of uniformly optimal allocation
schedules. Let J be an interval of extended reals. An allocation schedule over J
is a Borel function q defined on X x J such that for x e X, q(x,. is increasing
and rl(x, v) Y(x) for v e J. We say that an allocation schedule r/is uniformly optimal
over J if

E(rl(., v)) max {E(q) C(q) <= v} for v J.
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This definition is an extension of the definition of uniform optimality given in [1]
in conjunction with search theory. The notion is a natural one for search in that
one desires a search plan (allocation schedule) such that one is always achieving
the maximum probability of detection from the effort expended.

In Theorem 4.3 below, one would like to prove the existence of a uniformly
optimal allocation schedule over [C(T), C(U)]. However, this is not always
possible since, for example, the range of C need not be connected.

THEOREM 4.3. Assume , e, and c are Borel. Let # be a-finite, nonatomic, and
Borel regular. Suppose - < E(T) <= E(U) < , IC(T)[ < and for x X, Y(x)
is compact in 1, e(x, is increasing and right-continuous, and c(x, is continuous
increasing, and extended real-valued. Then there exists an allocation schedule r
which is uniformly optimal over [C(T), C(V)), where V= (.,0). Moreover,
E(V) max {E(q)" C(q) < }, and if C(U) < , then

(4.4) E(V) max {E(q) q q)}
and extending r by defining rl(., C(V))= V, one obtains an allocation schedule
which is uniformly optimal over [C(T), C(V)].
Proof First we define

g(x) lim q(x, 2).

We claim that c(x, g(x)) c(x, T(x)) for x X. To see this, we note that q(x, 2) __>
g(x) for 0 < 2 < oo, and suppose e(x, g(x)) > c(x, T(x)) for x in a set of positive
measure. Then for such x,

e(x, q)(x, 2)) e(x, T(x))
for 2 > 0

e(x U(x))- e(x T(x)) >> 2o =- c(x, g(x)) c(x, T(x)) c(x, q)(x, 2)) c(x, T(x))

which contradicts l(x, q)(x, 2), 2) M(x, 2) for 2 > 2o. Thus the claim is verified.
In addition, g is strongly optimal. To see this, we observe that C(g) C(T)

and suppose that g is not strongly optimal. That is, there exists q* e q such that
E(q*) > E(g) and C(q*) <= C(g). Since c(x,. is increasing,

(4.5) c(x, q*(x)) c(x, T(x)) c(x, g(x)) for x e X.

Since E(q*) > E(g), there exists a set P with positive measure such that

(4.6) e(x, q*(x)) > e(x, g(x)) for x e P.

For x e P, the increasing nature of e(x,. yields that q*(x)> g(x). Hence we
may choose 2 such that q*(x) > q)(x, 2x) > g(x). Then

(4.7) e(x, q)(x, 2)) 2xC(X q)(x, x)) >= e(x, q*(x)) 2xC(X, q*(x)).

Again, the increasing nature of c(x,. along with (4.5) implies that c(x, (p(x, 2x)
c(x, q*(x)). Equation (4.7) now yields e(x, q)(x, 2x) >= e(x, q*(x)). The increasing
nature of e(x,. implies that e(x, q)(x, 2x) e(x, q*(x)). By the same argument as
above, we may show that e(x, q)(x, 2)) e(x, q*(x)) for 2 __> 2x. The definition of
g(x) and the right continuity of e(x,. may now be combined to prove that
e(x, q*(x)) e(x, g(x)) for x e P, which contradicts (4.6). Thus E(q*) <_ E(g) and
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g is strongly optimal. Define

q(x, C(T)) g(x) for x e X.

Now I is monotone so it has only a countable number of discontinuities.
Let N be a countable index set such that (2, "n e N} is the set of discontinuity
points of I. Let J. [C((., 2,)), I(2,)] for n 6 N. Then the intervals J, are disjoint
and are the jump intervals at the discontinuity points of I. Note that limx 01(2)
C(V). For v (C(T), C(V)) U , J,, let

2*(v) sup {2" I(2) v}.
By the left continuity of I, I(2*(v)) v. For v e J,, let 2*(v) 2,. By (d) of Lemma
4.2, we may find a function f, defined on X x J, such that f,,(x,. is increasing
for x e X and for v e J,, f,(., v) e O, C(f,(., v)) v, and

l(x, f,(x, v), 2,) M(x, 2,) for x e X.

We now define for x e X,

f q(x, 2*(v)) if v e (C(T), C(V)) U ,
q(x, /))

f,(x, v) if v e J, for some n e N.

Then for v e (C(T), C(V)), C(rl(., v)) v and q(., v) satisfies the pointwise multiplier
rule with 2 2*(v) _>_ 0. Thus r/(., v) is strongly optimal by Theorem 2.1 of [8].

To prove that rl(x,. is increasing for x e X, we let v and s be such that
C(T) < v < s < C(V). Then there exists a set P such that/(P) > 0 and

c(x, q(x, s)) > c(x, rl(x, v)) for x P.

Since (3.7) holds with 21, 22, ql, and q2 replaced by 2(v), 2(s), r/(., v) and r/(., s)
respectively, 2*(s) _< 2*(v). Suppose 2*(s) < 2*(v). Then q(x, s) >= (x, 2*(s)) >__
q(x, 2*(v)) >- q(x, v) for x e X. If 2*(s) 2*(v), then v and s are both in the same J,
for some n e N and rl(x, s) >= l(x, v) for x e X by construction. Since rl(x, C(T))
g(x) <= q)(x, 2) for x e X and 2 > 0, we have q(x,. is increasing for x e X. Thus
r/is uniformly optimal over [C(T), C(V)).

Suppose q e q) such that [C(q)l < oe. Then ]c(x, q(x))l < oe for x e X, and
we have

e(x, V(x)) >= lim e(x, (p(x, 2)) 2c(x, q)(x, 2))
; o

_>_ lim e(x, q(x)) 2c(x, q(x)) e(x, q(x)) for x e X.
; o

Thus E(V)= max {E(q)’lC(q)l < oe}. If C(U)< oe, then (4.4) follows, and by
setting q(x, C(V)) V(x) for x e X, the theorem follows.
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A STOCHASTIC MAXIMUM PRINCIPLE*

VIRGINIA M. WARFIELDJ"

Abstract. The major theorem of this paper is very closely parallel to the classical Pontryagin
maximum principle. The classical case, very roughly stated, says that if u(t) is a control function which
has an associated trajectory x(t), then there is a function H(v, x, t) such that u(t) is optimal only if for
each and for all v in the control set,

H(u(t), x(t), t)’<__ H(v, x(t), t).

Our stochastic case of the open loop problem, stated even more roughly, says that there is a function
H(v, x, t, 09) such that a control function u(t) with associated trajectory x(t, 09) is optimal only if for all
and for all v in the control set,

E(H(u(t), x(t, co), t, co)}’<= E{H(v, x(t, co), t, co).

Using this result, we then proceed to define a process whereby a control can be tested for optimality
in the closed loop case, where information is acquired at a finite number of times.

Throughout the paper, the trajectories are determined by a stochastic integral equation. The
stochastic integrals used are McShane’s first and second order belated integrals.

1. The stochastic maximum principle. A more detailed statement of the
stochastic maximum principle requires a considerable amount of machinery. We
shall initially state only what is needed for the open loop case.

Notations and conventions.
Q is a compact subset of Em.
T > 0;we work on [0, T].
Trajectories x(t, co)are in E".
FT is a function from E" to E.
f0, f, are functions from [0, T] E Q to E.
g/,,..., g; G,,-.., G (a,p 1,..., r) are functions from [0, T] x E"

to .
u is a continuous function from [0, T] to Q.
zp(t, co) are stochastic processes on [0, T].
For x E", Ixl is the usual Euclidean norm of x.
For a random variable X, IIXII x/E(IXI2).
For a set A, 1 a is the indicator function for A.
Definitions and hypotheses. A control function u(t) and a trajectory x(t, co)

correspond to each other with initial distribution y(co) if

(I)

xi([, co) yi(co) + fi(s, x(s, co u(s)) ds + gip(S, x(s, co)) dzp

+ y /,o(s, xs, o)) /z’ /z a.e.

The integrals here are McShane’s belated integrals ([4], [5] and [6]).

* Received by the editors March 29, 1974, and in revised form October 17, 1975.

" Seattle, Washington 98112.

803



804 VIRGINIA M. WARFIELD

If x(t, co) is the trajectory corresponding to a control function u(t) with initial
distribution y(co), we define the cost for u(t) as follows"

(II) C(u, y., co) f(s,x(s, co), u(s)) ds + FT(x( T, co)).

Then our problem is to choose a control function u such that E{C(u, y, co)}
is minimized over the set of u and x satisfying (I).

(III) (fLs, P) is a probability triple, where P is a complete measure;
{’s e [0, T]} is a family of a-subalgebras of ’ such that if 0 __< s __< __< T,
then

___ .
(IV) z(t, co), p 1,..., r, is a stochastic process on [0, T] such that z(t,

is -measurable, z( . co) is continuous except on a set of measure zero, and there
are numbers K1, K2, K4 such that if 0 =< s =< =< T, then a.s.

[E{[z(t, co)= z(s, co)][o}[ =< K(t- s),

{[z(t, o)- z(s, o)]cl} __< I’:c(t- s),

(V) For any s e [0, T] and for all p,

e{[zO(t, co) O(s,
lim ess sup 0

(t- s)
te[O,T]

c= 2,4.

uniformly in s (c 6, 8).
(VI) fi(co) is oo-measurable and has finite second moment.
(VII) fi, gi and G/o are of class C2.
(VIII) fi, g/o and G/o have bounded first and second derivatives.
(IX) Fr is bounded;(c/Sxi)Fr and (2/cxi Ox)Fr exist and are bounded.

These hypotheses are more than sufficient to prove a preliminary result
which is of interest on its own, showing Lipschitzian dependence of solutions on
initial points.

We also now have sufficient hypotheses and definitions to state the open loop
case of our maximum principle.

Stochastic maximum principle (open loop case). Suppose hypotheses (I)-(IX)
hold. Then there exist a stochastic process Z(t, co) which is a solution to the system
of differential equations

dZm(t co) cxmfO(t, x(t, co), u(t)) dt

(M)

E z(t, o) -xf (t, (t, o), u(t))dt + E -kg(t, (t, ))ao

og,,(t, (t, ))
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with terminal condition

Z,,( T, co) -Fr(x( T, co)).

We define a function H as follows"

H(t, x, u, Z) f(t, x, u) + Zm(t)fm(t, x, u).

Then in order for u(t) to be an optimal control function, it is necessary that if
x(t, co) is the trajectory corresponding to u(t), then for each [0, T] u(t) is a
point of Q that minimizes

E{H(t, x(t, co)),., Z(t, co)} over Q.

It should be remarked that if Z were originally defined in this manner, we
would be faced with the necessity of proving the existence of a solution for a
system of equations with the complicating feature of having terminal rather than
initial conditions. As it happens, however, we actually define Z by a messier but
less dangerous tactic; then observe that it does satisfy (M).

The closed loop case of the theorem can be stated in almost identical form,
but the similarity in form hides a considerable change in surrounding circumstance
and a fair amount ofnew machinery. The fundamental change is that we now assume
that at a finite number of times tl, ..., tp_ in the interval [0, T], we find out the
exact value of the state variables. Clearly, we then wish to be able to adjust our
controls so as to make use of the information as we acquire it. To this end, we
replace our control function u(t) by a control program U, which is a function
U(t, w1,... Wp_ 1) with values in Q, where e [0, T], W n, with the following
property:

If < tj, then for any wj, ..., Wp_ wj, ..., wp_

U(t, w, ..., %_ ) U(t, w, ..., w2_ , w, %_ ).

If this U is the control program, and the states of the system at times tl, "’", tp_
are x(tl),...,x(tp_l) respectively, the control to be used at time is
U(t, x(tl), ..., X(tp_ 1)). If tj =< <_ tj+ 1, the states x(tl), ..., x(tj) are known, and
U is independent of the others, so the control is determined. It should be observed
that this choice depends only on the available data x(tl),..., x(t), and not on
the values of zP(s) (0 <= s 5= t), which are usually unavailable. Since on (tj, tj+ 1)
U depends only on t, it can (and will) be referred to as u(t). In order to be able to
work freely within each interval, we also need to require that the increments of
zP(t, co) on [tj, t+ 1] be independent of those on [to, t].

Our system for making the open loop case of the maximum principle applic-
able on the interval Its_ 1, tj] consists of a device for absorbing the information
to be received into a penalty function F’j for that particular interval. This device
requires the following changes"
We replace hypothesis (IX) by

(IX’) Fr is Lipschitzian.
We also add the following.
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(X) For any subinterval [a, b] of [0, T], any control function and any initial
distribution at a, if x(t, 09) is a solution of (I) on [a, b], then the distribution of
x(b, o9) is absolutely continuous with respect to Lebesgue measure; i.e., if N e "and N has Lebesgue measure zero, then

P(x(b, o2) N) O.

Under these hypotheses we can define multipliers Zm on each interval
[tj_ a, tj] which again turn out to be the solutions to the system (M), this time
with terminal condition

+
z(t, o2) xF’j(x(t, o)),

where c3+/3x denotes the upper right derivative. Then the statement of the
maximum principle for the closed loop case, including the definition of the function
H, is identical to that for the open loop case. Note, however, that the values on

(tj_ 1, tj) of u, and hence x and hence Z are undefined unless x(tl),..., x(t_ 1)
are known.

An interesting feature of our maximum principle is that in practice, for a
given problem, it is frequently possible to formulate (I) in many different ways,
yielding apparently different, but actually identical solutions. For instance, in a
problem involving Brownian motion, the fact that (dz)2 dt leads to a variety
of choices for f and Gp,. If one wishes to eliminate this ambiguity, a possible
solution is to put the problem in McShane’s "canonical form" [8, Chap. 3, 3].
In this form, the special case of our theorem involving Brownian motion coincides
with the finite-dimensional case of the maximum principle for Banach space
recently published by Kuo [2].

Results related to this maximum principle have been published by Fleming [1]
and Kushner [3]. In both cases, the statement of the maximum principle is
extremely similar to ours--the difference is in the contexts. Fleming is working
with solutions of an equation of the form

X(t) Xo + f(r, X(r), Y(r, X)) dr + a(r, X(r)) dw(r),

where w is Brownian motion; his Lagrange multipliers are arrived at through
partial differential equations, and it is not clear how to relate them to ours.
Kushner works with solutions of an equation of the form

dx(co, t) f(x(m, t), u(o2, t)) dt + dz(o9, t).

His maximum principle comes out in terms of expectation conditioned on the
minimum a-field with respect to which u(og, t) is measurable. The special case of
his theorem where u does not depend on o2 coincides with the special case of our
theorem where g/o 1 and G 0.

2. Lemmas. Rather than launching ourselves directly into a series of proofs
of lemmas of varying degrees of intrinsic interest, we will now give statements
alone of the necessary lemmas, relegating their proofs to the final section.
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THEOREM 1 (Lipschitzian dependence on initial value). There is a constant K
such that .for any two solutions x(t, co) and Yc(t, co) of the.system of equations

xi(t, co) yi(co) + fi(s, x(s, co))ds + g/(s, x(s, co))dzp

+ dz" dz
ptr

with initial distributions, respectively, y(co) and 37(co),

IIx(t, 09) (t, o)11 gllY(O) (o)11.

LEMMA 1. Assume hypotheses (III)-(V) hold. Let x(t, co) and if(t, co) be n-vector-
valued processes adapted to . Suppose g and G, are functions" [0, T] x n

_
(i, o l, ..., n; p, a l, ..., r), which are continuous and bounded in all variables
for all i, a, p, a. Then there is a constant K such that if h(t, co) is a solution to

hi(t, co) yi(co) + g,(s, x(s, co) + O[Yc(s, co) x(s, co)])dOha(s, co)dzp

+ Gi(s, x(s, co) + Oil(s, co) x(s, co)]) dOh(s, co) dzp dz,
then IIh(t, )11 < Klly(og)ll for all e [0, T].

LEMMA 2.1 If X is continuous in L2-norm and almost all of its sample functions
are continuous, and if f[N] {co e fl SUpo_<t_<r IS(t)l => N}, then as N ,
][X(t)l,tNlll converges unijbrmly to O, where lntsl is the characteristic for f[N].

LEMMA 3. Assume hypotheses (III)-(VI) and (VIII) all hold. Assume y(co) has

finite second moment and is -measurable. Let Xo(t, co), x,(t, co) be solutions for (I)
with the same control function Uo(t) and with initial values, respectively, Yo(co) and
Yo(co) + ey(co). Let q(tle) (1/e)[x(t, co) Xo(t, co)]. Let X(t, co) be a solution to

Xi(t, co) yi(co) + i(s, Xo(S, co), Uo(s))X(s, co)ds

+ g (s, Xo(S, co)dz 

+ -xGo,,(s, Xo(S, co))X’(s, co)dz dz".

Then lim_ o [Iq(tle) X(t)[I 0 uniformly in t.

This result, which simplifies drastically the proofs of several of the lemmas from my dissertation,
was communicated to me by E. J. McShane.
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LEMMA 4. Assume hypotheses (III)-(VIII) hold. Suppose that on the interval
[to e, to], x8 and Xo are solutions of

ftt fttpx(t, 09) yi(o0) -+- fi(s. xs(s. co). fi) ds + g/o(s, xs(s. co)) dz
0--8 0--8

t

Gp.(S. xs(s. 09))dzp dz,
to pa

xg(t, o (ot + f(s, Xo(S, , uo(s s + (s, xo(s, zO
o-e o-8 p

+ 2 6o(s, xo(s, )) dzO dz.
o--e p

Then

IIx(o, ) x(o, )
e[fi(to. Xo(to. ). fi) fi(to. Xo(to. ). Uo(to))]

3. Open loop case. We now proceed directly to the proof of the open loop case
of the maximum principle.

Our objective is to find a necessary condition for a given control function u(t)
to minimize the expected cost. Clearly one thing that must be true is that any
control function that differs from Uo by only a "small amount" must give an
expected cost greater than that given by Uo. Thus in particular, if we define u8
for e > 0 as follows: for a given e, fi Q, and o in the interval (e, T),

Uo(t), 0<= < o-e,

us(t)= fit, o e < to,

Uo(t), o <= <= T,

and if y(o9) is a given starting distribution, then it must be true that for small

e{C(u, y, )} >__ e{C(uo, y, )}.

Hence, assuming the expression makes sense (which we must prove), we must have

d
d--(E{C(us, o9)})18=o ->- 0.

To prove that the expression does make sense, we must first show that u gives
a solvable trajectory equation, i.e., that for a given initial distribution y(co), there
is a solution for

x(t, co) yi(co) + fi(s, xs(s, co), u(s)) ds + y’, gio(s, xs(s, co))dzp
p

+ y G’(s, x(s, oo))dzO clz.
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On [0, o -e), x--xo. On [to -e, to), the initial condition x(to -) is
determined from the integral on [0, o e). Hence by Theorem 2 of [9] x(to )
has finite second moment; since it is a limit of Cauchy polygons, x(to -) is

o_-measurable. Using hypotheses (IlI) and (IV), we deduce that the equation
on [to e, to] has a solution (cf. [5]). On [to, T], the same argument applies.

Now if x is a trajectory corresponding to u and an initial distribution y, then

SO

C(u, y, oo) f(s, x(s, o9), u(s)) ds + FT(x(T, o9)),

provided this limit exists. We prove that the limit does exist by chipping away
at it industriously"

f(s, x(s), u,(s)) f(s, Xo(S), Uo(S))ds

1 ;tt f(s, x(s), u(s)) f(s, Xo(S), Uo(S))ds
" o-

+ f(s, x(s), u(s)) f(s, Xo(S), Uo(S))ds.
" o

By Lemma 4,

I[ft [f(s, x(s), u(s)) f(s, xo(S), Uo(S))] ds

--e[f(to, Xo(to), fi) f(to, Xo(to), Uo(to))]

It follows that

[f(s, x(s), u(s)) f(s, Xo(S), Uo(S))] ds
e--*O o-e

E{f(to, Xo(to), fi) f(to, Xo(to), Uo(to))}.
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To take care of the situation on [to, T], we first observe that by Taylor’s theorem,

f(s, x(s), Uo(S)) f(s, Xo(S), Uo(S))

:= x (s, Xo(S), Uo(S))(x(s) Xo(S))

1 c32
+ - cx" Ox’f(s’ x*(s), Uo(S))(x(s) x(s))(xf(s) x(s)),

a,p=

where x* is between xo and x. Hence if q(sle) and X(s) are as defined in Lemma 3,

E f(s, x(s), Uo(S)) f(s, Xo(S), Uo(S))ds

E f(s Xo(S Uo(S))q’(sl) ds
o Xa

+ Oxaf(s, x*(s), Uo(S))q(s[e)qa(sle)ds

Xo(S), Uo(S))x’(s)s
+ E f(s, Xo(S), Uo())(q(sle) X(s)) ds

+ E Oxaf(s, x*(s), uo(s))q(s[e)q(sle)ds

We will show that the second and third terms of this expression go to zero as
e goes to zero.

Second term: Since the integrands for q(t[e) and X(t) are linear in q and X,
respectively, they satisfy hypotheses H3 and H4 of Theorem 3 in [5] trivially.
Hence from that theorem, we may deduce that q’(tle) and X’(t) are processes
adapted to Since f was assumed to be continuous, this means we may apply
Fubini’s theorem to deduce that

(s, Xo(S), uo(s))(q=(s[e) X(s))ds

f(s, Xo(S), Uo(S))(q’(sle) X’(s)) s
o

But by hypothesis (VIII), O/Oxf is bounded in all variables; hence
[[(O/Ox’)f(s, xo(s), uo(s))[ is bounded. By Lemma 3,

lim I]q(sl) X(s)I] 0 uniformly in s.
0

From these facts we conclude that the sond te goes to 0.
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Third term"

E cxf(s, x*(s), Uo(S))(sle)(sle)ds

e r 2
Uo(S))} (sle)(sle)l ds.

If B is the bound on (/x Ox)f,

, Ox Oxaf(s’x*(s)’u(s)) (sle)qa(sle)

n. E(l(s]e)]. ]qa(s]e)l)
, fl

nll(sle) qa(sle) I.
,fl

By Theorem 1, II(sl)ll is bounded on Ito, T]; say II(sl)ll c on [to, T] for all .
Then we have

.2 ,Uo(S))q(sle)q(sle) }nBC
So the third term goes to zero with e. It follows that

lim E{1 f.o
[f(s, x(s, uo(s f(s. xo(s, uo(s] s

f(s, xo(s), uo(s))X(s)s

This takes care of the first term of the expression for (d/d)[E(C(u))].
Identical treatment of the second term yields that

limE[Fr(x"(T))-Fr(x(T))]}=
Making a massive collection of terms from the past several pages, we find

that we have proved that

1
lim [E(C(u)) E(C(uo))]
0 8

E(f(to, Xo(to), O) f(to, Xo(to), Uo(to))}

+ E (s, Xo(S), Uo(S))X(s)ds + E T(xo(T))X(T

So we have proved that (d/de)[E(C(u))]l=o exists. As previously remarked, it must
be nonnegative if uo is to minimize the expected cost. This gives us our first form
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of minimum condition: if uo is to provide a minimum for the function E{C(u)},
it must be true that for all o [0, T] and all Q,-lf(to, Xo(to), )-- f(to, Xo(to), Uo(to))E

+ f(s, Xo(S), Uo(S))X’(s) ds +

Unfortunately, this is not a very useful form of condition. So we maneuver it
around a bit to get a more helpful object. To aid these maneuvers, we use the
following definition and theorem from [9].

DEFINITION. Let x(t, o) and y(t, oo) be n-dimensional stochastic processes
on [0, T]. Then x and y are said to be adjoints if

xi(t, o)yi(t, o) xi(O, co)yi(O, o)
i=1 i=1

a,S.

ADJOINT THEOREM. Assume that hypotheses (III)-(V) hold, that x(0, co) and
y(0, o) are bounded for a.a. o and that Ao(t, co) and Bh(t, o) (i, h 1,..., n,
p, a 1, r) are processes adapted to which are bounded on [0, T] and have
a.s. continuous sample paths. Suppose x(t, o) is a solution of the following system
of equations:

x’(t o) x(O,o) + Z Aho(s O))Xh(S o9) dz;+ Bo(s, oo)x(s, )dz dz.
h,p h,p,a

Then there exists a stochastic process adjoint to x.
Consider the following system of equations on [0, T]"

dWi(t) ---fi(t, x(t), u(t))W(t) at

() + -g(t, x(t))W(t)dzp

+ Gio(t, x(t))W(t) dz dz.
Let X](t), ..., X,(t) be n linearly independent solutions to (1) with the

property that X}(0) 6}. Let ](t),..., Y,(t) be n linearly independent solutions
to the system adjoint to (1) on [0, T], with Y(0) 6}, whose existence is guaranteed
by the Adjoint theorem. By choice of X(t), X(t) satisfies (1) on [to, T]. Hence there
exist random variables C1(o), ..., C,(o) such that

x"(t, o) G(o)x(t, a.So

Setting o, we get

xh(to, co)Y(to, co) Ck(CO)X,(to, co)Y(to
h h,k

C(co)6 by Theorem 3 of [9]
k

Cs(o).
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Therefore, we have

X(t, o) X’(to, o)Y’(to, o)X,(t, o).
k,m

Substituting this into our minimum condition, we get a second form of necessary
condition"

E{f(to, Xo(to, oo), f) f(to, Xo(to, oo), Uo(to)

+ f(s. Xo(S, co), Uo(S))X(to, o)Y"(to, o)X(s, o)ds
0

+ ---FT,xo,T, o))Xm,to, o))Y(to, o)X,T, o)!>__ O.

In Lemma 4, we proved that

.--.olimll-1[x:(t’ )) xg(t’ ))]

[fi(to, Xo(to, r.o), O) fi(to, Xo(t, o), Uo(to))] 0

But

1
[x(to, o) Xo(to, o9)] X’(to, oo),,11= lim ,.q’(to. X’(to, 09)..lim 0.

e-o0 /3 e0

Hence

IIg’(to, oo) [f’(to, Xo(to, o), O) fi(to, Xo(to, o9), Uo(t0))]ll 0.

We use this to replace the X(to, o9)’s in our second form of minimum condition
and achieve a mess. To write this mess more appealingly, we make the following
definitions’For o [0, T],

Z,.(to, o) f(s, Xo(S, o), Uo(S))Yr(to, o)Xl(s, o9)ds

+ o-Fr(xo(T, co))"(to, o)X,(T, co),
ot,k

H(t, x, gt, Z) f(t, x, ) + Z,.fm(t, x,

Then our condition reads"
In order for a control function Uo(t to be optimal it is necessary that for all

e [0, T] and all 0 e Q,

E{H(t, Xo(t oo), fi, Z(t, o9)) H(t, Xo(t, o9), Uo(t), Z(t, o))} __> 0;

i.e., for each [0, T], Uo(t is the point in Q whose associated control function
minimizes

E{n(t, Xo(t, o9), , Z(t, o9))} over the set of fi Q.
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For the open loop case, there remains to be proved only that our multipliers
Z,, satisfy both the system ofequations (M) defined in the statement ofthe maximum
principle in 1, and the terminal condition that accompanies (M). The second of

and The first uses two resultsthese facts is immediate from the choice of Xj Yj.
from McShane’s recently published book [6]. One result (Thms. 111-5-1 and
II1-5-4) is that all integrals of the form

f(s, 09)dz(s, 09)dz(s, co).., dz’(s, 09)

with three or more factors dz, dz vanish, and so do all integrals with two
factors dzp dz in which dzP= dt or dz’= dt or both. The other result (Thm.
IV-3-7) is the "integration by parts" formula

d(uv) u dv + v du + du dv,

in which du and dv are to be replaced by their expressions in terms of dr, dz 1, ..., dz
and in the product du dv all terms containing three or more factors dz and all
terms containing a factor dt and another factor dt or dz are to be discarded.
The proof is a computation performed by applying, in order, the second of the
above results, the formula for an adjoint system, the definitions of X and Y, the
first of the above results and the definition of Z.

4. Closed loop case. In order to tackle the closed loop case of the theorem,
we need to elaborate the set-up and modify the hypotheses as described in the
Introduction. Since we will want to be able to apply the open loop theorem in
this context, our first job is to prove that replacing hypothesis (IX) by hypotheses
(IX’) and (X) leaves the open loop theorem intact. Inspection of the proof reveals
that the only direct use made of hypothesis (IX) occurred in showing that

To prove this equality in our new context we use the following theorem due
to Rademacher [8].

THEOREM. Every Lipschitzian function on " has a total differential except on
a set of Lebesgue measure O.

Let N be the subset of " such that N has Lebesgue measure 0 and if x N,
then Fr has a total differential at x. By hypothesis (X), ifM {09 f: xo(T, 09) N},
then P(M) O.

Let (c3+/c3x)Fr(x(T, 09)) be the upper right partial derivative of Fr with
respect to the ith coordinate:

+
-ciFr(x(T, 09)) lim -1 {FT(xI(T 09), xi(T, 09) + 8, x"(T, 09))

eO 8
e>O

FT(x’(T, 09),..., x(T, 09).,..., x"(T, 09))}
Then consider the expression

FT(x(T, 09)) FW(xo(T, 09)) __Fr(xo(T, 09))(x(T, 09) xg(T, 09))
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to which we assign the label 0(/3). What we need is that

lim --E{0(/3)} 0.
--*0 /3

If we introduce the additional notation D(/3)= x(T, 09)- xo(T, co), then
we have

lim 1E{0(/3)} .0(/3) 1o IO()l
=1 Eli(]I,,D,/3,,

o()

0 - by Theorem 1.

By Theorem 1, lim_. 0 D() 0. It follows that for any sequence/31,/32, "’",

where/3j 0, there is a subsequence 61 62, such that D(6j) 0 a.e. Take such
a sequence and subsequence. Let Z be a subset of f such that P(Z) 0 and for
o9 f Z, ID(6)I--, O. Then for o9 f (Z (_J M)

since Fr has a total differential on f M. So

O((j) lim
O((j) 2

j
(MZ) ,j-,O j) P(dco) + lim

[t[’t..) z 5j 0

Oe(do) + 4Lre(dcoI
(MZ) wZ

O(j) 2p(dco)} 1/2

Hence by the bounded convergence theorem,

D((j)

But if Lv. is the Lipschitz constant for Fr, then IIO()/D()II is bounded by
2Lye. Hence it takes values in a closed interval. Thus if there are an infinite
number of points/3i such that IIO()/D()II is outside of some neighborhood of 0,
there must be an accumulation point Po elsewhere than 0. But then a sequence
/3j with llO(/3j)/D(/3j)ll po would have no subsequence such that I[O(6j)/D(6j)[[ 0,
a contradiction.

It follows that

lim -E{O(/3)} O.
e-O /3
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So if q(Tle) and X(T, 09) are as defined in the statement of Lemma 3,

lm 1E{FT(x_(T, co))} FT(x_o(T,
o

lim E Fr(xo(T, co))q(
0

FT(o(T, m))Xi(T, )}.
This last equality follows from Lemma 3 by a standard Schwarz lemma argument.
This enables us to proceed as in the proof of the open loop case, provided that for
(a/ax)FT, we substitute (a+/ax)FT.

We are now in a position to apply the open loop case ofthe maximum principle
on each interval (t;_ , t;) provided that we can supply a penalty function F for
each t;. It will suffice for us to show how to define Ft-’ and have it be Lipschitzian.
Assume we know (t_,m) accuratelycall it _. Fix . Then the cost
C(,

_
, m) starting at

_
and using control function is a random variable

determined by the equation

T

c(u, x_ , a) Yo(S, x(s, @, u(s)) + Yr(x(r, a)).
lp-1

The increments ofthe z on Its_ , T are independent ofthe increments on [0, t_ 3,
so this is an open loop problem of the type considred.What we want to take for
our penalty function F-’ is the infimum over all control functions of

To have this turn out Lipschitzian, we need to know that for each _u,

{C(u. x._..

is Lipschitzian in _x, and that the Lipschitz constant does not depend on u.
fo is differentiable, hence Lipschitzian; call its Lipschitz constant Lfo.

Then if s(t, 09) and ,(t, co) are trajectories over Its,_ 1, T] having starting points
_x,_ and v,- 1, we have

r
f(s, ;(s, co), u(s)) f(s, (s, co), u_(s)) ds

tp-I

=< Iif(s, x(s, co), _u(s)) f(s, (s, co), _u(s))ll ds
tp-

<= Lfollx(s, co) _y(s, co)ll ds (independehtly of u)
p-1

=< (T tp_ 1)" Lyo. K. [_xp_ Vp- 11 by Theorem 1.

Let L (T- tp_l). Lfo. K.
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Then

E f(s, x_(s, co), u_) ds E f(s, y_(s, co), u_) ds
p-I p-1

<= E f(s, x_(s, co), u_) ds f(s, y_.(s, co), u_) ds
p-1 p-1

-<_ 1 f(s, x_(s, co), u_) ds f(s, (s, co), u) ds (Schwarz)
p-1 p-1

<= LIsp- Y-v-
so the expected running cost does vary with the initial point in a Lipschitzian way,
with the Lipschitz constant independent of_u.

For the chunk of Ftp-’ that comes from Fr, we have

E{IFT(x_(T, co)) FT(_.(T, co))[} _<_ E{ILv.(x_(T, co) y_(T, co))[}
_-< ,E{l_x(W, co) v(W, co)l}
<- LFI1111 II_x(T, o9) M(T, o9)11 (Schwarz)

<= Lye." K [Ix_,- Y_,- 1[[ (Theorem 1)

LFT K Ix_,- p- 11"
For both cases, we observe that the constant K in Theorem 1 did not depend

on the choice of _u. Hence we do have the form of Lipschitzianness desired.
It follows that if we define Ftp-* by

Ft’- ’(x_(tp_ 1)) inf E{ C(_u, _x(t,_ 1), co)},

then FtE-’ is Lipschitzian with Lipschitz constant L + LFT. K.
Clearly to define Ft, we proceed backwards from Ft’-’ repeating the above

process for each interval successively. This gives us a procedure by which a solution
to the closed loop problem can be found. It should be pointed out, however, that
since the use of each piece of information requires the solution of an open loop
problem not merely for one initial value, but for all initial values in , the com-
putational cost of actually solving even a simple problem is likely to be
astronomical.

5. Proofs of lemmas. Before proving the lemmas stated in 2, we need to
state a pair of inequalities.

PRELIMINARY LEMMA. Suppose hypotheses (I)-(IV) hold, and suppose f(t, 09)
has the property thatfor all [0, T] and allf(t, co) L(f, , V), f(t)l[ 2 is bounded
on [0, T] and f is a.e. (with respect to Lebesgue measure) continuous in L-norm on
[0, T]. Then

f(s) dz dz <= K9 f(s)ll 2 ds

f(s)dz <- Klo II/(s)ll 2 ds
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T1/2where K9 K, + 2K2T and Klo 2KI + Kz/2.
The proof is an immediate application of the Cauchy-Schwarz inequality

and of Corollary 4.1 of [4].
Proof of Lemma 1. Since _x and are fixed processes,

f gio(s, x_(s, co) -+- O[_(s, co) x_(s, co)]) dO

and

dO

are functions of s and co alone.
Label them, respectively, A(s, co) and Boa(s,i 09). Since _x and g are adapted to- and g/, and G/, are continuous, A and B, are adapted to -. They are also

bounded, since g and G, are bounded in all variables. Say Ao(s, co)l --< A,
IB,,(s, o9)1 B. Then

Ilhi(t)ll

yi + A(s)h(s) dz’

=< Ilyill + K Ilh(s)ll 2 ds

Let lySll max lyl. Then we have

where K rn(K oA + rK9B).

and hence

Ih(t) n lyll + nK IIh(s) 2 ds

IIh(t) 2 2n211yj 2 + 2n2K2 h(s)ll 2 ds.

By a standard argument using Gronwall’s lemma (see, e.g., [9]), this gives us that

It follows that

Ilh(t)ll 2 K2 max Ilyill 2, where K2 2n2 e2"2K2T

E{[h(t, co)]z} =< K 2 max E{[y’] 2}

__< K2E {Z [Y’] 2}

__< K2E{g2}.
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Proof of Theorem 1. We first observe that all of the integrals with respect to
r+ls can be subsumed into integrals with respect to z by defining zo (t, o9) to be

for all o9 and g+ l(t, o9) to be fi(t, x). To simplify notation, we make three defini-
tions:

q(tl)
Ix(t, o) (t,

Yo(O9)
Y(O)-

Then

q(tla) _1 [y(o9) 37(o9)3 + [g(s, x(s, o9))- g(s, (s, o9))] dz

+ E E(’,,o(, x(s, oo)) G’,,,,(s, ,Z(, o9))1 dz" dz".
/3 pa

Since

(x’(s, o9) ’(s, o9)) dO

and Go, behaves the same, we have

qi(tle’) Yo(og) % -xgio(s, x(s, co) + O[c(s, 09) x(s, co)I) dO q=(sle) dz

+ --xGo,,(s, x(s, o9) + Oil(s, o9) x(s, co)I) dO q’(sle) dz dz.
Since hypothesis (VIII) tells us that g and G, have bounded and continuous
first partial derivatives, Lemma applies and we have a constant K such that

But

so we have

IIq(tl)ll < gllYoll-- K.

IIq(tl)ll {llx(t, ) .(t, co)

IIx(t, co)- .(t, o9)11 < KllY(cO)-
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ProofofLemma 2. Except on a set of P-measure 0, for each in [0, T], we have

lim [IX(s, co) X(t, 6o)[ 1N,,()] 2 0,

the quantity in brackets being at most 2N. By the dominated convergence theorem
X(t)IN,, is continuous in Lz-norm. So is X(t), and, therefore, so is X(t)IN,
X(t) X(t)IN,,. In particular, [IX(t)ls,[ is continuousl For each t, it decreases as
N increases. Since IX(t, (,o)ls,(go)] 2 ---} 0 as N --, for all o except those in the set
of P-measure 0 on which X(., o) is discontinuous, by the dominated convergence
theorem X(t)lu, --, 0 for all t. For each positive e, the set {t e [0, T] X(t)l u, >= }
is compact. It shrinks as N increases, and no is in this set for all N. It follows that
there is an No for which the set is empty, and for N >__ No, we have []X(t)IN < e
for all in [0, T]. That is, [IX(t)ln(m[ X(t)lu, converges uniformly to 0.

Proof ofLemma 3. Once again we start by subsuming the fds terms. Then we
adopt the following notation"

v(t) q(tle) X(t) 2,

v(t) [Iq(tle)- X(t)ll 2,

A(t) E

ho (O xo(O 

Then

(2)
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<__ 4 max , Ao(s dz Bo(s dz
0 p

X Co,(s) dz dz X Do(s) dz dz
pa pa

" 4 [lf2 A‘s, dzp 2+ f2 ",s, zll
p p

We tackle this expression by pieces"
2

1
2

A(s) dzo 2
p

< Ko h(s)[q’(sle)- X(s)]lZds

Ko 2 E{(h(s))Z((sle) X(s))z} ds.

Let M sup {h,(t)’te[O, r], p 1, ..., r, 1, ..., n}, which is finite
because of hypothesis (VIII). By the preceding inequality,

E A(t)ezO M:Ko {q’(l) X’()} as

Mzgo lie(sic)- X(s)ll 2 ds

M2Ko v(s) ds.

Similarly, if we let M sup {Hi,,(t)’t m [0, r]; p, 1, ..., r; 1, ..., n},
then

2 01
2

Co(t dz dz K Ho(s)[q=(s]e)- X=(s)] ds
p

KM2 v(s) ds.

Let C nKM2 + nKoM2. Then the preceding inequalities combine to yield

(3) . A(s) azO + Z c’od) azO az c (s) as.
p

Next we let C3 be the bound on [Iq(tle)[[ whose existence was established in Theorem
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1, and B the bound on I(B/Sx)gipJ, J(8/Bx")GJ and their first derivatives
(i, 1,..., n,p,a 1,..., r), whose existence is guaranteed by hypothesis
(VIII). Then for each co

h(t) xg(t, Xo(t)) 2B.

Furthermore, the functions J(B/x)gJ and J(B/x)GJ are Lipschitzian in x for
fixed t, with Lipsehitz constant Bn/. Hence for each ,

h(t) g(t, Xo(t))

g(, Xo(O + O[x(t) Xo(t)]) g(, Xo(O) dO

Bn/lO(x,(t) Xo(t))l dO.
o

As in the proof of Lemma 2, for each positive N, we define 1, to be

{e" sup ,X(t,),

and 1,, to be 1,. For each and p, we apply the preceding inequality at all
in 1,, and the inequality before that at all in 1,, and obtain

< IBnx(t)- xo(t)Nl 1,.,, + 4B2[X(t)[ 2

By Lemma 2, the last term tends uniformly to zero. Hence if we fix 6 > 0, we can
choose an N for which the last term is less that 6/(4Konr for all in [0, T]. With
this N fixed, we then choose an e’ such that e < e’, then the first term is less than
6/(4Konr) for all t; this is possible by Theorem 1. Then for such e we have

IIB(t)ll 2 /(2nro) for all t.

By a similar proof, for all suciently small e,

l(t): < 5/(nr).
By the two preceding inequalities,

ro sp(s s +r supD(s < t.

This and inequalities (2) and (3) and the definition of v imply

v(t) C v(s) ds +
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To this we would like to apply Gronwall’s lemma. So we consider the equation

w(t) C w(s) ds + fit.

This equation has the solution

w(t) (6/C)[ec’

It follows by Gronwall’s lemma that

v(t) <= (l/C)[ec 1](5 for all [0, T].

So lim_,o [[q(t[e) X(t)[[ 2 0 uniformly in t.

ProofofLemma 4. Let v, x, Xo. Then

via(t) [fi(s, Xo(S + v(s), fi) fi(s, Xo(S), Uo(S)) ds

+ y [g’(s, Xo(S) + v(s)) (s, Xo(S))] dzO
o-e p

+ EG(s Xo(S) + c(s)) G,(s, Xo(S)) dz" dz
to

(A) [fi(s, Xo(S) + v,(s), t) fi(s, Xo(S), 0)] ds

(I + [f(s, Xo(S, t f(to, Xo(to, ) ds
0

(C) + [fi(to, xo(to), ) fi(to, xo(to), uo(to))] ds

(D) + [f(to, xo(to), uo(to)) f(s, xo(s), uo(s)) ds

o-e p

Go,(s Xo(S))] dzp dz.
to pa

Since (C)= e,[fi(to,Xo(to),ft)- fi(to,Xo(to) Uo(to))], the result will follow im-
mediately if we can show II(A)II + [I(B)II + II(D)II + II(E)II + II(F)II o(0. We
shall show first that ]I(A)]I / II(E)ll / I](F)II o(0. Since fi was assumed to be of
class C2 with bounded derivatives, there is a constant Ly such that

fi(s, Xo(S) + v(s), fi) fi(s, Xo(S), O)l =< Llv(s)l.
This inequality holds for all of the (invisible) og’s, so

fi(s, Xo(S) + v(s), fi) fi(s, Xo(S), fi)ll -< Zfllv(s)ll
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By Theorem 1, there exists a bound, say W, for IIv(s)ll on [to e, to]. Let Q1 LyW.
Then

l[(A)ll [fi(s, Xo(S) + v,(s), fi) fi(s, Xo(S), fi)] ds
0--

=< fi(s, Xo(S + v,(s), ) fi(s, Xo(S), )11 ds

gllv(s)ll ds
0

LyW ds N

By identical arguments, there exist constants Q2 and Q3 such that II(B)II N Q2e and
II(D)II

[[(E)[[ Ugh(s, Xo(S) + v(s)) g(s, Xo(S))] dz
o-e p

Ko
o-

I[g(s, Xo(S) + v(s)) g(s, Xo(S))ll 2 ds

g is Lipschitzian for all p, hence, as above, there exists Lg such that

Ilg(s, Xo(S) + v(s)) g(s, Xo(S)) ggllv(s)ll LW,
So

Ift W2 11/2II(E)II-< rKlo g2g ds <= rKloLgWe1/2

Let Q4 rKloLgW; then II(E)II Q4:1/2. By an identical argument, if Q5
r2K9L6W, then II(F)ll <= QsX/2. Since for small e, e < e/2, if we let Q 5= Qi,
we have shown that

But using this fact and the previous argument concerning II(A)II, we now have

II(A) _-< g. IIv(s)ll ds
0--

<_ Lf Qe1/2 ds <= LfQe3/2.

Similarly,

]1/2II(E)II -< rK:o Lll(s)ll 2 ds

<_ rKlo[LEge(Qel/2)2] /2

<= rK oLgQe,
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and

II(F)II _-< r2K9LQ,.
Since for small , e3/2 < e, if we let M LfQ + Q + rKxoLgQ + r2K9LQ, we
have IIv(s)ll <= M. Running the argument one more time on II(E)II and II(F)II,
we get II(E)II _<- rKloLgMg3/2.

[[(F)[[ =< r2K9LcMe,3/2.

So we have shown that [[(A)II, [[(E)[[ and [[(F)II .are all o(e).
As equipment for working on II(B)II and [I(D)II, we need the following ob-

servation:
Let f[N] {Olsupte[O,TllXO(t 0)1 -> N}. Then if Lf is the Lipschitz constant

for f regarded as a function of x (guaranteed to exist by hypothesis (VIII)), we
have

[fi(t, x, a)[ =< If’(t, O, a)l + Lflx(t)l for 1,..., n, [0, T].

Let K max f(t, O, u_). Then

If(t, x, )l =< K / Llx(t)l,
and hence

Ilf(t, Xo(t), )lN, <-_ IIK1N, / IlLfxo(t)lN, II,

for 1,..., n and [0, T]. By Lemma 2, the right-hand term tends to zero

uniformly in as N tends to o3. It follows that the left-hand term does so.
To simplify the rest of the work with II(B)II, we define a function O(s) by

O(s) fi(s, Xo(S), ) fi(to, Xo(to), ).

Then

t

II(U)ll < 0(s)ll ds
0

Ilfi(s, Xo(S), fi)lN, ds + [Ifi(to, Xo(to), fi)lN, ds
0 0

f
t

+ 0(s)l ,, as.
Oe

Let 6 > 0 be given. Then the observation above and the fact that f(to, Xo(to), fi)
is constant permit us to choose N such that each of the first two integrands is less
than 6/4. 0(s)l,, is bounded, since all fi are continuous and we are working over
the compact region [0, T] x {xl Ilxll N} x U. Furthermore, 0(s)l,, is continuous
in s for almost all . Hence

lim [0(s)l,,] 2 0 a.s.
StO

Thus using the bounded convergence theorem,

II0(s)l,,ll 0 as s to.
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Thus there is an e’ > 0 such that on [to ’, to],

O(s) ,, < 6/2.
It follows that if 0 < e < e’,

II(B) < 6/4 ds + 6/4 ds + 6/2 ds
0-- 0--

Hnc II(B)II is o(). Th argument for II(D)II is identical.
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STOCHASTIC APPROXIMATION ALGORITHMS OF THE
MULTIPLIER TYPE FOR THE SEQUENTIAL MONTE CARLO

OPTIMIZATION OF STOCHASTIC SYSTEMS*

HAROLD J. KUSHNER AND MILTON L. KELMANSON

Abstract. Many stochastic control (or parametrized) systems have (expected value) objective
functions of largely unknown form, but where noise corrupted observations can be taken at any
selected value of a finite-dimensional parameter x. The parameter x must satisfy equality and inequality
constraints. The usual numerical techniques of nonlinear programming on control theory are not

usually helpful here. The paper discusses a number of algorithms (with convergence proofs) for selecting
a sequence of parameter values {X.}, where X, depends on X_ and observations taken at X_ i,

and the limit points are both feasible and satisfy the Kuhn-Tucker necessary condition (w.p. (with
probability 1)). The algorithms are stochastic "small step" versions of the deterministic combined
penalty function-multiplier methods.

1. Introduction. For some integers s, t, let./(. ), (Di("), 1, ..., s, qi(" ),
i= 1, ..., denote continuous, twice differentiable real-valued functions on
Euclidean r-space Rr, with uniformly bounded mixed second derivatives. (. ), q(.
denote the vectors with the components bi(.), qi(’), respectively. Define the
sets C {x’qi(x <= 0, i= 1,.--, t}, and B {x’b(x)= 0, i= 1,..., s}. For
each x e Rr, let H(. Ix) and/(. Ix) denote distribution functions of real-valued and
R-valued, respectively, random variables with uniformly (in x) bounded variance
(covariance, resp)., and j" y dH(ylx) f(x), . v d-I(vlx) f(x), where fx(" is the
gradient of f(.). The paper is concerned with several algorithms for finding
(sequentially) a local minimum off(x) in C, B or C fq B. The functions dpi(" ), qi("
are known and their values or values of their derivatives can be calculated at any
x. We do not assume that f(. is known but, given a parameter X, we can draw
one or more random variables from the distribution (with parameter value X)
H(. IX) or/-)(-IX), depending on the case. If Ji, __< n, f/, _<_ n, are the first n
parameter values at which draws are made, and the values, respectively, and
X/ is the (n + 1)st parameter value at which a draw (denoted by Y/ ) is to be
made, then we suppose that E[n+X[.i, iN n + 1, f/, iN nl f()+) (or
f(X,+ ), according to the case.

The algorithms are roughly of the stochastic approximation type. An initial
estimate, Xo, of a local minimum, is made, one or more observations are taken
at Xo, a new estimate X is calculated, etc. As is generally true in nonlinear
programming, it is quite difficult (except under certain convexity conditions) to
devise practical computational algorithms which are guaranteed to (eventually)
find a true local or global minimum. In this paper, the algorithms generate (as is
usual in deterministic nonlinear programming) a sequence {X} whose limit
points are feasible (meaning that they satisfy the constraints; they are in C, B or
C fl B, according to the case) and which satisfy one of the usual local necessary

" Division of Applied Mathematics and Engineering, Brown University, Providence, Rhode
Island 02912. The work of this author was supported by the Air Force Office of Scientific Research
under AF-AFOSR 71-2078C and in part by the National Science Foundation under Eng-73-03846-AO1,
Office of Naval Research NONR N1467-AD-191001805.

: Division of Applied Mathematics, Brown University, Providence, Rhode Island 02912. The
work of this author was supported in part by CAPES, Ministry of Education, Brasil.
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conditions for minimality; in particular, either the Kuhn-Tucker condition, or
the necessary condition of the calculus, according to the case.

References Kushner [1] and Kushner and Gavin [2] dealt with a family of
(inequality constrained only) algorithms, based on the deterministic methods of
feasible directions, in which each iterate satisfied the constraints. The search was
divided into cycles, X,, denoting the initial point of the nth search cycle, and all
limit points (w.p. 1) of {X,} satisfied a necessary condition for minimality. The
general conditions on each search cycle implicitly required that the "search effort"
per cycle increase as the cycle number increased. Part of the reason for the require-
ment for the increasing effort/cycle is the difficulty of analyzing the algorithm
when the iterates are on or near the boundary of the feasible region. Numerical
experiments (such as those reported in [2] suggest that more efficient use is made
of the observation if the effort per cycle does not increase. In Kushner and
Sanvicente [3], a penalty function-like method was developed (for inequality
constrained case). There the iterates were not constrained to be feasible (the
algorithm guaranteed that the limits would be), but the method shares with the
deterministic penalty function method the numerical disadvantages that the
penalty functions ultimately increase extremely rapidly for x outside of the
feasible set.

Here, several stochastic approximation-like versions of the so-called deter-
ministic methods of multipliers [4]-[7] will be developed. The methods in [4-[7]
do not require feasibility, and avoid some of the numerical problems associated
with penalty function techniques. Intuitively, it seems very reasonable to expect
that the numerical advantages which the techniques have in the deterministic
case (say, with the methods in [4]-[7]) would also hold for the stochastic algorithms
discussed below.

For the sake of simplicity of notation in the proofs, we do the pure equality
constraint case in 2, and the pure inequality constraint case in 3 and 4. It
should be fairly clear that the combined problem can be handled by a combina-
tion of the ideas in the proofs of 2, 3 and 4.

There are numerous applications of these systematic Monte Carlo optimiza-
tion techniques. Typicallyf(x) represents the average response of a physical system
with parameter x. Only noise corrupted dataf(x) + is available at each chosen
value of x ( observation noise). If the system is complex,f(. will not be known,
and we may have to resort to an "experimental" method for optimization. Ex-
perience with such methods in the stochastic case suggests that "small step"
methods are probably preferable. The paper is concerned with convergence
theorems for several such methods.

2. Equality constraints. The algorithms in this section are stochastic approx-
imations of those discussed by Miele et al. [4] (in the sense that the Kiefer-
Wolfowitz method is a stochastic version of Newton’s method), where no actual
convergence proofs are given. In order to minimize the number of terms in our
expansions, we assume that the observations are taken with (. Ix); i.e., given
Xk, observe Y, where is distributed as /(. IX,). Let , denote the smallest
a-algebra determined by Xo, ,X.. Then E.Y. f(X.), covar. . _< a2I
for some real a2, where . _= Y. -fx(X.). There are only minor changes in the
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assumptions if fx(X,) must be estimated via finite differences, and the changes
will be discussed later. Let k denote a (henceforth fixed) positive real number, and
define the functions P(. ), (. ), L(.,. and W(.,. by P(x)= 14(x)l 2, (x)--
Jacobian of 4(" at x, , (X,), L(x, 2) f(x) + 2’b(x) for a vector 2 with
real components (where denotes transpose, and the norm is Euclidean), and
W(x, 2) L(x, 2) + (k/2)P(x).

The following assumptions will be used. We require s =< r.

(A1) Let {a,} be a sequence of positive real numbers with ,a, .
2(A2) ,a, <

(A3) ’(x)(x) 0 implies that (x) is of full rank (hence also that b(x) 0).
For each h Rr, define rt(x)h to be the projection of h on the orthogonal

complement to the subspace of R determined by the rows of (x). If (x) is of
full rank, then

(2.1) rc(x)h [I ’(x)((x)’(x))- l(x)]h.

In any case, (2.1) holds if the inverse is interpreted as the pseudoinverse, which we
will do.

For each > 0, define the set G {x’lt(x)f(x)l 2 __< }, and write Go G.
G f"l B is the set offeasible stationary points. It is closed and is the union of a collec-
tion of disjoint closed and connected sets Si," , on each of which f(x) is constant,
say, taking valuef on Si. Assumption (A4) is not a serious practical restriction.

(A4) There are only finitely many sets $1,"..
In the equality constrained case, we must show that the sequences {X,}

generated by the algorithms converge to G fq B.
ALGORITHM 1. Given the iterate X, (with components denoted by X,,
1, ..., r), X,+I is given by the parameterized (by 2,) form

X,+x =X,-a,[Y,+@’,2,+Px(X,)1(2.2)

X, a,[fx(X,) + ’.2, + P,(X.) +

where P,(x)= 2’(x)b(x).
If x is a constrained minimum, then we know from calculus that there is

a vector 2. (21, "", 2) and scalar 2o (not both zero) so that 2ofx(x)+
i2ib,x(X) 2ofx(x) + ’(x)2 0. By (A3), the {b,x(x)} are linearly independent,
and we can take 20 :/: 0. This suggests that we choose 2, so that the norm of the
estimated gradient of the Lagrangian is minimized. Namely, we let 2, minimize
ILx(X,, 2,) + ,l 2. Equivalently, we let (following the idea in [4]) 2, satisfy the
orthogonality relationship
(2.3) .(fx(X.) + , + ’.2,) 0.

If. is of full rank, then .’. is invertible and 2. is unique and is given by,. -[o,o’,3-o,L(x.)- [o.o’.]-o.. _= ,. + .
(2.4)

E.2. + (2. E.2.).
It may be computationally preferable to use the pseudoinverse of ’(x) for ((x)’(x))-X(x).
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If x X,, we write rt,h in (2.1). If (I), or (x) are not of full rank, then (2.3) still
has a solution, although not necessarily unique and we may suppose that it is
(2.4) with the pseudoinverse of [,’,] replacing the inverse. We will use the forms
(2.1), (2.4) with the inverse indicating either the inverse or pseudoinverse. Define
the function (. by (x) -[(x)’(x)]-(X)fx(X), where the pseudoinverse is
used. By (A3), ((x)’(x)) is invertible at all feasible x.

From (2.1), (2.2), (2,4),

(2.5) X+ X a rcf(X) + r + -P(X)
In all proofs K denotes a positive real number. Its value may change from

usage to usage.
TORFM 2.1. Assume the conditions in the introduction and also (A1) to (A4).

Then there is a null set N so that if oa N and sup. IX.(og)l < oo and x is any limit
point of {X.(co)}, then qb(x) 0 and there is a vector (perhaps depending on the limit
x) 9 (#1, 9S)for which

L(x) + ’(x)q, o.
(An equivalent statement is that if co N and sup, IX,(co)l < oo, then all limit
points are in G fl B.)

Remark. We note that convergence takes place for all values of k > 0, unlike
in the deterministic case [4]-[7] where k must be greater than some minimum
value.

Remark. It follows from the arguments of Part 1 of the proof of Theorem 2.1
that if P(x) ---} ov as Ix[ ov and if either a,lrc,fx(X,)[ 2 0 w.p.1 as n --} v, or
I(X)fx(X)l <-_ gl’(x)ck(x)l for large x and some real K, then P(X,) --} 0 w.p.1, and
sup IS(o)l < w.p.1 is implied.

Proof Until further notice, we suppose that there is some real M for which
IXl _-< M w.p.1, all n, and that the generic variable x satisfies Ixl _-< M.

Part (i). By a straightforward Taylor series expansion and the use of (2.3)
(which certainly holds if P’x(X,) replaces , there) we get

e(x+- P(X <= -ae’(x fx(X + ’ + + -e(x

+ aK fx(X.) + *’2 + + -Px(X)

<= -a-lP(X)l + aK[If(X) + ’1

+ I + xl +lx(Xtl]
which yields

P(X,+ 1)- P(X,) <= -a,kl’,ck(X,)l 2 + a,K[lrC,fx(X,)l 2

(2.6)
+ I..1 + I’.(x.)l].

Define the set / {x’l’(x)ck(x)12<= e}. By (A3), /, B as e 0. For each
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e > 0, there is a 6 > 0 so that 6 -, 0 as e --* 0 and/ c B x" [P(x)[ di},
(by A3). By (A2)

lim a,2lrt,,l 2 0
Noo n=N

w.p.1. For large n, the other second order (in a,) terms in (2.6) are at most half of
the absolute value of the first order term--for X, in R -/. The last two sen-
tences (the convergence and the dominance) and the divergence of , a, imply
that X, e/ c B infinitely often w.p.1, for any e > 0. Fix e. The same sentences
and (2.6) imply that {X.} can go from B to R B3 only finitely often (w.p.1)
without entering B2 B, first, and they also imply that the sequence {X,} can
go from a point in Bo2, to R B3 at most finitely often w.p.1. Since e > 0 is
arbitrary, ’.tk(X,) --. 0 and hence by (A3), tk(X,) 0 (w.p.1).

Part (ii). Now, we turn to evaluate the limits off(X,). Similarly to (2.6), we
have

(2.7)

f(X.+ ,)- f(X.) <_ -a.f(X. X.) + d.2. + X,,) + ,,
+ a=.K[Irc.A(X.)l = + I’.(X.)I = + Ic..12]

<- a.f’,(X.)rc.f,(X.) a.f’(X.)rc..

k
a.-if’,(X.)P(X.)

+ a.K[lr.fx(X.)l z + 1;,4,(X.)l = + 1z%.12].

We have f’x(X,,)rc.f,(X,)= I.L(x.)I 2 (by the definition of re(x) and projection).
Note that by (A2) and the bound M, a,f’x(X,)rc,, is a square summable con-
vergent martingale. Also Px(X,) 0 w.p. 1 by Part (i). Using these two facts together
with the divergence of , a, and (2.7), and an argument like that in Part (i) (to
show X, e/ or B infinitely often w.p.1), we can show that X, G infinitely
often w.p.1 for each e > 0.

Since the2 Si are disjoint and closed, and since f(x) f on Si, for each small
6 > 0, there is an e > 0 so that we can write G fq B Ui S, where {S} are
closed, connected and disjoint and S = Si, and the maximum variation off(x)
on each S is less than 6. We can (and will) also suppose that iff/-f, then If/-
fl ->_ 36. Let f > f. So for {X,} to go from S to S, the sequence {f(X,)} must
increase by at least 6 while outside of S U S. Now, the inequality (2.7) and the

2 2convergence of a,,f,,(X,,)rc,,, and a,lt.,l and the asymptotic dominance of
the other second order terms (in (2.7)) by the first order term for X, outside of G,
and P(X,,) -,-, 0 w.p. 1, together imply that {X,} can make only finitely many excur-
sions from S to S(w.p.1). Indeed, by the same reasoning {X,} can make only
finitely many excursions from S into any set A, where inf,a f(x)>= fj + 25.
Since 6 is arbitrarily small, {f(X,)} converges w.p.1.

See paragraph above (A4) for the definition.
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Let Ad(Y) denote a ball in R with center y and diameter d, and suppose that
for a real el > 0,

inf I(x)fx(x)l >= ex.
xeA2a(y)

Define ml min {n" Xn Ad(Y)}, m min {n" X, q A2d(Y), n > mx} and,3 in
general, m, min {n "X, Ad(y), m > m;_ }, m’i min {n’X, A2d(Y), n > mi}.
Summing (2.7) and using the convergence and dominance cited in the last para-
graph yields, w.p.1,

m- m-
lim [f(X,+)-f(X,)] - lieK a.
i n=mi i mi

But by summing X,+ -X, from (2.5) over [mi, m’i- 1] and using the sum-
mability of a,,, and convergence of P(X,) to 0, and the fact that the distance
traveled over those iterates is at least d, we get

1 a.Kd,
i n=mi

which contradicts the convergence of (X,)}, unless m < only finitely often
w.p.1. Since y and d are arbitrary, we conclude that (X,} must eventually stay in
G B w.p.1 for any e > 0, and hence that X G B w.p.1, if sup IX.I M
w.p.1.

The proof without the bound M, but with sup, IXl < w.p.1 proceeds
similarly. We repeat the above proof, but stop the iteration {X} at the first
instant that IXl > M. Then we conclude that X, G B with a probability

P{sup IXl M}, Since M is arbitrary, the theorem holds as stated. Q.E.D.
Remark. If we replaced (A3) by "O’(x)(x)= 0 implies (x) 0", then the

theorem would read" there is a number 0, vector , (o, )# 0 such that
fx(X + ’(x) 0 at almost all limit points.

Finite differences. Let e denote the unit vector in the ith coordinate direction,
and {c} a sequence of positive real numbers which converges to zero. Let X, be
given, and let Y(X cei) denote a random draw from H(. IX ce). Define
(the finite difference version of (2.2))

(2.8) X+= X an[(Xn + cnei) (Xn cnei) k p(x,)]
i=l,...,r,

Let 2, be determined by (2.3) but with the finite difference estimate replacing
fx(Xn) + , there.

THEOREM 2.2. Assume the conditions of Theorem (2.1), but with an/C, replacing
a, in (A2). Let E,(X, Cnei)= f(X, c,ei) w.p.1. Then the conclusion of
Theorem 2.1 holds.

The proof is almost exactly the same as that of Theorem 2.1, except that
f(X, c,e) must be expanded, and the "noise" in the iteration (2.8) is propor-
tional to an/Cn, rather than to an. Note that we do not require , anC, < as is

Undefined m or m are set equal to .
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common in stochastic approximation (the a,c, terms in the expansion are ulti-
mately dominated by the a, term outside of any B,).

Observe that, in both Theorem 2.1 and 2.2, if X.,(co) --, X(co), then the limit
(X(co)) can be used as the multiplier ff at X(co).

ALC,ORITHU 2. Again, for the sake of simplicity, we use (. Ix). In this
algorithm (2.2) is still used, but 2, is selected to assure that the "first order" change
in 4(X,/ 1) b(X,) is proportional to -b(X,). In particular, for some positive
number kl we select 2, to enforce the relationship (following the idea in 4])

O.(X, .1 X,) a,k dp(X,)

or, equivalently, the relationships (2.9) or (2.10).

(2.9)

(2.10)

,. L(x.) + . + ,’.. +-P(X.)
O.[L(X,) + , + 0’,2.] [klI kO,O’,]O(X.).

There is not necessarily a solution to (2.10) unless we replace (A3) by (A3’).
(A3’) O(x) is of full rank for each x e R".
Assuming (A3’) and solving (2.10) for 2, yields

(2.11)

THEOREM 2.3. Under the assumptions ofTheorem 2.1 except with (A3’) replacing
(A3), the conclusion of Theorem 2.1 holds for Algorithm 2.

Proof The proof is very close to that ofTheorem 2.1 and will only be sketched.
We will first suppose here, as there, that IX,I _-< M w.p.1, for all n, and then let
M as in that proof. The first inequality of Part (i) of the proof of Theorem 2.1
still holds. The replacement of 2, in that inequality by its value in (2.11), noting
(2.10), yields

P(X.+ 1)- P(X.) <= a,,klldp(X.)[

(2.12)

and we can conclude, as in the proof of Theorem 2.1, that X. B w.p.1.
Similarly, we can get

(2.13)

f(X,+ 1) -f(X,) _< a.fj(X,) (X,) + , + 0’.2, + -P,,(X.)
2K[lrc,L(X,)12 z

<= a,f’(X,)[rc,L(X,) + rc., +
+ aZ, K[Irc.L(X,)l 2 + Irt,,l z +
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An argument similar to that in Part (ii) of the proof of Theorem 2.1 yields that
X. G f’) B as n o w.p.1.

There is an obvious finite difference analogue to Algorithm 2, but we omit
the details.

3. Inequality constraints. Two different types of algorithms for the inequality
constrained problem will be discussed, one here and one in 4. Generally, "small
step" methods require some sort of nonsingularity or linear independence assump-
tion on the set of gradients of the constraint functions to prevent the iterates from
getting "hung up" at some nonfeasible point. The problem exists in the deter-
ministic case as well. See, for example, Polak 8, pp. 142-143]. Assumption (A3")
below and (A3"’) in 4 are two different types of such an assumption. In this sec-
tion, we constrain the Lagrange multipliers corresponding to the inequality
constraints to be nonnegative. In 4, the signs are not constrained, but the
algorithm is more involved and additional conditions are needed to assure that
those multipliers are nonnegative at the limit points. In this section, the require-
ment that those multipliers be nonnegative forces us to use a stronger condition
on the noise (A6). These problems and conditions seem to be rather natural for
the stochastic algorithms.

For notational simplicity, we draw the observations from (. Ix) rather than
from H(. Ix), but there is an obvious finite difference analogue. Also, we treat the
pure inequality case. Define i(X)= max [O, qi(x)] and e(x)= Zi(X). Then
P,(x) 2’(x)cTx), where (x) is the Jacobian of q(x). We let the components of
q(x) or c(x) range over the q(x) or i(x) for which q(x) >= O. Define , (x,).

A6ORXn 3. We use the same iteration as in Algorithm 1, namely,

(3.1) X,+ =X,-a,[f,(X.)+ , + I)’,2, + P(X,)I,
where 2, is a 2 that minimizes in

(3.2) min [L(X,) / , + O,2,1 / min IL(X,, 2,)+ .12.
all .i > 0 all 2 > 0

By the Kuhn-Tucker theorem, there is a vector c, with nonnegative components
1, t, so that 2. satisfies (note that the gradient of the constraint

-2 _< 0 with respect to 2 is the unit vector with a 1 in the ith position)

(3.3) ,(f(X,) + , + ’,2,) c, 0,

0 if 2i, > 0.where c.
For each hR define rc+(x)h =_ h + ’(x)2, where 2 minimizes in

minan,>=0 [h + ’(x)2l. Note that rt+(x)h is defined analogously to rc(x)h in 2,
but that it is the "error" in the projection of h onto K(x), the cone generated by
the nonnegative linear combinations of the row vectors of (x). Let r.~+ h be
defined as re,+ h, but where we use only the rows of the matrix ., which is obtained
from , by deleting all rows of , for which 2. 0. (The indices of the deleted
rows are random variables and . dependent.)

Define the set F {x:lrc+(x)f,(x)[ 2 <= e} and F0 F. Then F f’) C is the
set of feasible points satisfying the Kuhn-Tucker condition f,(x)+ aCtiv
2q,(X) 0 for some 2 with all 2 >= 0, and we must show that X. F 91 C
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w.p.1. F f] C is closed and is the union of closed, connected and disjoint sets
U1, on each of which f(. is constant taking, say, the valuef on Ui.

We need the following assumptions.
(A3") ’(x)(x) 0 implies that (x) 0, and at any x e OC, (the boundary

of C) the gradients of the active constraints are linearly independent.
(A5) There are only finitely many sets U1, ....
(A6) There is a real k > 0 (independent of n, 09) so that

~+ +fx(X.)o.. (L(x.) + .) kfx(X.). L(x.).

Assumption (A6) would seem to be difficult to explicitly verify in general, yet
it holds in most of the specific special cases which we have checked graphically
(by selecting simple noise distributions and constructing the projections), and
we expect that it holds in a large enough number of cases for the algorithm to be
useful. Some such condition appeared in all the variants of the algorithm, when
2i, 0 was required.

THEOREM 3.1. Assume the conditions in the introduction and also (A1), (A2),
(A3"), (A5) and (A6). Then there is a null set N so that N and sup, IX()l <
and x is a limit point of {X,()}, then q(x) 0 and there is a vector , ’ O, with

i 0 qi(x) < O, for which

(3.4) L(x) + ’(x)ff 0.

Remark. A condition similar to that in the remark after the statement of
Theorem 2.1 implies that sup, Ix()l < w.p.1.

Proof As in the proof of Theorem 2.1, we can and will suppose that IX()l
some M < , and that the generic variable x satisfies Ixl M. The proof is very
close to that of Theorem 2.1 and will only be outlined.

Part (i). Note that

(3.5) I’12 IL(X,)+ ,1
> 0 and q(X,) > 0 imply thatand that (3.2) and (3.3) and c,

’(x,)o,. L(x.) + , + ’,, + 5e(x,)

Substituting these estimates in the first inequality of the proof of Theorem 2.1
yields

e(x+ )- P(X) al’(X,)lz

(3.6)
+ a]K[IL(X,)I 2 + I12 + IPx(X)12].

By (A3"), for each e > 0, there is a fit > 0 so that ]’(x)O(x)l 2 tS implies that
2x N(C), an e neighborhood of C. Thus using the fact that the a, terms are

summable and arguing as in Part (i) of the proof of Theorem 2.1, we can conclude
that the X, must ultimately be in N(C), for each e > 0.
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(3.7)

Part (ii). A truncated Taylor series expansion yields

f(x/ f(xo <-_ af2(xO Z(xo + + ;& + -I(xo

L(xo + + e’& + -e(xo+ a

Using 0’,2, 0’,2, we find that

(3.8)
fx(X.), (f(X,) + .)fx(X,)[f(X,) + , + 0’,2,3 +

=_ E.f,,(X,)rt, (f(X,) + ,) + p,,

where {p,} is a sequence of orthogonal random variables and , a,p, is a square
summable convergent martingale. Substituting (3.8) and (3.5) into (3.7) and using
(A6) yields

f(X,+ 1) f(X,) a,klf’(X )re+. f(X,) a,p, a.f’x(X,)P,,(X.)
+ aZ.K[IL(X.)l 2 + I.12 + IP(XOIZ3.

2The a,p, and a, terms are summable, and P(X,) 0 as n --+ co by Part (i).
Since the Ui are disjoint and closed, and sincef(x) f on Ui, for each suffi-

ciently small fi > 0, there is an > 0 so that we can write CE f’l FE 1,3 U,
where U are closed, connected, disjoint, and U U, and the maximum varia-
tion off(x) on each U is less than 6. Now, we complete the proof exactly as we
completed the proofin Part (ii) ofTheorem 2.1 that is, substitute C, F, CE, F, Ui, U
for B, G, BE, G, S, S there. Q.E.D.

4. Inequality constraints" Algorithm 4. We now consider another
algorithm for minimizing f(x), x C f’l B. The inequalities are handled by con-
verting them to equalities, via the common technique of adding a slack variable.
Let z (zl, z’), denote a vector of nonnegative real variables and define
(/)i(z) qi(x)+ zi, i= 1,..., t, with b,+ 1(" bt+(" denoting the original
s equality constraints. For > t, we may write either bi(x) or b(x, z). The func-
tion (. ), the Jacobian of b(x, z) with respect to x, (and , _= (X,)) is defined
exactly as in 2. Note that b(. is a (t + s) x r matrix. For notational simplicity,
we draw the random variables from/(. Ix), rather than from H(. Ix), although,
here too, there is an obvious finite difference analogue. Define P(x,z)=

2 X’b, z), and let (.) {w.} be sequences of positive real numbers tending to
zero.

AtOORIWrM 4. We iterate on both variables x and z. Assume *go, Zo are
given. The iterates {X,} and, in certain cases, the iterates {Z,}, are computed
exactly as {X,} would be in Algorithm 1. {2,} will be defined below. Define (the
observation vector is Y, _= 0(X,) + {,, as in 2)

(4.1) X,+ X, a, f(X,) + , + ’,2, + -P(X,, Z,)
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If Z. > v., define (2/. is the ith component of 2.)

(4.2a) Z.+ max [0, Z. a.(2. + kdp(X., Z.))]

and define a,". by Z+1 Z. a’[ a.(2. + kdp(X,,, Z.))]. If Z. =< v., use (4.2b, c, d)

Z. + max [0, Z, a.(2. + kdp(X., Z.))] if 4(X., Z.) =< 0
(4.2b)

and z. + k(X., Z.) <= O,

(4.2c) Z.+ Z. if b(X., Z.)__< 0 and 2. + kck(X,,, Z,,) > O,

(4.2d) Z.+ Z,, +,a,,w,, if 4,(X.,Z,,) > O.
Define the (t + s) x matrices I(z, v) (resp., J) as follows. All entries are zero

except that the (i, i)th entry (i =< t) takes the value if z > v (resp., always takes the
value 1). Denote 1,, =_ l(z,,, v.) and (x, z, v) [(x), l(z, v)]. (x, z, v) (a (t + s) x
(t + r) matrix) is the Jacobian of b(x, z) where we use c3ck(x, z)/cz 1 only if
z > v (i.e., we exclude the c3ck(x, z)/c3z term for the "v active constraints"" q is
said to be a v active constraint at x if, "loosely speaking", z =< v.

Definef"(x)l=f"(X)L0 ["1 "’ where the zers are t-dimensinalvec’0
tors. The multiplier is chosen by forcing it to satisfy an orthogonality relationship
like (2.3). In particular, we let 2. be a 2 minimizing the norm of the estimated
gradient of a particular Lagrangian, namely, a minimizer in

(4.3) If(X.) + . + ’.212 If(X.)+ . + ,212 + (2’)2.
i:z > vn

The,minimization of (4.3) yields (2.3), (2.4) with ,, fx(X,), , replacing ,,fx(X,);. ,
there. The choice of (4.3) as the quantity to minimize is motivated by the fact that
if x is a constrained minimum off(x), then the Kuhn-Tucker condition is

t+s

f(x) + 2’q,,,,(x) + 2’b,,,(x)= 0, 2i_>_ 0 for =< t.
iactive i=t +

and so in (4.3), we seek to penalize the use of the "v, inactive" constraints.
For any vector/ define (x, z, v)/ as n(x)h was defined in 2, where (x, z, v),/

replace (x), h there, and write ,h ft(X,, Z,, v,)h. If 2, is to minimize (4.3),
then it maast satisfy

(4.4) 0 .[f(X.) + . + .],
and we choose

(4.5) 2. [.,]-’.f(X.) " +
For each real e>0, define the sets C+,F+ and let C- =C+, F =F+:

when qi is used, then =< t)

C+ {(x,z)’zi>=O, all i,lb(x,z)l 2=<

F+ { (x, z)" minz
t+s

i=t+l
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Note that in C +, q(x) -z, so x specifies z, and we can unambiguously speak of
x in C +. The points satisfying the Kuhn-Tucker necessary condition are the
points in C + CI F + for which there are nonnegative minimizing 2i, =< t. For
x C + f"l F +, define (x) (with components Yi(x)) to be the multiplier attaining
the minimum in the definition of F + (if it is not unique, use the one determined
by the appropriate pseudoinverse" i.e., the one of minimum norm). Now C + f’l F +

is closed and can be written as the union of a collection of disjoint closed and
connected sets T1, on each of which f(. is constant taking, say, the value f
on T. We need the following assumptions"

(A3’") The rows of (I)(x) are linearly independent for each x
(A7) For a real number >,0 for which sup, E],]
(AS) .a.w.
(A9) For each T, if, for some __< t, we have 2(x) < 0 (resp., > 0) at a point

x e T, then 2’(x) < 0 (resp., > 0) at all x e Tj.
(A10) There are a finite number of sets T.
(All) Suppose that for some i,j, i() < 0 on some Tj, and let {,,,} denote

an arbitrary sequence in the (f-neighborhood No(T)--{y "IY- ul < 6, some
u e Tj}, which tends to (, ) where -q(). Suppose that there are positive
real numbers , (51, 5, so that 0,, the ith element of the minimizing 0 in

min (IL(ff.)+ (I)’(.)0[ 2 + ((pJ)z) v. =< ,
is less than -61 for any such {,, ,} sequence.

Assumption (A9) is apparently not restrictive in applications. It basically
eliminates the possibility that a T contains both saddle-like points together with
other points which are neither saddles nor local maxima nor local minima.
For an example of the type of situation excluded by (A9), consider x (x 1, x2),
f(x) Nix2, ql(x) x2. On the boundary determined by ql 0 (denote it as T1),
f(x) 0 and f’x(X) (0, xl), q’,x(X) (0, 1), and (x) -x 1. If we add smooth
constraints which bound Ix1[ and x2 from below, the algorithm can be shown to
converge without (A9), for this type of problem. We strongly suspect that (A9)
can be dispensed with, but cannot prove it, as yet.

Condition (All) may seem a little strange. If 2’ < 0, x e T, we will require
that the 2 < 0 for large n and X, near T. But the "discontinuous" term z,. v. (2J)2
creates discontinuities in the ii,, as the Z, vary above and below v,. If there is only
one active constraint in Tj, the condition is no restriction, nor is it a restriction if
the q,x(’) for all "nearly active" constraints are constant or nearly orthogonal
(as for example, if all q were of the form q(x) txt + fljt). Assumption (All) is
implied by (A9) if the signs of the 2(x) (when >0 or <0) are the signs of
-q’i,x(X)fx(X). The condition can be weakened by using bi(x, z)= qi(x) + bz for
small b (i =< t) in lieu of qi(x) + z. We then need to multiply the (,j)2 term by b,
and the "ones" in I, and J by b, and multiply the 2, in (4.2a, b) by b. The smaller
b is, the less restrictive is the corresponding condition (All). The condition is
needed only to show that >= 0, __< t, in Theorem 4.1.

THFORFM 4.1. Assume(A1)-(A2), (A3"’), (A7)-(A11). Then there is a null set N
so that ifco q N, and sup, [X,(o)l < cc and x is any limit ofa convergent subsequence
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of (X,(co)), then dp(x) O, > t, qi(x) <- O, <_ t, and there is a vector (perhaps
depending on x) (f/a,..., t,+s), t >_ O, 1,..., t, for which

(4.6) f(x) + @iq,,x(X) + Oidpi,(x) O.
i,q (x) 0 +

(Equation (4.6) is the Kuhn-Tucker necessary condition for constained opti-
mality.)

Remark. A condition analogous to that mentioned after the statement of
Theorem 2.1 yields that sup, Ix,I < oo w.p.1.

Proof As in the proof ofTheorem 2.1, we can and will suppose that sup,lX,I =<
M < oo w.p.1 for some real M. Also, for notational simplicity, we ignore the
constraints b,+ 1(" ), "’", 4),+s(" )- The general proofis almost the same. as the
one given below.

Part (i). Letting Px,(x, z) denote the gradient of P(x, z) with respect to (x, z),
we get Px,z(X, z) k[(x), J]’dp(x, z). Let , denote the diagonal matrix with entries

I. Using (4.1)-0,.i If (4.2a) is used to calculate Z, + and is untruncated, then 0,
(4.2), a Taylor series expansion and majorization of some of the second order
terms yields

P(X,+ I, Z,+ 1) P(X,, Z,)

z.)[L(x.) + . +
L

+ 1
ZnI’.]

(Xn, Zn)

(4.7)
-a,k dpi(X,, Z,)[2i, + k(X,,Z,)] + a,w, dpi(X.,

(4.2b) (4.2d)

+ aZnK[]fx(Xn)] 2 + ]n] 2 4- ](Xn, Zn)l 2 + W2n],
where (4.2b) or (4.2d) implies that the summation is over those for which (4.2b)
or (4.2d) are used at iteration n. If (4.2a) is used and truncated, then (here we have

(4.8) a,[)J, + k(q,(X,) + Zi,)] _>_ Z, or v,(1 a,k) <= a,,i, + a,J. + a.q,(X,).

By sup. IS.I M, q(Xn) is bounded. The fact that the minimum (4.3) is <_ fx(S,) 4-
,12 and the definitions of ,’,, /, imply that there is a real K for which 12.1 _<-
KIf,(X,)I, I.1 _-< KII. These facts, together with (4.8) and (A7) and the Borel-
Cantelli lemma, imply that (4.2a) will be truncated only finitely often w.p.1.
Neglecting this "finitely often occurring" event will not affect the rest of the proof,
and we will do so. Then setting 0, identity and using JI’ Inl’ and (4.4),
(4.5), (4.7) we get

(4.9)

P(Xn+ 1, Zn+ 1) P(Xn, Zn) <= -anKI’(Xn, Zn, Vn)dP(Xn, Zn)I 2

+ anw qi(X., Z.)
(4.. 2d)

+ anK[IL(Xn)l z + Inl 2

2+ 14,(x., z.)l 2 -4- IWnl-I.
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Using the fact that w. 0, an analogy of the argument of Part (i) (but (A3’")
instead of(A3)) of the proof ofTheorem 2.1, yields that (X,, Z,) C+ infinitely often
w.p.1 for each e > 0, and that p(X,, Z,) 0 w.p.1 as n --. . Since Z, >_ 0, this
implies that cPi(x, z) O, qi(x) <= 0 for any limit point (x, z) of {X,(og), Z,(og)} (for
o not in some null set). Note that if X,j(o) ---, x, then Z.j(og)i -qi(x).

Part (ii). Now we evaluate f(X,+ 1) f(X,)

f(X,+ 1) f(X,) <_ -a.f,(X, X.) + , + 0,2. + X,
(4.10)

+a2.K[lfx(X,)l 2 + I,,] 2 + Ib(Xn, Zn)12].

It is helpful to rewrite (4.10) as

f(X,+ 1) f(X.) <= -a,f,’(X,) (X.) + , + O.z, + -Px,,.(X,)
(4.11)

+ a2,K[lf(X,)l 2 + I,l 2 + Ib(X,, Z.)I2].

Equivalently, using (4.5) (see above (4.4) for the definition of , ,) we get

f(x.+ )- f(x,) <_ -a,f’(x,)[,f(x,) + .,]
k

2K[I fx(X,)l 2 2(4.12) -a-fx(X)P(X,Z) + a + [[

+ I(X.. z,)12].
The first term on the right-hand side of (4.12)can be written as

a.l,f(x,)l a,f(X.),..(4.13)
Recall that

(4.14) ],fx(X,)l 2 =min [Ifx(X,)+ 2iq,x(X,)[ 2 + (/]/)2
2 Z/n v.

and that 2, is a minimizing 2 in (4.14). Let {2,, ,} denote any sequence with all
-i > 0 and limit 2, and qi(2) + i O, < t. Note that

(4.15) (2,, ,, v,)f(,) 0 =:, (2, ) e F +.

Equations (4.12), (4.13) and (4.15) and the summability of both ., a,2l,l 2 and Px(X,, z,) 0 and , a. imply that (X,, Z,) F+ infinitely
often w.p.1 for each e > 0 (for otherwise the sum over n of the right-hand side of
(4.12) would tend to ).

Thus {X., Z,} e F+ f) C+ infinitely often w.p.1. Also F{ f’] C+ tends to the
closed set F + 71 C+ as e 0. Given small 6 > 0, there is an e > 0 so that we can
write C+ fq F+ LI T, where T is closed and connected, contains T/and the
T} are disjoint. We can suppose that the maximum variation off(x) on each

T is less than 6 and that iff 4: f, then f L.I >- 36.
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Using the technique of Part (ii) of the proof of Theorem 2.1, we can show
that {f(X,)} converges and that (X,, Z,)is in F+ f3 C+ for large n w.p.1 for any
fixed e > 0. Furthermore (again using the same idea as in the proof of Theorem
2.1) we can show that (X,, Z,) F/ 71 C / as n w.p.1, which is the desired
result (4.6), except for the nonnegativity of the q’, <= t.

Part (iii). We can suppose that f,(x) v 0 at the limit points, for otherwise we
can take qi 0 for all i. Thus we only need to consider limits points x ((x, z),
resp.) on the boundary of C (C /, resp.). By (A9), and the fact that the T are closed
(and we can suppose bounded, since sup, Ix.(og)l < ), for any i, j, either i(x) 0
on T or inf,rj ],i(x) > 0 or sup:,rj i(x) li < O. Fix T, and suppose that lit > O.
This implies that q i(" is active on T.

By Parts (i) and (ii), for each e > 0, {X,, Z,} are ultimately in F+ f) C+;
hence for any 6 > 0, the sequence is ultimately in Ui Na(Tk), and we can suppose
that fi is small enough so that the {-a(Tk)} are disjoint and _a(Tk) = Tk. So for
any small 6 > 0, the tail of {X,,Z,} is (w.p.1) contained in one of (which one
depends on o)the {Na(Tk)}. Let {X,,Z,} T then (for 09a null set)(All)
implies that , =< - < 0 for some real li > 0, and all large n, and tk(X,, Z,) 0
as n m. For this {X., Z,} sequence, (4.16a) holds for large n when zi, > v.

(4.16a) z _>_+ Z, + a,li/2

If Z, =< v,, then Z cannot decrease and may increase, but v, decreases; ultimately
v, > Z,. Combining (4.2b, c) we get (for large n)

(4.16b) Z,+I >= Z, + [a,ii/2 + a,[,, + kdpi(Xn, Zn)]Iz+k4,,(x,,,z,,)<_oi.
If (4.2d) holds.

(4.16c) Z, + Z, + a,w,.

In (4.16a, b), we can replace ii/2 by w,. (4.16a, b, c), the fact.that , a, is a square
summable (hence convergent) martingale, and (A8) imply that Zi, , contradict-
ing the fact that qi(" is active in T. Thus all J(x) => 0 on T, if {X,, Z.} e Na(T)
infinitely often, for each t5 > 0, as desired. V] Q.E.D.

Note added in proof The conditions requiring square summability of {a,}
and orthogonality of {,} have been considerably weakened. See General con-
vergence theorems for stochastic approximation via weak convergence by the first
author, to appear. Also, numerical experiments indicate that the algorithms work
reasonably well, with appropriate parameter selections.
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LAGRANGE DUALITY THEORY FOR CONVEX
CONTROL PROBLEMS*

WILLIAM W. HAGER’[" AND SANJOY K. MITI’ER:I:

Abstract. The Lagrange dual of control problems with linear dynamics, convex cost and convex
inequality state and control constraints is analyzed. If an interior point assumption is satisfied, then the
existence of a solution to the dual problem is proved; if there exists a solution to the primal
problem, then a complementary slackness condition is satisfied. A necessary and sufficient condition
for feasible solutions in the primal and dual problems to be optimal is also given. The dual variables p
and v corresponding to the system dynamics and state constraints are proved to be of bounded
variation while the multiplier corresponding to the control constraints is proved to lie in 1. Finally, a
contr61 and state minimum principle is proved. If the cost function is differentiable and the state
constraints have two derivatives, then the state minimum principle implies that a linear combination of
p and v satisfy the conventional adjoint condition for state constrained control problems.

1. Introduction. The Lagrange dual of the following control problem is
studied:

inf c(x, u)

subject to 2(t)= A(t)x(t)+B(t)u(t),

Kc(u(t), t)=<0, Ks(x(t),t)<=O

x(0)- x0,
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where c(’," ), Kc(’, t) and Ks(’, t) are all convex. Rockafellar [7] has derived
duality results for convex state constrained control problems using Fenchel
duality theory. The development in this paper goes beyond Rockafellar’s results
since the constraints are given explicitly by inequalities above, and hence the
multipliers associated with the constraints can be characterized. Also, a slightly
different form of the dual problem, the Lagrange dual, is studied herein; and the
matrix B(t) above, which Rockafellar assumes is the identity matrix in his
development, is introduced. The theory in this paper provides the foundation for
an analysis of the numerical solution of the dual problem by the Ritz method in
[1]. The control problem stated above involves no constraints on x(0) and x(1)
except for the condition x(0) x0; however, convex inequality and linear equality
endpoint constraints could have been included with very little change in the
analysis. To keep the presentation simpler, these constraints are not explicitly
treated; however, notice that the state constrained problem explicitly involves
endpoint restrictions because of the condition Ks(x(t), t)<= 0 for all 6 [0, 1].

In 2 and 3, the principal result based on the Hahn-Banach theorem,
proves that the dual problem has an optimal solution if there exists an interior
point for the constraint set (i.e., the Slater condition holds); if the primal problem
has an optimal solution, then a complementary slackness condition holds. The
optimal multipliers /3 and 3 corresponding to the system dynamics and state
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constraints are shown to have bounded variation while the multiplier corres-
ponding to the control constraints lies in L. Also a necessary and sufficient
condition for the optimality of solutions to the primal and the dual problem is
given.

Section 4 then proves that a minimum principle holds, and while (/3, 3) are
only of bounded variation, the combination (t)= Ks(2(t), t)rx(t)-(t) is abso-
lutely continuous where 2 solves the primal problem; furthermore satisfies the
conventional adjoint equation for state constrained control problems. This result
has important consequences for the solution of the dual problem using the Ritz
method in 1] since the convergence rate of the discrete approximation depends
upon the smoothness of the dual variables; hence if the dual problem is reformu-
lated in terms of q rather than p, then a superior convergence rate is achieved.

The Appendix contains several technical lemmas concerning the regularity of
the dual variables.

Notation. The following notation is Used for spaces of real-valued functions
on [0, 1]:

s absolutely continuous functions,
T" functions of bounded variation continuous from the left on [0, 1),
3c3T" functions of bounded variation continuous from the left on [0, 1),

and normalized so that f(1) 0,
continuous functions,

P functions with j If(/)l dt <
o functions essentially bounded and measurable.

If o///. is any of the spaces above, the notation x ///’(R") means that x is a
vector-valued function with n components and each component lies in

If y R" then define lyl- = lyl and denote the supremum norm of a
vector-valued function by I[fll sup, c0, a

If x, y e R", the inner product (. ,. is defined by (x, y) .= xkyk. If f
g q, where q is the dual of fP, v 6 3T’, and h 6 % then define:

(f, g)= if(t), g(t)) dt, Iv, hi= h(t) dv(t).

The complement and closure of a set are denoted A and fi, respectively.

2. Duality theory. The following control problem is considered:

inf c(x, u)

subject to c(x, u)= J0 h(x(t), u(t), t) dt,

(P) (t) A (t)x(t) + B(t)u(t), x(O) Xo,

Kc(u(t), t)<=O, Ks(x(t), t)<-O forallt[0, 1],

x e s(R"),

where h, Kc and Ks have range in R, R’c and R", respectively, and the matrices
A and B are of the appropriate dimensions. Note that in the control problem
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above, the controls lie in 2. The next section will treat the case where the
controls lie in . The dual function L is given by

L(p, w, v)=inf {c(x, u)+(p, 2-Ax-Bu)+(w, Kc(u))+[v, Ks(x)]}

subject to x(O) Xo, x sg(R",), u (R").

The dual problem corresponding to (P)

sup L(p, w, v)

(D) subjectto pll/’(Rn), vW3(R’ns), wel(Rmc), w>=O,
v nondecreasing.

In order that all the terms in (P) and (1) above make sense, assumptions must
be made concerning the functions appearing in these problems. Theorem 1 will
require the following, continuity, convexity and Slater conditions:

(C) h(.,., t), Ks(’, t) and Kc(’, t) are convex for [0, 1], A(. and B(.
have components in1 and h( , , ), Ks(" ," and Kc(" ," are all continuous.

(SL) There exists a control a C(R") and a corresponding trajectory Y such
that (Kc(a(t), t))j < a < 0 and (Ks(Y(t), t))j < a < 0 for some "a", for all [0, 1]
and for all components of Kc and Ks.

Proposition 1 below, the weak duality theorem, is easily verified. This is
followed by the principal theorem, or strong duality result.

PROPOSITIOy 1. c(x, u)<=L(p, w, v) whenever (x, u) are feasible in (P) and
(p, w, v) are feasible in (D).

THEOREM 1. Suppose (C) and (SL) hold and the optimal value, ., of (P) is

finite. Then there exist (, , ) that are optimal in (D) with L(O, , 3)=.
Furthermore, if (, v, f)) and (fc, fi) are feasible in (D) and (P), respectively, then a
necessary and sufficient condition for (, v; ) and (, fi) to be optimal solutions to
the dual and primal problems is that (, fi) achieve the minimum in (1) for
(p, w, v)=(/5, , ) and the complementary slackness conditions (,K(fi))=
[t3, Ks(:)] 0 hold.

Observe that the condition (v?,K(fi))=[5, Ks()]=0 implies that
K(fi(t), t)i =0 whenever ff(t)i >0 a.e. and ti is constant on every interval where
Ks((t), t)<0. Also notice that the sufficiency condition follows immediately
from complementary slackness, feasibility of (), fi) and (/5, if, fi), the optimality of
(, fi) in (1) for (p, w, v) (/5, if, t3) and Proposition 1 that is, c(Y, fi) L(/5, if, if),
and this can only happen when (, fi) and (/5, if, ) are optimal in (P) and (D),
respectively. On the other hand, if (/, v?, ) and (, fi) are optimal in (D) and (P)
and it can be proved that the optimal value of the primal and dual problems are

equal, then c(, fi) L(/5, , iS)_-< c(, fi) +(, K(fi)) +[, Ks()]. Since
K(fi(t), t)_-<0, (t)_->0, K((t), t)<-O and is nondecreasing, (, K(fi))=0,
[, Ks(2)] 0 and (, fi) achieve the minimum in (1) for (p, w, v) (/5, , ). Thus
the proof of Theorem i will be complete if it can be shown that the optimal value
of the dual problem and the primal problem are equal whenever (SL) and (C) hold
and the value of the primal problem is finite.

Rather than prove directly that the optimal value of the primal and dual
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problem are equal, we first consider a slightly more general problem:

inf f(x, u)

(P’) subjectto 2(t)=A(t)x(t)+B(t)u(t), x(O)6Xo, Ks(x(t),t)<=O,

u(t) U(t) for all 6 [0, 1], x 6 .(Rn), u 6 (R’),
where [ is a functional defined on (Rn) (R’). The corresponding dual
function is

L’(p, v)=inf {f(x, u)+(p, 2-Ax-Bu)+[v, Ks(x)]}

(2) subject to x g(R"), u (R"), x(O) Xo, u(t) U(t)

for all 6 [0, 1 ].

The dual problem is

sup L (p, v)
(D’) subject to p YJV(R "), v 6 3cN//’(R’’), v nondecreasing.

Define X={xM(R"): gs(x(t),t)O for all t[0,1]} and U={ue
(Rm); u(t) e U(t) for all tel0, 1]}, and make the following assumptions
analogous to those above for problem (P).

(C’) f(.,-), Ks(’, t), U(t) aod X0 are convex for all t [0, 1], Ks(’," is
continuous, and both A(.) and B(- have components in 1.

(SL’) There exists a control 17 e (R"), a corresponding trajectory and
constants M, O, c >0 such that 17 e U, (0)eXo, Ks((t), t)j <-c <0 for all
components of Ks, and f(x, 17) <M whenever Ilx 0.

LEMMA 1. Suppose (C’) and (SL’) hold and , the optimal value of (P’), is

finite. Then there exist (, ) that are optimal in (D’) and L’(O, )= .. If (2, ) are
optimal in (P’), then [3, Ks(2)] 0 and hence (, ft) achieve the minimum in (2) for
(, ).

Proof. Lemma i follows from an application of the Hahn-Banach theorem to
the following two sets:

Y= {(a, b, c) a e R 1, b l(Rn), c C(Rms), a <=, b =0, c -<0},

Z {(a, b, c) a R 1, b l(Rn), c (Rms) and there exists

x s4(R") and u U with x(O)Xo, a >-_f(x, u),

b(t) 2(t)-A(t)x(t)-B(t)u(t), c(t) >- Ks(x(t), t) for all

te[0, 1]}.

From the development of duality in the literature, it is obvious that two sets
like Y and Z must be constructed, and the hyperplane separating the sets will
define the optimal dual multipliers. Note though that the choice of the convex sets
that are to be separated is a very delicate question since one set must have
nonempty interior which is disjoint from the other set before the Hahn-Banach
theorem can be employed. Also the sets must be chosen so that the dual
multipliers are in "reasonable" spaces if the duality principle corresponding to the
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sets is to generate a numerically tractable problem. It will be seen that Y and Z do
indeed satisfy all these conditions and lead to the duality principle stated in the
lemma.

The reader can readily verify that the convexity conditions in (C’) imply that
Y and Z are convex, the assumption (SL’) implies that Z has an interior point, and
the fact that is the optimal value in (P’) implies that Y and the interior of Z are
disjoint. Thus by the Hahn-Banach theorem [4], there exists a hyperplane
separating Z and Y, i.e., there exists r R 1, P (R"), v (R"s) such
that

(3) (r, a)+(p, b)+Iv, c]>-(r, a2)+(p, b2)+Iv, c2]

for all (al, bl, Cl)Z, (a2, b2, C2) Y. By choosing particular points in Y and Z,
properties of the separating hyperplane will be exhibited"

(a) r _->0. Substitute a2 t- 1, al =f(, tT), bl b2 Cl c2 0 in (3) where
(, tT) was given in (SL’).

(b) v is monotone nondecreasing. For notational convenience, v is assumed
scalar-valued, although for vector-valued functions the proof is identical.

Given t, s, d [0, 1), < s, d < Is tl, let Cd denote the continuous piecewise
linear function that is -1 on It, s- d], zero on [0, t-d] and [s, 1], and linear on
[t-d, t] and [s-d, s]. Now, [v, c]= v(t)-v(s-d)+z where

IZdl<--ITV(t, V)--TV(t-d, v)I+ITV(s, v)-TV(s-d,

and TV(t, v) is the total variation of v on [0, t]. Since v is continuous from the left
on [0, 1), then TV(., v) is continuous from the left at and s (see [6]), and hence
limd_,olZl=0 and lim_.o[V,C]=v(t)-v(s). Substituting (t?,0,0) and
(t?, 0, c) Y into (3) and letting d -->0, we obtain v(t)<-v(s). The right endpoint,

1, is treated similarly.
(c) If (, ) are optimal in (P’), then [v, Ks(2)]=0. Substitute al

hi b2---c2----0, and Cl(t)= Ks((t), t) in (3). Then [v, Ks()]_->0 and (c) follows
from (b). Hence the complementary slackness condition in the lemma holds.

(d) r>0. Suppose r=0. Substituting b-b2=c2--O and cl(t)=Ks((t), t)
in (3) yields [v, Ks($)]->0. Since Ks((t),t)j<-a <0, (b) implies that v=0.
Substituting bl =-p and b2 0 in (3) yields -(p, p)_-> 0. Hence, p 0 a.e. This is
impossible since r, p, v cannot all vanish so that r >0 and (3) can be normalized
with r 1.

(e) L’(p, v)= d. Substituting al c(x, u), bl "-Yc-Ax-Bu, Cl--Ks(x), a2
t?, b2 c2 0 in (3) and recalling that r 1 from (d) yields L’(p, v) >= . However, by
weak duality, L’(p, v)<= and hence L’(p, v)= . Note that p 6 &(R"), but the
lemma claims that L’(p, v)= t? where p 6 o//..

(f) p -/ a.e. where/3 T’. This proof is more technical than (a) to (e) and
appears in Lemma A. 1 of the Appendix, so the proof of Lemma 1 is complete
since L’(p, v)= L’(O, v).

Proof of Theorem 1. In the problem (P) with explicit control constraints,
proceed exactly as in the proof of Lemma 1. A fourth component d (R") is
added to the sets Y and Z, where d -<_0 in Y and d(t) >= K(u(t), t) in Z. (Note that
d 6 qg and not d ’if d were chosen in, then the Hahn-Banach theorem
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would produce a multiplier in the dual of oo which is a miserable space. By
choosing d , the dual multiplier lies in--in fact, it is seen below that the
multiplier is also absolutely continuous.)

Continuing as in Lemma 1, we find the Hahn-Banach theorem yields

(4) c(x, u)+(p, :i-Ax-Bu)+[v, Ks(x)]+[z, Kc(u)]>-e

for all x sg(R n) with x(0)=x0 and uCC(R m) where
No//’(R,-c), and both v and z are nondecreasing. Note that to obtain an optimal
solution to (D), it must be shown that: (i) z is absolutely continuous so that
[z, Kc(u)]=(w, Kc(u)) where w=2 and (ii) expression (4) holds for all u e
(R"), not just for u C(R"). Combining these properties with weak duality,
Proposition 1, implies that L(p, w, v)= ..

First it is proved that the infimum of the left side of (4) over x sg(R") and
u (R’) actually equals g-. Let {u k} be a minimizing sequence for (P) and let {x k}
be the corresponding trajectories. The sequence {u} lies in oo; however, in
Lemma A.2 of the Appendix, it is shown that the convexity of K and the
existence of an interior point for the constraint K(u(t), t) <= 0 (given in (SL)) imply
that for any e>0, there exists yq(R’) satisfying Kc(yk(t)t)<0
lyk(t)--u(t)l<--e except on a set of measure less than e, and [ly lt_-<lloll/llu ll,
where ti is the interior control given in (SL) Thus, by the continuity of h( "k’ )’
the integrand of the cost functional of (i), it follows that lim_,oC(X yk)=
C(X , U ’) and lim_,o (p, Yck-Ax-Byk)=O. Now given 6>0, there exist k’ such
that Ic(x k’, u’)-.1<6/3 and e’ such that Ic(x k’, y;)-c(x ’, u’)1<6/3 and
I(p, 2k’--Axk’--Byk;)J<6/3. Since [z, Kc(yk;)]<--O and Iv, K(xk’)]<--O, then the

k’ is within 6 of t?, and hence theleft side of (4) evaluated at x x k’ and u y,
infimum of the left side over (x, u) satisfying x sg(R"), u (R") and x(0) Xo
equals as claimed.

The proof that z s(R mc) is now summarized, and the details can be found in
Lemma A.3 of the Appendix.

Define g(x, u) c(x, u)+(p, Yc-Ax -Bu)+[v, Ks(x)]. Using the construc-
tion of the previous paragraph, there exists a sequence (x k, yk) satisfying
g(x k, yk)., [Z, Kc(yk)]<--O, and yk c(Rm). It is possible to express z r+ s
where r s4(R"), s e N(R"), =0 a.e., s(0)=0 and s is nondecreasing (see
Rudin [8, p. 166]). In Lemma A.3 of the Appendix, it is shown that a sequence
{6k}c C(R"c) can be constructed with 6 k =0 except on a set E of small measure
on which is concentrated the variation on s, 6 k a- yk just inside E, and hence
Is, K(y k + 6k)] <- as(l)/2 where a < 0was given in (SL). Since s is nondecreasing,
then s(1)_->0, and unless s=0, (4) will be contradicted since g(x k, yk +6k)+
as(l)/2 will be less than t? for k sufficiently large. Hence z r

To complete the proof, it must be shown that (4) holds for u (R"), not
just u e (R"). By Lusin’s theorem [8, p. 53], any u (Rm) can be approxi-
mated by y C(R") satisfying y u except on a set of measure less than e and
Ily ll--< Ilull. Since (4) holds for y, the continuity condition (C)implies that (4) holds
for u (R’). Thus L(p, w, v) d as desired and the complementary slackness
conditions follow as in Lemma 1, property (c). [-1

Notice that the duality results above were derived by separating the sets Y
and Z with a hyperplane, and exploiting the separation condition (4) above to
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push the dual variables into successively smaller spaces. An immediate question
is whether the spaces exhibited above are the smallest possible. A more recent
paper 11 will show that for a strictly convex, quadratic cost control problem with
linear state and control constraints satisfying an independence condition, there
exists an optimal control u*, a corresponding trajectory x* and dual multipliers
p*, w* and v* such that (2", u*, p*, w*, v*) are all Lipschitz continuous when Ks
has a Lipschitz continuous partial derivative in and A, B, Kc, and h are Lipschitz
continuous in t. Furthermore, if no state constraints are present, then * is
Lipschitz continuous when the data defining (P) is sufficiently smooth. Below it is
shown that when state constraints are present, a linear combination, q*, of p* and
v* has increased smoothness, and in [11] the Lipschitz continuity of #* is proved.
Hence (2", *, u*, w*, v*) have derivatives in L. Also by an example given in
[11], it is seen that (*, 0", u*, w*, v*) may be discontinuous when K does not
possess a Lipschitz continuous partial derivative t.

3. Extension of duality theory to controls in ,1. Let () denote the control
problem with constraint u (R’) instead of u (R’). It is assumed both
that the components of /3(. lie in so that the differential equation
Ax +Bu makes sense, and the integral in the cost functional is defined for
x sC(R n) and u (Rm) (i.e., the integrand is in ).

THEOREM 2. Suppose (C) and (SL) hold and the optimal value g of (P) is finite.
Then there exist (, , ) that are optimal in (D) with L(, , )= 6. If (, (t) are
optimal in (P), then the complementary slackness condition of Theorem 1 holds.

Note that in defining the dual problem (D), we still restrict u (Rm) in the
minimization of (1).

Proof. Let denote the optimal value of (P). Since >= 6 > -oe, then Theorem
1 implies the existence of (p, w, v) with

(5) c(x, u)+(p, 2 -Ax -Bu)+(w, Kc(u))+[v, K.(x)]_-> =>e

for all (x, u) satisfying x sg(R"), x(O) Xo and u (R’n). It is now shown that
7. Suppose for the moment that there exists an optimal solution (, t) to (P).

Define the following control Uk and set Sk"

when I(t)[=<k,
u ti(t) when ]fi(t)l>k, s {t. a(t) / u(t)},

where a was given in (SL).
Since w =>0, v is nondecreasing, and Kc(u(t), t)<--O and Ks((t), t)<=O for

t[0, 1], then inserting (x, u)= ()2, u) into (5) yields c(2, u)+(p,B((-uk))>=
c>g.A__ Since the components of B(.) and p(.) lie in w, u(Rm),
a= u except on S, and tx(S)0 as k oo, where x(. denotes Lebesque
measure, then 0= lim_,oo (p, B(fi- uk)). Similarly c(, a)- c(, u)
Jsk {h()2(t), ((t), t)-h(2(t), (t), t)} dt and both h(2(. ), fi(. ),-) and
h(2(. ), t(. ),. lie in , so c(, fi)= limk_,oo c(2, u). Thus (2 6 since the left
side of (5) evaluated at x and u u converges to 6. Since L(p, w, v) ,
L(p, w, v)= .
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If there does not exist an optimal solution to (P), then by choosing a
minimizing sequence and approximating each element of the minimizing se-
quence as above, it can be proved that L(p, w, v)= 6.

Now the complementary slackness condition is verified. Again by the
inequality (5) above, substituting u uk, x yields:

(6) (w(t), Kc((t), t)) dt->-(w, Kc(uk))>=-c(, Uk)--(p,B(t--Uk)).

(7)

As shown above, the right side of (6) converges to zero as k-. Since
limk_,/x(ST,)= 1, Ej={t" w(t)j>0, Kc((t),t)i<O} has no measure, and the
complementary slackness condition in the control constraint must hold. A similar
proof confirms the complementary slackness condition in the state constraint.

4. Minimum principles. In order to solve the dual problem numerically, the x
and u that achieve the infimum in (1) must be characterized. This leads to a
minimum principle and an adjoint condition. Theorem 3 below proves that the
minimization over u in (1) can be taken under the integral sign.

THEOREM 3. Suppose (C) and (SL) hold, (p, w, v) is feasible in (D) with
L(p, w, v) > -, and x* sg(R") and u* (R’) achieve the minimum in (1)
corresponding to (p, w, v). Then the minimum o]: [(u, t)=
h(x*(t), u, t)-(p(t), B(t)u)+(w(t), K(u, t)) occurs at u u*(t) ]:or almost every
[0, 1]. Similarly, ifL’(p, v)>-c, the cost]:unctional in (P’) is given by c(.,. ),
U(t)={b6Rm Kc(b,t)<=O}, and x*sg(R n) and u*(R") .achieve the
minimum in (2) corresponding to (p, v), then the minimum of {h(x*(t), u, t)-
(p(t), B(t)u)} over u U(t) occurs at u u*(t) for almost every [0, 1].

Proo[. Only the first minimum principle above will be proved since the second
is similar. Let ? L(p, w, v) where by definition

I"t"

L(p, w, v) =inf [J, {h(x(t), u(t), t)+(p(t), 2(t)-A(t)x(t)-B(t)u(t))

+(w(t), K(u(t), t))} dt +Iv, Ks(x)]]
subject to x 5(Rn), u o(Rm), x(O) Xo.

Let E denote the intersection of the Lebesgue points of each term in the integrand
of (7) evaluated at (x*, u*) and suppose f(z, s)<f(u*(s), s) for some s E and
z R’. Let A denote a ball of diameter 6 centered at s, I(A, u) the integral in (7)
evaluated at x x* over the ball A, and J(u(. )) the integrand in (7) evaluated at
x= x*. Since s is a Lebesgue point of J(u*(. )), I(A, u*)=J(u*(s))6+o(6).
Define v to be a control that agrees with u* outside A and equals z inside A. It is
easy to see that I(A, v)=J(z)6+o(6), and since f(z, s)<f(u*(s), s), J(z)<
J(u*(s)) and I(A, v) < I(A, u*) for 6 sufficiently small. This violates the optimal-
ity of (x*, u*) in (7) so that the minimum principle holds on E. Since E has full
measure, the proof is complete. [-1

Note that Theorem 3 holds for all (p, w, v) that are feasible in the dual
problem, while the standard necessary conditions only hold for some (p, w, v).
Also observe that it is not possible to carry out the minimization over x under the
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integral sign in (1) due to the presence of the k term. The following lemma will be
needed before the adjoint conditions can be derived.

LFMMA 2. Suppose (C) and (SL) hold, (p, w, v) is feasible in (D) with
L(p, w, v)>-oo, (x*, u*) achieves the minimum in (1) for (p, w, v), Ks(’," is
twice continuously differentiable, and G(t) denotes the gradient of Ks(’, t)
evaluated at x*(t). Then if q is defined by q(1)=0, q(t)=G(t)rv(t)-p(t) for
t6 (0, 1), and q(0)= q(0+), then q sg(Rn). If Ks is alfine, then the existence of
(x*, u*) is not required.

Proof. By the definition of L,

(8) L(p, w, v)<-c(x, u)+(p, 2-Ax-Bu)+(w, Kc(u))+[v, Ks(x)]

for all x s(R n) with x(0) xo and u (Rm). Each term on the right side of (8)
is convex and furthermore the Iv, Ks (x )]-term is differentiable in x. Recall the
following standard necessary condition: Suppose v* solves the problem: minimize
](v) + g(v) subject to v F where L g and F are all convex and [ is differentiable.
Then v* satisfies g(v*) <-_ g(v) + (d/dv)[’(v*) (v v*) for all v F (see [3]). Apply-
ing this result to the right side of (8) we get

c(x*, u*)+(p, 2*-Ax*-Bu*)+(w, Kc(u*))
(9) <-c(x, u)+(p, 2-Ax-Bu)+[v, G(x-x*)]+(w, Kc(u))

for all x (R") with x(0) Xo and u e (R’). Observe that equality holds in
(9) for x x* and u u*.

Since p is continuous from the left on [0, 1), the integration by parts formula
of Dunford and Schwartz [4, p. 154] gives

1-

(10) o (p(t), 2(t)-2*(t)) dt=(p(a-), x(1)-x*(1))- fo ,[x(t)-x*(t)]7"dp(t).
The boundary term at =0 vanishes since x(0)= x*(0)= Xo. Since Ks has two
continuous derivatives, then the gradient of Ks (", t) is absolutely continuous, and
hence G(. is absolutel continuous. Thus the following relation holds:

io io i0(11) x(t)rG(t)r dv x(t)r d(G(t)rv) v(t)r(7(t)x(t) dt.

Since v is normalized with v(1) 0 and since x(0) x*(0) x0,

iO
1-

(X(t)-x*(t))7"G(t)7" dv (x(t)-x*(t))rG(t) dv
(12)

-(x(1)- x*(1))rG(1)rv(l-).
Combining (9), (10), (11) and (12) we find

(13) c(x, u)-(p, Ax +Bu)-(v, (3x)+ x(t)7"dq(t)+(w, Kc(u))

(q(1-), x(l)) g >-oo

for all (x, u) satisfying x sg(R"), u e (R") and x(0)= x0, where g >-oo is a
constant depending on x*, u*, p, w and v. Again equality holds in (13) for x x*
and u u*. If Ks is affine, then (13) holds without even assuming the existence of
(x*, u*), and g only depends on L(p, w, v).
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Now it is shown that q(1-)= 0. Define the continuous function g(6, e, t) as
follows: g(& e, is linear on [1- e, 1] and satisfies g(8, e, t)= 0 for [0, 1- e]
and g(8, e, 1)= 8q(1-). Inserting x(t)=Xo+g(8, e, t) into (13) and letting e->0
and 8 --> +c, we get a contradiction since the left side of (13) deverges to -c due
to the presence of the boundary term in (13).

Now consider the absolute continuity of q. It is po.ssible to express q r + s,
where r (R"), s V(R"), s(0) 0 and 0 a.e. (see Rudin [8, p. 166]). If
U {t (t) 0}, then Lemma A.4 in the Appendix proves that unless s =0, a
seqaence {xk}c d(R n) can be chosen such that xk agrees with just outside of E
and [s,x]--. This will violate (13), and hence s =0 and q=rg(R"). [q

TI-IEOREM 4. Suppose (C) and (SL) hold, (p, w, v) is feasible in (D) with
L(p, w, v)>-oo, x*sg(R") and u*(R’n) achieve the minimum in (1)
corresponding to (p, w, v) and Ks(’," is twice continuously differentiable.
Then the minimum o]’

[(x, t) h(x, u*(t), t)+ ((l(t) + At(t) q(t)- (d(t)r +A(t) rG(t) r)v (t), x)

occurs at x x*(t) ’or almost every [0, 1], where G and q were defined in Lemma
2. I" h( u, t) is differentiable, then the adjoint equation holds: q(1)= 0 and

(14) (t(t)=-A(t)q(t)-h(x*(t), u*(t), t)x +(((t)T+A(t)rG(t)r)v(t) a.e.

Pro@ In Lemma 2 itwas observed that q sg(R n) so that [q, x] (0, x). From
(13),

(15) {h(x(t), u*(t), t)-(p(t), A(t)x(t))-(v(t), (7,(t)x(t))+(gt(t), x(t))} dt >-_

for all x e sg(R n) with x(0) x0, where > -oo is a constant depending only on x*,
u*, p, w and v. As noted after (13), equality holds in (15) for x- x*. As in
Theorem 3, we wish to say that x*(t) yields the pointwise minimum for the
integrand. There is one technical point, though, since in Theorem 3, u was
contained in oo, while in (15), x lies in sg. However, if z R yields a better
minimum for the integrand of (15) at the Lebesgue point s, then by [10, p. 9]
there exists an infinitely differentiable function 4; that equals 1 on Is 8, s + 8]
and equals 0 on [s+8+e, 1] and [0, s-8-e]. Thus the function x=
zb+ (1- 4)x* is absolutely continuous and equals z near s and x* away from s.
Letting first e 0 and then 8 0 again violates the optimality of x*. The adjoint
equation is obtained simply by setting the derivative of f(., t) to zero at x
x*(t).

The condition (14) above is the familiar adjoint equation for state con-
strained problems given in [5] and [2]. These standard necessary conditions only
assert that (14) holds for some (p, w, v) where (x*, u*) is optimal in (P), while
Theorem 4 holds for all (p, w, v) feasible in (D). Using the minimum principles,
Theorems 3 and 4 above, the evaluation of L(p, w, v) is reduced to the solution of
a sequence of math programming problems for each [0, 1]. In certain cases,
such as problems with quadratic cost and linear constraints, the minimum
principles permit the explicit determination of the (x, u) achieving the minimum in
(1) in terms of (p, w, v). The numerical solution of the dual problem using the Ritz
method is analyzed in [1].
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A combined state and control minimum principle can be proved, and the
proof is similar to Theorems 3 and 4 above.

THEOREM 5. Suppose (C) and (SL) hold, (p, w, v) is feasible in (D) with
L(p, w, v) >-oo, Ks(" ," is twice continuously differentiable and x* M(R") and
u* (R’) achieve the minimum in (1) corresponding to (p, w, v). Then the
minimum of[(x, u, t) defined below occurs at x x*(t) and u u*(t) for a. e. t:

f(x, u, t) h(x, u, t)+(q(t)--G(t)Tv(t), B(t)u)+(w(t), Kc(u, t))
(16)

+ (c(t)+ A(t)Tq(t)--(d(t) w + A(t)wG(t)W)v(t), x)

Appendix. Regarity of the dual variables.
LEMMA A. 1. Suppose (C’) and (SL’) are satisfied, the optimal value of (P’) is

finite, and L’(p, v) where p (Rn) and v T’(R"). Then p a.e. where
U(R").
Proof. For notational convenience, p is assumed scalar-valued (the proof

below could be applied to each component of p separately to demonstrate the-
result for vector-valued functions). Let R denote the set of Lebesgue points
and suppose that p has infinite variation on this set. It is now shown that th
to a contradiction.

Given a constant b, there exists 0 to < tl < tN such that

(A.1) E Ip(ti-,)-p(ti)[> b
lNj=N,jodd

and either p(tj+)< p(tj)> p(ti-1) for j even or the reverse inequalities hold. For
the construction given below, it is assumed that the former holds. Let c, p, M> 0
be as given in (SL’), and define the function x(t) as follows: x(. is the
continuous, piecewise linear function that is zero for odd and -p for ] even on the
interval [t + e, t+- e], linear on the interval [t- e, t + e] for all ], and zero at

N
t=0. Notice that as e 0, 2-p Yq=o (-1)6(t-ti), where 6(. is the delta
function, and since {t} are Lebesgue points of p and p(t+)< p(t)> p(ti_a) for ]
even, then lim_,0 (p, 2) p _-<N, odd p(ti)-p(ti_a) < -oh.

From the definition of L’,

(A.2) f(Y + x, gt)+(p, Yc +$-A (ic + X)-Ba)+[v, K(X + x)]_-> ,
where ($, a) was given in (SL’). Also by (SL’), f( + x, a)< M, and hence all the
terms in (A.2) are bound uniformly in b and e except for the (p, 2)-term which
becomes less than -pb for e sufficiently small. Thus if b were chosen sufficiently
large, this would lead to a contradiction in (A.2), and hence the total variation of p
on R is finite.

Since R has full measure (see [8, p. 158]), for all RC,. there exists a

sequence {ti}c R such that tj -* t-. Because p has finite variation on R, limi_,oo p(ti)
exists, and it is possible to define a function/5(t) that equals [p(t)] for e R and
equals [limi_ p(ti)] if t R where {tj}c R and
has the same variation on [0, 1] as p has on R.

The following theorem essentially proves that if the set U=
{u(. e (R") K(u(t), t) <-0} has an interior, then any u(. e U can be
approximated arbitrarily closely in the P-norm by a continuous function in U.
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LEMMA A.2. Suppose K" R’n x [0, 1] R" is continuous, K( t) is convexfor
e[0, 1], and there exist C(R’n) and a <0 such that K(a(t), t)i < a J’or all

t6[0, 1] and j= 1, 2,. ., n. Then given u(.) U and e >0, there exists v
Ufl (R") such that ]u(t)-v(t)l<e except on a set of measure less than e and

Proof. Let w ba + (1 b)u, where 1 > b > 0 is small enough that Ilu wll--< e.
By the convexity of K(., t), K(w(t), t)i <- ba < 0 for j 1,. , n, and by Lusin’s
theorem [8, p. 53], there exists y (Rm) with y w on a closed set E satisfying
Ix(EC) <-_ e, where Ix(. )denotes Lebesgue measure and furthermore, Ilyll<_-llwl[.
Since K(y(. ),. is uniformly continuous on [0, 1], there exists a constant 6 >0
such that if [t-s]< 6, then IK(y(t), t)-K(y(s), s)l<blal. Outer regularity of the
Lebesgue measure implies the existence of an open set D containing E with
Ix(D-E) < 6. Also D can be chosen so that no point of D is more than 6 away
from a point of E (for example, construct open balls of diameter 6 about each
point of E, choose a finite subcover {Bi} of the balls, construct an open set B = E
with Ix(B E) < 6, and define D U Bi) f’l B).

Since K(y(t), t)j K(w(t), t)j <- ba < 0 on E and any point of D is at most 6
away from a point of E, K(y(t), t)<=0 for D. From Urysohn’s lemma, there
exists g e (R 1) with the support of g contained in D, g(t) i for e E, and Ilgll 1
(we use the notation of Rudin [8] to denote a function satisfying these conditions"
E < g <D). Define v gy+(1-g)fi. For teD, v is on the line segment between
two functions that satisfy the constraint K(., t)_-< 0, and since K(., t) is convex,
K(v(t), t)<=O. On the other hand, v=fi on D so v U. By construction,
v(t) y(t) w(t) for e E so lu(t)- v(t)] <- e except on a set E of measure less
than e. Also Iv(t)l<=g(t)ly(t)l+(1-g(t))lfi(t)l<-_g(t)lw(t)l+(a-g(t))lfi(t)l <-
[g(t)(b- 1)+ 1]la(t)l+(1-b)g(t)lu(t)l, and since 0<b < 1 and Ilgll 1, the bound
IIvll =< [lfill+llull is immediate. 71

LMMA A.3. Suppose (C) and (SL) hold; then the function z 3V in (4) is
absolutely continuous.

Proof. To keep notation simple, K is assumed to have range in Rthe proof
for vector-valued functions is identical, but it is necessary to introduce extra
subscripts. Let g(x,u) denote the first three terms in (4) and let F-
{(x, u)" xs4(R), x(0)=x0, ug’(R")}. As shown after (4), =
inf {g(x, u)+[z, Kc(u)]’(x, u)eF}, and there exists a sequence (x k, uk)F such
that g(x k, uk) and K(uk(t), t)<--O for tel0, 1]. Also recall that z was non-
decreasing.

Rudin [8, p. 166] proves that z r + s, where r 6 sg, s NV, 0 a.e., s is
nondecreasing and s(0) =0. We now suppose that s 0 or equivalently s(1) >0,
and show that this leads to a contradiction. As noted above, it is possible to find
(x, u)F such that K(u(t), t)<-_O for te[0, 1], and g(x, u)<+[a[s(1)/8 where
"a" was given in (SL). Since s is nondecreasing and s(0) 0, the total variation of s
is s(1). First a summary of the proof is given.

Since 0 a.e., it will be shown that a closed set E can be constructed that is a
union of a finite number of intervals with the variation of s concentrated on E, and
Ix(E), the measure of E, is very small. Then a function v e %(R") is constructed
that satisfies [Ivll-_<llall/llull, t)<-O for t6[0, 13, and v agrees with a, the
interior control given in (SL), on E and agrees with u just outside of E. Thus
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jEKc(v(t), t) ds(t)=jEKc(fi(t), t) ds(t)<a jds(t)<(a/2)s(1) where the last
inequality follows since E captures almost all the variation of s. Also
J K(v(t), t) dr(t)[ < lals()/8 since (E) is chosen small, and
-K(v(t), t) dz(t)<=O since z is nondecreasing and K(v(t), t)<-O. Combining
these inequalities, we see that [z, K(v)]<-s(1)(a/2 +[a]/8) 3as(1)/8. If/z(E) is
chosen small enough so that g(x, v)<+[a[s(1)/4, then g(x, v)+[z,K(v)]<=
+[a[s(1)/4+as(1)3/8=+as(1)/8. Since a,-s(1)<0, this contradicts the
optimality of ; hence s 0 and z r c M.

Now E and v will be constructed. Begin by choosing a closed set Hc [0, 1]
with - 0 on H and/z(H) < e. For each h H, construct an open ball Dh of
radius 2r" where rh is choosen sufficiently small so that [s(t)-s(T)l<--e[t-TI
whenever t, Tc--. Since /(h)=0, this construction is possible. Let Bh be the
open ball centered at h of radius rh. Since H is compact, a finite subcover of these
balls {B} can be chosen of radii {r}. Define B UB3 and D UD; since s is
monotone and Is(t)-s(T)l <- lt-T] whenever t, TD for some j, then the total
variation of s on D is at most e, and hence the variation of s on D is at least
s(1)-e. Also since HcBcD, tz(D)<=tx(B)<-lz(H)<e. By Urysohn’s
lemma, there exists c Cg(R 1) satisfying D < </. Defining v (1
we see that v u on B, v t7 on D, Ilvll <- Ilull / I1 11; a so since K(., t)is convex,
K(u(t), t)<=O and K(a(t), t)<-O, then K(v(t), t)<=O. Choosing E=D and
returning to the summary above, we notice that for e sufficiently small, all the
statements in the summary hold.

LEMMA A.4. Suppose (C), (SL) and inequality (13) hold. Then
q(R").

Proof. Again to keep notation simple, assume q is scalar-valuedthe argu-
ment below can be applied to each component of q separately to treat vector-
valued functions. Since q GTV p on (0, 1) and G is absolutely continuous while
v and p lie in, then q is continuous from the left on [0, 1) (see the definition of
o//.) and by Lemma 2, q is continuous from the left on [0, 1] since q(1-)= 0
q(1). As in Lemma A.3, we can express q r + s, where r ,. s , s(0)=0,
and s 0 almost everywhere. Let us suppose that s(t) 0 for some [0, 1)it is
shown that (13) is violated and hence s 0.

Since s is continuous from the left, then the total variation of s on [0, t] is a
continuous function of from the left, and it is possible to choose t’( such that
the variation of s on It’, t] is less than .

Using the construction of Lemma A.3 on [0, t’], one generates sets B
[0, t’] such that the variation of s on D is at most and/z ([0, t’] B) . (Since the
construction of Lemma A.3 was only valid for a monotone function, this last step
actually requires that we first express s- sl+ s2, where s and -s2 are both
nondecreasing (see Natanson [6]) and 2 0 a.e. (see Rudin [8, p. 166]). Then
using Lemma A.3, sets D and D2 are constructed that capture only e/4 of the
variation of s and s2, respectively, and that satisfy/z ([0, t’]- D),
e/4. Then define D D CI D2.

Now choose <It-t’] and define Jo to be an open ball centered at t’ of
diameter p. Again construct (R) satisfying ([0, t’]- D) < : < ([0, t’]- B) U
and define xu=(1-)+:N, where was given in (SL) and NoR with
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sgn (N)=-sgn (s(t)). (We had to introduce the set J since [0, t’]-B is not an
open set on [0, i] as required by Urysohn’s lemma.)

Since XN on [t, 1],

io io i i0xN(o’) dq(cr)= XN(Cr) ds(o’) + g(o’) ds(cr) + XN(r) dr(o’)

(A.3) <=Ns(t) + 1 +IIII(TV(s) + TV(r)),

where TV(s) is the total variation of s on [0, 1) and the last inequality follows from
the following relations whenever e and 6 are chosen sufficiently small-

N fo ds(r) +f (xu(r)-N) ds(r)

<-- Ns(t’) + e (11 11 + INI)

Xl(O’) ds(o)

If g(x) denotes the first three terms of (13) evaluated at u u*, then for e and
6 sufficiently small, g(XN) is close to g(g). However, this combined with the
inequality (A.3) and the fact that Ns(t)<O violates (13) for N large; i.e.,
inf {g(x) +I x(t)T dq(t) :x sO(R"), x(O) Xo} is no longer finite. Hence s 0 and
q is absolutely continuous. VI
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A PERTURBATION PROBLEM FROM CONTROL EXHIBITING ON
AND OFF THE BOUNDARY BEHAVIOR*

DENNIS D. BERKEY AND MARVIN I. FREEDMAN’

Abstract. We consider a regular perturbation problem for a system arising from a control problem
in which the optimal control moves on and of[ the boundary of the control region in a continuous way.
By using a nonlinear change of time scales, we are able to give conditions under which our technique
yields a solution of the perturbed system.

1. Introduction. Recent attempts to study perturbed systems of differential
equations of the sort that arise in control have led to a number of interesting
papers among which are those of O’Malley [6] and [7], Sannuti [8], Haddad and
Kokotovic [4] and Kokotovic and Yackel [5]. These papers are mainly concerned
with singularly perturbed problems where a small parameter e enters in such a way
that the order of the system drops on setting e 0. In the regularly perturbed case,
some recent work by Freedman and Kaplan ([1] and [2]) has treated problems
where the optimal control is of the bang-bang type.

In this paper, again in a regularly perturbed context, the authors carry out a
perturbation analysis for a system of perturbed differential equations which is
characteristic of the situation that arises when the optimal control moves on and
off the boundary of the control region in a continuous way. For simplicity, we
present only the case where the control makes one passage from the interior of the
control region to its boundary. It should be clear though how our method extends
to the situation in which a finite number of such passages occur.

In particular, we deal With the system described on the interval [0, T] by

(lb) ( g(x, A, u, e),

together with the boundary conditions

(lc) x(O,e)=a(e),

(ld) A(T,e)=b(e).

In the above, e is a small nonnegative real parameter and x, A, f and g take values
in R". The function u (t, e) is taken to be scalar-valued. Explicitly we assume that
there exists a scalar-valued "Hamiltonian" function H(x, ,, u, e) such that u(t, e)
satisfies

(le) H(x,h,u,e)=O

for all 6 [0, T] for which [u(t, e)[ < 1 while

(if) lu(t, a
otherwise.

* Received by the editors April 10, 1975, and in revised form November 24, 1975.

" Department of Mathematics, Boston University, Boston, Massachusetts 02215.
857
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If we view (1 a)-(ld) as the Euler-Lagrange equations corresponding to some
free endpoint trajectory optimization problem with u(t, e) as the optimal control
taking values in [-1, 1], then (le) arises as a consequence of the well-known fact
that

u(t, e)= min H(x, A, v, e).
v[--1,1]

Thus the H, 0 condition holds while u(t, e) is in the interior of the control
region. Let us call a solution of (la)-(lf) the solution of the full system.

After motivating our considerations with the example of 2, we will phrase
an appropriate perturbation problem for the system (1) and develop formal
procedures for computing the asymptotic series expansions of the variables
involved in 3. In 4 we pursue the conditions for solvability given in 3 and
develop some general conditions under which they will be satisfied. In 5 we
establish the uniform validity of the asymptotic expansions developed in 3. In 6
we apply our techniques to a legitimate optimal control problem in which the
controller is not a priori known.

2. The heuristics of the method. To illustrate the problem to be treated here,
let us suppose that somehow or other one knows that the optimal control for a
certain control problem takes the form

u(t, e)=min(t+e, 1), t[0, 2].

Then one cannot write a uniformly valid expansion

u(t, e) Uo(t)+ tl(t)e -t- O(e2),
as u (t, e) is not even once differentiable with respect to e. Also if the, state variable
x (or costate variable A) satisfies a differential equation involving u(t, e), then a
uniformly valid expansion

x(t, e) Xo(t)+ Xl(t)e + O(e 2)
is also impossible. For example, let us assume that

i(t,e)=u(t,e), x(0, e) =0,

for [0, 2]. Then requiring that x be continuous on [0, 2] gives that
2 + te for 0 _<-- _--< 1 e,

x(t, e)=
2t-(e -2e+l) forl-e<t=<2,

which is certainly not smooth in e.
However, analytic expressions for x and u may be achieved by introducing a

"new clock function" - as follows. We make the nonlinear change of variables

t= h(’, e) ’(2- ’)(1- e)+ ’(’- 1).

Then writing X(-, e)= x(h(’, e), e) we have

" e -- eze-1)+’z(1/2-2e+3e +’(e-2e for0<--<l,
x(, ):

,rze +,r(l_2e)_l 2e - e - for 1 < _-< 2,
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and X(r, e) is now analytic in e. In fact, letting

2,r3-2 2, 1 4 rer -r, 2r -2r3+3 -2r) if t--<l,
(Xo(r), X(r), Xi(r))

(r-1/2, r2- 2r + 1, -1/2) if r > 1,

we get that

X(r, e)= Xo(r) + Xl(r)e + X2(r)e 2.
Furthermore, writing U(r, e) u(h (r, e), e) gives that

U(r, e) min ((r- 1)2e + r, 1),

which is analytic in e for e sufficiently small. Indeed, letting e be so small that
(r-1)2e + r < 1 if r< 1 (e 1 will suffice) from the above, we have for

(0, 1) if r=<l,
(Uo(r), U(r))=

((r-lf, r) if r> 1,

that

u(, e)= Uo(r)+ Ul()e.

Notice that while producing the desired analytic nature of X and U, the
transformation t-- h(r, e) has had the effect of "freezing" that smallest value of
the variable r for which U(r, e) 1, denoted by r(e), at r(e) 1. Thus our idea is
to view the control problem in terms of a "new clock function" r chosen so that a
perturbation analysis is possible. We remark that the clock function idea has
previously been utilized in [ 1 and [2] where the authors were studying bang-bang
behavior.

3. Our system in the new dock variable. In this section, we show how one
may construct a formal asymptotic expansion of the solution to the system (1). The
expansion will be valid in some suitably small neighborhood of the solution of the
following system.

(2a) o (no, Uo, 0),

(2b) "ao g(xo, ao, Uo, 0),

(2c) Xo(0) ao,

(2d) Ao(T) bo,

(2e) H(xo, Ao, Uo)= min H(xo, Ao, v).

We will refer to (2) as the reduced system associated with the system (1).
Throughout what follows we shall hypothesize:

H1. that the reduced system (2) has a solution Xo, Ao, Uo, all continuous on
[0, T];

H2. that ]Uo(t)] < 1 for 0-< < to and Uo(t) 1 for to -< =< T;
H3. that Uo(to), the left-hand derivative of Uo at to, is positive;
H4. that H,,(Xo(t),Ao(t), Uo(t), 0)>0 for 0<-t<=to;
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H5. that H,(x0(t), Ao(t), Uo(t), 0) < 0 for to < -<_ T;
H6. that there exists an e0 > 0 and an integer K_-> 1 such that f and g are

(K+ 1) times continuously differentiable and that H(x, A, u, e) is (K+ 2) times
c’ntinuously differentiable with respect to x, A, u, and "e for all 0-<_ e <_-eo and
(x, A, u) in a neighborhood of the reduced solution;

H7. that a(e) and b(e) are (K+ 1) times continuously differentiable with
respect to e for 0-<_ e -< e0, and that a(0) a0 and b(0) b0.

An observation concerning these hypotheses is in order. Besides hypothesiz-
ing enough differentiability to enable us to carry out our perturbation analysis, our
assumptions focus attention on the situation in which the optimal controller for
the reduced system takes its initial value in the interior of the control region and
then moves continuously to the boundary where it remains. This is the statement
of H2 and may be viewed as the result of the control variable constraint ul_< 1.
Moreover for small e, we want the optimal controller for the perturbed system (1)
to exhibit the same type of behavior, i.e., that u(t, e) will remain on the boundary
u(t, e)= 1 once it has arrived. This is quaranteed by H3 and H5.

For the moment, let us assume that the full system (1) possesses a solution
x(t, e), A(t, e) and u(t, e). For e sufficiently small, let t(e) denote the smallest
value of e [0, T] for which u(t, e) 1. Then for e 0, t(e) to. Also we tem-
porarily assume that t(e) is a (K + 1) times continuously differentiable function of
e. We proceed as in 2 to introduce a nonlinear change of variables - which
will freeze t(e) at to while taking 0- 0 and T T. Specifically, we define

( T) ( to)
(3) t=h(’,e)=--t(e)+

to(to-T) T-to
Then

h(O, e)= O, h(T, e)= T, h(to, e)= t(e),

and for e sufficiently small, h(q’, e) is monotonically increasing for [0, T].
We next define the following new variables:

X(’, e)= x(h(’, e), e), A(-r, e)= &(h(-r, e), e), U(’r, e)= u(h(’, e), e).

Then

x(o,)=x(O,)=a(),

and for e sufficiently small, we have that

U(’, e)l < 1

and

Also we write

Xo() x(, o) Xo(),

A(T,e)=h(T,e)=b(e),

if 0_--< -< to,

U(to, e)= 1.

Ao(’) A(-, O)= ho(’), Uo() u(-, o) uo().
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(4a)

2--T
(4b) -7 A(,r, e)= g(X, A, U,

to(to- T)

with boundary conditions

(4c) X(O,e)=a(e),

(4d) A(T, e)= b(e)

and the additional conditions that

Written in terms of the transformed variable, (1) becomes

X(’, e)=]’(X, U, e)
2’- r

t(e)+
T) T- to

2’- t0]

(4e) H,(X, A, U, e) 0 if " _-< to
and

(4f) U(-, e) 1 if - _-> to.
Before proceeding further, we note that by our hypothesis H5, condition (4f)

will hold for e sufficiently small provided U(to, e) 1. The remainder of our paper
is concerning with the execution of a perturbation analysis for the system (4)
above.

In 4, we shall rigorously establish the existence of a solution X(-, e), A(’, e),
U(’, e) and a (K + 1) times continuously differentiable "switch" time t(e) satisfy-
ing (4) above. The solution will converge uniformly to xo(’), Ao(r), uo(r) as e --> 0
while t(e) - to.

4. The Iormal expansions. In this section we proceed formally, assuming that
a solution to system (4) exists and that X, A, U and t(e) are each (K+ 1) times
continuously differentiable with respect to e. We therefore write

K

(5a) X(r, e)= Xo(r)+ Y. X.(r)e+ O(e/<+a),
]=1

K

(5b) A(’, e)= A0(r)+ Y Ai(r)e + O(e:+a),

K

(5C) U(T, E): Uo(T)q- Z Uj(T) Ej -1- o(EK+I),

K

(5d) t(e)= to+
/=1

where O(e+a) holds uniformly in r in (5a)-(5c). Next we have for e sufficiently
small, that H,(X, A, U, e)= 0 on [0, to]. Differentiating ] times with respect to e,
setting e 0 and using the above expansions gives for each j 1,. ., K that

g.x(Xo, Xo, Uo, 0)X/(r)+ g.x (Xo,)to, Uo, 0)/j(’)

+ H..(Xo, Uo, O) U (r) + h (r) 0
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for all - [0, to], where we have used the notation

h(-)=e--71-I,(X, A, U, )

We now substitute series (5) into equations (4). By our smoothness hypoth-
eses, the resulting equations may be differentiated times with respect to e,
1 =< =< K. Upon setting e 0, we obtain

(6a)

(6b)

(6c)

(6d)

(6e)

and

=0---dXi(’r)d’r xf(x’ Uo, 0)Xj(’)+uf(Xo, Uo, 0) U/(’r)

2"r-T- to(to- T) tjf(Xo, Uo, O) +pj(-),

d 0 0

d-- Ai(,r) xg(xo, Ao, Uo, 0)Xj(’r) +uu g(xo, ,o, Uo, O) U(’r)

0
+mg(xo, ,ko, Uo, 0)A(’r) +OA

2’-T
to(to- T) tg(xo, ,o, Uo, 0)+ g(-),

H,(Xo, o, Uo, 0)X,.()+ H,(Xo, o, Uo, 0)a()
+ H..(Xo, o, Uo, O) U,.() + h(-) O, -e[o, to],

u,.(-) o, -e [to, T],

x(o)= a

(6t) Aj(T) bj,

where pj(-) and g(-) are polynomials in XI(-), ", Xj-I(-), Al(’r), ", A-I(’),
UI(’), ", Uj-I(’), and q,..., tj-1 with coefficients determined by x0(’), u0(-),
A0(-) and to. Since u is a scalar function, we note that f, and g, are column vectors.
The symbols aj and bj denote the coefficients of e in the finite Taylor series
expansion of a(e) and b(e), respectively.

We would like to know when the system (6) can be solved recursively for
X(-), Aj(-), Uj(-) and tj. We therefore assume these to have been determined for
all positive integers less than j. Thus pj(-) and gj(-) are known functions.

We now make the following substitutions:

(7a) Z(-) X(-)

(7b) V(-r) U(’r)

(7c) W(-r) Ai(’r)

"r(’r- T)
tjf(xo, Uo, O)

to(to T)

"r(’r- T)
tiUo(.rto(to- T)

(- T)
to(to- T) tig(xo, Ao, Uo, 0).
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After we solve (6c) for U by hypothesis H4 and use substitutions (7), our
system (6) becomes

(8a) z():L()z() +L(),v() +p(),

(8b) w() g() w() +g()z() + g() v() +
d’r

with the additional conditions

(8c) V(,r) -/G.. (’,’)[H,,, (’,’)Z(-r) +/4.,. () W(’r) + h(-,’)],
(80) V(-) 0 for - 6 [to, T],

and boundary conditions

e[o, to],

(8e) Z(0) X.(0)=
(8f) W(T) A(T) bj.

Taking the limit as - approaches to from the left in (7b), we obtain the additional
internal boundary condition that

(9) V(t-) -tjuo(t).
In writing system (8), we have used the notation

f(Xo(), Uo(), 0)f(,,-)=
with the other derivatives being similarly abbreviated.

Our system on [0, to] can now be written as

dZ
d--- ,,(-)- I-2(-)f.(-)H,,(-)]Z(-)

H-lu()L()I-G (-) W(-) +
and

dW
dr

[g’(’)- I4.(’r)&,(’r)H,,,(’r)]Z(’r)

+[g,. ()- g,, (-,-) t-qu,, (-,-) H,,,. (-,-)] W(.,-) + q(),

where/3i(-) pi(-)-/,,l(-)hi(-) and i(’)= qj(-)-/-2(’)hi(-), while on (to, T]
our system is

dZ
d

L()Z() +p(),

dW
d

g, (.,-)z(-,-) + g., (.,-) w() + (-,-).
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We now define the matrix functions F and G, ] 1, 2, by

-I,f,(’)g,(’)
F1 (7")

fx(’r)

[x()

-/-/-.l(’r)f, (’r)H.. (’r)
F:(’)

0

G()=
g()-

and

if 0--< ’<-- to,

if to< ’=< T,

if 0<- ’<- to,

if to< ’<-- T,

if 0_<- r=< to,

if to < " <- T,

Finally, let P(’) and Q(’) be defined by

5i(-) if 0 <_-- ’_--< to, (qi(’)
O(r)P(’)

p(-) if to < ’--<-- T, qi(r)

Then we may write system (8) on all of [0, T] as

(10a)
dZ
d F1(7)Z(7)+ F:() W(z)+ P(),

Wd
(10b) -= G,(-)Z(-)+ G2(’) W(-) + 0(’)

d-

with boundary conditions

(10c) Z(0) a,
(10d) W(T) b.

Now system (10) is a linear inhomogeneous system of two vector differential
equations with mixed boundary conditions. From the basic theory of systems of
linear differential equations it follows that system (10) will have a unique solution
if and only if the corresponding homogeneous system with boundary conditions
Z(0) W(T)= 0 admits only the trivial solution. If a solution to (10) does exist,
then V(t) may be obtained for - [0, to) from (8c), and then tj is determined by (9)
by virtue of hypothesis H3. Finally, X, U and Aj can then be obtained from
substitutions (7). We summarize our discussion on solvability with the following
theorem.

THEOREM 1. Let hypotheses H1-H7 hold. Then the system (6) can be solved
recursively ]’or Xi, Ai, U and ti if the homogeneous linear system

dZ
(1 la) d--- F(’)Z(’) + Fz(r) W(r),

Wd
(llb) -= Gl(r)Z(’)+ G2(-) W(-)
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with boundary conditions

z(0) 0= W(T)

has only the trivial solution.
If the hypotheses of Theorem 1 hold, we shall say that the system (4) is

formally solvable. While Theorem 1 is stated in the general setting of a two-point
boundary value problem, we indicate in the following section conditions under
which it is applicable to more specific setting of our control problem.

5. Conditions sufficient for solvability. For the purposes of this section only,
we shall make the additional assumption that the functions f(x, u, e) and
g(x, X, u, e) of system (1) satisfy

f(x, u, e)=H.(x,X, u, e),

g(x, A, u, e)=-Hrx(X, A, u, e).

These additional assumptions amount to assuring that the function
H(x, A, u, e) which plays the part of a scalar-valued Hamiltonian is related to f and
g via the Euler-Lagrange equations. In every application of our perturbation
analysis to problems arising from optimal control, this will, of course, be the case.

In this section we develop conditions under which our system (4) will be
formally solvable. We begin with an observation concerning system (11) on
[t0, T].

Let (-) denote the fundamental matrix solution for the equation

dZ
a--- f()z()

for which (to)= L Then on [to, T] we may write Z(-)= (’)Z(to). Since Ix
Hx _gr, the fundamental matrix solution taking the value I at to for

dW
cl

g() w()

is [r]-l. From (1 lb) we have that

W(’)=[(’)r]-1 W(to)+ (s)Tgx(s)(s)Z(to) ds

Applying boundary condition (1 lc) we get that

0= W(T)=[(T)T]- W(to)+ (s)Tgx(S)(S) ds Z(t0

Since (T) is nonsingular, we have established the following.
LEMMA 1. Any solution (Z, W) of system (11 a)-(1 lc) must satisfy W(to)

SZ(to), where S is the matrix defined by

T

S I W(s)Tgx (S)q(S) ds.
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Using Lemma 1 we will establish our main result on solvability which is the
following.

[Hx t) Hx t) ]THEOREM 2. If the matrix Hx (t) H(t)
is positive definite for all [0, to]

and Hxx(t) is positive semidefinite for all (to, T], then system (4) is formally
solvable. (Here H(t) abbreviates Hx(Xo(t), 0(t), Uo(t), 0), etc.)

Proof. Our analysis here will center around the linear quadratic regulator
problem given by the state equation

dz
(12a) d-- fx(t)z(t)+ v(t)f.(t),

the initial condition

(12b)

and the performance index

z(0)=0,

zzllf0 7] [Hxx(12c) J=-Z(to)WSz(to)+- [z v] dt.

S is as defined in Lemma 1, and the scalar v is to be chosen so as to minimize jr. It is
well known that a unique minimizing solution of the above problem exists in the
case where S is symmetric and positive definite. We begin by verifying that S is
indeed positive definite. Recall that S-- -fro (s)gx(s)(s) ds, where is the
fundamental matrix solution of , =Lz,
for which (to)= L Now since g =-Hx, we can write

T

S I (s)THx(s)ds,

from which the symmetry of S is immediate. Since from our hypotheses H,x(to)
must be positive definite, we have for any nonzero vector x R" that

((to)WHx(to)(to)X, x) (Hx(to)(to)X, (to)X) > O,

and since Hx is positive semidefinite on (to, T], we have

((t)WH(t)(t)x, x)= (Hx(t)(t)x, (t)x) >=0

for each (to, T]. Hence as the definite integral of a positive semidefinite matrix

function which is positive definite for at least one [to, T], S is positive definite.
Thus we are assured that there is a unique v(t) and corresponding z(t)

satisfying (12a)-(12c). However, direct inspection of (12a)-(12c) shows that the
choice v(t) O, z(t) 0 for e [0, to] will certainly minimize J. On the other hand,
we may define a Hamiltonian and write down the Euler-Lagrange equations for
system (12) in the usual way. Let us do so.

The Hamiltonian for problem (12) is given by

(13) Hx"][ Z ] + w(Lz +LvH,, w
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where w(t) is a vector in R for each 6 [0, to]. By necessary conditions for the
existence of an optimal solution, we have that

(14) ,T= OH
OZ

and

0/
(15) 0 on [0, to].

Ov

From (13) and (15) we obtain

(16) v -/4,(w r/u +Huxz).
From (12a) and (16), we have that

2 fz -I(w’f, + H,xZ)f,

fx
Now since in this section we assume f= Hx, we have f. H.. Thus f.wf.

f.H.w f.H.w, so the above equation is

(17) [x H;f.H.]z d.H.w.

Similarly from (13) and (14), the costate variable w satisfies

-z -zHxx H.x .W

Using (16), the above equation becomes

Hx+.f.+H.z)H.x .
Now in this section we assume g -Hx. so gx -Hx (symmetric), g. -H. and
g =-Hx. Using these equalities, we have

T T.T T TT T, T T

SO

(18) [gx I4-g,H,]z + [gx -H-2,g.H..]w.

Also for this quadratic regulator problem, the costate variable w and the state
variable z must be related at to by the equation

(19) W(to) S(z(to)).

Since we already know that the unique minimizing solution of (12a)-(12c) is v 0,
z --- 0, we are assured by (19) and the linearity of (18) that w --- 0 on [0, to). We have
therefore shown that the unique solution of the differential system given by (17)
and (18) with boundary conditions (12b) and (19) is the trivial solution z-= w =0
on [0, to). But equations (17) and (18) are exactly those of system (11) of Theorem
1 on [0, to), boundary condition (12b) corresponds to boundary condition (11c),
and by Lemma 1 system (11) must satisfy (19). Hence any solution (z, w) of system
(11) must satisfy z(t) w(t) O, [0, to). Since this gives Z(to) W(to) 0, by the
uniqueness of solutions to the initial value problem for linear systems it now
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follows that z w 0 on [t0, T] for any solution of system (11). Thus under the
hypotheses of Theorem 2, system (11) has only the trivial solution and system (4)
is therefore formally solvable. (The reader may recognize our technique here as
being similar to those employed in the "inverse problem" in control. See [10] or
[11].)

6. Justification of the asymptotic expansions. In this section we demonstrate
rigorously that the formal procedure developed in 3 yields a uniformly valid
asymptotic expansion for the variables X(z), A(’), U(-) and t(e) on [0, T]. Recall
that the system (4) is said to be formally solvable if the hypotheses of Theorem 1
hold. Our result here is the following.

THEOREM 3. Suppose that system (4) is formally solvable. Then there exists a
small eo > 0 such that for 0 <= e < eo, there is a unique (K + 1) times continuously
differentiable solution X(-, e), A(’, e), U(’, e) and t(e) of system (4). Moreover, if
X.(-), Aj(r), U(’), tj, 1

_
j <= K, denote the solution of (6), then the expansion (5)

are uniformly valid on [0, T] in ’.

Proof. We consider first the case K 0. Our method will be to find, for e
sufficiently small, continuous functions a(-, e),/3(, e), y(’, e)and w(e), [0, T]
which satisfy

x(, e)= x0() + e(, e),

A(’, e)= A0(’)+ e/3(’, e),

u(r, e) Uo(r) +(, ),

t(e)=to+eW(e).

We begin by defining, for real functions r, v and s of -,

f(Xo+ er, Uo+ es, e)--f(Xo, Uo, O)
(r, s, e)= e

fr+f,s+f

if e>O,

if e=O,

and

(r, v,s,e)=
g(xo + er, Ao + ev, Uo + es, e)- g(xo, Ao, Uo, O)

gxr + gay + g,s + g

H,(Xo + st, Xo + ev, Uo + ss, s) H,(Xo, ,o, Uo, O)
(r, v,s,s)= e

H,xr +H,xv + H,us +H,

if e>O,

if e=O

if e>O,

if e=O,

and note that o%, and are continuous functions of e.
Substituting the expressions for X, A, U and t(e) into equations (4) and using

the above definitions we find that a,/3 and y satisfy the system

(20a)
d
-v-(,, )= (, v, *)+--
ay

2r-T
to(to-T)

w(e)f(Xo + e, Uo+ ev,
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d 2r-T
(20b) --/3 (’, e) (c,/3, /, e) - to(to_T)W(e)g(xo+eC,o+eCl, Uo+e3,,e)

with boundary conditions

(20c) a(0, e)= a*(e),

(20d) fl(T, e)= b*(e),

and the additional conditions that

(20e) (a,/3, /, e) 0 for - [0, to],

(20f) y(’, e) 0 for - (to, T].

It will suffice now for the case K 0 to show that the above system possesses a
continuous bounded solution a(’, e), fl(r, e), y(’, e) and w(e) for e sufficiently
small. For the case e 0, it is a simple matter to verify that the system (20) can be
written as a system of the form (10). Hence under our hypothesis of solvability,
our system (20) has the solution given by

O (T) Xl(Y’),

/3(’) AI(’),

if ’-<-to,
/(’) U1 (’)

0 if " > to,
and w(0)= tl.

We therefore consider the case e # 0 and view our differential equations as
defining a mapping between appropriate Banach spaces so as to be able to invoke
the implicit function theorem (see, as a reference, [3]). Toward this objective, we
let 01 denote some bounded open neighborhood of the origin in C[0,
C[O, T] C[0, to] and let 02 denote a bounded open neighborhood of 0 in R. Let
e >--0, (r(tr), v(o-), s(tr)) 01 and w(e)6 02. Extend each s C[0, to] to [0, T] by
defining

s,(.)={s(’) if 0--<’=<t0,

S(to) if " > to,

and consider the integral equations determined by our differential system. They
are

and

a(’, )= a*(e) + (r(r), s*(r)) dr

f(Xo(tr)+ er(cr), Uo(tr) + e)
2r- T+ w(e)

to(to-T)
ES*(O’), do"

T

fl(r, e)= b*(e)- Io (r(r), v(r), s*(r) &r
T

w(e) Io 2r- r
to(to- T)

g(xo(tr)

+ r(), Xo() + v(), Uo(r) + s*(), ) d.
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We also let

and

’(’r, e)= (r(’r), v(’r), s(’r), e),

3,(t0, e).
Now let denote the Banach space C[0, T]" C[0, T]" C[0, to] R. It is

not difficult to verify that the preceding equations define a continuous Fr6chet
differentiable mapping from an open neighborhood 0 of the origin in [0, e0]
into given by

(r, v, s, w, e)= (c,/3, ’, v).

Note that for e0 sufficiently small, 0 may be selected to include (X1, A1, Ua, ta, 0).
We have already established that

(Xl, A1, U1, tl, O)= (Xl, Aa, O, 0).

Let I denote the mapping of 3 [0, eo] defined by

I(r, v, s, w, e)= (r, v, O, O)

and consider 0-+ defined by xF -L It follows that is continuous and
Fr6chet ditterentiable and that (Xa, Aa, Ua, q, 0)= 0.

We now wish to obtain a continuous bounded solution of the equation

,I,((, ),/3(, ), v(, ), w(), )= 0.

By the implicit function theorem, it suffices to show that the Fr6chet
derivative of xI, at (X1, A1, U1, tl, 0) is a topological linear isomorphism. We
denote this derivative by

D(r,v,s,w)XXl(X,,A,U,,tl,O J J.

We consider first the linear map

D(r,v,s,w)dP:(’0, ’02, "03,

One can check from our integral equations that for e 0, r
and w tl, this mapping is given by

Ixa(r) {fx(O)"01(o’)+fu(o)rl*3*(o’)} do

2o’-T
"1- "04 to(to- T)

f(Xo, Uo, 0) &r,

T

/.t2(’r) Jr {gx(O’)"01(o’) + g(o’)"02(o’) + g.(o-)"03"*(o-)} do"

r 2o’-T
-r4 to(to- T)

g(xo, ,o, uo, 0) do’,

(-) Hu(-),1(-) +H.(-),(-) + n..(-),(-), -_-<to,

/-I,4("/’)-- "03(t0).
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In the above we have used the notation

= f(), ----< o,
f**(,,-)

O, ’> to.
Thus at (X1, A1, U1, tl, 0), the Fr6chet derivative

D(r,v,s,w)a’II":(TI1, T/2, T3, T4)--’> (]J,1,

must be given by the equations

(nl +/zl)(’) {f/(o)1(o’) +f. (o’)rt3**(o’)} do"

2o’-T
+ n4 to(to- T) f(Xo, Uo, 0) do-,

r

(T/2-- 2)(T)--- J-r {gx(Cr)/l(O’) + gx (cr)72(’)-t- gu(cr)?3**(’)}

r 2o-T
--’14 t0(t0 T)

g(x’ ,.o, No, 0) do’,

3(T):Hux()I()--HuA()T2()-Hu()T3(), to,

b[,4 /3(t0).
It is easy to see that the above system defines a continuous bounded map

(, , 3, 4) (, e, 3, 4). To see that this map is invertible, we assume, e, 3 and 4 given and we define

y=+ forj=l, 2and4,

3 n3 + 3--(4+ 3(t0)).

The reader can now verify that the functions ya, yz and 3 and the constant 4
satisfy a differential system of the form of system (6) in 4 with . ya, A y2,

y* and y4 (since 1,. ", 4 are known). Under our present hypothesis
of formal solvability the above system has a unique solution a, 2, 3 and 4 by
virtue of Theorem 1. Since and yi are now known, j 1, 4, we may solve
for ,.-., 4. Thus the Fr6chet derivative of at (Xa, A, Ua, ta, 0) is a
topological linear isomorphism. Hence by the Banach space implicit function
theorem, there exists an el>0 so that for 0Ne<e, the equation

(a, , % w, e)=0 possesses a continuous bounded solution a(r, e), (r, e),
y(r, e) and w(e). This completes the proof in the case K=0. The case K>0
proceeds similarly with obvious modifications.

7. An example. We now wish to illustrate the preceding ideas as they arise in
a legitimate optimal control problem. While the following example does not
illustrate all the complexities that may arise in applying our technique, it does,
however, indicate the use to which the technique may be put. We consider the
system governed by the scalar equation

(21) 2(t)=2u(t)
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with initial condition

x(0)= 1

and the problem of minimizing the performance index

J= (x + u dt-3x(3)

on the interval [0, 3] subject to the control constraint

The Hamiltonian tor this system is

H(X, i, U) X -- U 2 + 2Au.

The condition Hu 0 gives A =-u so an application of the maximal principle
together with the restriction ul <- 1 gives that

Uopt min {max (-, 1), 1}.

From the Euler-Lagrange equations, we have the equation

=OH_ 1
Ox

and the end condition A(3)=-3. Thus

A(t) --t;

so from (21) we obtain

(22)
2t if0=<t=<t0 =1,2(t)=
2 ifl=to<-t<-3.

Finally from the initial condition x(O)= 1 and the above, we have

t2+ 1
x(t)=

2t
for 0--< t--< to 1,
for 1 to<=t<=3,

(23) A(t)=-t for all 0 -< <_- 3,

and

t for0Nt<--to=l,
t)U

1 for l=<to=<t=<3.
We now use the above and our preceding work to analyze the perturbed

system given by

(24)

(25)

where we wish to minimize

(26)

ex 3 +(2 + e)u,

x(0)= ,
2)J= (x + ex2 + u dt-(3 + e)x(3)
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and the restriction lul-< 1. The Hamiltonian here is given by

(27) H(x, A, u, e) x + ex 2 + u2 + A(ex3 +(2 + e)u)

from which the corresponding equation for the costate variable A is determined as

(28) ( 0___H= 1 2ex 3Aex2

Ox

with boundary condition

(29) a.(3) =-(3 + e).

For e 0, the explicit solution is that given by (27) which we henceforth denote by
x0, )to and u0. Let t(e) denote the smallest value of for which lu(t(e), e) 1,
where u(t, e) denotes the optimal controller for the perturbed system (24)-(26) at
e. (Note that t(O)= to 1.) Let

t= h(r, e)=t(e)+.
2 2

This change in the time scale will freeze the control switch point t(e) at - 1 while
leaving the initial and terminal times fixed. We define

X(r, e)= x(h(’, e), e), A(r, e)= .(h(-r, e), e), U(’r, e)= u(h(’r, e), e).

Thus U(1, e)= 1 for e sufficiently small and positive. Substituting the new
variables into (24) and (28) we get

dX [..3 -2’t(e) +(30)
2’- 1]2

[eX3+(2+e)U]’

dA [-3 2’t(e) 2’-1](31) d--- [1 + 2eX+ 3eAX2],

(32) X(0, e) x(h, O, e), e) x(O, e) 1 + e,

(33) A(3, e) I(h(3, e), e) I(3, e) -(3 + e).

We now assume that each of the variables in the transformed series has an
asymptotic expansion in powers of e of the form

x0( ) +
A(r, e) Ao(’) + Ai(r)e + A2(r)e 2 +...,

U(T, E)--" U0(T)-" UI(T)E-- U2("F)82"I
t(e) to + tie + t2/

2 -k-.

Note that to 1. We next insert the assumed expansions into equations (30) and
(31), differentiate the resulting equations once with respect to e, and set e 0
to obtain

(34)
d
XI(’)

3 2-
d--- 2 tl 2Uo(r)+X(r)+2U(r)+ Uo(r),
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d 27.-3
(35) --A()

dr 2 tl- 2Xo(7.)- 3Ao(7.)X(7.),

with boundary conditions

XI(0)= 1 and A1(3)=-1.

In addition, since U(1, e)= Uo(1)= 1, we must have that U1(1)= 0. We next
attempt to solve (34) and (35). First note that

H(X,A, U, e)=X+eXZ+ U2WA(eXZw(2We)U).
Since IU(r, e)l<l for r<l and U(r, e) is optimal, we have for 0<-r<-I that

0 H,(X, U,A, e).

Differentiating once with respect to e and setting e 0, we get

2 U1(7.) + 2A1(7.) + lo(7.) 0
SO

(36) Ua(r) -A1(7.) -1Ao(7.), 0 =< 7. =< 1.

Thus for 7._-< 1, (34) becomes

d 3-27.t12 X(7.) 2A1(7.) Ao(7.)+Uo(7.)--7x() Uo() +

From (23) and (35), we have for 7. 6 [0, 1] that

d
A1(7") 37"5 q- 67"3 27"2 + (3 + tl)7" -(2 + 23-tl)

dT"

SO

A1(7") 1/27"6-1-7"4-- 3+1/2(3+tl)7"2 (2+t)7"+d1
For 7" > 1 we have from (23), (34) and (35) that

d
xt)l[7.

27"- 3
=tl--47"+ 127"3

dT" 2

7"_-<1.

SO

Aa(7") 37"4-1/2(4 tl)7"2--tlT" 4 d2, 7" > 1.

Now A1(3)=-1 so we can solve for d2. Doing so we obtain d2=-226 so
1355A(I/) =-tl-225. Thus AI(I-) must equal-h-225 so dl =---. We therefore

have determined A as an explicit function of 7" as follows-

,/.6..7.4 7"3 ._1/2(ta + 3)r (tl + 2)r , <
(37) A(r)=

34_(4_tl)z2_q_226, > 1.

Next from (34), (23) and the above, we have for 7" 1 that

dX1
dT"
---7"3--3tlT"2+(6tl +6)r+ 1358

3
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so

(38) Xa(7.) 4 ,/.3 7.2 -I’- 13_____8_87.7. -h +(3h+3) +Cl, 7.<1

Since Xa(0)= 1, Cl-- 1. Now for 7. > 1, Ua(7.)= 0, so we have that

SO

(39) XI(T) 27.4- t17.
2 +(3h + 1)7.+ C2, 7. > 1.

Requiring that X(1-)= X(1/) =457 + 2h we get c2 =454 so X is determined in
(38) and (39).

We are now in position to solve for q. Since Hu(X, A, U, e) 0 for 7. < 1, by
continuity we must have Hu (X, A, U, e) 0 for 7. 1. Hence (36) holds for 7. 1;
i.e., we hve that

Ua (1) -A1(1) 1/2A0(1).
But Ua(1) 0 since U0(1) 1 and U(1, e) 1 for all e sufficiently small. Hence

Aa(1) -1/2Ao(1).
From (23), (37) and the above, we have that

-q- 225 (-1/2)(-1)
so

451

Thus t(e)= 1--}!e+O(e e) and Xa, A1 and Ua are determined as explicit
functions of 7. trom (36)-(39). We may now repeat the procedure to determine
Xe, Ae, U., etc.

In conclusion the reader will see that the clock tunction technique serves as a
mechanism to allow the treatment of problems involving unbounded controls in
much the same framework as bounded controls. The introduction of the time

2parameter t(e to + eta + e t2 +" when passage to the boundary occurs, how-
ever, adds an additional interval boundary condition (see (9)) to be used at each
stage of our recursive procedure to solve for X# Aj and tj.
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MONOTONE OPERATORS AND THE
PROXIMAL POINT ALGORITHM*

R. TYRRELL ROCKAFELLAR"

Abstract. For the problem of minimizing a lower semicontinuous proper convex function f on a
Hilbert space, the proximal point algorithm in exact form generates a sequence {z k} by taking z k+l to
be the minimizer of f(Z)+(1/2Ck)][z--zkll, where Ck >0. This algorithm is of interest for several
reasons, but especially because of its role in certain computational methods based on duality, such as
the Hestenes-Powell method of multipliers in nonlinear programming. It is investigated here in a more
general form where the requirement for exact minimization at each iteration is weakened, and the
subdifferential Of is replaced by an arbitrary maximal monotone operator T. Convergence is estab-
lished under several criteria amenable to implementation. The rate of convergence is shown to be
"typically" linear with an arbitrarily good modulus if Ck stays large enough, in fact superlinear if

Ck --> c. The case of T= Of is treated in extra detail. Application is also made to a related case
corresponding to minimax problems.

1. Introduction. Let H be a real Hilbert space with inner product (.,.). A
multifunction T" H --> H is said to be a monotone operator if

(1.1) (z z’, w w’) -> 0 whenever w T(z), w’ T(z’).

It is said to be maximal monotone if, in addition, the graph

(1.2) G(T) {(z, w)eHxH[we T(z)}

is not properly contained in the graph of any other monotone operator
T’ :H- H.

Such operators have been studied extensively because of their role in convex
analysis and certain partial differential equations. A fundamental problem is that
of determining an element z such that 0 T(z).

For example, if T is the subdifferential f of a lower semieontinuous convex
function f H - (-o, +o], f+o, then Tis maximalmonotone (see Minty [15]
or Moreau [18]), and the relation0 T(z) means that f(z) min f. The problem is
then one of minimization subject to implicit constraints (the points where f(z)=
+ being effectively forbidden from the competition).

The basic case of variational inequalities corresponds to

(1.3) T(z)=
To(z)+No(z) if z eD,

if z D,

where D is a nonempty closed convex subset of H, To D --> H is single-valued,
monotone and hemicontinuous (i.e. continuous along each line segment in Hwith
respect to the weak topology), and ND(Z) is the normal cone to D at z:

ND(Z) {w e H]<z u, w> >--_ O, /u e D}.

* Received by the editors July 9, 1975, and in revised form November 17, 1975.
J" Department of Mathematics, University of Washington, Seattle, Washington 98195. This work

was supported in part by the Air Force Office of Scientific Research, Air Force Systems Command,
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The maximal monotonicity of such a multifunction T was proved by Rockafellar
[27]. The relation 0 6 T(z) reduces to To(z) ND(Z), or the so-called variational
inequality:

(1.4) zD and (z-u, To(z))<=O for all iD.

If D is a cone, this condition can be written as

z D, To(z) D (the polar of D), and (z, To(z)) 0,

and the problem of finding such a z is an important instance of the well-known
complementarity problem of mathematical programming.

Another example corresponds to minimax problems. Let H be a product of
Hilbert spaces Ha and H2, and let L :H [-c, +c] be such that L(x, y) is
convex in x Ha and concave in y H2. For each z (x, y), let TL (z) be the set of
all w (v, u) such that

L(x’, y)-(x’, v)+(y, u)>=L(x, y)-(x, v)+(y, u)

(1.5) >-L(x, y’)-(x, v)+(y’, u)

forall x’/-/1, y’H2.

If L is "closed and proper" in a certain general sense, then TL is maximal
monotone; see Rockafellar [24]. The global saddle points of L (with respect to
minimizing in x and maximizing in y) are the elements z =(x, y) such that
O6 TL(z).

In this paper, we study a fundamental algorithm for solving 0 T(z) in the
case of an arbitrary maximal monotone operator T. The algorithm is based on the
fact (see Minty [14]) that for each z H and c > 0 there is a unique u Hsuch that
z u cT(u), or in other words,

z (I+ cT)(u).

The operator P (I+ cT)-1 is therefore single-valued from all of H into H. It is
also nonexpansive"

(1.6) liP(z)- P(z’)]] _-< Ilz z’[[,
and one has P(z)= z if and only if 06 T(z). P is called the proximal mapping
associated with cT, following the terminology of Moreau [18] for the case of

T=Of.
The proximal point algorithm generates for any starting point z a sequence

{z k} in H by the approximate rule

(1.7) zk+lPk(Zk), where Pk=(I+ctZ)-1.
Here {ck} is some sequence of positive real numbers. In the case of T= Of, this
procedure reduces to

(1.8)

where

(1.9)

k+lz arg min bk (z),

f(z)+ llz- z l[
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(.o)

where

(see {} 4). For T corresponding to a convex-concave function L, it becomes

(x+, y+) arg minimax A(x, y),
x,y

1 1 k [2(1.11) Ak(X, y)--L(x, y)+cllx--xt’lla-cl[y-y
(see 5).

Results on the convergence of the proximal point algorithm have already
been obtained by Martinet for certain cases where Ck C. He showed in [12], [13]
that if Tis of the form (1.3) with D bounded, and if true equality is taken in (1.7),
then z k converges in the weak topology to a particular z such that 0 T(zoo).
Similarly if T 0f and the level sets

{z H]f(z) <- a}, a R,

are all weakly compact, in which event it is also true that f(z ’) ,[, f(zoo) rain f.
These results of Martinet are based on a more general theorem concerning

operators V with the property

(1.12) V(z)- V(Z’)II2 IIZ- Z’[12-- ][(I V)(z)-(I- V)(Z’)I[2.
This class includes (I + cT)-1 (cf. Proposition 1(c) below). If V- C C satisfies
(1.12), where C is a nonempty, closed, bounded, convex subset of H, then for any
starting point z C the sequence {z k} generated by z+1= V(z) converges
weakly to some fixed point of V. This theorem is a corollary of one of Opial [32]
treating iterates of AI+ (1- A)U when U is nonexpansive, 0 < A < 1. In fact, V
satisfies (1.12) if and only if V=(I+ U), where U is nonexpansive. Genel and
Lindenstrauss [33] have recently furnished an example of such a mapping V for
which {z} does not converge strongly. However, this V does not appear to be of
the form (I+ cT)- for c > 0 and T maximal monotone.

The question of whether the weak convergence established by Martinet can
be improved to strong convergence thus remains open. The answer is known to be
affirmative if T Of with f quadratic. This follows from a theorem of Krasnoselskii
[10], as has been noted by Kryanev [11]. In the quadratic case, Of reduces to a
densely defined, single-valued mapping of the form x A(x)-b, where A is a
nonnegative, closed, self-adjoint linear operator. Then the relation 0 T(z) is
equivalent to A (z) b.

Strong convergence of the algorithm in its exact form with z+= P(z) is
also assured if c is bounded away from zero and T is strongly monotone (with
modulus a > 0), i.e., in place of (1.1) one has

(1.13) (z-z’, w- w’) allz-zq[2 whenever w T(z), w’ T(z’).

Indeed, the latter condition means that T’- T-aI is monotone, and hence the
mapping P, (I+ c’ T’)-1k is nonexpansive for any c’ ’->0; taking ck-
Ck (1 + OlCk)- one has

P,[(1--ac(l+aCk)-l)I+Ck(l+ac)-lT]-l=[(l+ac, (I+c,T)]---1

or
Pk(z) P,((1 + cc)71z) for all z,
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so that the nonexpansiveness of P yields

(1.14) IlP(z)-P(z’)ll<=(+,c)-llz-z’ll forall z,z’eH.

In particular, this implies P has a unique fixed point, which must then be the
unique point z satisfying 0e T(z). One has

(1.15) I[z+-zl[=l[P:(zg)-Pg(z)ll<-(l+ac)-llz-z[I for all k,

so if c->_c >0 for all k sufficiently large the sequence {z g} converges to the
solution z of the problem, not only strongly, but at least as fast as the linear rate
with coefficient (1 + ac)- < 1. If c --> oo, the convergence is superlinear:

lim
Ijzk+l- z ll_ 0.

Unfortunately, the assumption that T is strongly monotone excludes some of
the most important applications, such as to typical problems of convex program-
ming, and it is important therefore to study convergence under weaker assump-
tions. Of course, from a practical point of view it is also essential to replace the
equation z k/l P(z k’) by a looser relation which is computationally implementa-
ble for a wide variety of problems.

Two general criteria for the approximate calculation of Pa(z) are treated
here:

(A) IIz+l-P(z)ll<=e, Z <,
k=O

k=O

It is shown (Proposition 3) that these are implied respectively by

(A’) dist(0, Sk(zk+l)) <-- e/c, 2 e < o,
k=O

and

(B’) dist(0, Sk(zk+l)) (g/c)[Iz g+l

where

(1.16) Sk(z) T(z)Wc-l(z-zt).
(Note that these conditions are certainly satisfied if z

Z k <00’
k=0

+’ =p(z).)
We prove under very mild assumptions (Theorem 1) that (A) (or (A’))

guarantees (for any starting point z) weak convergence of {z k} to a particular
solution z to 0 e T(z), even though there may be more than one solution. (In
general, the set of all such points z forms a closed convex set in H, denoted by
T-l(0).) The results of Martinet are thereby extended to a much larger class of
problems, and with only z k/ Pk (Z k).

When (B) (or (B’)) is also satisfied and the multifunction T-1 happens to be
"Lipschitz continuous at 0", we are ablb to show (Theorem 2) that the con-
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vergence is at least at a linear rate, where the modulus can be brought arbitrarily
close to zero by taking ck large enough. If ck --) oo, one has superlinear con-
vergence.

In other words, the same convergence properties noted above for the case of
strong monotonicity are established under far weaker assumptions. A criterion for
the convergence of the algorithm in a finite number of iterations is also furnished
(Theorem 3).

The assumption of Lipschitz continuity of T-a at 0 turns out to be very natural
in applications to convex programming. It is fulfilled, for instance, under certain
standard second-order conditions characterizing a "nice" optimal solution. Such
applications, having many ramifications, will be discussed elsewhere [31].

There are actually three distinct types of applications of the proximal point
algorithm in convex programming: (i) to T- Of, where f is the essential objective
function in the problem, (ii) to T -0g, where g is the concave objective function
in the dual problem, and (iii) to the monotone operator T/ corresponding to the
convex-concave Lagrangian function.

The second type of application corresponds to the "method of multipliers" of
Hestenes [8] and Powell [21]. The relationship with the proximal point algorithm
in this case has already been used by Rockafellar [29]. The third type of
application yields a new form of the method of multipliers that seems superior, at
least in some respects. Although the details will not be treated here, we mention
these applications because of their role in motivating the present work.

Some implications of the theorems in this paper for the general cases of T Of
or T corresponding to a convex-concave function L are nevertheless discussed in
4.

Aside from the obvious case of strong monotonicity, or special results for the
method of multipliers in convex programming (for a survey, see Bertsekas [5]),
there are no rate-of-convergence results relating to the proximal point algorithm
prior to those developed here.

For discussion of other methods for solving 0 T(z) in the case of a maximal
monotone operator, we refer to Auslender [2] and Bakushinskii and Polyak [3].

2. Convergence of the general algorithm. Henceforth T is always maximal
monotone. In addition to Pk -(I+ CkT)-a, we shall make use of the mapping

(2.1) Ok I--Pk (I-t"(CkT)-l)-1.
Thus

(2.2) O T(z)CZ>Pk(Z) Z Ce’Ok(Z) O.

PROPOSITION 1.
(a) z P,(z) + O,(z) and c- O,(z) T(P,(z)) for all z.
(b) (Pk(z)-P(z’), Ok(z)- Ok(z’))=>,0 for all z, z’.
(c) IlPg(z)-Pg(z’)l[2 /liOn(z)- O.(z’)ll2 -<llz- z’l{ for all z, z’.
Proof. Part (a) is immediate from the definitions, while (b) is a consequence of

(a) and the monotonicity of T. Part (c) follows from (a)’ and (b) by expanding

Ilz z’ll2 IlEP,(z)-p,(z’)]+EO,(z)- 0, (z’)]ll2.
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Part (c) of Proposition 1 states that property (1.12) holds for Pk and Ok. If
ck =c >0, the mappings Pk all reduce to a single V to which the Martinet’s
corollary of Opial’s theorem (recalled in 1 after (1.12)) can be applied with
respect to any nonempty closed bounded convex set C such that V(C) C. Of
course, if V is known to have at least one fixed point in H, then for arbitrary z 6 H
one can take C to be the closed ball of radius lie- 11 and center , where is any
fixed point.

In this way one obtains an immediate generalization of Martinet’s results for
the case of T Of or variational inequalities. If there exists at least one z satisfying
0 T(z), then the proximalpoint algorithm in exactform (z k/ Pk (z k)) with ck =- c
converges weaklyfrom any starting point z to a particular z satisfying 0 T(z).
This should be compared with the still more general Theorem 1 below.

In connection with the existence of solutions to the problem we want to solve,
it is worth mentioning the following result (Rockafellar [25, Prop. 2]; this is a
generalization of Theorem 2.2 of Browder [7]).

PROPOSITION 2 (see [25]). Suppose that for some Y. H and p >= 0 one has

(2.3) (z Y,, w) >= 0 for all z, w with w T(z), Ilz 0.

Then there exists at least one z satisfying O6 T(z). (This condition is not only
sufficient for existence, but necessary.)

The condition in Proposition 2 holds trivially for example, if the effective
domain

(2.4) D(T) {z e H T(z) # }

is a bounded set. A convenient, weaker condition, which is also sufficient for
existence when T= Of, is the weak compactness of the level sets {z e Hlf(z) <- },
/3R.

The relationship between the criteria (A) and (B) on the one hand and (A’)
and (B’) on the other is laid out by the next of our preliminary results.

PROPOSITION 3. The estimate

[[zk+l--pk(zk)[[ Ck dist(0, Sk(zk+l))
holds, where Sk is given by (1.16). Thus (A’) implies (A), and (B’) implies (B).

Proof. For any w Sk (z k+ 1) we have

CkW W Z
k (I-+-ckr)(zk+l),

and hence,

z =(I+ckT)-(ckw+z =Pk(ckw+z

Then by virtue of the nonexpansiveness of Pk

iiz + z )ll llP w / z z )ll <_ w ll.
Thus

as claimed.

IIz+l-P(z)llc min {llwlll w Sk(zk+l)}
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THEOREM 1. Let {z k} be any sequence generated by the proximal point
algorithm under criterion (A) (or (A’)) with {Ck} bounded away from zero. Suppose
{z k} is bounded; this holds under the preceding assumption if and only if there exists
at least one solution to 0 T(z).

Then {z k} converges in the weak topology to a point z satisfying 0, T(z),
and

(2.5) O= lim II(z)[I lim J(z k+l- zkJl.

Proof. First we verify the asserted sufficient condition for the boundedness of
{z}. The necessity of the condition will follow from the last part of the theorem.

Suppose that is a point satisfying 0 T(). We have

(2.6) IIz+-ll- <-IIP,(z’)-ll--IIP,(z’)-P,()ll<-_llz’-.ll.
and this furnishes the bound

l--1

IIz-[l_-<[l-ll + -<_llz-ll+ foal 1.
k=O

Thus {z k} must be bounded.
For the rest of the proof, we assume that {z} is any bounded sequence

satisfying (A). Let s > 0 be such that

(2.7) IIzlls and ek<S for all k.

Xhn(h at at on wak cutr point , IIil .
Our next goal is to demonstrate that O T(z), but for this purpose it is

helpful to show first that the argument can be reduced to the case where it is
already known that T-(0) . Consider the multifunction T’ defined by

where

and consequently

T’(z) T(z) + Oh(z) for all z 6 H,

f 0 if 11}l2s,
h(z)

+oo if Ilzll>2s,

{0} if 11ll<2s,
Oh(z)= {XzlX >_-0} if 11ll=2s,

if Ilzll>2s.
Observe that Oh is a maximal monotone operator, because h is a lower semicon-
tinuous proper convex function; its effective domain is

O(Oh) {z Ilzll--< 2s}.
Furthermore,

(2.8) r’(z)= r(z) if Ilzll<2s.
Since IIP,,(z")ll<2s for all k by (2.7) and condition (A), while

C’(zk--Pt:(zk))e T(P(zk))
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by Proposition l(a), we have

(2.9) Pk(zk)D(T)fqintD(Oh)

(2.10) Pk(zk)6(I+CkT’)-(Zk)
for all k,

for all k.

Inasmuch as D(T) f-) int D(Oh) by (2.9), we know that T’, as the sum of the
maximal monotone operators T and 0h, is itself maximal monotone (Rockafellar
[27, Thm. 1]). Hence P’k (! + CkT’)-1 is actually single-valued, and (2.10) implies

Pk(Z k) P’k(Z ) for all large k.

Thus the sequence {z k } can be regarded equally well as arising from the proximal
point algorithm for T’. The advantage in this is that the effective domain D(T’) is
bounded, so that (T’)-I(0) by Proposition 2. Since T’(z) T(z) by (2.8),
we could replace T by T’ without loss of generality in verifying that 0 T(z).

We are therefore justified in assuming, from now on, the existence of a
certain e such that 06 T(e). Applying Proposition l(c) to z z and z’= e, we
get

(2.11) IIP(z)-ll2+llo(z)ll2<-Ilz-ll2 forall k.

Hence,

IIQ(z )11=- I1 11= /llz

and consequently,

(2.12)

k+l

k+l=(z
k+l

eli2 -IIP (z) el[2

-p,,(z’), (z’+l- e)+(p,,(z’)- e))

ek (zk)II(IIz k+l ell / [IZ k ell),

O(z )1[2 llz ell2- IIz +1- ell2 + 2e,(s + Ilell),

At the same time we have

which because of Y.k=0 e < 0o implies the existence of

(2.13) lim IIz k ell tx < oo.
koo

We can therefore take the limit on both sides of (2.12), obtaining (2.5), because

IIo (z )ll II(z z /) / (z /1_p(z ))11 __> ilz +1 zll_ ,
It follows that

(2.14) c-1Qk(z k) 0 strongly,

the numbers c being bounded away from zero.
Observe next that Proposition l(a) entails

(2.15) O<--(Z--Pk(Z’),W--C--1Qk(Z’)) forall k if weT(z).
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Since z is a weak cluster point of {z g} and I[z g+- P(z)l[ - 0, it is also a weak
cluster point of {P(z)}. Then (2.14) and (2.15) yield

0_-<(z-z, w) for all z, w satisfying wT(z).

This implies, in view of the maximality of T, that 0 T(z).
The next step is to show that there cannot be more than one weak cluster

point of {z}. Suppose there were two: z] z. Then0 T(z) for 1, 2, as just
seen, so that eachz can play the role of 2 in (2.13), and we get the existence of the
limits

(2.16) lim [[zk--zi [[-- [/,i <o0 for i= 1 2.

Writing
cx:2

we see that the limit of (z k- z, z-z) must also exist and

2 lim (z zT, zT- z)=--IIzT- zTII.
But this limit cannot be different from 0, because z is a weak cluster point {z}.
Therefore

However, the same argument works with z and z reversed, so that also
21->0. This is a contradiction which establishes the uniqueness of z

(The uniqueness argument just given closely follows the one of Martinet [ 12],
and it was also suggested to the author by H. Br6zis.)

Counterexample. The convergence of {z} in Theorem 1 may fail if instead of
=0 e < one has only s - 0, even when H is one-dimensional. This can be
seen for any maximal monotone Tsuch that the set 1(0) {z]0 T(z)}, which is
known always to be convex, contains more than one element. Then T-l(0)
contains a nonconvergent sequence {z} with

but

We have Pk(zg) z and therefore a counterexample with sg =llz + -z ll. In
particular, all this holds for T Of if the convex function f attains its minimum
nonuniquely.

3. Rate ot convergence. We shall say that T-1 is Lipschitz continuous at 0
(with modulus a ->0) if there is a unique solution 2 to 0 T(z) (i.e. T-l(0) {2}),
and for some - > 0 we have

IIz- II all ll whenever z eT-’(w) and

THEOREM 2. Let {z} be any sequence generated by the proximal point
algorithm using criterion (B) (or (B’)) with {ck} nondecreasing (c
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Assume that {z k} is bounded (cf. Theorem 1) and that T-1 is Lipschitz continuous
at 0 with modulus a; let

tZk a/(a 2 + c) 1/2 < 1.

Then {z k} converges strongly to 2, the unique solution to 0 T(z). Moreover, there is
an index k such that

(3.2)
where

(3.3)

(3.4)

IIz/-llollz-ll forall k >-_k-,

1 > Ok (tZk + 6k)/(1 k) >= 0 for all k >= k,

Ok- Ixo (where tx=0 if c=).

Proof. The sequence {zk}, being bounded, also satisfies criterion (A) for

llz/-z 11, so the conclusions of Theorem 1 are in force. We have

[IO (z )11 IIz P(z )ll z z+111 + lie +1 p(z )11,
so that

Ilc1 ok (z k)[[ c1( 1 + k)llz +’ z for all k,

where IIz- z+’ll 0 (Theorem 1). Choose so that

(3.5) c;(X +6g)llz+’-zll< r for all k .
Then IIc Z’o(z )11 for k . ButP(z) 1(c O(z )) by Proposition 1 (a).
The Lipschitz condition (3.1) can therefore be invoked for w caOg(z) and
z Pg(z) if k is sufficiently large"

(3.6) IIP(z)-ellallcZlO(z)ll forall k.
We next apply (2.2) and Proposition 1 (c) to z 2 and z’= z

g
to obtain

{le- P(z )ll2 + IlO(z )112 lle- zll2,
which via (3.6) yields

IlP (z) ell2 [(a/)2/(1 +(a/)2)]llz ell2,
or in other words

(3.7)
But

IIZ k +1 2[ [Izk+1 Pk (Z k)ll -- IlPk (zk) 2[1,
where under (B) we have

ilz/,_p (z )ll __< llz/1__ Zkll IIz/, ell + IIz ell.
Therefore by (3.7),

This inequality produces the one in (3.2) if is taken so that (3.3) holds, as is
possible since 1 > $ and 0.

Remark 1. The proof shows that the estimates in Theorem 2 are valid for any
k such that (3.3) holds and, for some k k, also (3.5) holds. To cite a simple
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specific case, let us suppose that

6k <-1/4 for all k,

and, as can easily be estimated explicitly for instance if the effective domain D(T)
is bounded, that for a certain d > 0,

IIz + -z ll<=d for all k.

It may then be seen that the estimates in Theorem 2 are valid if k is such that

Ck -->-- 2 max {a, d/’} for all k _>- k.

Remark 2. If we replace the condition on 6k in (B) by the assumption that (A)
is satisfied and

(3.8) 6k -* 6oo<1/2(1-txoo),
then all the conclusions of Theorem 2 hold, except that

Ok -- O= (tX + 3o)/(1-- 6) < l.

Since

i= a/(a2 + c)1/2,
the inequality (3.8) holds in particular if 6o < 1/2 and Ck 0.

The next two results help illuminate the Lipschitz condition in Theorem 2.
We shall say that a multifunction S H --> H is differentiable at a point ff if

S(ff) consists of a single element 2 and there is a continuous linear transformation
A H --> H such that, for some 6 > 0,

  S( +w)-e-Aw o(llwll)U when Ilwll  ,
where B is the closed unit ball and

o([Iwll)/llwll$o as Ilwll$0.
We then write A VS(). This coincides with the usual notion of differentiability
(in the sense of Fr6chet), if S is single-valued on a neighborhood of .

PROPOSXTION 4. The condition ofLipschitz continuity in Theorem 2 is satisfied
if T- is differentiable at O. In particular, it is satisfied if there is a 2 such that
0 T(2) and Tis single-valued and continuously differentiable in a neighborhood of
2, with 7T(2) invertible (i.e. having all ofH as its range).

Proof. If T-1 is differentiable at 0 and A 7T-(0), there is a unique 2
satisfying 06 T(2), and we have

T- (w)- -Aw o(llwll)B when Ilwll-< .
Thus there exist ao-> 0 and e > 0 such that

]lz - Awl] <- aollWl{ whenever z T-’(w), Ilwll .
it follows that

I1 - a0llwll+llAIl" Ilwll whenever w T(z), Ilwll
Thus (3.1) holds for a ao / IIAII. The second assertion then follows from the first
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by way of the implicit function theorem [9]: under these assumptions T-1 is
single-valued and continuously differentiable on a neighborhood of 0.

PROPOSITION 5. Suppose T-1 is Lipschitz continuous globally, i.e. T- is
everywhere single-valued and satisfies

IIT-l(w) T-l(w’)ll=< allw- w’ll for all w, w’,

where a =>0; this is true in particular if T is strongly monotone with modulus
a > O(a a-a). Then the explicit assumption that {z k} is bounded is superfluous]or
the conclusions of Theorem 2, and the estimate (3.2) is valid ]:or any k large enough
that (3.3) holds.

Proof. The proof of Theorem 2 works in this case with k 0. If T is strongly
monotone, we have (1.13) for some a >0. Then the operator T’= T-aI is

--1
SOmonotone and hence P (I + T’)- is nonexpansive. But T aP-1

T-l(w) P(c-Iw) for all w,

and in particular from the nonexpansiveness of P"

(3.9) IIT-l(w)-T-(w’)ll<=-llw-w’ll forall w, w’.

Finally, we describe a very special but noteworthy case where the algorithm
can converge in finitely many iterations. This result was suggested by one of
Bertsekas [4] for the method of multipliers in convex programming.

THEOREM 3. Let {z k} be any sequence generated by the proximal point
algorithm under any of the criteria (A), (A’), (B) or (B’) with {c} bounded away
from zero. Suppose that {z k} is bounded (cf. the conditions in Theorem 1) and there
exists such that O int T(). Then

(3.10) z= Pg(z k) for all k sufficiently large.

Hence under (A) (or (A’)) one has

for all k sufficiently large,

while under (B) (or (B’)) with Ck Co <= oa one has the estimates (3.2) and (3.5) for
O /(1 ) - O.

Thus in particular, the proximal point algorithm in its exact form (i.e. with
k+lz P(zk)) gives convergence to Y. in a finite number of iterations from any

starting point z.
Proof. We demonstrate first that T- is single-valued and constant on a

neighborhood of 0:

(3.11) T-I(w)= if Ilwll< .
Let e > 0 be chosen so that Ilwll < implies w int T(e). Taking any z, w T(z),
and w’ with Ilwll< we have

O<=(z-Y., w-w’)

by the monotonicity of T. Therefore

sup (z , w’) _<-(z , w) whenever w T(z), IIw’ll< ,
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so that
 llz- IIz-  11" Ilwll whenever w T(z).

Thus if z 2 we have Ilwll -> for all w T(z). Stated another way, if Ilwll < and
z T-a(w), then z 2, which is the same assertion as (3.11).

Our hypothesis subsumes that of Theorem 1, and hence we know as in
Theorem 1 that [[c10(z)ll 0. However, Pk(Z k) e T-I(c Ok(z k)) by Proposi-
tion l(a). Therefore (3.11) implies (3.10), and everything else in Theorem 3
follows immediately, the Lipschitz condition in Theorem 2 being fulfilled with

4. Application to minimization. Let f" H (-oo, +oo] be a lower semicon-
tinuous convex function which is not identically +oo. Then, as noted in the
introduction, the multifunction T Of is maximal monotone, where

w6Of(z)Cz>f(z’)>-f(z)+(z’-z,w) forall z’
(4.1)

<=> z arg min (f-(., w)).

Since in particular

0 Of(z): z arg min f,

the proximal point algorithm for T Of is a method for minimizing f. We collect
here some facts relevant to this special case.

Recall that a function b H --> (-00, +oo] is said to be strongly convex (with
modulus a) if a > 0 and

4)((1 -)z + Xz’) -<_(1 X)b(z) + Xb (z’) 1/2a (1 X)llz z’ll2
(4.2)

for all z,z’ if 0<A<I.

THEOREM 4. Let T= Of. Then S 04) in criteria (A’) and (B’), where
is the function defined by (1.9), and 4) is lower semicontinuous and strongly convex
with modulus 1/c. Furthermore, if {z} is any sequence generated by the proximal
point algorithm under the hypothesis of Theorem 1 with criterion (A’), then z --> z
weakly, where f(z) rain f and
(4.3) f(zg+’)-f(z) <-_ c-’[lzg/1- zll( +llz/l- z ll) -, o.

Proof. The strong convexity of b follows directly from formula (1.9). Sub-
differentiating both sides of this formula, we also get

Odpg(z)=Of(z)+c-l(z-zg)--Sg(z) forall z.

(For the relevant rule of subdifferentiation, see Moreau 17] or Rockafellar [22,
Thin. 3].) To establish (4.3), let w

g
denote the unique element of Odpk(z TM)

nearest the origin. (This exists, because Ob(z+’) is a closed convex set which,
since (A’) is supposed to hold, is nonempty.) Then

W
k C-I(z k+l- Z k) e T(z t+1) 0f(z t+1),

where

(4.4) IIw ll<-_ --, o.
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Let z be the weak limit of {z k} (Theorem 1). Then 0e O[(z), and the defining
inequality for subgradients yields

f(z’+a)+(z-z ’+1, w’-c-(z’+a-z’)) <=f(z)=min [,

so that

f(zk+l)-f(z)llz+-z11(llw + ;[Iz/ -z II).
Applying (4.4) and (2.5), we reach the desired conclusion (4.3).

Remark 3. The quantity dist(0, O(z’/a)) occurring in criteria (A’) and (B’)
for T 0[ is generally convenient as a measure of how near z k/l is to being a
minimizer of . Exact minimization corresponds, of course, to
dist (0, 0bk(z+l))=0. Many methods that might be used for minimizing 4
depend on the calculation of gradients or subgradients, and one can use the
estimate

dist (0, Ok(zk+l)) llull for any u OCk(zk+l).
This is not the place to describe all of the possible structures of 04)g

corresponding to minimization problems of different types, but we nevertheless
mention an important case. Suppose f is of the form

fo(z) if zeD,
f(z)

+c if z D,

vhere D is a nonempty closed convex set and f0 is a function which is convex on D
and differentiable on a neighborhood of D. Then minimizing f on H is equivalent
to minimizing fo on D, while minimizing b on H is equivalent to minimizing

(z)- fo(z)/1/2 llz- zll2
on D. Furthermore,

0(z) v(z) +No(z),

where ND(Z) is the normal cone to D at z, and hence dist (0, 0k(z+)) is the
norm of the projection of -Vb(z+1) on the tangent cone to D at z+’ (where
k+lz D).

In particular, if D H, i.e., f itself is differentiable on all of H, we have

dist (0, S(zk+l))=
in (A’) and (B’).

It remains now to show how the various conditions in the hypotheses of
Theorems 2 and 3 are realized in the case of T Of.

Let f* be the lower semicontinuous convex function conjugate to f. Thus
Of*= T- for .T= Of. (For the theory of conjugate functions, see [19], [30].)

PROPOSITION 6. The following conditions are equivalent for T Of:
(a) T is strongly monotone with modulus a,
(b) f is strongly convex with modulus a,
(c) whenever w Of(z), one has for all z’ H:

f(z’)>=f(z)+(z’-z, w>+1/2llz’-zll2,
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Pro@ (b) (a). Suppose w T(z) and w’ T(z’), and let 0< A < 1. Then

f((1- )z +Az’)>=f(z)+([(1-,k)z +z’]-z, w)

f(z) +,(z’- z, w),
and hence by (4.2) for f:

-f(z) + f(z’) 1/2 (1 )llz z’ll --> z’- , w,
or equivalently,

z z ’, w _-> ( )llz z ’11 +f(z) f(z ’).

By symmetry it is also true that

<z’-z, w’)>-1/2(a-)]lz’-zll2+f(z’)-f(z),
and in adding these two inequalities we obtain

(z-z’, w-w’)>-(1-A)llz’-zll2

This holds for arbitrary e (0, 1), so it must also hold for 0, which is the
assertion of (a).

(a) =), (c). As observed in the proof of Proposition 5, the strong monotonicity
implies that T-a is single-valued and satisfies the global Lipschitz condition (3.9).
But T-a =Of*. In particular, therefore, Of* is single-valued and continuous
everywhere, from which it follows that f* is ditterentiable everywhere and Vf*
reduces to the gradient mapping of f* (see Asplund/Rockafellar 1, p. 461]). For
any w and w, we have

IIvf*(w+t(w’-w))-vf*(w)ll<-(t/)llw’-w[I for t>0,

so that

(Vf*(w + t(w’- w)), w’- w)-<_(Vf*(w), w’- w)+(t/a)l[w’- w[I2 for >0.

From this we obtain

f*(w’)-f*(w) Jo (Vf*(w + t(w’- w)), w’- w) dt

1
_-< <vf*(w), w’- w>+llw’- wll2.

Fixing arbitrary z and w with wO[(z), we have z =7/*(w)and f(z)+f*(w)
(z, w). Then for any z’,

f(z’) =f**(z’)= sup {(z’, w’)-f*(w’)}
wH

w’eH

w,.
IIw’-wll2

-(z)/<z’-z, w>/1/2llz’-zll2.
Thus (c) holds.
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(c)(C)(b). Let G {(z, w)lw 6Of(z)}, and for each (z, w) G define the func-
tions gz, and hz, by

gz, w>/1/2 llz’-z[I2,
hz,w(Z’)=f(z)+(z’-z, w).

> hz It is a known fact, however, thatThen ]-> gz, ,w.

f(z’)= sup hz,w(Z’) for all z’
(z,w)G

(Brnsted/Rockafellar [6, Thm. 2]). Hence

f(z’)= sup gz, w(Z’).
(z, w)eG

Each function gz, is strongly convex with modulus a, and therefore f has this
same property. This completes the proof of Proposition 6.

PoPOSIWION 7. Thefollowing conditions are equivalentfor T Ofand 2 H.
(a) T-1 is Lipschitz continuous at O, and 2 is the unique solution to 0 T(z).
(b) 2 is the unique minimizing point for f, and

f(z) -f(2)
lizm_,ienf [Iz__eI, =, >0.

(c) 2 is the unique element of Off(O), and

lim sup [(f*(u)-f*(0)-(5, u))/llu[I2] <.
u-*’0

Proof. (a)::> (c). Since T-= Off, we have

(4.5) I[z-511--<allw[I whenever z Off(w) and I[wll -<e.
This implies the boundedness of the set

(4.6) [_J Off(w),

which contains 5; in other words, Of* is locally bounded at 0, which is a point of the
effective domain

(4.7) D(Of*) {wlOf*(z) ;}.

But Of* is a maximal monotone operator, so this property necessitates .0
int D(Of*) (see Rockafellar [25, Thm. 1]). Since

(4.8) D(Of*) dom f* {w[f*(w) <}
it follows that f* is finite on a neighborhood of 0. This implies in turn that f* is
continuous on a neighborhood of 0 [23, Cor. 7c] and hence that for all u in some
neighborhood of 0, say for Ilull =< 6(0 < 6 < e) we have Of*(u) nonempty weakly
compact and

(4.9)

where

f*’(w; u)=max{(z, u)lzeOf*(w)} forall ueH,

f*’(w; u) lim [f*(w + Au)-f*(w)]/A.
x$o
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(Moreau, [17]). Moreover (4.5) and (4.9) give the estimate

(4.10) f*’(w; u)<=(,

Observe next that if Ilull =< 6 and ’(t) f*(tu), then sr is a finite continuous convex
function on [0, 1], and hence

st(l) st(0)+ Jo sr-(t) dt,

where ’_ is the right derivative of . [26, Cor. 24.2.1]. This formula says that

f*(u)= f*(o)+ Jo f*’(tu; u) dt,

and hence by (4.10),

(4.11) f*(u)<--f*(O)+(2,
Therefore (c) is valid.

(c) (b). Under (c), we have (4.11) for some a > 0 and 6 > 0. Let

(s)

Then (4.11) can be expressed as

(4.12) f*(u)-f*(O)-(Y, u) <- ([[u[[) for all u 6H,

where ([[ul[)is convex in u. Taking conjugates on both sides, we obtain

f( + v) +f*(0) >_- j*([[v[D for all v H,

where

(4.13)
-1 2a r if

sC*(r)=
31rl-1/2a8 2 if

But

(4.14)

since 2 0f*(0). Therefore

(4.15)

and in particular

f(e) +f*(o) (e, o),

Thus (b) holds.

for all zH,

f(z)-f(e) 1/2 a-llz eli2 if IIz- ell a6.

(b) (c). The hypothesis means that for a certain a > 0 and 6 > 0 we have

(4.16) f(z)-f(Y.)>=1/2a-1]lz-ll2 whenever

We shall show first that this implies (4.15). Of course, since (s) ->_1/2 as 2 for all s R
we have (taking conjugates on both sides) that sC*(r)=<1/2 al-r2 for all r R, and
hence the inequality in (4.a5) fonows from the one in (4.a6) if
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Suppose therefore that Ilz ]1 > 2a and let A 2a/llz 11 . The point

5=(1-h)Y+hz 5+h(z-2)

then satisfies 1[5- 2[[ 2a6, so that by (4.16),

f(2) + a-[15 ell f(5) (1 A)f(2) + Af(z).
Thus

and (4.15) is justified. We pass now to the conjugate on each side of (4.15) to
obtain

f*(u)+f(e)(llull)+<u,e> forall uH.

Making use again of (4.14) and the definition of , we can rewrite this as (4.11).
Hence (c) holds.

(c)(a). Again we have (4.11) for some a > 0 and > 0, and this can be
expressed as (4.12). Consider any z and w with wOf(z), or equivalently
z e Of*(w). We have

f*(w)+(z, u- w)<=f*(u) for all

and hence by (4.12),

(4.17) f*(w)+(z, u-w><-_f*(O)/<, u>/ :(llull)
At the same time, the relation 2 e f*(0) implies

f*(w)>-f*(o)+(, w).

Combined with (4.17), this yields

<e, w>/<z, u- w> <-<e, u>+(llull)
or

for all uH.

for all u H

sup {(z
uEn

Therefore

(4.18) sc*(llz-ll)--<llz-ll" Ifwll
where sc* is given by (4.13) as before. But

since
--1 2

5a r +sae_->r for all rR,

Hence (4.18) entails
2llz ell- a6 _-< lie ell" Ilwll.

If Ilwll--< , the latter implies IIz- ell--< a, so that

*(llz ell) 1/2 a-’l[z ell,

whenever w T(z),

for all rR,
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and the inequality in (4.18) becomes
--1a lie  112--< lie- Ilwl[.

Thus (4.18) gives us

IIz- ll 2allwll whenever Ilwll 6/2 and w T(z),

and (a) is verified.
Remark 4. The proof of Proposition 7 shows that the infimum a of the

numbers a => 0 such that the Lipschitz condition in Theorem 2 holds (for T 0f)
satisfies 1/2b -1 <-i -<_ b -1, where

b liminff(z)-f(2) lim sup f*(u)-f*(O)-(2’u)]-1

IIz-  112 Ilull2

(2 being the unique minimizing point for f; 071 zX3 and O-1 0).
PROPOSITION 8. Suppose that H is finite-dimensional and f is polyhedral

convex (i.e. the epigraph off is a polyhedral convex set). Iffattains its minimum at a
unique point 2, then 0int Of(2), so that Theorem 3 is applicable to T=Of.
However, even if f does not attain its minimum at a unique point but merely is
bounded below, the proximal point algorithm with exact minimization of ch at each
step (and with c bounded awayfrom zero) will converge to some minimizer off in a

finite number of iterations.

Proof. The conjugate f* is also polyhedral [26, p. 173]. If 2 is the unique
minimizer of f, it is the sole element of Of*(O). Then f* is differentiable at 0 [26, p.
242], hence actually affine in an open neighborhood W of 0 by polyhedral
convexity, implying 2 Vf*(w) for all w W. Thus w Of(2) for all w W.

More generally, if f is merely a polyhedral convex function which is bounded
below, we still have f*(0) -inf f finite and attained [26, p. 268]. By Theorem 1,
the proximal point algorithm with Ck bounded away from zero generates from any
starting point z a sequence {z k} such that Qk(Z k) O. We must show that in the
case of exact minimization (ek 0 in (A’)) finite convergence is still obtained.

There is no loss of generality in supposing for convenience in the rest of the
proof that min f 0, so that f*(0)= 0. Let

and

M Of*(O) {zlf(z) min f}

0 if z 6 M,
h(z)

+eo if z M.

Then M is a polyhedral convex set, so that h is a polyhedral convex function. The
conjugate h* is then polyhedral too, and we have

h*(w) f*’(0; w) lim [f*(Aw)-f*’(O)]/A
$0

[26, p. 216], since the polyhedral property of f* implies that of f*(0;. ). It is clear
from the latter formula that h* coincides with f* in some open neighborhood of 0.
Moreover c10k(z) lies in this neighborhood for all k sufficiently large, since



896 R. TYRRELL ROCKAFELLAR

Qk(Z k) 0 and ck is bounded away from O. Thus

Oh*(c1Qk(zk)) Of:t:(C-- lk(Zk)) for all large k.

Since Of*= T- for T Of, we can conclude from Proposition 1 (a) that

c- O(z) (Oh*)-l(P(z)) Oh(Pk(z))
for all k sufficiently large. This tells us that ultimately the algorithm acts on {z "}
just as if the multifunction T 0f were replaced by T Oh, or equivalently if f
were replaced by h. But in that event P(z) is just the point ofMnearest to z .

Thus, as soon as we reach the stage where c10k(z) lies in the neighborhood
where f* coincides with h* =f*’(0; .) we have z"+= P(z)M. Since Mcon-
sists of the fixed points of the mappings P, the sequence {z} is constant
thereafter.

Remark 5. In the case of Proposition 8, quadratic programming algorithms
can be employed, at least in principle, to calculate the exact minimum of b at
each iteration. Then the exact form of the proximal point algorithm is reasonable,
and according to Theorem 3 it will yield the unique minimizer of f in a finite
number of iterations. We shall show elsewhere [31] that this result, when applied
to the dual of a linear programming problem, yields a fact proved by Polyak and
Tretyakov [20]" when the "method of multipliers" is used on a linear program-
ming problem with exact minimization of the augmented Lagrangian at each
iteration, one has convergence to an optimal solution in a finite number of
iterations.

5. Application to calculating saddle points. Let L(x, y) be a convex-concave
function on the Hilbert space H He which is closed and proper in the sense of
[24], [28], and let T be the maximal monotone operator corresponding to L, as
defined in the introduction. Then

(0, 0) T(x, y)<==>(x, y) arg minimax L.

The proximal point algorithm for T T is thus capable of computing saddle
points of L, and some of the results in the preceding section have analogues for this
case.

Let us say that a function A:H x He- [-oo, +oo] is strongly convex-
concave (with modulus) if A(x, y) is strongly convex in x and strongly concave in
y, both with modulus a.

THEOREM 5. Let T= Tc. Then one has Sg TAk in criteria (A’) and (B’),
where A is the function defined by (1.11), and Ak is closed, proper and strongly
convex-concave with modulus lick. Furthermore, if {z k (x , yk)} is any sequence
generated by the proximal point algorithm under the hypothesis of Theorem 1 with
criterion (A’), then (x , yg) - (x, yOO) weakly, where (x, yOO) is a saddle point of
L and

(5.1) lim L(x, yk)= L(xOO, y)= minimax L.

Proof. This is mostly an easy extension of the argument for T Of in Theorem
4, but the justification of (5.1) is trickier and deserves some attention. Since
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(x y is a saddle point, we have

(5.2) L(x+, x) =>L(x, yOO)__>L(xOO yk+l) for all k.

Let wk=(v k, u) denote the element of Sg(x , y) nearest the origin. Thus
(v , u k) (0, 0) strongly and

(5.3) (Vk_C-(X,+_Xk), uk_c-1(yg+l_yg)) TL(Xk+I yk+l)
The latter relation gives us

L(xOO +1)_ +1 +1 -x v -c-1(x -x)),y >L(x Y )..[_(xOO k+l k k+l

L(xk+l, Y oo)_.< L(xk+l, Y k+X)__ (yOO_ Y
k+l

U
k cX(yk+l yk)).

Combining these inequalities with (5.2), we obtain

_(yo_ y k+l, uk_ckl(yk+I_yk))>L(x,__ y)-L(x k+l,
(X--Xk+l, 1Ak--C--1(Xk+I--xk)),

where the outer expressions converge to 0 by virtue of the limits already
mentioned and assertion (2.5) of Theorem 1.

The analogue of Proposition 6 is valid for T To, but the other results in 4
do not have obvious extensions to the minimax context. For Proposition 7, this is
seen from the example of L(x, y) xy on R x R, which has Tc (x, y) (y, -x) and
therefore 1 globally Lipschitz continuous with modulus 1.
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EXISTENCE OF AN OPTIMAL CONTROL FOR SYSTEMS
WITH JUMP MARKOV DISTURBANCES*

ROBERT M. GOOR"

Abstract. We consider the question of existence of an optimal control for stochastic problems with

dynamics represented by a system of ordinary differential equations perturbed by a countable state,
jump Markov disturbance r(. ), and with performance criterion in the stochastic Mayer form. We
consider a class of controls which are functions of the time and the history rt of r. Under the expected
conditions of continuity, closure and convexity, we prove the existence of an optimal control which is
nonanticipative in the above sense. We proceed via the "direct method" of proof, utilizing the
topology of "convergence in distribution" and applying the McShane-Warfield implicit function
theorem to select a nonanticipative control.

Introduction. We consider the optimal control of stochastic systems in the
form

(A) ic(t)= f(t, r(t), x(t), u(t)),

where r(t) is a countable state Markov process with stationary transition prob-
abilities, and the control u(t) is to be chosen from a suitable class R of nonan-
ticipative functions. The performance criterion to be minimized is the conditional
expectation J[x, u] E{b(-, x)lx(to)= Xo, r(to)= r0}, where - is the smaller of ,
the first time x(t) reaches a target set M, and T, a fixed terminal time, and 4 is a
continuous functional on the trajectories. Control systems of this form have been
studied in 10], 11 ], 13], 15] and [ 16]. In this paper, our purpose is to prove the
existence of an optimal control of a certain form. To this end, it proves convenient
to construct an underlying probability space fZ for the process r(t). We then
consider nonanticipative controls defined on [to, T] x, i.e., controls which are
functions of the time and the past rt of the disturbance r(. ). Our main results say
that an optimal control in this class exists under the assumptions that: the
dynamics in (A) are uniformly bounded, the appropriate constraint sets are closed
and the associated orientor field is convex.

The technique of proof of our existence theorems involves the so-called
"direct method" of construction of the optimal control. That is, we show that a
minimizing sequence has a subsequence which converges in some sense. In this
case, the topology of "convergence in distribution" is appropriate, and the
functional J(. is shown to be lower semicontinuous with respect to this topology.
A major and somewhat surprising development is the application of the
McShane-Warfield implicit function theorem to select a nonanticipative control.

We spend the first part of the paper defining our terms and deriving
fundamental properties, and the remainder is devoted to the proofs of our main
results, Theorems 2.1 and 2.2. Theorem 2.1 states the existence of expected
time-optimal control (4(t, x) t). Theorem 2.2 shows the existence of an optimal
control in case 4(t, x)= q(x), where q is a continuous functional on the space of

* Received by the editors February 13, 1975, and in revised form July 28, 1975.

" Department of Mathematics, University of Delaware, Newark, Delaware 19711.
899
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continuous R n-valued functions defined on the interval [to, T]. We conclude by
showing that our results apply, in particular, to the situation in whichf is linear in x
and u.

1. Preliminaries. We assume that the Markov process r(t), defined on a fixed
interval [to, T], has states in Z/ {0, 1, 2,. .} and transition probabilities Pij(t)
Pr{r(t + s) jlr(s) i} which satisfy the "standard" conditions. That is, the Pij(t)
iare assumed continuous for > 0 and:

(a) Pi(.t) -> 0, > 0;

(b) i Pii(t) 1, > 0;

(c) Ek Pk(t)Pi(h) Pi(t + h), t, h > 0;

I if i=j,
(d) lim/_.o+ Pi(t)= 0 if iS .

It is well known, then, that the derivatives Plj(t) exist for t0. We define, PI(0), j and A P’ii(0) to be the infinitesimal parameters of the process,
so that A, A => 0. We assume further that the process r(t) is conservative and that
each state is stable. Thus 0<-A < + for each i, andY )t A. It is well known
that, with probability 1, r(t) undergoes only finitely many transitions in any finite
time interval [to, T]. Furthermore, the waiting time in state is exponentially
distributed with parameter Ai, and stability implies there are no "instantaneous"
states. The expression Ai/A (Ai : 0) gives the probability of a transition from state
to state j, given that a transition occurs (see [7], [8]). We will assume that r(to) ro

is fixed throughout this paper.
For N=0, 1,. , we define the set AN[to, TIN (Z/)/1 as follows:

Ao={ro};

AN {tl," tN, r0, rl," , rN)lto < tl < < tN <= T, ri Z+, 1,. , N, r+l
ri}

for N -> 1. We set

We may further define a metric p on 12 as follows" write
(t t,’’" ,, ro, rl," ", ru), 1, 2. Without loss of generality, assume N1
N2 and define

=1

It is clear that, with respect to the metric p, the space is separable. It is also easy
to see that is locally compact and, hence open in its completion. By ([9, p. 207]),
it follows that there is a metric p’, equivalent to p, such that is complete relative
to p’.

Furthermore, each point o (tl,"’, tN, ro,’", rN) of O corresponds to a
sample path r(t), to =< =< T; specifically, r(t) ri for t -< < t/l, 0, , N- 1,
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and r(t) rrq for tN <---- <- T. With probability one, each sample path is represented
as a unique point in f (allowing no "instantaneous" states) and thus, a probability
measure Ix is induced on f. From our previous remarks on the distributions of
waiting times and the conditional transition probabilities, it is clear that Ix is
defined on the Borel sets of f (with respect to p). Thus (fL , Ix) is an explicit
construction of the underlying probability space governing the process r(. ). We
will regard r as a function from [to, T] -Z+, defined so that

f r,
r(t, ta, tN, ro, rN)=

ti<=t<ti+l, 0_<--i_--<N- 1,

tN<--_t<-- T.

Because we will investigate a class of functions which are intended to be
nonanticipative, in some sense, we define an operator Pt on 12 which "projects"
any to in f onto that portion which is observable in the interval [to, t]. We let

Ptto Pt(ta, tN, ro, rN)=

(r0) if < tl,

to if t>-_t,

(tl,""" ,ti, ro, ri) if tj _--< < tj+l for
any j, I<=j<--_N-1.

We show that Ptto is jointly measurable on [to, T] 12. We will construct a
sequence of simple functions {p(N)} SO that P(tN)to converges pointwise to Ptto. For
N--> 1, define

t:to+i(T-to)/N,

0, 1, , N. Let lie in [to, T] and let to (tl," , tk, ro," , rk) be an element
of 12. Suppose that ti <_- < ti+l. We will generate a sequence of elements from the

Nset {ti=o which approximates (tl," ", ti) in a suitable sense and, barring
repetitions in the generated sequence, we will use it to define P(tN)to. In case of
repetitions, we arbitrarily define PU)to (ro), so that, for all t, to and N, PU)to .
Define l(i), 0, 1, fi to be the unique integer in [0, N] such that tm)=N< t <
N

tt(i)+l. We define

PIN)to = N r)I’(t/(1), tl(j), ro, rl

if l(m) l(n) for some m n, m, n <_--L

otherwise.

The functions p(N). it0, T] f- are clearly measurable, and it is an exercise to
show that lim_. prOto P0 for all (t, to) in [to, T]x.

We now utilize the functions {P}, [to, T], to define nonanticipativity. We
will give two definitions, which we will show to be equivalent.

(i) We will say that a function F on [to, T] is nonanticipative if there
exists a subset of f, Ix(f/h)= 1, such that for all in [to, T] and to in ’1,

F(t, to)= F(t, Ptto).
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(ii) The function F is nonanticipative if there exists a subset 2 of ",
/z(l)2) 1, such that, if Wl, 02 e 112 and PtWl Pt02, then

f(s, o)= F(s, ,o)

for to<=S<--t.
Let us assume (i). Define f2 1]1 and let COl, o: be elements of 1]: such that

POl P,o:. If to -< s =< t, then PsOl Psw: so that, for to =< s =< t,

F(S, .01)-- F(S, PsO)l) F($, Pso)2)-- F($, (.02)

and (ii) holds.
Now assume that (ii) holds, and let o be an element of ’-2. We would like to

argue that P,(o) P,(P,oo) for all t, so that F(s, o) F(s, P,w) for to -< s =< t, or in
particular, that F(t, o)= F(t, P,oo). However, to make the above inference, we
would need to know that P,w ’2 for all o) 6 ’2 and [to, T], and this need not
hold. Therefore we will construct 1 - -2 such that/A,(’-I) 1 and Pt(l) -2 for
all in [to, T].

We will need the following preliminary construction. Suppose B is a Borel
i== {00 . Blr(t, o3) i} and letsubset of . For te[to, T] and i Z+, define B

S {o l)]r(s, w) for < s _-< t}. Using the Markov property ([7, p. 346, Thm.
1]) and the property of conditional independence ([7, p. 137, Thm. 2]), it can be
shown that

l,z(SiO P71(pt(B3)) /z(P-1 (Pt(B’t))) exp [-/i(T-- t)].

But, SIf’IP-[(Pt(B3) Pt(B3 by the definition of the operator Pt.
Hence substituting and rearranging, we get

t(P-/(P,(B3)) (P,(B3) exp [&(T- t)].

Since B U =o Bt, and the union is disjoint,

(P-[I(Pt(B))) ., Ix(Pt(B3) exp [A(T- t)].
i=0

Suppose in addition that B c_ Pt(l’). Then Pt(B) B implies that

Ix(P71(B)) Z Ix(B) exp [&(T-t)].
i=0

In this case then, Ix(P71(B))= 0 if and only if Ix(B)= 0.
In particular, Pt()\lI2

_
Pt(l)) and/x(Pt(l))\2) 0. Therefore

z(P71[Pt(a)\n:]) 0

for each tin [to, T].
Let A={sk} be a countable dense subset of [to, T] containing T, and let

( U kPs-){Ps, (a)\a2]. Then/x(O) 0 and/_l, (’2\fi) 1. Define -1 ’2\ft. Let 0
be an element of fZl and let lie in[to, T]. We will show that P,w e f2. Given o) and
t, there is an element s of A such that s -> and such that Ps,,Oo P,w. If Ps,,OO is an
element of f\2, then Ps,,Oo
and we have shown that
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We may now follow our earlier argument on the new set 1" if to 1, then
and Po are elements of f2. Since P,(to)= P,(Ptto),

V(s, ,o)= F(s,

for to --<-- s <-- t. In particular, F(t, to) F(t, Po) for all in [ to, T], and (i) holds.
Thus (i) and (ii) are equivalent, and we will say that F is nonanticipative if

either condition applies. It is clear that if F is nonanticipative, then there is a
subset1 of f,/z(fl) 1, such that both (i) and (ii) hold on f. In this case, we will
say that F is nonanticipative on .

We wish to relate our definition of nonanticipativity to measurability with
respect to a given (increasing) family of or-fields. For a given in [to, T], let -t be
the set {o Olw (t, ., IN, ro, ", rN), tN t}. As a subset of f, the set f, has a
o--field ct of Borel sets induced by restriction:

for each t, to <- <- T. Clearly Pt(B) cgt for all B . We define the family of
it-fields {t}tt,o,T] of f by setting t={p-I(B)IBCg,}. It is clear that tl.<=t2
implies t, - t2. Furthermore, , {4, f} and gT . Let , be the comple-
tion of t.

For any real numbers a, b, a<b, we denote by Cn[a, b] the space of
continuous Rn-valued functions defined on [a, b], with metric t5 defined as
follows" t3(x, y) supa__<,=<b Ix(t)-- y(t)[ IIx Y[lsup. Here, [hi denotes the Eucli-
dian norm of an element h of R". If F" [ to, T] --> R" for some n, and e to, T],
we denote by Ft the restriction of F to the interval It0, t], i.e., F, [to, t] f--> R . If
F(., to) is continuous on [to, T], with probability 1 (w.p. 1), we may regard F as a
mapping from f into C"[to, T], and Ft as a mapping from into Cn[to, t]. We will
require the following result.

LEMMA 1.1. Suppose that F [to, T] R for some n and that F(t, to) is
jointly measurable and continuous in w.p. 1. Then F is nonanticipative if and only
if the map F, - C"[to, t] is measurable with respect to the o-field for each in
[to, T].

Proof. We assume that F is nonanticipative. Let x be an arbitrary element of
C[to, t], let e >0 be arbitrary and write B(x)={y C[to, t]lfi(x, y)=<e}. To
show that Ft is a ,-measurable map, it is sufficient to prove that F-(B(x)) 3.

For to<=S<=t, let B={wllF(s,w)-x(s)l<=e}, so thatB for each s
to, t], since F is jointly measurable. Let t, t2, , be a countable dense subset of

[to, t] and let B fq = B,. Clearly, o B if and only if Ft(o) B(x), or, in other
words, B F-I(B(x)). By construction, B , so that Ft is -measurable. In
addition, under the assumption of nonanticipativity, P,o Pto2 implies (w.p. 1)
o B if and only if o2 B for each s in to, t]. Thus Pto Pto2 implies o B if
and only if o2 B. It follows that P-(P,(B)) B and we conclude that B .
Thus Ft is 3t-measurable.

We now assume that Ft is 3t-measurable for each in to, T. Then for given
in [to, T], there is a sequence of simple functions {y }, y - C"[to, t], such that
lim_ yk(og)= Ft(w) for almost all w and each y is 3t-measurable. In other
words,

lim sup lYk(S, to)-F(s, to)l 0
k
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w.p. 1. Now, Yk is a simple function implies there are disjoint subsets
1k, f2k, fks of such that" f/k 6 Nt for each i, k;

u
i=1

Cand Yk(to) Yk for some element Yk of [to, t], and for all to i.

We may write f=P-l(Ak), where ACCt, so that U Nk A/k=f andi=1

AkvI A={} for ij. Therefore if to1, to2 and Ptol Pto2, then PCtolAk,
for some i, if and only if P02 A k. In this case, to1, to2 /k. Thus Pttol Ptto2
implies Yk(tol)= Yk(to2)= Y- In other words, Ptto Ptto2 implies yk(S, tol)=
yk(S, to2) for to <--_s <-- t. Let X be the subset of on which limk_, yk(to)=Ft(to);
then/z(X) 1. Then, tol, to2 X and Pto Ptto2 together imply that F(s, tol)
F(s, to2) for to <-- s _-< t.

Let {Sk} be a countable dense subset of [to, T] (including to and T), and let

= fl k=-Xs, so that/x(fi) 1. Let (to, T] and let tol, to2 be elements of fi such
that Pttol Ptto2. Then there is an e > O so that Pt/etol Pt/eto2. Thus there is an
Sk >- SO that Ps,tol Psk.to2 We conclude that F(s, to1) F(s, to2) for to --<- s _--< t, and
F is nonanticipative.

We are now in a position to define the optimal control problem that is the
central object of investigation of this paper. We assume as given: a subset A of
R for some n and a fixed x0 A; a subset U of R" for some m; a continuous
function f to, T] x Z+ x A x U-R and a functional 4) [ to, T] x C[to, T] R.

We define V to be the class of nonanticipative measurable functions
u to, T] x f R such that u (t, to) U for all (t, to). If a function x (t, to), with
values in R, is measurable on [to, T] x f and absolutely continuous in for almost
all to, we will denote by 2(t, to) the time derivative of x(t, to), for fixed to. (In view of
our construction of f, we will normally express explicit to-dependence, and we
will omit the argument to only when we wish to emphasize the t-dependence of a
particular process.) We will say that a pair of functions [x, u], defined and
measurable on [to, T] x f, is admissible if:

(1)

(2)

(3)

(4)

(5)

uV;

x(t, to) is absolutely continuous in w.p. 1;

x (t, to) e A for all w.p. 1;

x (to, to) Xo for all to;

2(t, to)=f(t, r(t, to), x(t, to), u(t, to)) for a.a. t, w.p. 1.

We will let 0//be the subclass of V consisting of u such that [x, u] is admissible
for some x. We will assume throughout that is nonempty.

We assume that a closed "target" set M in R is given. For Ix, u] admissible,
we define F(to)={tlto<-t<-T, x(t, to)M}U{T} and we define -(to)=
min {t F(to)}. We define a cost functional J[x, u], then, as the following condi-
tional expectation:

J[x, u] E{th(’, x)lx(to)= Xo, r(to)= r0}.
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We wish to minimize J(- over the class of admissible pairs of functions.
We summarize our main results, for both the minimum expected time

problem and for the fixed terminal time problem. Assume that" A and M are
closed; U is compact; f is uniformly bounded; 4(t, x)= t; and the set-valued
function f(t, r, x, U) is closed and convex for each (t, r, x). Then there is an optimal
control for J(. ). If the functional J(. is defined in terms of 4(t, x)= q(x) for
some continuous functional on C"[to, T] (and M is empty), then as above, an
optimal control exists.

It is important that the response x to a nonanticipative control u in R be
nonanticipative, as well. In addition to our intuitive feeling that this be so,
essential use will be made of this relation between control and response in the
proof of our existence theorems. The following lemma gives general conditions
guaranteeing a positive result.

LEMMA 1.2. Assume thatfor any measurablefunction u u t) to <<- <-_ T, with
values in U, for any iZ+, ta[to, T] and x A, the differential equation
(t) f(t, i, y(t), u(t)), y(tl)= x, has a unique solution in some open neighborhood
of h. Then for any admissible pair [x, u], the trajectory x is a nonanticipative
function.

Proof. Let [x, u] be an admissible pair and suppose that u is nonanticipative
on Oa, u(fl) 1. For any to fx, define 1(to) {tltol 121 and Ptto Ptoa together
imply x(s, to)= x(s, to) for to<-S<-t}, and let c(to)=sup{tl[to, t]_I(to)}. Since
toni(to) for all to, a(to) is well-defined. Suppose Po,)to=P,o)tol for some
toa f. Then Pto POl for all < a (to), which implies x(s, to) x(s, toa) for all s
and such that to -< s _-< < c(to). By the continuity of the sample paths, it follows
that x(a(to), to) x(a(to), to). Thus a(to) I(to). Suppose, if possible, that a(to) <
T. Then for each k 1, 2,. ., there exists to lx and tk min (T, a(to) + (l/k)),
such that P,to P,tok but x(s, to) x(s, to) for some s (a(to), t]. We note that
for fixed to, u(t, to) is a measurable function of taking values in U.

Let i= r(a(to), to). Then there is a point > a(to) such that r(s, to)= for
a(to) _<-s < t. We may choose close enough to a(to) so that

(6) )(t) f(t, i, y(t), u(t, to)), y(a(to)) x(a(to), 02)

has the unique solution yl(t) on [a(w), t-). Then yx(t)= x(t, to) for t[(to), -).
Choose k so that t -_< , and let y2(t) be the unique solution to

(7) ))(t) =f(t, i, y(t), u(t, tog)), y((o)) x((,o), o)

for in an open neighborhood of a(to). Then y2(t) x(t, (.Ok) by uniqueness, since
it follows by the definition of tok that x(c(to), to)= x(c(to),tok). But since u is
nonanticipative, u(t, tok)= u(t, to) for to_--< t_--< tk, and, therefore, equations (6) and
(7) are identical. Since a solution to (6) is defined on [a(to), t), and (7) is the same
as (6) on [c(to), tk]_[(to), t), both (6) and (7) must have the same solution on
[c(to), tk]. That is, x(t, to) x(t, tok) for (to) <= <= tk, which contradicts the defini-
tion of tok. It follows that c(to)= T for each to, or, I(to)=[to, T] for all to

From the definition of I(to), we conclude that if to1, to2 fl and Poa Ptto2, then
x(s, too x(s, to2) for to -< s =< t, i.e., x is nonanticipative.

COROLLARY 1.3. Under the hypotheses of Lemma 1.2, Ix, u] an admissible
pair implies (t, to) is nonanticipative and jointly measurable.
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Proof. This is clearly a consequence of Lemma 1.2 and the relation (t, to)
f(t, r(t, 0)), x(t, to), u(t, 0))) for almost all w.p. 1.

We will assume throughout this paper that the conditions of Lemma 1.2 are
met.

It is useful to know that the nonanticipativity of follows from that of x, even
without the differential equation.

LEMMA 1.4. If X(t, 0)) is a nonanticipative function which is absolutely
continuous in ]’or each to 12, then t, to) is nonanticipative.

Proof. Suppose x is nonanticipative on 121,/x(fh) 1. We note that if o91,

0)2efh, e[to, T) and Po P0)2, then there is a point e(t, T) such that
P0)1 P0)2. In this case, for IAt] < t-t,

[X(S q" At, 0)1)- X(S, 0)l)]/At [X(S q- At, 0)2)- X(S, 0)2)I/At

for t0-<-s =< t. Thus for given s in [to, t], the expression on the left has a limit as
At-0 if and only if the expression on the right has a limit. It follows that
(s, 0)1) =:(s, 0)2) for to<=S<=t (where (s, 0)) may be defined to be 0 if the
derivative does not exist in the usual sense).

We now return to the specifications of our control problem. As in proofs of
deterministic existence theorems, we will make use of the orientor field formula-
tion of the dynamics in (5). Let O(t, r, x)= f(t, r, x, U) for all (t,r,x) in
[to, T]Z+A. Then [x,u] is an admissible pair implies
O(t, r(t, 0)), x(t, 0))) for a.a. w.p. 1. We would like to be able to solve the inverse
problem" namely, if (t, 0)), x(t, 0)) are nonanticipative and measurable, and
Yc(t, 0)) O(t, r(t, 0)),x(t, 0))) for a.a. w.p. 1, then there is a nonanticipative
measurable control u(t, 0)) so that it(t, 0))= f(t, r(t, 0)), x(t, 0)), u(t, 0))). To this
end, we include a short discussion of the McShane-Warfield implicit function
theorem. (See [5] and [12].)

The McShane-Warfield theorem centers on one key result: let F be a
continuous mapping from a metric space X (which is a countable union of compact
subspaces) into a metric space Y, with range F(X). Then, there is a

F

F(X) = yX...
Borel measurable mapping *" F(X)-X so that F(*(y))=y for all y e F(X).
This is the heart of the implicit function theorem. It follows easily from this result
that if I is a measurable space, and 3,’1- Y is a measurable map such that
/(I) F(X), then

F

there exists a measurable mapping q 1X so that F(tO(t)) 3,(t) for almost all
in L (In fact, define q(t) q*(3,(t)).) The usual application to deterministic control
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theory designates the sets X, Y, I and maps F, 3’ as follows:

X- {(t, x, u)lt [to, Z], x A, u U};

Y={(t,x,A)lt[to, T],xA, A6R"};

/=[to, T];

F(t, x, u)= (t, x, f(t, x, u)).

Finally, given a trajectory x(t) satisfying 2 (t) f(t, x (t), U), 3’ is defined by
y(t) (t, x(t), 2(t)). If f is continuous, so is F, and if x(t) is absolutely continuous,
all the hypotheses of the implicit function theorem are satisfied. Thus there is a
measurable function q(t)= (t, x(t), u(t)) so that F(O(t))= y(t). Comparing com-
ponents, we conclude that 2(t)= ](t, x(t), u(t)).

We propose to use the same theorem for our stochastic problem by redefining
X, Y,/, F and 3’ (let us assume hereafter that A, U are closed):

X= {(t, r, x, u)lt [to, T], r e Z+, x 6 A, u U};

Y={(t,r,x, 2)lt[to, T],r6Z+,xA, 26R"};

F(t, r, x, u) (t, r, x, f(t, r, x, u)).

Suppose x is a jointly measurable process on [t0, T] , nonanticipative on a
set fl, with/z(11) 1, and having x(., to) absolutely continuous for each to, and
suppose that (.,. is jointly measurable. By Lemma 1.4, is nonanticipative.
Suppose k(t, to) Q(t, r(t, to), x(t, to)) for (t, to)[t0, T]Ol. Define I=
{(t, Ptw)]t [to, T], to fl} and define T: I--> Y by setting "y(t, to)
(t, r(t, to), x(t, to), (t, to)). It follows that: X is a o--compact metric space; F X-->

is continuous; I is a measurable space and 3’ is a measurable map so that
3,(1) F(X). We conclude that there is a measurable function q, I--> X such that
F q, y. Again, comparing components, we have shown the existence of a
measurable function v(t, to) defined on/, taking values in U, such that (t, to)=
f(t, r(t, to), x(t, to), v(t, to)) for (t, to) L The function v may be extended to all of
[to, T] 121 by defining u(t, to) v(t, Ptto) for all (t, to) [to, T] 1. It is clear that
the function u is nonanticipative and that

2(t, to)=f(t, r(t, to), x(t, to), u(t, to))

on [to, T] 1. We summarize our findings in the following lemma.
LEMMA 1.5. Let x(t, to) be a jointly measurable, nonanticipative function

which is absolutely continuous in w.p.1. Suppose that 2(t, to) is jointly measurable
and that 2(t, to)6 0(t, r(t, to), x(t, to)) ]’or almost all w.p. 1. Then there is a
measurable, nonanticipative function u(t, to), taking values in U, such that

2(t, to)=f(t, r(t, to), x(t, to), u(t, to))

for almost all w.p. 1.
We require a result concerning the existence of a measurable mapping from a

given probability space into a given metric space, which gives rise to a given
distribution. In particular, suppose that X is a complete, separable metric space
with metric p’ and that 7r is a probability measure defined on the Borel sets of X.
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Let Ybe a complete, separable metric space and let be a probability measure on
the Borel sets of Y.

LEMMA 1.6. If zr is nonatomic, there is a measurable function h X Ysuch
that rh-1.

Proof. It is well known (see [2, p. 29] or [14, p. 10]) that there is a measurable
map a [0, 114 Ysuch that la -1 , where is Lebesgue measure on the interval
[0, 1]. We will construct a measurable map/3 X [0, 1] so that r/3 -1. In this
case, the function h ao/3 gives the desired conclusion: -/rh -1.

Our construction of the map/3 parallels those in ([2, p. 29]) and ([14, p. 10]).
For each k 1, 2,. , let 4k {Al,v}v=l be a decomposition of X into disjoint
zr-continuity sets of diameter lesss than 1 / k, and let3 {I,v}v be a decomposi-
tion of [0, 1] into disjoint subintervals with lengths l(Ig,v)= 7r(A,v). We further
arrange that k/ refines g, 3k/ refines 3k and A/x,o

_
A,, implies I/1, -We wish to show that/(Ig.o) 0 as k , uniformly in v. Let e > 0 be given.

By ([2, p. 10, Thm. 1.4]), there is a compact subset K of X such that 7r(K)>
1- e/2. Suppose that for each k 1, 2,. ., there is a vk such that r(A,vk)-->--e.
Then Ag,ok f’)K is nonempty and r(Ag,o f’)K)_-> e/2. Let x be an element of
A,v fq K. Since K is compact, the sequence {xk}g has a limit point x0 K. Take
6 > 0 and write N(xo) {x X[p’(x, x0) < 3}. Then x lies in N(xo) for infinitely
many values of k and, in particular, for some k satisfying 1 /k < 6. For such a value
of k, then, Ag,

_
N(xo) (since diam A,o < ilk). Therefore

7r(N(xo)) >- 7r(Ak,vk) >= e.

Since this relation holds for all > 0, it follows that 7r[{xo}] _-> e, which contradicts
the assumption that 7r is nonatomic.

Therefore given e >0, there exists a number N so that k _->N implies
zr(Ak,) < e for all v, and hence l(Ik,o)< e for all v.

We define/3k X[0, 1] as follows. For all x in Ag, take k(X) to be the
mid-point of Ik,. Clearly, each function/3k is Borel measurable. It is now easy to
see that, for each x in X, {/3k (X)}= is a Cauchy sequence, for if x X, then there is
ff nested family {Ak,v}k-_l such that x Ak,o. In this case, (X)Ik,o, where
{I,v}k=l is a nested family of intervals with diameters converging to 0. Write
/3(x) limk_ k(X). Then/3 is Borel measurable, and it is an exercise to show
that r/31 converges weakly both to r/3 -1 and to I. Hence 7r/3-= l, and, by our
previous remarks, Lemma 1.6 is proved.

In the next section, we will use the related concepts of weak convergence of a
sequence of probability measures and convergence in distribution of a sequence of
random elements. We refer to [2], and to pages 1-40 in particular, for definitions
and theorems related to these concepts. If X is a probability space with measure
and yg is a sequence of measurable maps from X into a metric space Y, it may
happen that Yk converges in distribution to some random element y mapping X
into Y. That is, if k =/xy and tzy-, then k converges weakly to .
However, there are many random elements having the law . In particular, if
h" XX is a measurable, measure-preserving transformation, then y(x)=
y(h(x)) satisfies =/xy-1 as well. Hence while there are certain properties of a
sequence of random elements which are preserved by convergence in distribution,
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these properties are invariant under measure-preserving transformations. For
example, in general, measurability with respect to a given sub-r-field of the Borel
sets, or nonanticipativity, is not preserved by convergence in distribution. The
following lemma establishes a result concerning convergence in distribution which
is strong enough for our purposes.

Let X be a complete, separable metric space, as above, with metric O’ and let
Y be a separable Banach space with norm II" II- Let/x be a nonatomic probability
measure on the Borel sets Y3 of X. Let ix denote the identityof X onto itself.

LMMA 1.7. Let y X Y, k 1, 2,. , be a sequence of measurable maps
such that $xlly (x)lld (x)</oo ]’or each k and such that the sequence of
probability measures Ix(ix, y)-l, defined on the Borel subsets of Xx Y,
converges weakly to some probability measure . Then there exists a measurable
map y X--> Y such that pc(ix, y)-a, i.e., (ix, y) converges in distribution to

(ix, y).
Proof. Write pa(E)= (E x Y) and p2(F)=(XF), where E and F are

Borel subsets of X and Y, respectively. Then p(E) Ix(E) for all E , by ([2, p.
20, Thm. 3.1]), since (E x Y)= ix(E) for all k. We now parallel ([15, p. 10]) in
constructing and utilizing a subdivision of Y into p2-continuity sets.

We will use multi-index notation. Let = (i,..., i) denote a k-tuple of
positive integers. If (ia,. ., i) and (j,. j), we wall" write" t’ <1" if
there exists an r -< k such that i,, , for m 1, 2, ., r- 1 and i <. Denote the
set of all k-tuples of positive integers by A. For each k, we let {A},x be a
subdivision of X into ix-continuity sets such that {A(i,i)}i___ is a partition ofA for
each , and the diameter ofA is bounded by (1/2). Let {Bi}iA be a subdivision
of Y into disjoint pz-continuity sets having properties analogous to those of the
{A}. (See [15, p. 10] for construction details.) Then the sets S,i A Bi,, A, form a partition ofX Yinto disjoint -continuity sets with diameters
less than (1/2)-.

For each k, there is a sequence y" X such that y y in probability as
m oo, and y is constant on each set A-.. Indeed, by the assumed tx-integrability
of Ily(" )ll, we may define

(1//x (A, )) / y,() dtx(2)y’(x)
aAi’rt

for all x A-., tx (A-.) 0, the integral defined in the sense of Bochner (see [18, p.
132]). Let e >0 be given and consider k fixed. We observe that y(. is Bochner
/x-integrable and it is an easy consequence that there is a uniformly continuous
map g X Ysuch that Ix [ly. (x)- g(x)ll d (x) < . Choose Nso large that if x

x2 satisfy p’(xa, x2)<(1/2), then II(g (Xl)-g (x2)ll< . For m>-N, then,
g(x2)]l < e for x, x2 Ai and for any e A’. Hence for m _->N and for x

[ly(x)-y(x)l[-<- (n, [[y(x)-y()l[ d/z()

lly(x)- g(x)ll+
tz(Ai,.)

IIg(x)- g()ll d()
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the last inequality following from the triangle inequality. The middle term is
bounded by e, by the uniform continuity of gk. Integrating both sides of the above
inequality over X, and replacing the middle term on the right by e, we get

Hence ynyk in L l(/x) as m. It follows that, for all e>0,
lim {xlllyT(x)-y(x)llee}=o, i.e., y Yk in probability as m.

denote a subsequence such that [[y(. )-Yk(" )[I 0 in proba-Let {Yk Xk=l
bility as k . It follows that (ix, y) converges in distribution to as k (see
[2, p. 25, Thm. 4.1]). In other words, if g (ix, y,)-l, then k converges
weakly to . Let yk(x) "y (x).

We now follow Skorokhod’s method ([15, p. 10]) to construct mappings from
the interval [0, 1] into Xx Ywhich give rise to the laws g,. For m, j A let
(, fi) be points of Xx Y such that m Ai for each and fire e Bi for each
jm. AS in the previous lemma, we denote Lebesgue measure on [0, 1] by I. Let

j{,1i, Am} be a collection of disjoint subintervals of [0, 1] of length

y(Ai,i) {xl(x, (x)) 6 Ai x Bim},
andsuchthat ,i, liestotheleftofA7,iTifeitheri=2 andll <12,or, i<2.
For each k and m, then, the collection of intervals {A,it j Am} subdivides
[0, 1]. Define the maps zg "[0, 1]Xx Ybysettingz(s)=(i, fi)ifs6 ,i

k 0, 1, 2,. .. These are defined in analogy to the construction of Skorokhod.
Hence it is shown in [15, p. 10] that for each ed k= 0, 1, 2,. , z converges
pointwise as m to a function z,(. ), and in turn, limg Zk(S)= Zo(S), (1) a.e.

1 --1Furthermore, k lz k 1, 2, ", and Izo We write z (hk,m a),
and Zk (hk, ak), k 0, 1, 2," ", where hk, h" [0, 1] X and ak, a" [0, 1]
Y.

Now for fixed k > 0, by our specification, if m ink, yk is constant on each
A, so that

g {(n) if yg- niBi,(Ai,i)
0 otherwise.

We write i= Ui i,i. Since /(A,i) 0 for exactly one value of j we
observe that if m N max (mk,, mk), then the intervals2 and 22 differ by at most
a set of /-measure zero. Furthermore, hg(s)=hk(S)= a.e. (l), for s6. It follows that hg h a.e. (1). Let h h(s) denote the common limit:
h hk, k 0, 1, 2,. .. Then Zk (h, ak), k 0, 1, 2," ", where lim ak(S)=
o(S) a.e. (1).

We now show that a0 is measurable with respect to h-l(N), the -field on
[0, 1] generated by h. Let A denote the completed -field generated by the sets
Ak
,i for m ink, k 1, 2,’". Then in fact, A is generated by the sets ,
mm, k 1, 2,.... We claim that A= h-(N). We observe that = lz
implies lh-. Therefore if E is a subset of X such that (E)=0, then
l(h-l(E))=O. Let k>0 be fixed and let EeN. Then for mmk, (h)-l(E)
{slh(s) E} U Ai,i, the union taken over the countable set {i i E}. Thus
h is A-measurable for each m m, and it follows that h, the pointwise limit, is
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also A-measurable. On the other hand, we observe that h (t) limpv h(t) for any
fixed k. Let m be given, m >- ink, for some fixed k. Then h maps i" into Ai-. Fix

im.m=.(il’’’’’im)" If p__>--km and if it’=’a "’kim" /m+l,’’’,ip)=
(Z Zm+l, ", ip), then Yik___ Y.i- and it follows that h ps i, into Ai Denote
the interior of Ai by int Aim. If s h-l(int Ai-), then s . (h)-l(int Ai-) for p
large enough, so that s zikm. -1. :

Therefore h 0nt Ai.’) c_ i’. Furthermore, t is
clear that if s i.., then h(s) Ai for each p -> m, and h(s) int Ai" tA OAi..
cl Ai". Thus,

k

h-l(int Ai) Z __c h-l(cl A-,).

But, by construction, int Ai and cl Ai differ by a set of/x-measure zero, and
hence h-l(int Ai-) and h-(cl Ai-) differ by a set of/-measure zero. It follows that

--1 k -1h (Ai") ,i" up to a set of/-measure zero, and we conclude that A h ().
Furthermore, for m > mk and F a Borel subset of Y, (a)-l(F)=

the union taken over the countable set {(i,])];F}, so that a is A-
measurable. It follows that ak is A-measurable for k 1, 2, , and that a0, the
pointwise limit, is A-measurable.

By Lemma 1.6, there is a measurable map fl’X[0, 1] that satisfies

l=-. Define " XX by (x)= h(fl(x)) and define " XX by (x)=
ao((x)). If is the -field -(), then and 6 are both -measurable, and

-(N) is the -field generated by . By the well-known theorem on func-
tional dependence ([7, p. 603, Thm. 1.5]), there is a measurable mapping
y" X Y such that y((x))= 6(x). We note that ff- fl-lh-1 lh-1 , SO

that h is a measure-preserving transformation of X into itself. It is now an exercise
to show that (ix, y)-= , and Lemma 1.7 is proved.

We have observed that our underlying probability space is a complete,
separable metric space and, in the next section, we would like to use the result in
Lemma 1.7 with X= and Y= C"[to, . However, fails to satisfy the
conditions of Lemma 1.7, since r0 is an atom, having probability {r0}
exp [-hro(T-t0)]. We will therefore require the following corollary to Lemma
1.7.

COROLLARY 1.8. LetXand be as in Lemma 1.7, exceptthatwe assume that
X has an isolated point Xo which is an atom for . en Lemma 1.7 still holds.

Proof. If X= {x0}, then {x0} 1 and it follows that {yk(Xo)}kl must be a
Cauchy sequence in Y; i.e., there is a y y(xo) Ysuch that [[yk(X0)-- y(Xo)[[ 0 as
k . Hence Corollary 1.8 holds trivially in this case.

We assume, then, that {Xo} is nonempty and has positive -measure.
Let ({Xo}). By our assumption, is a complete, separable metric space with
Borel sets o. Define 0 on oby setting (E) (E)/(1 ) for E o. Then
(, 0, o) is a nonatomic probability space.

We have assumed that if (ix, yk)-1, then k weakly as k , for
some probability measure on the Borel subsets of Xx Y. By [2, p. 37, Thm.
6.2], the sequence {k}k is tight. Hence for any e > 0, there is a compact subset
E of Xx Y such that k(E) > 1 e for all k. Choose e /2. Then k(E,/2) >
1- (n/2) implies that (Xo, y(xo)) En/2 for all k. Hence the sequence {yk(Xo)}k
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has a limit point yo. It follows that the point (Xo, Yo) is an atom of . Indeed, if 8 > 0
and N(x.o, yo)= {(xo, y)llly- yo]l_-< }, then by [2, p. 11, Thm. 2.1],

(N(xo, yo))_-->lim sup (N(xo, Yo)).
k

But k(N(xo, yo))>-- r/ for infinitely many values of k, and it follows that
(N(xo, Yo))--> r/for all >0. Hence ({(Xo, yo)})-->

Define =/z(ixo, yk)- on the Borel subsets of Xx Y. That is, if E is a
Borel subset of X x Y, then

(E) =/x{xl(x, y(x)) e E}

=[1/(1-n)]l{xl(x, yk(x)) E}

=[1/(1--rl)]k(E).

Define )(E)=[1/(1-rl)])(E) for all Borel subsets E of Xx Y. We observe
that (X x Y)= 1-r) for all k and that X x Y is closed. Hence (X x Y)_->
1-) by [2, p. 11, Thm. 2.1]. But we have seen already that ({Xo} x Y)= ), so
we conclude that (X x Y) 1 r) and ({(Xo, Yo)}) ({Xo} x Y) ). It follows
that k 1, 2,..., and o are probability measures, and it is clear that

o ok- weakly as k-oo. By Lemma 1.6, there is a measurable mapping
0y X- Y such that o /xO(ixo, yO)-. We define a mapping y" X- Y by

setting y(x)= y(x) if xX, and y(xo) Yo. It is an exercise to show that
tx(ix, y)-l= , and Corollary 1.8 is proved.

2. Main results. We are now ready to prove our existence theorems. Our
first theorem deals with the minimum expected time problem.

THEOREM 2.1. Assume that" A and M are closed; U is compact;
If(t, r, x, u)[ _-< Kfor some constantK and for all (t, r, x, u) in [to, T]x Z+ x A x U;
oh(t, x) for (t, x) [to, T] x C"[to, T] and Q(t, r, x) is closed and convex for each
(t, r, x) in [to, T]x Z+ x A. Then there is an admissible pair [x, u] which minimizes
J(. ).

Proof. Since the theorem is trivial if Xo e M, we assume that Xo’M. We note
that it is a consequence of our assumptions on f and Q that

O(t, r, x)= f’l cl co U Q(t, r, y)
8>0 yNs(x)

for each (t, r, x) e [to, T] x Z+ x A, where N(x) {Yl Ix y[ < } and cl co W
denotes the closure of the convex hull of the set W (see [4, p. 377]). This property
of set-valued functions, called property (Q) (here, with respect to the x-variable
only), was introduced by Cesari [4] for deterministic control problems with
unbounded control spaces.

Let ] inf J[x, HI, the infimum taken over admissible pairs. Let {[Xk, Uk]}kl
be a sequence of admissible pairs such that J[Xk, U]<--j +(l/k). Let Zk(tO) be the
first time such that Xk(t, to) belongs to M if there is such a time; otherwise,
Tk(to)--T. Then J[Xk, Uk]--E{’rk(to)lXk(tO)-X0, r(to) ro}. By the definition of
admissible pair, however,

2(t, to)= f(t, r(t, oa), x,(t, to), u(t, to))
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for almost all tw.p. 1. Thus [2k(t)[ <- K a.e., w.p. 1, for all k. Since Xk(to, to) x0for
all k and all to, it follows that the set {Xk(to)lk=l,2,’’ ",tosf/} is an
equibounded, equicontinuous family. Thus there is a compact subset s of
Cn[to, T] such that Xk(to) Sg for all k and all to. Let in be the identity map on
Let k be the distribution for (ia, Xk), that is, :k(E)=/x[(ia, Xg)-l(E)] for all
Borel sets E of 1) x Cn[to, T]. We observe that the sequence {k} is tight (see [2, p.
37]). Indeed, given e > 0, let F be a compact subset of such that/x(F) > 1- e.
Clearly, then Fxs is a compact subset of x Cn[t0, T] and k(FX ,5) 1 e. By
a theorem of Prohorov [2, p. 37, Thin. 6.1], the sequence {k} has a weakly
convergent subsequence, which we again denote by {k}. Assume that
limk_.oo k. Since 12 is a complete separable metric space with the isolated atom r0,

and C"[t0, T] is a separable Banach space, we may apply Corollary 1.8 withX 12
and Y= C"[to, T]. Thus there is a measurable map x" 12- C[t0, T] such that

=/x(ia, x)-1. That is, (ia, xg) converges in distribution to (ia, x) as k -We wish to show that x (t, to) satisfies the constraints of our control problem.
To this end, we define

S {(to, y) ftx C"[to, T]ly is absolutely continuous;

y(to) Xo; y(t) A for all and )?(t) Q(t, r(t, to), y(t)) a.e.}.

We will show that S is closed in f x C"[to, T]. Let (tog, Yk) be a sequence in S such
that tog - to in 12 and yg - y in Cn[to, T]. Then limg_,oo P(tok, to)= 0. By the
definition of O, we may assume that tok, k 1, 2," ’’, and to all have the same
number of jumps, say N. We write to =(tl,"" ", tN, r0, rl,..., rN), and (.Ok

(tlk, tks, to, rl, , ru). It follows that limk-.o tk ti for 1 N i_--< N. Let be in
[to, T], : ti, for any 1, , N. Then there is an such that ti-1 < < ti. For k
large enough, k _->/ implies t/k_a < < tk, SO that r(t, tog) ri-1 r(t, to). Therefore
r(t, tog)= r(t, to) for k large enough, for almost all t.

Now, (tog, yg) 6 S implies ))k(t) Q(t, r(t, tog), yg(t)). But q Q(t, r, y) implies
Iql _-<K, so the functions yg are equi-Lipschitzian. It follows from the uniform
convergence of yg to y that y is Lipschitzian, and hence, absolutely continuous.
Also, by the uniform convergence, y(t0)= x0, and since A is assumed closed,
y(t) A for all t. We would like to conclude that (to, y) satisfies the orientor field
relation. This is the main conclusion in what is called a "closure theorem" in
deterministic control theory.

We essentially duplicate an argument in [1] and [6] to show that (to, y) S.
The sequence {3)g}g_- is clearly uniformly bounded in (L[to, T]), and so, by the
Alaoglu theorem, there exists a subsequence which converges in the weak*
topology. We shall rename this subsequence, if necessary, and denote it by
{k}k= 1. It follows that this same subsequence converges weakly in (L x[t0, T])".
Hence by the Mazur theorem [18, p. 120], there is a sequence of convex
combinations of the {)k} which converges strongly in (La[t0, T])". We let {Zk}=a
be this last sequence, and we note that, without loss of generality, we may assume
that, for each k, Zk is expressible as a convex combination of {))}=k- Furthermore,
it is clear that g 3) weakly in (L -[to, T])", and this implies that zg - 3) strongly in
the same space. Hence a subsequence, say {Zk} again, converges pointwise a.e.
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Now, it follows from the assumption that (tok, Yk) E S for each k, and the construc-
tion of Zk, that

zk(t) co U Q(t, r(t, toi), yi(t))
i=k

a.e. Let be a point such that Zk(t) (t) and such that r(t, toi) r(t, to) for large
enough. Then

))(t) cl co {_J Q(t, r(t, toi), yi(t)),
i=k

and, since this relation holds for all k,

))(t) (’l cl co U Q(t, r(t, toi), yi(t)),
k=N i=k

for any positive integer N. In particular, for N large enough,

))(t) f"l cl co {_J Q(t, r(t, to), yi(t)).
k=N i=k

Let 6k =supi_>k lyi(t)--y(t)[, SO that 6 decreases to 0 as k-oo, and, for 6 >0,
define Q(t, 6)= U zNyt)) Q(t, r(t, to), z). Then U i= Q(t, r(t, to), yi(t))_
Q(t, 6) and

))(t) f-) cl co O(t,
k=N

Now 0 < a </3 implies Q(t, c)
_

Q(t,/3), so the sets {Q(t, 6)}a>0 form a nested
family. Thus f-)k=sCl CO Q(t, 6k)= [")a>o cl (O Q(t, 6), and by property (Q), the
expression on the right equals Q(t, r(t, to), y(t)). It follows that

(t) Q(t, r(t, to), y(t)).

Since this relation holds for almost all t, we have shown that (to, y) S, and that S is
closed.

We note that k(S) 1 for all k since [Xk, Uk] is an admissible pair, and hence
(ia, Xk) satisfies the constraints given in the definition of S. By [2, p. 11, Thm.
2.1], (S) _->lim SUpk )k(S) 1, so that (S) 1. It follows that: x is absolutely
continuous w.p. 1; x(t) A for all w.p. 1; and

(t, to) O(t, r(t, to), x(t, to))

for almost all w.p. 1.
It remains to show that x is nonanticipative, that there is a control u e 0//so

that Ix, u] is admissible and that J[x, u] j.
To show that x is nonanticipative, by Lemma 1.1, we need show only that xt is

t-measurable for each in [to, T]. Let be a fixed element of [to, T]. Define
12 P(12), so that 12t is a closed subset of fl and is therefore a complete, separable
metric space in its own right. Define the probability measure/x =/.t,P-1 on the
Borel sets of t. Define Mr" ’X C"[to, T]->[-t X C"[to, t] by Mr(to, Y) (Ptto, Yt).
Let Dt {to E lto (tl, , tu, to,’" ", ru) and ti for some i}. Thus Dt is the
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set of paths having a jump at time t. It is easily verified that/z(Dt) 0. if D is the
set of discontinuities of Mr, then D _Dt Cn[to, T]. But (Dt Cn[to, T])=
/.(Dt) 0, so that (D) 0. Hence by[2, p. 31, Cor. 1], Mr(in, xk) converges in
distribution to Mt(ia, x). If E is a Borel subset of t Cn[t0, t], define

t(E) z{o 2[(Po, xt(to)) E},

(E) It{co I(P, xt:,(o)) E},

so that, by the above, converges weakly to
We now regard x, as a mapping from t into C"[t0, t], and we define the

measures g as follows:sequence of probability ~t

E}

for all Borel subsets E of t C[-to, t]. Then

(E) =/z(P-l{w 6 t[(w, x,(o)) E})

tz{w e O[(Po, xk,(P,o))) E}.

But x is nonanticipative for each k, so that x,(Pm) x,(o)) w.p. 1. Hence-- for all k, and it follows that converges weakly to t By Corollary 1.8
(with X t, Y C[to, t]), there is a measurable map " t- C[t0, t] satisfy-
ing t(E)=/.Lt{(.o ’t[((.o 2(o))E}= 12,{.o[(Pt, (Ptm))cE} for all Borel
subsets E of t C"[to, t]. Hence, for all such E,

’t(E) =/.t{o [(e,to, xt(o)) e E} =/z{o [(e,o, :(etto)) E}.

Let Et be a Borel subset of C[t0, t]. We wish to show that x-(Et) t, and for
this to hold, it must happen that x (Et) P(F), up to a set of measure zero, for
some Borel subset F of t. Define F --l(Et)t. We claim that X-I(Et)
P-I(Ft), up to a set of measure zero.

Define It(f)= f(o, y) d t(o, y), the integral taken over t C"[to, t], for
any real-valued, measurable map f on t C"[to, t]. By the change of variable
formula, It(f) may be expanded as either of two expressions:

(B) It(f) In f(Pto, xt(o))

(C) /t(f) I f(P,o, :(Pto))) dl.t oo).

Define f(to, y) to be the characteristic function of Ftx Et and f(o, y) to be the
characteristic function of lt Et. Then utilizing expression (C), it is clear that
It(f1) It(f:z)= Iz(P-(Ft)). Utilizing expression (B), we see that

L(fl) f XEt(Xt(fO)) dtz(w) <= pt(P-l(Ft)).
ae-1 (F,)

However, by the alternate expansion of It(f1), we know that equality holds, and
the characteristic function XE,(Xt(O2))= 1 w.p. 1 for 0 P-/(F,). In other words,
x71(Et)_P-;-1(F,) (up to a set of /x-measure zero). Finally, from (C), I(f2)
ix(x-;(E,)), so that (x-(Et))=/x(PFI(F3), and we may conclude that x-((E3



916 ROBERT M. GOOR

P-I(Ft) up to a set of/x-measure zero. It follows that x, is t-measurable, and by
Lemma 1.1, that x is nonanticipative.

By Lemma 1.4, is nonanticipative. We have thus constructed a map
x [to, T] f--> R such that: x is absolutely continuous in w.p. 1; x(t) A for all
w.p. 1; X(to, to)= Xo for all to; (t, to) Q(t, r(t, to), x(t, to))for a.a. t, w.p. 1 and x,
are nonanticipative. By Lemma 1.5, there is a nonanticipative function u(t, to)

such that u(t, to) U for a.a. t, w.p. 1, and such that

:(t, to)=f(t, r(t, to), x(t, to), u(t, to))

for a.a. t, w.p. 1. Thus Ix, u] is an admissible pair.
We observe that if k(B)= k(OB) and (B)=(B) for all Borel

subsets B of C"[to, T], then converges weakly to .
We now show that J[x, u] j. For to =< < T, let Mt {y C’[to, T]ly(s) M

for some s s [to, t]}. Define MT C"[to, T]. Then Mt is closed for each t. In fact, if

Yk Mr, Yk -> Y uniformly as k --> , then there are points sk _-< such that y(sk)s
M. Let So be the first time such that y(so) M, or, So T if y(s) M for to <---- s --<_ T.
Suppose, if possible, that (Sk} has a subsequence (say {Sk}, again) such that
s-->g<So. Clearly then, yk(Sk)- y(g), and, since M is closed, y(g)sM. This
contradicts the definition of So. Therefore So -< lim infk_oo Sk <= t, and y s M. By the
Portmanteau theorem [2, p. 11, Thm. 2.1], (dt)limSUpk-)ok(Mt). We
define F(t)=(Mt), Fk(t)=k(Mt) for all k and to<=t<-T. Since {Mr} is an
increasing family of sets, F and Fk are nondecreasing functions on [t0, T]. In fact,
Fk is the distribution function of the random variable rk(to). Thus, J[x, u]=
E{rk(to)} o dFg(t). Let -(to) be the first time such that x(t, to) belong to M if
there is such a time, otherwise, -(to)= T. Then J[x, u]= E{’(to)}=j dF(t),
since F is clearly the distribution function of -(to). But we have seen that
F(t) => lim supk Fk (t) for all t. Therefore F(t) _-< lim inf_,- Fk (t) and, since
0 <-- F(t), Fk (t) _--< 1 for all t,

T T

o k-x

But F(T) Fk (T) I and F(t0) Fk (t0) 0, so by a comparison of the terms of the
integration-by-parts formula, we conclude that

T T

ft tdF(t)<-liminf l tdFk(t).
k-)

Therefore J[x, u]_-<lim inf_ J[Xk, Uk]=]. Since Ix, u] is admissible, J[x, u]>=],
and equality follows. This concludes the proof of Theorem 2.1.

Our second existence theorem incorporates a different cost functional.
THEOREM 2.2. Assume that A is closed; U is compact; If(t, r, x, u)l<-K for

some constant K and for all (t, r, x, u) in [to, T] Z+ A U; b(t, x) (x) for
some continuous]:unctional d/ C"[to, T]--> R and’orall (t, x) in [to, t] C"[to, T];
Q(t, r, x) is closed and convex for each (t, r, x) in [to, T] Z+ A. Then there is an
admissible pair Ix, u] which minimizes J( ).

Proo] The proof of Theorem 2.2 parallels that for Theorem 2.1" we may
assume that [x, Uk] are admissible pairs so that if j=infJ[x, u], then j=
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limk-,oo J[Xk, 1,lk]. We may assume that the distributions k =/x(ia, Xk)-1 converge
weakly to a distribution , induced by (ia, x) for some trajectory x. As in the
proof of Theorem 2.1, it can be shown that there is a control u R such that [x, u]
is admissible. Now, J[xk, Uk]=E{O(Xk)}. But, (ia, xk)(ia, x) in distribution
implies Xk -- X in distribution. Thus, O(Xk)- O(X) in distribution. (See [2, p. 29]).
However, as in the proof of Theorem 2.1, there is a compact subset s of Chit0, T]
such that Xk, X Sg for all k. Hence the random variables (Xk), (X) are uniformly
bounded. It follows that SUpk E{Id/(Xk)12}< +oe, so that the q(Xk) are uniformly
integrable (see [2, p. 32]). By [2, p. 32, Thm. 5.4], E{(xk)} E{q(x)} as k -oo.
We conclude that J[x, u]=E{O(x)}=], so that ix, u] minimizes J(.), and
Theorem 2.2 is proved.

COROLLARY 2.3. Let d/ in Theorem 2.2 be defined so that (x)= 3/(x(T))
where 3/" Rn- R is continuous, and suppose that the remaining hypotheses of
Theorem 2.2 hold. Then there is an admissible pair Ix, u] which minimizes J( ).

Remark 1. Uniform boundedness of the function f may be replaced in
Theorems 2.1 and 2.2 by any growth condition which entails that any minimizing
sequence be equi-Lipschitzian. This last property was the one used to show that
the sequence {Xk} is tight, and that S is closed. For deterministic analogues, see [3],
for example. Extensions to unbounded control spaces are also possible, under the
same proviso as above, but then property (O), with respect to x, of the sets
Q(t, r, x), must be assumed separately.

Remark 2. In case the above problem is actually deterministic, that is,
{to}, then the proofs reduce to well-known deterministic proofs. For in this

case: Xk is an absolutely continuous function on [to, T]; k is unit point mass at the
element (to, Xk) of 12 X Cn[to, T]; k converges weakly to (induced by x) implies

is unit point mass at.(r0, x) Ox Cn[to, T] and this last implies that Xk X

uniformly in C"[to, T]. (See [2, p. 12].) Then showing S is closed in Cn[to, T] is
tantamount to showing that x S, which is the content of a deterministic closure
theorem.

We conclude by showing that Theorems 2.1 and 2.2 both apply to the linear
regulator problem. Let f(t, r, x, u) C(t, r)x + D(t, r)u + v(t, r), where C(t, r) is an

n x n matrix, D(t, r) is an n x m matrix and v(t, r) is an n-vector for each (t, r).
Assume also that the functions C(. ), D(. and v(. ) are continuoug. If C is a
matrix, we will denote by IIC[Io the usual operator norm: IICIIop- suPl,l=l ICyl. We
then have the following corollary of Theorems 2.1 and 2.2.

COROLLARY 2.4. Assume that A is closed; U is compact and convex;
(lie(t, r)llop/llD(t, r)lloo/lv(t, r)l)<--K ]’or some constant K and for all (t, r)
[to, T]x Z/’, Mis closed’, 49(" is as in Theorem 2.1 or in Theorem 2.2. Then there
is an admissible pair which minimizes J( ).

Proof. Since the operator norms of C(. and D(. and the Euclidean norm
of v(" are uniformly bounded, it is an exercise to show that there is a constant K
such that if [x,u] is admissible, then Ix(t)-Xol<=K for to<-t<-T. Let A=
A f-I {x R llx x0] --</}. Then is closed, and f restricted to [t0, T] x Z+ x ft. x
U is uniformly bounded. It is no restriction on our problem, then, to replace A by
fi. Since U is compact and convex, Q(t, r, x) is closed and convex for each (t, r, x).
Theorems 2.1 and 2.2 now apply directly, with the space constraint set A instead
of A.
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TIME OPTIMAL CONTROL OF INFINITE-
DIMENSIONAL SYSTEMS*

G. KNOWLESf

Abstract. The problem of reaching a fixed, closed convex body, W, of a locally convex topological
vector space Xin minimum time, by a control system steered by a sequence of independently operating
controls of the bounded amplitude type, is considered. Conditions are derived for the optimal control
to exist, be unique and bang-bang, and in the case W is a ball in a Banach space, a necessary and
sufficient condition for controllability is obtained. By means of examples, the application of these
results to the control of distributed systems is shown, and extensions of results of Ergov [4] and
Friedman [5] obtained.

1. Introduction. The problem considered here is that of steering a control
system, of the form described in [8] and [9], to reach a fixed closed, convex body W
of a locally convex topological vector space X, in minimum time.

Namely, suppose is a set in R" (possibly empty), and for every 6 [0, to],
some time interval, we are given o--algebras -t of subsets of [0, t], and a
sequence of vector measures mi(t) -t -> X, 1, 2, . We consider the control
system whose output for a control f= (fi)i__l, ({fi} a sequence of uniformly
bounded measurable functions) is the element of X given by re(t, f)=
Zi=A x[O,t]fi dm(t). If we restrict the values of the controls so that f(w, -)
F(w, -), for some given set F(w, -) contained in the countable product of the real
line, (o, -)61[0, to], then we ask if there is a minimum time, t*, for which
re(t*, f) W for some such control f. The controls with this property are called
optimal controls.

In 3 we give conditions for the existence of optimal controls, and derive a
necessary condition which they satisfy. This leads, in 4, to the introduction of
normal control systems, for which the optimal control is uniquely determined by
the necessary condition, and as a consequence is bang-bang. These concepts are
then applied in 5 to control systems described by partial differential equations,
and examples are given which extend results of [4] and [5] on bang-bang control
for parabolic problems. Finally, in 6, by combining the ideas of [2] and 3, we
derive necessary and sufficient conditions for approximate controllability and
obtain a computationally more useful form of the necessary condition.

2. Definitions. In this section, we summarize some of the relevent theory of
vector measures which will be needed in this note. For a more detailed and
complete study see [8] or [9].

Suppose X is a quasi-complete locally convex topological vector space
(1.c.t.v.s.), with continuous dual X’. For a subset A X, denote by b-6A the closed,
convex hull of A, and by ex A the set of extreme points of A. If a linear functional
x’ X’ achieves its maximum value on A at a point x0 A, then x’ is said to

* Received by the editors May 27, 1975, and in revised form November 8, 1975.
? Institut fiir Angewandte Mathematik und Informatik, Universitiit Bonn, 53 Bonn, Germany.

This work was supported by the Deutsche Forschungsgemeinschaft, Sonderforschungsbereich 72.
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support A at x0, and x0 is called a support point of A. Similarly a point Xo A is
called an exposed point of A if there exists an x’ 6 X’ such that (x’, x)< (x’, Xo)
whenever x 6 A, x Xo. The functional x’ is said to expose A at Xo, and the set of
exposed points of A is denoted by exp A.

Let T be a set, and - a r-algebra of subsets of T. If T is a Borel subset of R n,
we denote by 3(T) the Borel o--algebra on T. 3///() stands for the space of
bounded, --measurable functions on T, and for a set V R,

/lv() {f f e 3J/l(ff), f(t) V, e T}.

By a vector measure m on T we mean a countably additive map m X.
For aset E -, put m(-v)={m(F) F -, F_E}; m(--) m(-T). If X’ X’, we
define a measure (x’, m)

A real-valued 0--measurable function f on T is said to be m-integrable if it is
integrable with respect to every measure (x’, m), x’ e X’, and if for every E e -,
there exists an element xw X such that

(1) (x’, xz) f fd(x’, m), x’ X’.

We denote

xz= I fdm, XT= ffdm, E g.

For the properties of this integral, we refer to [9, II.2, II.3], and, in particular,
Lemma II.3.1, where it is shown that every bounded -measurable function on T
is m-integrable.

If f is an m-integrable function, then the mapping n:-X defined by
n(E) f din, E 0-, is called the indefinite integral of f with respect to m. By the
Orlich-Pettis theorem, n is a vector measure.

A function f J/(if) is called m-null, if its indefinite integral is (identically)
the zero measure. Two functions f, g ///(ff) are called m-equivalent if f- g is
m-null, and the class of all functions in /(-) m-equivalent to f is denoted by
[f],,. A set E 0- is called m-null if its characteristic function is m-null, and [E],,
is defined similarly. Set -(m) fiE],, E -} and Lt0,1](m)
{[f]., f ///[o,a]()}.

If m,n are two set-functions on - (real or vector-valued) we say m << n if
[E]. 0 implies [E]. 0, E -. We call m,n equivalent if m << n and n << m.

Let A be an index set directed by the relation . A net {[E].}A in -(m) is
said to be -(m)-convergent to [E]. (r(m)-Cauchy) if, for every neighborhood U
of 0 in X, there exists an au A such that m() U, for every a A with

au <---- a (such that m(-za) U, for every a,/3 A with au --< a, au --</3).
A vector measure m ---> X is said to be closed if -(m) is r(m)-complete, in

other words, if every r(m)-Cauchy net in -(m) is r(m)-convergent.
The properties of closed vector measures are described in detail in [9]. In

particular, if X is metrizable, any measure m -->X is closed, the indefinite
(Pettis) integral of a vector function with a scalar measure, is closed, and if m is
closed, then if6 m(--)={Tfdm: fe 3/[0,1](ff)}.
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A sequence of closed vector measures mi if--> X, 1, 2, , will be called
a control system if i--1 x is convergent, for any xi m(ff), i= 1, 2,. . Since
0 m(ff), 1, 2, , this convergence is unconditional. We write m (m).

Let R be the countable product of the real line treated as an 1.c.t.v.s. under
the product topology, and CCR the family of compact, convex, nonempty
subsets of R. If Ii [-1,1], 1,2, set I l-Ii=l Ii. A function f=
(f): T-> R will be called 0--measurable, if each component f T--> R, is if--
measurable, i= 1,2,.... We define Yde//(R, if) to be the set of all
measurable functions f=(f):T-->R which are uniformly bounded, i.e.,
sup {llf, 1, 2,...} < c. It follows from [8, Lemma 3], that if f e 3M(R,
and m (mi) is a control system, then =1 fi dmi X.

A set-valued function F defined on T whose values are subsets of R will be
called bounded if there exists a compact set Vc R such that F(t) c V, e T. We
call a set-valued function F: T--> CCR measurable, if, for every x’e (R) the
mapping - sup {(x’, x) x F(t)}, T, is -measurable. For F T CCR, the
set-valued function ex F is defined by (ex F)(t)= ex F(t), T.

In the sequel, for a given bounded measurable set-valued function F: T
CCR, we will consider the set

JJ/tF(R, if) f e :J/t(R, if) and f(t) e F(t), e T}

as the class of admissible controls. The case F(t)= Iv, T, corresponds to the
case of bounded-amplitude controls. We reserve the term "bang-bang" control
for those controls f with f(t) ex F(t), T, and so in the case F(t) Iv, T, the
bang-bang controls are those for which every component If] 1, 1, 2,. ..

Suppose m (m) is a control system. Two functions f (f) and g (gi) from
M(R, are called m-equivalent, if f and gi are m-equivalent for every

1, 2,. . The class of functions in O3M(R, ) m-equivalent to f is denoted
by [f],,, and for a bounded set-valued function F on T, put

Lv(R, m) {[f]m "f J//F(R, if)}.

When it is convenient and will not cause confusion, we write f in place of [f], to
simplify the notation. On this set we can define a locally convex Hausdorff
topology, which we will here call r(m), such that the mapping f-> Ei=I fi dmi,
f Lv(R, m), is continuous from the o-(m) topology on Lv(R, m) into the weak
topology on X. If F: T-> CCR is bounded and measurable, Lv(R, m) is also
r(m)-compact. For the details see [9, Theorem IX.I.1].

3. Necessary condition for optimality. We begin by describing the particular
form of the control system to be considered in the rest of this note.

Suppose 12 is a set (possibly empty) and 9- a o--algebra of subsets of 12. For
every tel0, to], some time interval, define 9-t 3([0, t]) to be the product
or-algebra on 12 [0, t]. Suppose that for each e [0, to], we are given a control
system m(t) (mi(t)), mi(t) -t -->X, 1, 2,.... Then for any f= ()e
d//(R, fit) define

(2) re(t, f)= E fi(to, ’) d(mi(t))(to, ’), e[0, to].
i=1
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It follows from our earlier remarks that m(t, f) X, and so m(t, f) can be regarded
as the position reached by the control system in time t, when steered by the
control f.

For the class of admissible controls, we take NF(R, -) where F:glx

[0, to]-> CCR is a given bounded, measurable set-valued function. This formally
requires that admissible controls are functions on l-I x [0, to]; however, from (2) it
is clear that at a time < to, only the values of the controls on [1 x [0, t] affect the
output at time t. For this reason, we adopt the convention that when we are only
interested in the behavior of the system up to some specified time < to, the
controls will be considered as functions on only x [0, t]. Then the attainable set
at time t, that is, the set of all points reachable in time by using all admissible
controls, is just

A(t)={m(t, f) f 4,(R, -t)}.

It follows from [8, Thm. 1] that this set is a convex, weakly compact subset of Xfor
each 6 [0, to].

We remark here that analogues of Theorems 1, 2 and 3 below can also be
proven for systems whose output can be represented as

m(t, f)= ,21"= fi(tO) d(mi(t))(w)

in place of (2). The proofs require only notational changes. (Such a system occurs
at the end of 5, equations (18)-(21).)

If W is a fixed closed, convex subset of X, we consider the problem of
reaching W in minimum time, under the following assumptions.

(A) For some time tl [0, to], A (tl)[") W Q.
(B) For any t* (0, to], and any x’e X’,

sup{l(x’, re(t, f)-m(t*, f))l’fe J/lu(R, -to)}-+ 0 as ,[, t*.

(C) For any control f, the function re(t, f), [0, to], is continuous into
the given topology on X.

The first assumption is that of controllability and will be discussed in 6. The
second guarantees that the attainable set moves (in some weak sense) continu-
ously in time, and the third that, for fixed f, the trajectory traced out by the system
is continuous in time. Then we have the following.

LEMMA 1. If (A) and (B) are satisfied, then a time optimal control exists.

Proof. By assumption (A) {t’A(t) lq W# 3} is nonempty, and so set t*=
inf {t A(t)fq W }. We must show A(t*)fq W. In the usual way, select a
sequence of times, t $ t*, and controls f such that m(t,f)A(t)71W. The
restriction of each f to f[0, t*] belongs to Lv(R, re(t*)) and as this set is
cr(m(t*))-compact ([9, Cor. VIII.3.1]), there must exist a subnet f* of f and an

f* Lv(R, re(t*)), such that fi -+ f* in the r(m(t*)) topology. Then re(t*, f*)
A(t*), and m(t*,f*) re(t*, f*) weakly in X. However, as

(x’, m(ti, fi) m(t*, f*)} (x’, m(t,,f*)- m(t*,fi))
+{x’, re(t*, fi)- m(t*, f*)),
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it follows by (B) that m(tj, fJ)-> re(t*, f*) weakly in X, and since m(tj, fJ) W for
each j, and W is weakly closed (as it is convex), re(t*, f*) 6 W. In other words, f* is
an optimal control.

LEMMA 2. If a time optimal control exists, with t* > 0 the minimum time, and

if Whas nonempty interior in X, and (C) holds, then A (t*) int W (, and there
exists a nonzero x’ X’ such that, for any optimal control f*,
(3) (x’, re(t*, f)) <=(x’, re(t*, f*)) <=(x’, w)

for any admissible control f and any w W.
Proof. Suppose f F(R, -) and m(t*, f) int W. Then there must exist

an e>0 such that, for some continuous seminorm, p, on X, Bp=
{x X: p(x-m(t*, f))< e}= W. Since the function to re(t, f) is continuous for

[0, to], and t* > 0, there must exist a < t* with re(t, f) Bp, which contradicts
the minimality of t*. Hence A(t*) f3 int W .

As int W , it follows from [3, Cor. to Thm. 21.11], that there exists a
nonzero x’ X’, separating the sets A(t*) and W; that is, (x’, m(t*, f)) <-_ (x ’, w)
for all admissible controls f and w W. If f* is an optimal control, then m(t*, f*)
A(t*) f-I W, and so (3) follows.

Combining Lemmas 1 and 2 we have the following necessary condition.
THEOREM 1. If W has nonempty interior, and (A), (B) and (C) are satisfied,

then a time optimal control exists in the minimum time t*, and if t*> 0, then there
exists a nonzero x’ X’ such that for any optimal control f* (f’i),

lcIot*IZ f$i d(x’, mi(t*))
i=

t*

--max{ i=1 fo fa fid(x"mi(t*))’f/F(R’t)}"
In particular, if F(to, -) I, (w, -) 6 (0, to), then f Lexv(R, ((x’, mi(t*)))),
that is, Ifi[ 1, (x’, mi(t*)) a.e., i= 1, 2,. .

Proof. The relation (4) i an easy consequence of Lema 2 and (1).
nfi d(x, mi(t ))ex {Ei----1 0 a] d(x, mi(t*))"From (4) Ei=, I0 * * ’

f F(R, -)}, and so in the case F--I, we have, by [14, Thm. 4], f
LexF(R, ((x’, mi(t*)))).

4. Normal systems. In this section, we consider the consequences of the
necessary condition (4) on the uniqueness and bang-bangness of the optimal
control, when the set-valued function F Iv, that is, the set of admissible controls
is {f: f= (fi) ?:d.J/[F(R, -to) and [fi(to, =< 1 all to, -}.

Firstly, as with any necessary condition of the Pontryagin type, (4) may give
no information about the optimal control and certainly need not uniquely
determine it. In fact, clearly, (4) gives no information about the values of f* on any
set Ei f [0, t*] which is (x’, m(t*))-null. However, if for every 1, 2,. ,
mi(t*)<< (x’, mi(t*)), then *on this set E, fi has no effect on the system, and so there
we can give this control any value we choose.

Accordingly we call the control system re(t*) essentially normal in X, if for
any nonzero x’ X’, the measures m(t*) << (x’, m(t*)), 1, 2,. .. We say that
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the optimal control is essentially unique, if any two optimal controls are m(t*)-
equivalent. Similarly, we say the optimal control, ]’*, is essentially bang-bang if
there is a bang-bang control m(t*)-equivalent to [*, and we say the optimal
control is essentially determined by (4), if any two solutions of (4) are m(t*)-
equivalent. Then from the remarks above, we have

THEOREM 2. Suppose (A), (B), (C) hold, int W, and t*>0 is the
minimum time. Then if re(t*) is essentially normal in X, the optimal control is
essentially bang-bang, essentially unique and essentially determined by the neces-
sary condition (4).

Pro@ We know from Theorem 1 that [* LexF(R, ((x’, mi(t*)))) for some
nonzero x’ X’. However, the essential normality of the system implies that each
measure (x’,mi(t*)) is equivalent to mi(t*), i=1,2,..., and hence
Lex(R, ((x’, mi(t*))))= LexF(R, re(t*)) as sets, and so f* e LexF(R, re(t*)).

It is not hard to see that essential normal systems are a natural extension of
the same concept discussed in [7] for finite-dimensional control systems. Using the
results of [9, Chap. 6], we have, in fact, analogues of Theorem 15.1 and its
Corollary from [7].

LEMMA 3. A control f* is essentially determined by (4), for some nonzero
x’ X’, if and only if re(t*, f*) exp A (t*).

Proof. If f* is essentially determined by (4) for some x’ X’, then it follows
easily from the definitions that this x’ exposes A (t*) at re(t*, f*).

Conversely, suppose x’ exposes A (t*) at re(t*, f*). Then for this x’, (4) holds,
and if g is another solution of (4), we must have re(t*, g) re(t*, f*), as x’ exposes
the set A(t*). However, the point re(t*, f*) re(t*, g)) is also an extreme point
of A(t*), and so by [14, Thm. 4] g and f* are m(t*)-equivalent.

As a converse to the uniqueness part of Theorem 2 we have,
LFMMA 4. Suppose (A), (B), (C), hold, int W ys , and t* > 0 is the minimum

time. Iffor any nonzero x’ X’, the solution of (4) is essentially unique, then re(t*) is
essentially normal in X.

Proof. Suppose x’ X’ is nonzero, and E fit* are an any sets such that
[(x’, m(t*)}l(E)=O, i= 1,2,.... Let F]- (F-) be the positive (respectively,
negative) part of -t. relative to the measure (x’, m(t*)). Then it is easily seen that
both the functions (X; Xz7) and (XTaz,-X7) are solutions of (4) (with respect
to x’); hence by our assumption, these functions are m(t*)-equivalent. This can
only happen if Ei is m(t*)-null for every 1, 2,. ..

Then combining Lemmas 3 and 4, we have
THEOREM 3. The system re(t*) is essentially normal in X if and only if every

supporting hyperplane to A (t*) exposes it.
In the case X is a Banach space, m -->X a vector measure, it was first

shown by Rybakov that there exists an x’ X’ such that m << (x’, m). The results
given here bear a close resemblance to the work of Anantharaman [1], who
showed that m << (x’, m) if and only if x’ exposes c- re(if). In fact, it is known that
the set of x’ with this property forms a dense G subset of X’ (see [9, VI.4].
Essentially normal systems give examples of vector measures for which every
nonzero x’ X’ gives a "Rybakov" measure.

Finally we note that if the measures mi(t*), i= 1, 2,..., are defined by
integration with respect to the same scalar measure/x (for instance, Lebesgue
measure), then we can define the stronger concept of normality. Namely, we call
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re(t*) normal in X, if for every x’ X’, x’# 0, /z << (x’, mi(t*)), i= 1, 2,.... It
follows that normal implies essentially normal, and that the following theorem
holds.

THEOREM 4. If the system is normal in X, Then the optimal control is uniquely
determined by (4) a.e., and consequently, bang-bang Iz a.e.

In the next section we show how these concepts apply to the control of
systems governed by partial differential equations.

5. Applications. We suppose 12 and if- are as before, h is a finite measure on-, is Lebesgue measure on N([0, t]) and h x is the product measure on
fix ([0, t]).

In many situations the vector measures mi(t) -t X, [0, to], are the form

mi(l)(x)(E)

i= 1, 2,..., where x takes values in some domain D c R". Suppose X is a
quasi-complete l.c.t.v.s, of real-valued functions defined on D, such that, for each
t[0, to], i= 1, 2,..., and each E 0-t, the mapping x- m(t)(x)(E), x D,
belongs to X and defines a closed vector measure. Suppose also that the measures
mi(t), 1, 2,. ., are summable for each t[0, to], so that re(t)= (mi(t)) is a
control system for each [0, to].

In this case, the necessary condition (4) becomes

There exists a non-zero x’ X’, such that for any optimal control f*

(4’) ,Z1"= ff(09, ’)(X’, Ki( 09, t*, ’)) dA (09) dr

t*

=max{ i=1 fO IO
f /v(R, -o) l"

The condition for essential normality in X is

For every nonzero x’ X’, the set of points (w, -) f [0, t*] such that
(5) (x’, Ki( 09, t*, ’)) 0, and the function, x Ki(x, w, t*, z), x

_
D, is not

the zero function in X, is /-null, 1, 2,. .
The condition for normality is

For every nonzero x’ X’, {(09, -) (x’, Ki(., 09, t*, ’))= 0} is X /-null,(6)
i= 1, 2, .

In particular, for the case F I, from (4’) the optimal control has the
form

f’i(09, r)= sgn ((x’, Ki( 09, t*, z))),
(o, ) sax[0, t*].

Now suppose f is a bounded domain in R n, and set D=
Dl"’’Da"n where Di=O/Oxi, a--(al,’’" an) and [a[=Ol-+-a2-[--...q
an. Consider the differential operator

Ou
Lu=----A(x, t, D)u=-Ou/Ot- as(x, t)Du,

Ot i1<=2,,
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where m is a positive integer. Assume the boundary0 of is sufficiently smooth,
the coefficients a (x, t) are sufficiently smooth in fx (0, oo) and that L is parabolic
in the sense of Petrowski in

Consider the following initial-boundary value problem

(7) Lu g in Ftx (0, to),

(8) u(x, o) 4)(x), x a,
(9) Bj(x, t, D)u fi(x, t), (x, t) Of x (0, to), l<_-_j<--m,

where the Bj are boundary operators which are sufficiently "regular" for the
problem (7)-(9) to have a unique smooth solution.

Firstly consider the case of boundary control. That is, the functions g and 4
are fixed and we suppose the control function f= (1,""", f,,) is chosen to be
measurable and such that f(o, r) F(o, r), (o, r) 0fx (0, to), for some fixed
bounded measurable set-valued function F OI) x (0, to) CCR m.

For smooth functions g, 4, f, we can represent the solution of (7)-(9) in the
form

(10) u(x, t)= fl(x, t)+,Zl= a
Gi(x, w, t, r)fi(w, r) dA (oo) dr,

where/3 is a fixed smooth function, A is a surface measure on 01), and Gi(1 _<-j <_-
rn) are the appropriate Green’s functions for the problem. We define (10) to be
the solution of (7)-(9) for any bounded measurable function f= (fl,"" ",

Then from the remarks at the beginning of this section it can be seen the results of
3 and 4 apply to this problem, where the set-functions mi(t) -t X, [0, to],

are defined by

(11) mi(t)(x)(E)= I Iv G(x, w, t, r)dA(oo)dr, N -,
1, 2,- , m, and so by (10)

u(x, t)= (x, t)+,Z.= a
(w, ) d(mi(t))(w, ),

The space X of real-valued functions defined on must be chosen to satisfy the
practical requirements of the system, bearing in mind the topology on X must be
such that the set-functions (11) are countably additive.

In particular, consider for simplicity the case rn 1, F(w, r) [-1, 1], (o, r)
01) (0, to), and take the boundary condition (9) to be

Ou
-t- a(x, t)u f(x, t) on 01)x (0, to),(12)
0/x

where 0/0x is the outward transversal derivative on the lateral boundary and
a(x, t) is a smooth function. By using the known estimates for the Green’s function
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for this problem, it can be shown that if X= LP() (1 -< p < c) and (A) holds, then
a time optimal control exists and condition (C) is true ([5, Lemma 1]). Conse-
quently, by Theorem 1 there exists a nonzero x’e(LP(12))’=Lq(12)
((1/p)+(1/q) 1), such that for any optimal control f*,

in particular,

f*(ca, r) sgn (Ia x’(x)G(x, ca, t*,r) dx), (w, r) e0 (0, t).

we now give conditions for the system determined by (7), (8), (12) to be normal.
LEMMA 5. If a (x, t) and the coefficients ofL are analytic functions, and if

is an analytic manifold, then the system (7), (8), (12) is normal in LV()
(1-<p <oo).

Proof. Choose such that 0<t<t* and define K(w,r)=
ax’(x)G(x, ca, t*, r) dx, (ca, r)e [0, t). Then K satisfies L’K= 0 in 12[0, t),
OK/OIx + aK 0 on 0f (0, t), and so by 12] K is analytic in [0, t).

If the system is not normal, from our earlier remarks (equation (6)) there
must exist a nonnegligible subset E of Wt such that K is zero on E for any
sufficiently close to t*.

For r e [0, t), let E= {ca "(ca, r)e E}. Then by Fubini’s theorem there must
exist a subset Ac[0, t) of positive measure, such that for each re A, E is
non-A-null. Since the function ca - K(ca, r) for fixed r e A, is analytic on 0, and
O is an analytic manifold, it follows that this function is identically zero on
Hence for (ca, r)e 0l) A, K(ca, r)= 0. It then follows from [5, Lemma 2] that
K(ca, t) 0 for all ca e 11. Now taking a sequence t, ’ t*, we obtain x’(x) 0 a.e. on
f, which contradicts our initial assumption.

In conclusion we have,
THEOREM 5. For the problem (7), (8), (12), /f (A) holds, X--LP()

(1-<p<c), then there exists an optimal control and a nonzero x’eLq(O)
((1/p)+(1/q)= 1) such that (4’) holds, and consequently, any optimal control f*
satisfies

f*(ca, r)=sgn(I
a

x’(x)G(x, ca, t*, r) dx), (ca, r) eOx [O, t*).

If the coefficients of L and a(x, t) are analytic functions and if O is an analytic
manifold, then the optimal control is uniquely determined by (4’), h a.e., and is

bang-bang (h a.e.). If f*(ca, r) f*(r), (ca, r) e OD, [0, t*), then the optimal
control has at most a countable number of switchings.
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The only extra information follows from the analyticity of the function K
defined in Lemma 5.

Suppose now the function g in (7) is the control function, and 4 and f in (8),
(9) are fixed smooth functions. With the aid of the Green’s function we write the
solution of (7)-(9) in the form

u(x, t) flo(X, t) + G(x, to, t, r)g(to, r) dto dr, (x, t) f x [0, to],

where/3o is a fixed smooth function. We assume the boundary conditions are
sufficiently "regular" so that G satisfies

C --tol2m-’l/(2m--1)}.
Then, as before, we have

THEOREM 6. If (A) holds, X LP() (1-< p < oe), then an optimal control
exists and the necessary condition (4’) holds at the minimum time t*. If the
coefficients of L and Bj (1 <-_ ] <-m) are analytic, 12 is an open set, 012 an analytic
manifold, and (I’) of 12] holds, then the optimal control is uniquely determined by
(4’) (1 a.e.) and is bang-bang (1 a.e.).

If the partial differential equation can be solved by separation of variables,
then the normality of the system can be deduced from the completeness properties
of the eigenfunctions of the equation. This can be of interest when we wish to
consider the normality of systems under stronger topologies on X.

For instance, suppose the control system is governed by a partial differential
equation on an open domain 1)c R" whose solution for any control f, can be
written in the form

u(x, t)= Y. v(x) g(to, t, r)f(to, r) dtodr, x 12, t[O, to],
n=l

where 120 is a (possibly empty) subset of fL Then if X is a space of real-valued
functions on 12, such that v X, n 1, 2,. ., and the set-function, for each

[0, to],

m(t)(x)(E)= Y. v.(x) g.(w, t, r) dto dr,
n=l

E e N(lI0 x [0, t)) is a vector measure in X, then (c.f. [4]) we have Lemma 6.
LEMMA 6. If the linear span of the functions {v, n 1, 2,. .} is not dense in

X, then the system re(t*) is not essentially normal in X for any t* [0, to].
Conversely, if for almost all to 1)o, the functions r- g, (to, t*, r), r [0, t*), are
linearly independent (that is, if (a,) are real numbers such that , a,g,(to, t*, r) O,
for almost all r [0, t*), then a, O, n 1, 2,. .), iffor any x’ X’ and almost all
to 12o, the function, r + Y,,__ (x’, v,)g, (to, t*, r), r [0, t*), is analytic, and if
the functions {v} span X, then tort*) is normal in X.

Proof. If the functions {v} don’t span X, by the Hahn-Banach theorem, there
exists a nonzero x’eX’ such that (x’, v,)=0 for all n=l,2,.... Then
I(x’,m(t*))l(OoX[O,t*))=O for any O<-t*<-to, and so the system cannot be
essentially normal in X.
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Conversely, suppose x’e X’, x’ 0, and I(x’, m(t*))l(E)= 0 for some subset
E eN(foX[0, t)), E having nonzero Lebesgue measure. For (w,r)E,
n=l (x’, vn)gn(o, t*, -)= 0. Hence by Fubini’s theorem and analyticity we can
show, in the same way as in Lemma 5, that there exists a nonnull set B c fo such
that (x’, v,}gn (o, t*, -) 0 for all (w, -) e B x (0, t*). Then by linear indepen-
dence, we must have (x’, v,) 0 for all n 1, 2, ., and so x’= 0 as the functions
{v,} span X. This contradicts the initial assumption; consequently m(t*) is normal
in X.

As an example consider the following parabolic boundary value problem:
OU O2U

(13) -(x, t)-(X,ox2 t)+q(x)u(x, t)=0, (x, t) (0, 1)x(0, to],

s
ou

(14) u(1, t)+ x-x(1, t)=f(/),

0u
(15)

Ox
(0, t) O, 0 < <-- to,

(16) u(x, 0)=0, 0_<--x--< 1,

where to > 0 and a > 0 are fixed parameters, and q(x)>-0 is a fixed continuously
differentiable function on [0, 1]. The normality of this system for q =0 and
X-- L2([0, l]) was shown in [4]. We prove that it is normal in C([0, 1]).

For sufficiently smooth functions f, the solution can be written

(17) u(x,t)= 2 A,v(x) ]’(t)e-"(-’ d’,

where {v} and {/x,} are, respectively, the normed eigenfunctions and eigenvalues
of the boundary value problem

v"(x) + q(x)v(x) tv(x), x (0, 1),

v’(0)=0,

v()+v’() 0,
and An 1o vn(x) dx for n -> 1. For any bounded measurable function f, define
(17) to be the solution of (13)-(16). Then the analyticity and linear independence
conditions of the Lemma are satisfied (e.g., [13, Lemma 3]); hence the system
(13)-(16) is normal in any space X which is spanned by the eigenfunctions {v,}. In
particular, it is known (see [6, Prop. 3.4] or [ 11, p. 143]) that {v,} span C([0, 1]).

In the case of (13) with initial control, that is,

(18)

(19)

-0- (x, t)-(X,axe t) + q(x)u(x, t) O, (x, t) (0, 1)X(0, to],

u(1, t)+-(1, t)=O,

(20)
Ox

(0, t) O, 0 < <--_ to,

(21) u(x, 0) f(x), 0--<x --< 1,
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the solution is of the form

I01u(x, t)= , e-’"tv,(x) f(w)v,(w) dw, O<-x <- 1,
n=l

and it follows from the properties of {v,} and {,} (e.g., [6, Prop. 3.3]) that for any
x’e (C([O, 1]))’, the function

(22) w 2 e-"’(x ’, v,)vn(w), w [0, 1],
n=l

has an analytic continuation onto the whole complex plane. Hence the system is
normal in C([0, 1]), and since the function (22) can have only a finite number of
zeros on [0, 1], the optimal control can have only a finite number of switchings.

As a final remark, it may be interesting to consider the problems involved if
the restriction, int W , is dropped. In particular, suppose X is an infinite-
dimensional Banach space, and W={x} for some fixed x X. Then under
assumptions (A), (B) and (C), a time optimal control exists, and if t* is the
minimum time, x OA (t*). However, the existence of a supporting hyperplane to
A (t*) at x cannot be guaranteed, as the set A (t*) need not contain interior points.
Indeed, A(t*) is weakly compact ([8, Thm. 1]), and if it has nonempty interior,
then X must be reflexive. However, if X is reflexive and the measures m(t*),

1, 2,. ., have -finite variation, then A (t*) will be compact and so will only
have interior points if it is finite-dimensional. (See [9, Cor. IX.4.2.] for the case of
measures with bounded variation; the -finite case follows by reduction.)

This parallels the fact that the bang-bang principle need not hold for such
systems. Consider the parabolic problem (18)-(21). For the problem of approxi-
mate controllability, the optimal control is unique, bang-bang and has only a finite
number of switchings. However, if we wish to hit exactly a distribution of
temperature x C([0, 1]) in minimum time, then the optimal control need not be
bang-bang. This follows easily from [10, Thm. 3], as the functions {v,} span
L([0, 1]), and so if f is any bounded measurable function on [0, 1], witho f(x)v,(x) dx 0, for all n 1, 2,. ., then f= 0. Then by [10, Thm.3], for any
time t>0, we have Av(t) Aexv(t),or there exist temperature distributions
reachable by admissible controls in time, t, but not reachable by bang-bang
controls.

6. Approximate conollabfli. Suppose X is a Banach space, and we are
given an element z Xand some e > 0. In this section, we consider the problem of
when B(z, e), the closed ball of radius e about z in X, can be reached by the
control system in some time > 0.

Consider once again the situation modeled in 3. If (, if, A) is a finite
measure space, set fit ff x ([0, t]), and let A x be the product measure on
For each [0, t0], we are given a vector measure re(t) fit X. For the set of
admissible controls, we take the unit ball in L(A x/); that is, consider the case
F(w, r) [- 1, 1], all (w, r) x [0, t0]. Then if for any bounded measurable
function f and time t, re(t, f) is defined as in (2), the mapping re(t) L(A x l)X
given by

m(t)(f) re(t, f), f 6 L(A x/),
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is a bounded linear operator. (The boundedness is a consequence of the fact that
m(t)(feL(h x l) O<-f <- 1)=-d m(t)(-t) is weakly compact and hence norm
bounded in X [9, Thm. IV.6.1.].) Denote the adjoint of re(t) by re(t)*.

The symbol "ll" II" stands for the norm in X (or in X’), and "11" I1" for the
norm in Lp(A l) (1 =p=oo). Note that we can regard m(t*)’X’-L x l).f(

TI-IEOREM 7. If B(z, e) is reached in time t, then for all x’ X’,
(23) I<x’, z>l- llx’ll IIm(t)*(x’)lll.

Proof. Since B(z, e) is reached in time t, there exists a control f with Ilflloo 1
and IIz re(t, )11--< . Then for any x’ 6 X’,

and so

I(x’, z m(t)(f))[ IIx’llllz m(t)(f)ll= llx’ll,

[(x’, z)l- el[x’ll I(x’, m(t)(f))l I(m(t)*(x’), f)l
Ilflloollm(t*)(x’)ll IIm(t)*(x’)ll

by H61der’s inequality.
COROLLARY 1. lf B(z, e) is reached in time t, then
Pro@ From (23) we have

(24) sup {l(x’, z>l IIx’ll a}- sup {llm(t)*(x’)ll" IIx’ll 1}.

As the range of the operator re(t*) is a subset of L 1, we have that

sup {llm(t*)(x’)[l
and the result follows from (24), since an operator and its adjoint have the same
norm.

COROLLARY 2. If a time optimal control exists and t*> 0 is the minimum
time, and if condition (C) holds, then ]’or any x’ X’ satisfying (3),

(25) I<x’, z>l- llx’ll--

Proof. Suppose ]’* is an optimal control and x’ satisfies (3). Then

(x’, m(t*, f*)) sup {(x’, m(t*, f)} Ilflloo-< 1},
and since the set A (t*) is symmetric about zero,

(x’, re(t*, -f*)) inf {(x’, re(t*, f)} [[fl[oo_-< 1}.
That is,

[(x’, re(t*, f*))[ sup {[(x’, re(t*, f))[ [[f[[o_-< 1}

sup {[(m(t*)*(x’), f)[ [[f[[o_--< 1}

=[[m(t*)*(x’)[[.
Also x’ supports B(z, e) at re(t*, f*), and so
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O<--_(x ’, m(t*, f*))= inf {(x’, z- w> Ilwll }

(x’, z)-sup {(x’, w) Ilwll }

-<x’, z>- llx’ll- I<x’, z>l-
and the result follows.

It may be worth noticing that if tl and x 0) satisfy (25), and the function
t- IIm(t)*(x’)ll is monotone increasing in a neighborhood of tl, then by Theorem
7, A(t) f’l B(z, e) for any < h, and so the minimum time t* _>- tl. Hence if we
compute a control f corresponding to t and x’ in (4), and if lie re(t1, fl)ll < ,
then tl is the minimum time and fa an optimal control.

In conclusion we show that the converse of Theorem 7 is also true.
TI-IEOIEM 8. Iffor every x’ X’ (23) holds, then B(z, e) is reached in time t.
Proof. Suppose B(z, e)f-lA(t)= . Since both these sets are closed and

convex, and the attainable set is weakly compact, we can find a nonzero x’ X’
which separates them strictly. In other words, there exist constants c, 6 > 0, such
that

and

sup {(x’, m(t)(f)) II[lloo 1} c

inf {(x’, x) x e B(z, e)} >-_ c.

It follows by using the symmetry of the sets B(z, e) and A(t), as in Corollary 2 that

IIm(t)*(x’)lll<--c- and ](x’,z>l-llx’ll>-c,
which contradicts (23).
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INITIAL STATE DETERMINATION FOR
DISTRIBUTED PARAMETER SYSTEMS*

TOSHIHIRO KOBAYASHI

Abstract. The purpose of this paper is to give an approximate initial state which depends
continuously on the measurement data.

In a distributed parameter system, the observability of the system is sufficient for an initial state to
be uniquely determined from the measurement data, but is not sufficient for the initial state to depend
continuously on the measurement data. That is, the problem of the initial state determination is not
generally well-posed in the above sense.

In this paper, a well-posed approximate method is given for the initial state determination. The
difference between a positive operator and a positive definite one in a Hilbert space plays an important
role in this method.

1. Introduction. From the physical viewpoint, the system state functions may
not be directly measurable and, instead, only certain restricted ones are actually
obtained. In order to construct feedback control, however, complete knowledge
of the state functions is required. It is necessary to determine the system state from
the restricted measurement data. Therefore the state determination problem is
very important from theoretical and practical points of view.

This problem is closely related to the concept of system observability [7]. In a
distributed parameter system, observability assures that an initial state can be
uniquely determined from the measurement data. As the space of initial states is
an infinite-dimensional one, observability does not generally assure that the initial
state depends continuously on the measurement data. That is, the problem of
initial state determination for a distributed parameter system is not necessarily
well-posed; this is different from a lumped parameter system [8], [9].

From the physical point of view, the measurement data have errors which
may be very small. Even if the distributed parameter system is observable, the
initial state determined from the measurement data is quite different from the
desired initial state. From the numerical calculation point of view, if the problem is
not well-posed, rounding errors may make the numerical solution meaningless,
regardless of the accuracy of the arithmetic.

From the above facts, it is not sufficient to investigate only the observability of
the distributed parameter system when we consider the problem of the initial state
determination. In this paper, an approximate method is presented which reduces
the nonwell-posed problem to a well-posed one. The method of generalized
inverses [1] is used to construct a filter of bounded operators that converges
pointwise to the inverse of the observability operator (possibly unbounded). That
is, the positive observability operator is approximated by a family of positive
definite ones.

* Received by the editors July 8, 1975, and in revised form November 19, 1975.
f Department of Control Engineering, Kyushu Institute of Technology, Tobata, Kitakyushu,

Japan.
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2. System description. In this section, system description is following Lions
[5]. So let H and V be two Hilbert spaces with

(2.1) V H, V dense in H;

the sign denotes both algebraic and topological inclusion. This means that the
identity mapping of V in H is continuous. We denote by (.,.)v (respectively,
(’,")n) and II" IIv (respectively, II" I]n) the scalar product in V (respectively, H)
and the norm on V (respectively, H). Let V’ be the dual of V; we identify H with
its dual so that

(2.2) V H V’.

If f V’, v V, (of, v) denotes their scalar product; if f H, it coincides with the
scalar product in H.

For each (0, T), we are given a continuous bilinear form a(t; u, v) on V,
having the following properties:

Vu, v V, the function - a(t; u, v) is measurable and

(2.3) la(t; u, v)l<-Lllull Ilvll, L constant independent of t, u, v.

For fixed u in V, the linear form
v a(t;u,v)

is continuous on V; therefore it can be written

(2.4) a(t; u, v)=(A(t)u, v), A(t)u W.

We deduce also from (2.3) that

(2.5) IIA(t)ull, ,<-_Zllull, , Vu V,

where I1" I1,,’ is the dual norm of I1" II,-
The family of operators A(t) 5F(V; V’) (the space of continuous linear

mappings from V onto V’) is coercive; that is,

there exists/3 and c > 0 such that
(2.6)

a(t; u, u)/t llull >-_ llull , u v.
Consider now the distributed parameter system described by the following

evolutiofial equation;

(2.7) du(t)+A(t)u(t) O, (0, T),
dt

and

(2.8) u(0) Uo, Uo given in H..

Here u’= du/dt is taken in the sense of distributions on (0, T).
For this equation we have the following existence and uniqueness lemma.
LEMMA 1 (Lions [5]). Under the assumptions (2.3) and (2.6), the system (2.7)

and (2.8) has a unique solution u such that u L2(0, T; V) and u’ L2(0, T; V’).
Furthermore, the solution u depends continuously on Uo.
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Remark. L2(0, T; F) denotes the space (equivalence class) of functions f
defined on [0, T] with values in a Hilbert space F such that

From Lemma 1., there exists an operator U(t) such that U(t) (H; V), and
the solution of the system (2.7) and (2.8) is given by

u(t) U(t)Uo, (0, T).

In physical situations, the space of observations K is finite-dimensional. The
output of the system is given by

(2.9) z(t) M(t)u(t), 0< < T,

where M(t) is a continuous linear operator from V to K for fixed (0, T), and
there is a positive constant Ix such that

(2.10) IlM(t)u(t)ll <-_llu(t)llv, u(t) v, t(0, t).

The observed output z(t) is written

(2.11) z(t) M(t)U(t)Uo,

From Lemma 1 and (2.10), it follows that z L2(0, T; K).

O<t< T.

3. Observability. In this section, we investigate observability of the dynami-
cal syStem described by (2.7) and (2.8) with the observation equation (2.9).

We start with the following definition.
DEFINITION 1. The system described by (2.7) and (2.8) with the observation

equation (2.9) is said to be observable at time T if an initial state u(0) can be
uniquely determined from the observed measurement data z(t) over the time
interval (0, T).

Let us define the observability operator G(T) by
T

(3.1) G(T)u= Jo U*(t)M*(t)M(t)U(t)Uo dt, uoH.

Here (.)* denotes the adjoint operator of an operator (.). From Lemma 1,
G(T) (H; H). Then we have the theorem for observability.

THEOREM 1. The system described by (2.7) and (2.8) with the observation
equation (2.9) is observable at time T if and only if the self-adjoint operator G(T) is

positive [2], [6]; that is,
(G(T)h, h)H>-O, Vh H,

and (G(T)h, h)H=0 implies h =0.
The proof for this theorem will be given in the Appendix. The explicit

conditions of observability were given by Kobayashi [3] for various types of
systems with averaged, pointwise, scanning and boundary outputs.

We can give another important theorem as follows.
THEOREM 2. Suppose that an operator G defined on a Hilbert space is

self-ad]oint and positive. Then its inverse G-1 is continuous if and only if G is
positive definite [2], [6]; that is, there is a positive constant 3’ such that

(Gh, h)vi >- llhll,, Vh e H.

The proof for this theorem will be also given in the Appendix.
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Remark. If H is finite-dimensional, the positive operator is always positive
definite. This is shown as follows. In this case, the operator G is an n n matrix for
an n-dimensional Euclidean space H. Let eigenvalues of the matrix G be
{A I, A2,"" ", An} and the corresponding eigenvectors be {bl, b2,’’’, bn}. Any
n-dimensional vector h H is described by

Since

(3.2)

h-- Z hidPi.
i=1

Gh . hiG4)i
i=1 i=1

Gh, h) h&, Z
i=1

(h,A,49,,
i,]=l

Aihi
i=1

Now replacing h by bi (i 1, 2,. ., n), we obtain

(G4)i, 4i)= &(4i, bi) >0, 1, 2, , n,

which shows hi > 0 (i 1, 2,. ., n). Let T min h (>0), and then

(Gh, h) _-> 3’ h 3,11hl[2, Vh e H,
i=1

from (3.2). If the space H is infinite-dimensional, however, hg >0 (i 1, 2,...)
does not necessarily imply inf & >0. Thus there is no positive constant 3’ in
general.

Next let us seek a unique initial state from the measurement data. Premulti-
ply both sides of (2.10) by U*(t)M*(t) and integrate over an interval (0, T). We
obtain

(3.3) G(T)uo U*(t)M*(t)z(t) dr.

Now define an operator P(T) by
T

(3.4) P(T)z Jo U*(t)M*(t)z(t) dt

and then P(T) =L’(L2(0, T; K);/-/). Equation (3.3) becomes

(3.5) G(T)uo P(T)z.

If the system (2.7), (2.8) and (2.9) is observable at time T, the operator G(T) is
positive and has its inverse G(T)-1. Thus the initial state is uniquely determined
by

(3.6) Uo G(T)-Ip(T)z.
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For the distributed parameter system, the initial state space H is infinite-
dimensional. Then Theorem 2 shows that the inverse operator G-1 is not
necessarily continuous, even if the operator G is positive, that is, the system is
observable at time T. If G-1 is not continuous, a small observation error induces a
quite large error to the initial state determined by (3.6).

It is not practical to use (3.6) to seek an initial state from the measurement
data. From numerical points of view, numerical algorithms which seek the initial
state from (3.6) do not converge if G-1 is not continuous. When we treated only
lumped parameter systems, these difficulties did not occur.

Therefore we should consider a new approximate method of determining the
initial state which depends continuously on the measurement data.

4. Well-posed approximate method. In this section, we consider the approxi-
mate method of determining the initial state, which is well-posed. First consider
the following estimation problem.

Problem I. Seek an optimal initial state which minimizes

(4.1) J( uo) Ior IlZo(t) M(t)u (t)ll dt

for the system (2.7), (2.8) and (2.9), where Zo(t) denotes the measurement data
and M(t)u(t) denotes the output of the model system.

This problem is ordinarily used to determine numerically an initial state for
lumped parameter systems. Next we introduce a regularized estimation problem
corresponding to Problem I.

Problem II. Seek an optimal initial state which minimizes

T

(4.2) J(u)= fo [Iz(t)-M(t)u(t)llZdt+e(Nu’ Uo)n, >0,

for the system (2.7), (2.8) and (2.9), where

N(H, H), (Nuo, Uo). clluol[ , c >0.

If the system (2.7), (2.8) and (2.9) is observable at time T, both Problem I and
Problem II have unique solutions, respectively. For Problem I specifically, there is
a unique initial state u0 such that J(uo)= 0, without measurement errors.

Now we shall seek the optimal solution for Problem I and Problem II. The
performance index of Problem II, J(uo), is transformed as follows:

T

(4.3) J(uo) Io Ilz( t) M(t) u(t) ull2 at+ e(Nuo,

I"T

(4.4) | (Zo(t)-M(t)U(t)Uo, Zo(t)-M(t)U(t)Uo):dt+e(Nuo, Uo).
o

Since the operators U(t) and M(t) are continuous and J (Uo) is differentiable, the
necessary optimality condition is

(4.5) J’(Uo) h O, Vh H.
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Now J’(Uo) is explicitly calculated, and then (4.5) becomes
T

(4.6) Io (M(t) U(t)Uo Zo(t), M(t) U(t)h): dt + e(Nuo, h)H O, Vh H.

On the other hand, by using adjoint operators U*(t) and M*(t), (4.6) is trans-
formed into

T

(4.7) Io (U*(t)M*(t)M(t) U(t)Uo U*(t)M*(t)Zo(t), h)n dt + e(Nuo, h)n O,

VhH.
Moreover from (3.1) and (3.4), (4.7) becomes

(4.8) (eNuo + G(T)uo -P(T)zo, h)H 0, h 6 H.

Since this equation holds for any h e H, we obtain

(4.9) (eN+ G(T))uo P(T)zo

as the equation by which the optimal solution u0 is defined.
Similarly we obtain for Problem I

(4.10) G(T)Uo P(T)Zo

as the equation by which the optimal solution u0 is determined. Now the optimal
solution u0 for Problem I is uniquely determined by

(4.11) uo= G(T)-lp(T)zo,

if the system (2.7), (2.8) and (2.9) is observable at time T, that is, G(T) is positive.
However, the inverse G(T)-1 is not continuous in general from Theorem 2; then
the solution u0 does not necessarily depend continuously on the measurement
data Zo.

For Problem II, if the system (2.7), (2.8) and (2.9) is observable at time T, the
operator G(T) eN+ G(T) is positive definite, because

(4.12)
(G(T)h, h),= e(Nh, h)t+(G(T)h,

>-ecllhll , heH.

From Theorem 2, there is a continuous inverse operator G(T)-1. Therefore the
optimal solution uo for Problem II is uniquely determined by

(4.13) Uo G(T)-lP(T)zo.
Moreover u0 depends continuously on the measurement data Zo, as P(T) is a
continuous operator.

Next we shall be able to show
2(4.14) lim Iluo uoll.-- 0,

e-0

Putting h Uo Uo in (4.6), h Uo- Uo in the optimality condition for Problem
I,

T

(4.15) Io (M(t)u(t; Uo)- Zo(t), M(t)u(t; h))K dt O, h H,
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and adding, respectively, both sides of two equations, we obtain
TIo (M(t)u(t; Uo)-M(t)u(t, Uo), M(t)u(t; Uo)-M(t)u(t; Uo))dt

(4.16) + e(Nuo, Uo Uo)n O.

which implies

From this,
2clluo - uoll,=-(Nuo, Uo UO)H,

lim IlUo Uoll= 0.
e->0

Now we notice that Uo and Uo are the solutions minimizing J(uo) and J (Uo),
respectively, when the measurement data is Zo. Therefore Uo is not the actual

Here u (t; h) U(t) h. From this equation we have

(4.17) (Nuo, Uo UO)H <= 0,
since e > 0. But (4.17) implies

(Nuo, Uo)<--(Nuo, Uo) <- IINuoll" Iluoll-<- Clluoll. Iluoll
c being positive constant as Ne (H; H). Since (Nuo, Uo) >- clluo ll=, we obtain,
consequently,

(4.18) Iluo <-- lluoll.
Thus from every sequence of e --> 0, we can extract a subsequence rt such that
Uo, --> w weakly in H. From (4.9) we have

(4.19) (eNuo,, h)+(G(T)uo,, h)= (P(T)zo, h), Vh H.

As r/ 0, (4.19) becomes

(4.20) (G(T)w, h)=(P(T)zo, h), Vh

From (4.10) and (4.20), we have

(4.21) (G(T)w, h) (G(T)uo, h), Vh H.

Here putting h w- Uo, we obtain

(4.22) (G(T)(w Uo), w Uo) 0.

From positiveness of G(T) (the hypothesis of the system being observable at time
T), we have

W-- Uo.

Here {uo,} is an arbitrary, weakly convergent subsequence and its weak limit Uo
does not depend on how we choose subsequences. Therefore the extraction of a
subsequence is unnecessary and uo - uo weakly in H (see [4]). Moreover from
(4.17),

(N(uo Uo), Uo Uo) <- -(Nuo, Uo Uo).
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initial state (denote it by Uo*). We should evaluate IlUo-Uo*llH. Define u by

(4.23)

Then

(4.24)

G(T)u= P(T)z.

Iluo- uo*ll Iluo- ull + Ilu- uo*ll.
For the second term of the right-hand side, we can apply (4.14) to the case of
Zo z. As a result we obtain

(4.25) lim Ilu- UIIH O,
e-->0

Next, as for the first term, we obtain

Uo u G-2(r)P(r)(zo z)

from (4.9) and (4.23). Since IIa(r)hll - ecllhll for any h e H,

iiaT(Z)ll=< 1
o

Thus we have

IlUo ullH <= P(T)II.

If we can evaluate the measurement error by

we have

(4.26) I1o ul] <llP(Z)ll.
E

The right-hand side of (4.26) tends to 0 as e and 6 tend to 0 where a relation
6 o(e) holds (6 has a higher order than e). Thus if e and 6 are chosen with

o(e),

(4.27) lim IlUo, Uo*lln 0.

On the other hand, we can give a posteriori estimate for IlUo,- uo*]]n, if IIP(T)-]]
can be estimated. We put Uo* Uo, + y in the identity G(T)u*o P(T)z. Then we
have

G(T)(uo + y)= P(T)z.

From this, it follows that

G(T)uo P(T)zo+ G(T)y eN(uo + y) + P(T)(zo- z) O.

Since G(T)Uo P(T)Zo 0, we get

(4.28) G(T)y P(T)(z zo)- eN(uo, + y,) O.
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This means that the element y realizes the lower bound of the functional

I(uo) Ior
(4.29)

Therefore

[]z(t)-Zo(t)+ eP(T)-N(Uo, + y)-M(t)u(t; uo)ll2 at

(4.30) I(y) -< I(0) Ior
From this,

That is,

+ e(Nuo, UO)H.

IIz(t)-Zo(t)+ eP(T)-aN(uo + y)l[2 dr.

2ecllyll2 IIz Zo + eP(r)-lN(uoe + y)lko,;,,):

-lyIIH llz z01I=0,;K> + IIP(T)-III "IlNll(llu0ll. + IlYIIH)
<-- 6 + C[IP( T)-III(IlUoIIH / [lY IIH).

If we choose e such that c- CIIP(T)-II > O, we obtain

(4.31) /G+ cGIIP(T)-’II, Ilu0IIH
G-CGIIP(T)-’II

Summarizing, we get the following.
THEOREM 3. If the system (2.7), (2.8) and (2.9) is observable at time T,
(i) ]’or Problem I, there is a unique optimal solution Uo which does not

necessarily depend continuously on the measurement data Zo;
(ii) [or Problem II, there is a unique solution Uo which depends

continuously on the measurementdata Zo and satisfies with the convergence property
(4.27).

This theorem shows that the optimal solution for Problem II, u0, is an
approximate initial state which depends continuously on the measurement data.
Various methods for optimal control problems are applied to solve Problem II.

5. Conclusions. In this paper, we have investigated the initial state determi-
nation problem for a distributed parameter system. The problem relates to the
concept of observability.

The initial state space is infinite-dimensional for the distributed parameter
system. Even if the distributed system is observable, we cannot necessarily
determine the initial state continuously dependent on the measurement data by
the same method as that for a lumped parameter system. The initial state
determined from the measurement data is quite different from the actual initial
state, since the measurement data always have errors which may be very small.
Therefore, we gave an approximate method which determines the approximate
initial state continuously dependent on the measurement data. We analyzed this
method from the difference between positive operators and positive definite ones
in a Hilbert space. However, how to choose e for this ,method was not sufficiently
investigated in this paper. From the numerical calculation point of view, we gave a
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well-posed approximate method, but we did not investigate the property of
well-conditioned one. How to choose e depends on each problem.

It is interesting to apply this method to a system which is not observable, by
using pseudoinverse operators. It is also possible to apply this method to an
identification problem for the distributed parameter system.

Appendix.
Proof of Theorem 1. As z L2(O, T; K),

2 I0
T

IIz(t)ll dt

(M(t) U(t)Uo, M(t) U(t)Uo)< dt

Jo (U*(t)M*(t)M(t) U(t)Uo, Uo)i dr.

Since (3.1) and G(T) e &e(H; H), the integrand can be put into the inner product,
2

This shows that the operator G(T) is nonnegative. Thus the initial state u(0) is
uniquely determined if and only if the operator G(T) is positive. Therefore we
obtain Theorem 2.

Proof of Theorem 2 (Mikhlin [6]). Sufficiency. Let the operator G be positive
definite; that is, there exists a constant y > 0 such that

(A.1) (Gh, h) >- ,llhll, Vh H.

Then, since

(1.2) (Gh, h)<--Ilahll" Ilhll,
(A.3) IIGhll-->
This last inequality shows that the inverse operator G-1 exists and is bounded.

Necessity. Let G be a positive, but not a positive definite operator. That is, for
any nonzero h H,

(A.4) (Gh, h)>O,

but there exists no positive constant , such that

(A.5) (Gh, h)>-_ 3,11hll, Vh H.

Equation (4) means that 0 is not an eigenvalue of G, from which G-1 exists.
Then the range set Ra is dense in H. This is shown as follows. Consider Hsuch
that

(A.6) (Gh, so)=0, Vh e H.

Equation (6) is rewritten as

(A.7) (h, G*sc) 0, Vh e H,
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from which it follows that belongs to the domain of definition of the operator
G* and that G*:=0. But G*= G, and therefore G:=0, from which 0,
because 0 is not an eigenvalue of G. Thus R is dense in H.

Lastly, consider

A.8) m inf Gh’ h
h (h, h)

Since G is positive but not positive definite, m 0, from which it follows that 0 is a
point of the continuous spectrum of G. Therefore G-1 is unbounded in H.
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SPECTRAL MINIMALITY FOR INFINITE-DIMENSIONAL
LINEAR SYSTEMS*

AVRAHAM FEINTUCH?

Abstract. Let {A, b, c} be an infinite-dimensional system on a Hilbert space H. Suppose
f(A) ((AI- A)-lb, c) is the transfer function of the system. It is shown that if A is a compact operator
or spectral operator, then the set of singularities of f is the spectrum of A.

1. Introduction. In recent years, attempts have been made to generalize the
central results in finite-dimensional linear systems to infinite-dimensional Hilbert
space.

It was seen that properties such as the state space isomorphism theorem [3, p.
113] and the spectral minimality property [1] do not hold for arbitrary infinite-
dimensional systems (see, for example, [1], [7], [2]). Thus a number of authors
decided to consider specific classes of linear operators such as restricted shift
operators [1], [5], [6] or normal operators [2] and obtained interesting results.
(See also [9], [10], [11]).

In this paper, we attempt to continue the work in this direction. We consider
compact operators and spectral operators. Both of these classes are natural
generalizations of finite-dimensional operators. We prove the spectral minimality
property for such systems.

2. Preliminaries and notation. We begin with two linear spaces U and Y
which we assume to be finite-dimensional. Uwill be called the control space and Y
the output space. Let {Ai}i=0 be a sequence of linear transformations from Uto Y,
and consider the linear transformation

n-1

y,= Aju,-j-1
j=0

sending sequences of elements of U into sequences of elements of Y. This
transformation is called a (discrete) linear time-invariant input/output map, and
the sequence {Ai} is called its impulse response function.

Given a discrete constant linear system described by the equations

(1)
Xn+ Ax. + Bu.,

y, Cx,,,

where xn belongs to a linear space X called the state space, A B(X), B
L(U, X), C L(X, Y), we will say that {A, B, C} is a bounded realization of the
above input output relation if Ai CA-IB for all i.

* Received by the editors February 13, 1975, and in revised form October 14, 1975.
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DEFINITION. The system (1) is controllable if ker B*A.i {0} and observ-
able if (’liker CA ={0}. The system will be called canonical if it is both
controllable and observable.

If U, X, Y are finite-dimensional, then by the state space isomorphism
theorem, two .canonical systems {A, B, C} and {A1, B1, C1} realize the same
impulse response function, if and only if they are similar.

Here we will take X to be an infinite-dimensional Hilbert space, and to
simplify certain proofs, we take our system to be single input, single output; i.e.,
we assume U Y C. It is not hard to extend our resuls to the case U Cp,
Y Cr. We also mention that the same technique holds if X is a Banach space.

Thus Ba ab for some b X, and Cx (x, c) for some c X. We will denote
the system by the triple {A, b, c} with A B(X). Thus {A, b, c} is controllable if b
is a cyclic vector for A and observable if c is a cyclic vector for A*, and the
weighting pattern {ai} is realized by {A, b, c} if ai (A i-lb, c). The function

f(z)=((z-A)-lb, c)

is called the transfer function of the system. We will make use of the following
characterization of all realizable transfer functions proved by Baras and Brockett
in [1] and independently by Fuhrmann [5].

THEOREM 1. The weightingpattern {ai} has a bounded realization, if and only
if its transfer function is analytic at infinity and vanishes there.

3. Spectral minimality. Let f(z)= ((z-A)-lb, c) be the transfer function of
the system {A, b, c}. Let Oo(A) denote the unbounded component of the resolvent
p(A). By o-0(A) we denote the compliment of po(A). It was pointed out by Baras
and Brockett that (f) {z CIf is not analytic at z}

___
o-0(A). They called this the

spectral inclusion property and gave examples to show that often strict inclusion
holds.

DEFINITION. A canonical realization {A, b, c} of {ai} has the spectral mini-
reality property if or(A)= r(f).

The term spectral minimality was coined and introduced by Baras and
Brockett in [1] and this property was also studied in [9], [10] and [11]. Here we
show this holds when A is compact or spectral.

4. Compact operators. We assume the basic facts about the description of the
spectrum of a compact operator, and consider various cases. In the case where A
is quasi-nilpotent, we do not even need compactness.

DEFINITION. A is quasi-nilpotent if o’(A)= {0}.
THEOREM 2. If A is quasi-nilpotent and f is the transfer function of the

controllable system {A, b, c}, c 0, then o-(f) r(A) {0}.
Proof. Consider f(z)= ((z-A)-b, c). Then f is analytic everywhere except

possibly 0. If f is analytic at 0, then f is entire, and by Theorem 1, f is bounded and
f(c) 0. By Liouiville’s theorem, f is identically zero. Using the inverse Laplace
transform, this implies that

(Aib, c)=O for all i.

Since b is a cyclic vector for A, this implies that c 0, which is impossible. This
completes the proof.
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Before proceeding, we need the following technical lemma which is a
consequence of a theorem of Rosenthal [8].

LEMMA 3. Let H and K be Hilbert spaces, A B(H), B B(K) and C
B(K, H). I r(A) 71 r(B) (g, then the operator

is similar to A B on H@K.
Proof. See [8, Chap. 0].
THEOREM 4. SupposeA is a compact linear operator and . 0 is an eigenvalue

o[ A. Then
f(z)=((z-A)-lb, c)

is not continuable analytically to )t.

Proof. The subspace

N {xl(A M)"x 0}

is a finite-dimensional invariant subspace of A. If we represent A as an operator
matrix with respect to the decomposition A N(N, then

A=
0 A2"

Now o’(A1) {I}, o’(A2) o-(A)\{}. Thus o-(A1) CI o-(A2) . So A is similar
to A (A2. Since canonical realizations are invariant under similarity, we may as
well assume A A @A2.

If P is the orthogonal projection on Nx, then the system {A, Pb, Pc} is
canonical and o-(A 1)= {)t }. Thus by Theorem 2,

f, (z) ((z A)-lpb, Pc)

cannot be continued analytically to A.
Now f(z)=f(z)+((z-A2)-l(1-P)b, (1-P)c), where the second term is

analytic at . Thus f(z) is not analytically continuable to ,. This completes the
proof.

We are now ready to prove the main result of this section.
THEOREM 5. Let {A,b,c} be a compact linear system and f(z)=

((z-A)-lb, c) its transfer function. Then or(f) r(A).
Proof. We consider two cases.
Case (i). o-(A) is finite. Let {)t l,’’’, ,k, 0} be o-(A). By using Lemma 3 k

times, we obtain that A is similar to an operator

A1
A, 0

0

where o-(Ai)= {,i}, 1-<iN k, and o-(A+l)= {0}. The result now follows by the
argument in the previous theorem.
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Case (ii). o-(A) is infinite. Then 0 is the limit point of r(A). It was seen in
Theorem 4 that f(z) cannot be continued analytically to a nonzero point of the
spectrum. If f is analytic at 0, then it is analytic in some neighborhood of 0. But
every neighborhood of 0 contains nonzero points of (A). This completes the
proof.

A natural question to ask is whether the state space isomorphism theorem is
true for compact linear systems. The following example, pointed out to the author
by P. Fuhrmann, shows that this is not the case even if A is taken to be self-adjoint.
A similar example has been described in [11, p. 697].

Example 6. Let {Ai} be a real sequence to 0, and let

A= /2 0

0 ""
be an operator on 2. Let b {/3i}, c {3’i} be sequences in 12 such that/3i # 0, /
0 for all i.

Consider the systems {A, b, c}, {A, c, b}, and suppose they are similar; i.e.,
there exists a bounded invertible linear transformation R such that AR
RA, Rb c.

Since R commutes with A,

R=

0

and Rb c implies p/3 y; i.e., p y//3i. If we choose/3 and / such that {/3}
converges to 0 much faster than {%}, then R will not be bounded.

5. Spectral operators. We begin by presenting the necessary facts about
spectral operators.

DEFINITION 7. Let X be a Banach space. A spectral measure in X is a
homomorphic map of a Boolean algebra of sets in the plane into a Boolean
algebra of projection operators in X such that it maps the unit in its domain into
the identity operator. A spectral measure is bounded if the norms of the
projections in its range are bounded.

DEFINITION 8. If E is a Boolean algebra of subsets of C which contains and
C; then a spectral measure E on E is called a resolution of the identity for the
operator A if, for all t ,

(i) E(a)A AE(a),
(ii) o-(T[E()X)

_
6-.

The classic example of a spectral resolution of the identity is given by the
spectral theorem for normal operators on Hilbert space. In this case, the projec-
tions are self-adjoint, which is not true in general.

DEFINITION 9. A spectral operator is an operator with a countably additive
resolution of the identity defined on the Borel sets of the plane.
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DEFINITION 10. S is a spectral operator of scalar type if

where E is the resolution of the identity for S.
The following canonical reduction of spectral operators shows how this class

is a natural generalization of finite-dimensional operators.
THEOREM 11. T is spectral, if and only if T S + N, where S is spectral of

scalar type, N is quasi-nilpotent and SN NS. This decomposition is unique.
For the proof of this, as well as most other facts about spectral operators, see

[4].
We now come to the property of spectral operators that is important for this

study.
Let R(z;A) denote (zI-A)- for z eo(A). If xX, then an analytic

extension of R(z; A)x will be an X-valued function f defined and analytic on an
open set D(/) o(A) such that

(zI-A)f(z)= x for z e D(f).

Then clearly/(z)= R(z; A)x for z co(A). It should be pointed out that the
notion of "analytic extension" is different from that of "analytic continuation",
for the domain D(f) may contain points which cannot be connected with any point
in o(A) by a curve in D(f).

To simplify matters, we will assume o(A) is connected, and thus the two
notions will be identical.

DEFINITION 12. The function R(z;A)x has the single-valued extension
property if for every pair f, g of analytic extensions of R(z; A)x we have
f(z) g(z) for z e D(f) 71D(g).

The union of the sets D(f) as f varies over all analytic extensions of R(Z; A)x
is called the resolvent set of x, denoted by p(x). Its compliment will be called the
spectrum of x, or(x).

If R(z, A)x has the single-valued extension property, then there is a maximal
extension x(z) of R(z; A) with domain p(x). Then x(z) is a single-valued analytic
function with domain p(x) and

x(z)=R(z;A)x for zep(A).

THEOREM 13. If A is a bounded spectral operator in X, then for every x e X,
the function R (z; A)x has the single-valued extension property.

Proof. See [4, p. 1933].
It is interesting to note that the backward shift on H2 does not have this

property.
LEMMA 14. IfA B(X) has the single-valued extension property, then for all

x eX,
cr(x)

_
cr(A).

Also o’(A) U {cr(x)[x e X}.
Proof. See [4, p. 2093].
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I_,EMMA 15. For x X, denote by J/lx the closed linear manifold determined by
all the vectors R(z; A)x with z p(A). If A is spectral, then J/Ix is an invariant
subspace ofA and o-(A It)= o-(x).

Proof. See I-4, p. 2171].
THEOREM 16. Let A be a spectral operator and b a cyclic vector for A. Then

o’(b) o’(A).
Proof. Suppose b is a cyclic vector for A and consider J//. If X, let c be a

nonzero vector in . Then for all z e p(A), ((zI-A)-b, c)=O. If we take the
inverse Laplace transform, we obtain that (Ab, c)= 0 for all n. But since b is
cyclic, this implies c 0, which is impossible. Thus J// X. By the previous
lemma, it follows that o-(A)= r(b). This completes the proof.

THEOREM 17. Let {A, b, c} be a canonical spectral system, with transfer
functionf(z) ((zI-A)- b, c). Then {A, b, c} has the spectral minimality property.

Proof. Consider f(z)=((z-A)-lb, c), and suppose A e o-(A). Suppose f(z)
can be analytically continued to

It follows easily that for every polynomial p, the function ((z A)-p(A)b, c)
is analytic at A. Thus since p(A) commutes with (z-A)-, by taking adjoints we
obtain that for any polynomial p, the function ((z A)
Since the system is canonical, c is a cyclic vector for A*. Thus the function
b(z)=(z-A)-lb has an analytic extension to ,. This contradicts the fact that
or(b) or(A). The proof is complete.

Remark 18. This theorem is a significant generalization of Theorem 2.1 of
[2], in the scalar case, since every normal operator is spectral (in fact, of scalar
type).

Acknowledgment. I would like to thank Professor P. Fuhrmann for many
valuable discussions on the problems considered here.
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THE INFINITE-DIMENSIONAL RICCATI EQUATION FOR
SYSTEMS DEFINED BY EVOLUTION OPERATORS*

RUTH CURTAIN AND A. J. PRITCHARD$

Abstract. In the paper we consider the linear, quadratic control and filtering problems for systems
defined by integral equations given in terms of evolution operators. We impose very weak conditions
on the evolution operators and prove that the solution to both problems leads to an integral Riccati
equation which possesses a unique solution. By imposing more structure on the evolution operator we
show that the integral Riccati equation can be differentiated, and finally by considering an even smaller
class of evolution operators we are able to prove that the differentiated version has a unique solution.
The motivation for the study of such systems is that they enable us to consider wide classes of
differential delay equations and partial differential equations in the same formulation. We derive new
results for such a system and show how all of the existing results can be obtained directly by our
methods.

Introduction. A number of recent reports and papers, [1]-[8], [13], [14],
16], [21] have considered the optimal control and filtering problems for evolution
equations in Hilbert space. These problems lead to an infinite-dimensional Riccati
equation which can take different forms depending on the structure assumed on
the original dynamics. We feel that the most natural formulation of the problem is
in terms of integral equations, or input-output relations, and these lead to an
integral version of the Riccati equation. However, in order to make comparisons
with finite-dimensional theory and for computational applications, we also ask
what extra conditions must be imposed so that the integral Riccati equation may
be differentiated, and so that the differentiated form has a unique solution.

The main applications of our results are to problems in which the system is
modeled by either partial differential equations or differential-delay equations.
There have, of course, been many papers devoted specifically to either one of
these areas. For example, Lions 13 ], and Bensoussan 1 have derived a differen-
tial Riccati equation for the optimal control and filtering problems, where the
differential operator M(t) is associated with a continuous bilinear form. Their
results have applications to partial differential equations. Vinter [21] has consi-
dered the control problem for a class of hyperbolic partial differential equations,
allowing for both boundary and distributed control. Mitter and Delfour [9] using
essentially the ideas of Lions have achieved similar results for the control problem
for differential delay equations. Another approach was adopted by Datko [8] and
Pritchard 16] who have considered systems determined by an abstract operator M
which generates a strongly continuous semigroup, thus enabling both differential-
delay equations and certain partial differential equations to be considered in the
same formulation. Curtain [7] and Mitter and Vinter [14] have examined the
filtering problem for autonomous differential delay systems by using the special
structure of the semigroup relevant to these systems. The general theory was
extended to abstract operators M(t) which generate evolution operators (t, s) by
Curtain and Pritchard [5] for the particular application to partial differential

* Received by the editors May 6, 1975.
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equations of the type studied by Kato and Tanabe 12]. In [4] Curtain adapted this
evolution operator approach to obtain similar results for systems where is
associated with differential-delay equations.

Finally, in the monograph by Bensoussan, Delfour and Mitter [2] the integral
Riccati equation is derived using the Lions approach for a more general class of
evolution operator 0//(t, s) strongly continuous on 0 =< s < t-< T.

In this paper we consider an even more general class of evolution operators
than those of [2] in that //(t, s) is only assumed to be weakly continuous on
0_-< s < =< T, and which we call "mild evolution operator". We show that if //(t, s)
is a mild evolution operator, then the optimal control problem leads to an integral
Riccati equation. Moreover our approach does not follow Lions but is construc-
tive in the sense that we derive a sequence of weakly continuous operators which
converge to the unique solution of the integral Riccati equation. We then
introduce the concept of a "quasi-evolution operator" in order to obtain a
differential version of the Riccati equation. To ensure uniqueness it is necessary to
suppose that ll(t, s) is a strong evolution operator. However, this condition is
satisfied by many of the applications to partial differential equations and differen-
tial delay equations in the literature. For the filtering problem, one is led to study a
"dual" Riccati equation, and we prove that if a//(t, s) is a mild evolution operator,
the integral version of the dual Riccati equation has a unique solution. We obtain a
differential version if //(t, s) is a strong evolution operator, but for uniqueness we
need to suppose that 0?/.(T_ s, T- t) is a strong evolution operator. These results
include the previous results on the dual equation in [3], [7], 14], and Vinter and
Curtain use them to obtain a general filtering theory for evolution operators in [6].

After developing the main results in 1, 2, 3, we illustrate the results with a
number of applications in 4.

1. Perturbation theory for evolution operators. Evolution operators were
studied by Kato and Tanabe in [12] for a class of parabolic partial differential
equations with time-dependent coefficients. If the coefficients are time-invariant,
the evolution operator is just the semigroup generated by the differential
operator. Just as semigroups are not restricted to partial differential equations,
evolution operators can be used to describe more general systems, including delay
equations as in [20]. Here we define three types of evolution operators; mild,
quasi and strong evolution operators. Strong evolution operators correspond to
strong solutions of the homogeneous abstract evolution equation (t) (t)z(t),
as was discussed by Kato and Tanabe in 12]. For control problems, the concept of
a strong solution is too restrictive and so the term mild evolution operator is used
in [2], [5], [7], [16], [18]. From a deeper study of the quadratic cost control
problem and the dual filtering problem, we feel that a still weaker version is
appropriate and, in addition, an intermediate evolution operator which we call a
quasi-evolution operator.

DEFINITION 1.1. Mild evolution operator. Let H be a real Hilbert space and
T [0, T] an interval of the real line and

A(T) {(t, s) O<=s < t<= T}.
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0-//(.,. ):A(T)--> (H) is a mild evolution operator if

(1.1) R(t,r)Oll(r,s)=all(t,s) for O<-_s<-r<-_t<=T,

(1.2) -//(t, s) is weakly continuous in s on [0, t] and in on Is, T].

We note that in [2], [5], [7], 16], 18], a mild evolution operator is used when
R(. ,. satisfies (1.1) and is jointly strongly continuous. An interesting observa-
tion is that if we define

(t, s) ll*(T-s, T- t),

then (.,. defines a mild evolution operator on A(T) and (.,. may be
considered the "dual" to o//(.,. ). (See 3 on the dual Riccati equation.)

Our main result is the following perturbation theorem.
THEOREM 1.1. If 11(’," is a mild evolution operator on A(T) and D

3oo(T; 5g(H)) where

{ D: T(H) such that O(. )x is strongly
(T; (H))=

measurable for each x Hand ess sup,-IID(/)II <-then the following operator integral equation has a unique solution 11o( ,. ),

(1.3) OD(t, S)X (t, S)X + (t, r)D(r)D(r, s)x dr

in the class o weakly continuous bounded linear operators on H. D( is a mild
evolution operator and we call it the perturbed mild evolution operator corre-
sponding to the perturbation D. Furthermore,

we have

ess supllD(t)llM1, ess supll(t, s)[I M2,
tT A(T)

lifo(t, s)ll<--Mi exp MiM2(t-s).

Proof.
(a) Existence. We note that suprllR(t, s)llM, since 0//(. ,. is weakly

continuous (see Appendix, Property A.3).
Let

11o (t, s)x ll(t, s)x for all x H,

Isl(t, s)x -ll(t, r)D(r)(r, s)x dr,

n(t, s)x (t, r)D(r)ll,,_l(r, s)x dr,

where the integrals are well-defined Bochner integrals from the Appendix,
Lemma A.1 and Property A.3.
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We have

by induction. Hence

and

I[oll. t,, s )x[[ <_ M2(MM2) (t-s______2)

lib.(t, s)IIM2(MM2)"-1

,(t, s) -<M2 exp (M1M2(t-s)) for all N.
n:l

Therefore ,= ,(t, s) is convergent on A(T) in the uniform topology and

sup ,(t, s) <_-Ma exp (MIMaT).
A(T)

But

Z .(t, s)x (t, s)x + E .(t, s)x
n=0 n=l

(t, s)x + _. (t, r)D(r),_(r, s)x dr
=1

(t, s)x + . (t, r)D(r),_(r, s)x dr.
.=1

Therefore D(t, S) 2oon=l 0//-( t, S) satisfies (1.4) and

Then

D(t, t) I; sup [lv(t, s)]l<=Ma exp (M,M2T).
A(T)

(b) Uniqueness. Suppose there is another solution (t, s) and let

R(t, s)= -//(t, s)-llD(t, s).

R(t, s)x (t, r)D(r)R(r, s)x ds,

.’. [IN(t, s)xl[<=MM IlR(r, )xll ds.

So R(t, s)x =0 for all x H, by Gronwall’s inequality.
(c) Semigroup property.

D(t, r)allD(r, s)x l(t, r)(r, s)x + (t, r)(r, /)D(Cl)D(I, s)x

+ (t, )D(1)//(/3, r)ll(r, s)x

... o(, r)(r, s)x _o(, s)x

(t, )D(/)(a//(/3, r)(r, s)-(, s))x
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Let R(, r, s)= RD(, r)o(r, s)--Ro(, s).

.. IIR (, r, xII--<MM IIR (, , )xll d.

Since o(t, t) I, Gronwall’s inequality implies R(t, r, s)x 0 Vx H and s N r N
t.

Hence (t, r)(r, s) (t, s) for s N r N t.

(d) Continuity. We show that o(t,. is weakly continuous on [0, t] and
(., s) is weakly continuous on Is, T]. Consider

4(t, s)x (t, r)D(r)(r, s)x dr.

Take h > 0, q e Is, T), t (s, T]. Then we have

(t + h, s)x-(q, s)x ((q + h, r)-(q, r))D(r)(r, s)x dr

tl +h

+ (/1 + h, r)D(r)D(r, s)x dr

and

t2-h
(tz, S)X-q)(t2-h,s)x (R(t2, r)-R(tz-h,r))D(r)Ro(r,s)xdr

+ R(t2, r)D(r)llD(r, s)x dr,
2-h... [(y, 4)(t+h,s)x-4)(t,s)x)[<= [(y, ql(tl+h,r)-ll(t,r)D(r)llo(r,s)x)ldr

/ MMexp (MM(r-s))llxllllYll dr.

Using the Lebesgue dominated convergence theorem and the weak continuity of
0//(., r) on Is, T), we have

](y, 6(/1 A- h, s)x (k(t, s)x)] 0 as h O.

Similarly,

](y, (h(t2, s)x (h(t2- h, s)x)l--< f,-h [(y, (?/(tz, r)- //(t2-h, r))D(r)llo(r, s)x)] dr

+ MM exp (MM.(r- ))llxll Ilyll d
2-h

so oh( , s) is weakly continuous on Is, T]. To prove continuity with respect to the
second variable, we use the fact that (., is also the unique solution of (1.4):

(1.4) all(t, s)x (t, s)x + all(t, r)D(r)(r, s)x dr

(this is proved in Corollary 1.2).
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Consider

O(t, s)x (t, r)D(r)all(r, s)x dr.

We take h > 0, s [0, t) and s e (0, t]. Then

q(t, s + h)x-q(t, s)x ll(t, r)D(r)(ll(r, s + h)-(r, s))x dr
+h

s+h
(t, r)D(r)(r, s)x dr

and

q(t, s2-h)x-q(t, s2)x Ro(t, r)D(r)(all(r, s2-h)-ll(r, s2))x dr

+ (, r)D(r)(r, s- h)x dr,

I(Y, (t, sl + h)x-q(t, sl)x)

<- I(D*(r)*(t, r)y, (r, s + h)-all(r, s)x)l dr
+h

s+h
+ MIM exp (MIM2 r)Jlxll Ilyll dr

0 as h0

by the Lebesgue dominated convergence theorem, since 07/is weakly continuous
and IID*(r)II<-_M, II*(t,

Similarly,

[(y, q(t,s-h)x-q(t,s)x)l <- I(D*(r)*(t,r)y, (r,s-h)-(r,s)x)ldr

Is+ MM exp (MM T) drllxll
2-h

-0 ash-0.

CoIOAI, 1.1. I] s is the inqnitesimal generator o a strongly continuous
semigroup {(t), t->0}, then ’or D e No(T; (H)), the perturbed evolution
operator,s(t, s) is a mild evolution operator. Furthermore, since -(t) and* t) are
strongly continuous, the strong continuity o[ Ilk(t, s) and -ll*(t, s) ]:ollows ]rom
(..

CoIOt,AI 1.2. The unique solution o[ (1.4), all,(t, s), is also the unique
solution o
(1.4) Ilk(t, s)x (, s)x + (t, r)D(r)(r, s)x dr, x e H,

in the class o,f weakly continuous bounded linear operators on H.
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Proof. As in the proof of Theorem 1.1 (a), define

all(t, s)x -I1’-l(t, r)D(r)ll(r, s)x dr" -llo( t, s Oll t, s ).

Then ll’D(t,s)X=o all’n(t,s)x is the unique solution of (1.4). We show that
ll’(t, s)x alln(t, s)x for all n. Suppose the assertion is true for n k- 1, k-2;
then

and

SO

ll(t, s)x ll_l(t, r)D(r)ll(r, s)x dr

Is //k_l(t, r)D(r)-II(r, s)x dr

a//(t, a)D(c)o//k_2(c, r)D(r)(r, s)x da dr

(t, )D(a)-2(a, r)D(r)(r, s)x dr d

(changing the order of integration)

(t, )D(a)_(, s)x d

(t, )D()_l(, s)x d

=%(t,s)x

allo( t, s llo( t, s ll(t, s)= ’ll(t, s),

o(t,s)=o(t,s)

The following class of evolution operators is motivated by requiring a
differential form of the Riccati equation in 2.

DEFINITION 1.2. Quasi-evolution operator. A quasi-evolution operator is a
mild evolution operator 0-//: A(T) -Hsuch that there exists a nonzero x e Hand a
closed linear operator sO(s) on H for almost all s [0, T] satisfying

Is’(1.5) (y, all(t, s)x -x) (y, -tl(t, p)sC(p)x) dp Vy e H.

We denote the set of x Hfor which (1.5) is valid as A, and we call s(-) the
generator of (.,. ).

An immediate consequence of the definition is

0
(1.6)-2--(y,ll(t,s)x)=-(y,ll(t,s)sg(s)x) a.e. forxa, y6H, t>s.

OS
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THEOREM 1.2. If all is a quasi-evolution operator andD o(T; o(H)), then
the perturbed mild evolution operator corresponding.to D is also a quasi-evolution
operator.

Proof.
(a) From Theorem 1.1 and Corollary 1.2, o is uniquely defined by

o(t, p)x R(t, p)x + llo(t, r)D(r)ll(r, p)x dp,

(y, OD(t, p)(p)x)= (y, O(t, p)(p)X)

+\y, (t, r)D(r)(r,

for x 6 A, Y H

(y, ou(t, t,)d(o)x)

+ {D*(r)-ll*(, r)y, (r, O)(O)x} dr.

Both terms on the right side are integrable with respect to O on (0, t) by (1.5) and
SO

(y, /to(t, 0)d(o)x) d, (y, (t, o)sc(0)x) d,

+ (D*(r)*(t, r)y, (r, O)sl(O)x} dr do

for x A, Y H,

(y, u(t, p),(o)x) do

+ {D*(r)*(t, r)y, (r, O)s(o)x) do dr

by (1.5) and changing the order of integration,

={y, (t, s)x -x)+ {D*(r)ll*(t, r)y, (r, s)x -x} dr by (1.5),

.’. (y,llo(t,p)(s4(p)+D(p))x)dp=(y,llo(t,s)x-x) forxeA, yeH,

by Corollary 1.2.
So 9/0 (t, s) is a quasi-evolution operator with generator + D.
COROLLARY 1.3. If l is the infinitesimal generator of a strongly continuous

semigroup -(t), then [or De (T; (H)), the perturbed evolution operator
11o t, s) is a quasi-evolution operator. Furthermore, 11o (. ,. and R*o( ," are
jointly strongly continuous on A(T).
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Proof. Consider //(t, s) -(t- s). Then from properties of strongly continu-
ous semigroups 15], we have for x )(s),

d-(. )x 8-(. )x

ig Bochner integrable, and

( s x x -( o Mx d.

Hence 8-(t) is a quasi-evolution operator for x 6 @(M). Thus by the above
theorem, the perturbed evolution operator is a quasi-evolution operator, and in
fact,

(llo(t, s)- I)x llo(t, r)(M + D(r))x dr for x @(M)

and

(?lo(t, s)x) -llo(t, s)(M + D(s))x
Os

a.e. for x e ().

The strong continuity comes from the strong continuity of -(t) and ff*(t) and the
integral equation definition (1.3).

It is natural to ask whether the quasi-evolution operator has any connection
with weak solutions of partial differential equations and we have the following
result.

LEMMA 1.1. If -t1(t, S) is a quasi-evolution operator on A(T), consider the dual
equation

f. (t) sC*(T- t)z(t),(1.7) z(s)=zo, s<=t<-T"

Then z(t)=ll*(T-s, T-t)Zo is a weak solution of (1.7) in the sense that
(a) z(t) is weakly continuous on Is, T],
(b) z (t) satisfies

q/(t)+ M(T- t)(t)) dt=(z(T), b(T))-(z(s), q(s))

]’or all A-Valued d/(t) functions such that tk, d/’. and (T-t)(t) are weakly
continuous on (s, T).

Proof.

(ll*(T- s, T- t)Zo, k’(t) +M(T- t)p(t)) dt

(z(s), 11(T- s, T- t)4,’(t)

+ ?/(T- s, T-t)M(T-t)tk(t)) dt

(Zo, ll(T-s, T-t)4,(t)) dt
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since q/ is a quasi-evolution operator and (Zo, all(T-s, T-t)(t)) is absolutely
continuous and equals

(z(T), @(T)>-<Zo, @(s)>.
So z(t) is a weak solution.
We remark that in order to obtain a differential form of the Riccati equation,

Bensoussan, Delfour and Mitter in [2] have imposed extra conditions on ?/*(t, s)
and perturbations on //*(t, s), which amount to requiring that ?/(t, s) and its
perturbations satisfy a stronger version of (1.6). It seems more natural to express
these conditions in terms of properties of the original evolution operators //(t, s),
i.e., by requiring 0?/(t, s) to be a quasi-evolution operator.

The following definition of a strong evolution operator has been used in [4],
[5], 12] and [ 18].

DEFINITION 1.3 (Strong evolution operator). A strong evolution operator is a
mild evolution operator with an associated generator M(t), a closed, densely-
defined linear operator M(t) on H for each e T, such that

(1.8) (t, s)" (M(s)) (4(t)) for > s,

(1.9) 0 ((t, s)x)- 4(t)//(t, s)x for x (4(s)), > s.

We remark that some authors have not assumed M(t) to be closed or even
densely defined, but in all the applications considered so far, this is always the
case. Besides these are necessary assumptions to ensure that a strong evolution
operator is also a quasi-evolution operator.

LEMMA 1.2. ll(t, s) is a strong evolution operator on A(T). Then (t, s) is also
a quasi-evolution operator with the same generator and a re[s,t])(s(r))
provided (ll(t, r)4(r)x, y) is integrable with respect to r on (s, t) for all y H and
XA.

Proofi Now for h 0,

ll(t, r/h)x--ll(t, r)x, y)-ll(t, r/h)(I-ll(r/h, r))x, y) (by(1.1))

-((t, r)(r)x, y)

as h 0/ for x ((r)) by (1.9) and (1.2). So

(-//(t, r)x, y)- -(R(t, r)(r)x, y) for y H, x ((r)).

Since (y, //(t, r)x) is right ditterentiable and its derivative is integrable, it is
absolutely continuous and

I (y, q/(t, r)(r)x) dr- (y, //(t, r)x-x) x ((r));for
sr<t

i.e., R(t,s) is a quasi-evolution operator with generator /(t) and A--
n s__<r=<, (.5(r)).

We remark that a sufficient condition for ((t, r)M(r)x, y) to be integrable is
that it be measurable and supl(r)xl[ < oo for each x E N ,@(M(t)) and this is
always satisfied in the applications (see 4).
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The following result is useful when we wish to consider a differentiated
version of the dual Riccati equation in 3.

THEOREM 1.3. If Oil(t, S) is a strong evolution operator on A(T), then the
"dual" evolutionoperator (t, s) ?1*(T-s, T-t) is a quasi-evolution operatoron
A(T) with generator M*(T- s), provided II/z*(t, r)sl*(T- r)xll is integrable in r on
(s, t) ]:or x f3 s<__r<_t(M*(T- r)) ffJA* # .

Proof.
0 .---( (T-t, T-r)y,x)=(M(r)),l*(T-t, T-r)y,x),

r>t, xH,

O (y’ (T- t, T- r)x) (y, (T- t, T- r)sg*(r)x)

y (M(t))
(from (1.8)),

forx(M*(r)),

c9 (y’ (t, r)x) -(y, (t, r)M*(T- r)x) for > r, x (M*(T- r))

and by our integrability assumptions, we have

Is{y, (t, s)x-x}= (y, (t, r)M*(r-r)x} dr

for x @A* and y (M(t)). Since N(M(t)) is dense in H, it holds for all y H.
Unfortunately, strong evolution operators are not stable under perturbations

D e No(T; (H)) as is shown by the counter example in Phillips [ 15]. In fact, the
best general perturbation result from [15] is for D CI(T; (H))--the space of
strongly continuous ditterentiable (H)-valued operators, where it is proved that
M + D(t) generates a strong evolution operator.

However, from Corollary 1.3, +D(t) does generate a quasi-evolution
operator for any D oo(T; (H)). We have similar perturbation results for
strong evolution operators from Lemma 1.2 and a converse result.

COROLLARY 1.4. If any perturbation D Noo(T; (H)) of a mild evolution
operator ll(t, s) generates a strong evolution operator on A(T), such that
(?lo(t, r)M(r)x, y) is integrable with respect to r on (s, t), for all yH, x
f3 s<_r<__t(sg(r)), then ll(t, s) is a quasi-evolution operator.

COROLLARY 1.5. If any perturbation D Noo(T; 5g(H)) of a mild evolution
operator -t1(t, s) generates a strong evolution operator, such that 1111"o(t, r)M*(T-
r)xll is integrable in r on (s, t) for all x 6 A* # , then (t, s) ll*(T- s, T-t) is
also a quasi-evolution operator.

Proof. See Theorem 1.3.

2. Infinite-dimensional quadratic cost control problem and the Riccati
equation. The infinite-dimensional control system we consider is

(2.1) z(t)=(t, to)Zo+ ll(t,s)B(s)u(s)ds, O<-to<t<T<oo,

where (.,-) is a mild evolution operator on a real Hilbert space H, u

See footnote 3.
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L2(T; K), where K is a real Hilbert space and T=[0, T], zo6H, and B
(T; (H)).2

We consider the cost functional:

T

(2.2) C(u; to, Zo)=(z(T), Gz(T))+ ((z(s), W(s)z(s))+(u(s), R(s)u(s))) ds,

where z(t) is given by (2.1), G6Sg(H) is self-adjoint and nonnegative, We
oo(T; ’(H)), R 6 (T; (H)) and for each t, W(t), R(t) are nonnegative and
self-adjoint and R (t) satisfies

(y,R(t)y)=>/xlly]]2 a.e. forsome ix>0.
The quadratic cost control problem is then to find the optimal control

Uo Lz(T; K) which minimizes C(u; to, Zo).
Consider a sequence of admissible controls {uk} given by

(2.3) u t) -F t)z t),

z(t) k(t, to)Zo,

where Rk(.,. is the perturbed mild evolution operator corresponding to the
perturbation of R(.,. by -B(t)Fk(t), and Fk(t) is defined recursively by

Fk(t) R-’(t)B*(t)Ok_(t); Fo(t)=0,

(2.4) Wk(t) W(t)+F(t)R(t)Fk(t),

Qk(t)x tl(T, t)Gllk(T, t)x + ll’(s, t) Wk(S)allk(S, t)x ds. 3

Fk, Wk, Ok are all bounded linear operators and are uniformly bounded in
norm on T, Ok Noo(T; 5f(H)). Consider the sequence of control problems

(2.5) zk(t) Ilk(t, to)Zo+ Ilk(t, s)B(s)O(s) ds,

where L2(T; K).
A basic technical lemma, which is easily verified by substitution, is
LEMMA 2.1.

(zk(t), Ok(t)zk(t))

(zk(r), Gzk(T))+ ((Zk(S), Wk(S)Zk(S))--(Zk(S),R(s)B(s)(S))

-(O,(s)B(s)a(s), z(s))) ds.

No(T; (H)) is the space of 5g(H)-valued functions which are strongly measurable and
uniformly bounded in norm on T.

A well-defined Bochner integral (see Property A.3 and Lemma A. 1).
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LEMMA 2.2. (Z0, Qk(to)Zo) is monotonically decreasing in k for each to T
and all Zo H, with

(Zo, O,(to)Zo)<-(Zo, Qo(to)Zo).

Proof. Letting g 0 in Lemma 2.1, we have

T

(zk(to), Ok(to)z(to))=(z(T), Gz(T))+ (z(s), Wk(S)Zk(S)) ds

=(z(T), Gz(T))

T

+ ((z(s), W(s)z(s))

+(G(s)zk(s), R(s)G(s)zg(s))) ds

<z,(T), Gz,(T)>

T

+ (<Zk(S), W(S)Zk(S)>+(Uk(S), R(S)Uk(S))) ds,

and this is just the cost for (2.1) with feedback control Uk(t)=-Fg(t)z(t),

". C(Uk;to, Zo)=(Zo, Ok(to)Zo).

For simplicity, let to=0 and show that C(Uk; O, ZO)>--C(Uk+,; O, ZO). Consider
(2.5) where t(t) Uo(t)+Fk(t)zk(t), i.e., (2.5) is equivalent to

Zk(t) qlk(t, O)Zo + k(t, s)B(s)Uo(S) ds.

If Uo(t)=-Fk+,(t)zk(t), (2.5) is also equivalent to

z(t) %+,(t, O)zo,

i.e., for t(t)= Uo(t)+Fk(t)zk(t), zg(t) and Zk+l(t) are identical and so we shall
dispense with the suffix henceforth. Substituting for this fi(t) in Lemma 2.1 with

0, we obtain

<Zo, O(O)zo)=<z(T), Gz(T)>+ Ior (<z(s), W(s)z(s))

+<G(s)z(s), R(s)G(s)z(s)>) as

(<z(s), Qk(S)B(S)Uk+,(S)>+(Z(S), Qk(S)B(s)G(s)z(s)>) as

(<O,(s)B(s)G(s)z(s), z(s)>+<O,(s)(s)u,+l(S), z(s)>) as
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and

B*(t)Ok(t) R(t)Fk.l(t); Uk.l(t) =--Fk.l(t)z(t),

<Zo, Ok(O)Zo>=<z(T), Oz(T)>

+ [(Z(S), W(s)z(s))+ 2(Uk+I(S), R(s)uk+l(S))] ds

+ [<Fk+l(S)Z(S), R(s)Fk(s)z(s)>

-<B*(s)Qk(S)Z(S), Fk(S)Z(S)>

--<Fk(S)Z(S), B*(S)Ok(S)Z(S)>] ds

(z(T), Gz(T)} + (B*(s)Ok(s)z(s), (R-l(s)B*(s)Ok(s)

--Fk(S))Z(S)> ds + <Fk(S)Z(S), (R(s)Fk(S)

-B*(s)Ok(s))z(s)) ds
T

Gz(T))- | ((R(s)S*(s)Qk(s)-Fk(S))Z(S), (B*(s)
.o

Ok(S)--R(s)Fk(S))Z(S)> ds,

T

<Z0, Ok(O)Zo>=<ZO, Ok+l(O)Zo>-- fo <R(s)y(s), y(s)> ds,

where

y(s) B*(S)Ok (s)-R (s)Fk (s)

and R is strictly positive.

.’. <Zo, Ok(O)Zo><Zo, (k+l(O)Zo>.

The proof for to # 0 is similar so

<Zo, Ok(to)Zo)>-<Zo, Ok+1(to)Zo) for each toe T, zoeH.

THEOREM 2.1. Ok(t) of (2.4) converges strongly to a self-adjoint operator
Q Joo(T; o’(H)) which satisfies the integral equation

O(t)x all*oo(T, t)Glloo(T, t)x

(2.6) + all(s, t)[W(s)+O(s)B(s)R-l(s)B*(s)O(s)]Olloo(s, t)xds,

where 11oo(t, s) is the perturbed mild evolution operator corresponding to the pertur-
bation of //(t, s) by -B(t)R-l(t)B*(t)Q(t).
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Proof. Qk(t) is a sequence of positive self-adjoint operators on H and so

sup (Zo, Qk(t)Zo)

sup (Zo, Oo(t)Zo) (by Lemma 2.2)

So for each t, Qk (t) converges strongly to a self-adjoint positive operator Q(t) and
IIo(t)ll-<- C on T. Therefore Wk(t), Fk(t) also converge strongly to bounded
operators Woo(t) and Foo(t), respectively, and Woo, Foo are uniformly bounded in
norm on T, and by Theorem 1.1, ess sup    ll% (/, s)ll--< M2 exp M2tx2CT, where

ess supll(/, s)ll-- M2, ess supllB(t)ll--/3.
A(T) t T

llk(t,s) is the perturbed mild evolution operator corresponding to
-B(t)Fk(t) and a//oo(t, s) is the perturbed mild evolution operator corresponding
to -B(t)Foo(t).

That Ilk(t, s)lloo(t, s) strongly as k follows from the definition of
o// (t, s) as the unique solution of

k(t, s)x (t, s)x + (t, c)B(a)Fk()k(, s)x do

for all x H and, by applying the Lebesgue dominated convergence theorem. (All
operators are uniformly bounded in norm.)

Now Ok(t) satisfied (2.4) for each k and Wk, Ok, Fk are all uniformly
bounded in norm on T and all converge strongly as k oo to Woo, Fo and O
respectively. So applying the Lebesque dominated convergence theorem, we have
that

O(t)x ll*oo(T, t)Goo(T, t)x

+ *oo(s, t)(W(s)+O(s)B(s)R-(s)B*(s)O(s))(s, t)xds.

Therefore O e No(T; (H)), and is self-adjoint.
THEOREM 2.2. The optimal control which minimizes (u; to, zo) is the

.feedback control

uo(t) -R-(t)B*(t)O(t)z(t).
Pro@ Consider any admissible control u, so that

z(t) -II(t, to)Zo + ll(t, s)B(s)u(s) ds.

Then since //oo(t, to) is a perturbation of q/(t, to), by -R-(t)B*(t)O(t) we have

z(t) lloo(t, to)Zo+ Roo(t, s)B(s)a(s) ds,
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where

t(t) u(t)+R-l(t)B*(t)O(t)z(t),
(Zo, O(to)Zo)=(z(T), Gz(T))

+ ((z(s), W(s)z(s))

+(R-I(s)B*(s)O(s)z(s), B*(s)Q(s)z(s))) ds

((z(s), O(s)B(s)gt(s))+(O(s)B(s)a(s), z(s))) ds

(by Lemma 2.1)

(z(r), Gz(r)}+ ((z(s), W(s)z(s)}+(u(s), R(s)u(s)}) ds

(gt(s), R(s)a(s)) ds,

.’. (u; o, zo)= (uo; to, zo)+ (a(s), R(s)a(s)) ds

--> (Uo; to, Zo)
and so Uo is optimal.

THEOREM 2.3. O( t) is the unique solution of (2.6) in the class of self-ad]oint
bounded linear operators in (T; (H)).

Proof. Let O(t) be a solution of the integral equation (2.6), and suppose u is
any admissible control in Lz(T; U). Then from the proof of Theorem 2.2, we have

(u; to, zo)={O(t)Zo, Zo}+ {u(t)+R-(t)B*(t)O(t)z(t),

(l(u( +-1(*(0(z() as.

Now by a standard result in [1], C(u; to, Zo) has a unique minimizing control
Uo(" ), and so (O(t)Zo, Zo) is uniquely defined. Since O(t) is symmetric, it is
unique.

So farwe have only assumed that (t, s) in (2.1) is a mild evolution operator.
In order to obtain a differentiated version of the Riccati equation, we must assume
that //(t, s) is a quasi-evolution operator. We use the following standard technical
lemmas.

LEMMA 2.3. Let f: (0, T) (0, T)- be integrable and suppose

(i) for almost all s, f( s) is absolutely continuous,

(ii) f(s, s) La(O, T),

Iow fw Of (s, ’) d" < c.(iii) ds
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Then g(t)= Ito f(s, t) ds is absolutely continuous with

(s, t) a.e.o(2.7) g’(t) f(t, t) + - ds

Proo[ (Vinter 18]).

fot fot Io’ (fo Of (s, o-)ds)drf(s, t) ds f(s, s) ds +

by applying Fubini’s theorem to

fOt IO -Of (s, r)x(r, s) do’ds,

where

x(r, s) {’ r>=s’
otherwise.

LEMMA 2.4. Let Hbe a real Hilbert space and W6 5(H). Suppose gl( and
g2(" are weakly absolutely continuous H-valued functions on [0, T] such that

(gi(t),x)=(gi(s),x)+ -s(gi(s),x)ds forallx6H; i=1,2.

Then f(t)=(Wgl(t), g2(t)) is an absolutely continuous function with

(Wg,(t), gz(t))= (Wg,(0), g2(0)) + (Wg(s), g2(s)) ds.

Proof (Vinter 18]). Apply Fubini’s theorem to

x(, s)Oos (Wg(), g(s)) ds d,

where

1, o’_-->s,
x(r, s)= 0 otherwise,

Oo’os
(Wgl(o), g2(s)) do" ds OsOo.(Wg(cr), g2(s)) ds do"

whence the result follows.
LEMMA 2.5. Let H be a real Hilbert space and suppose P(. is a weakly

absolutely continuous (H)-valuedfunction and g( is strongly differentiable with
the representation

g(t) g’(0) + g’(s) ds.
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Then P(. )g(. is weakly absolutely continuous with

d
d (P(t)g(t), x) (P(t)g’(t),x) +- (P(t)g(s), x) a.e. on T.

Proof. As in the proof of Lemma 2.4, we apply Fubini’s theorem to

whence

Io’ Io’ <X(r, S)s (P(s)g’(cr)), x) dr ds,

(P(s)g’(s) + O---(P(s)g(cr))
Os

(P(t)g(t)- P(0)g(0), x)

and differentiation yields the required result.
THEOREM 2.4. Let ll(t, s) be a quasi-evolution operator on H. Then the

solution of the integral equation (2.6) satisfies the following inner product differen-
tiated Riccati equation:

d
d---(Q(t)x, y)+(Q(t)x, (t)y)+((t)x, Q(t)y)

(2.8) -(O(t)B(t)R-l(t)B*(t)O(t)x, y)+(W(t)x, y)=0 a.e. on [to, T],

Q(T)=G forx, yE)A.

If B, W and R are strongly continuous on T, then (2.8) is satisfied everywhere on
[to, T].

Proof. We differentiate the inner product ((2.6)x, y) term by term for x, y E
A using property (1.5) for quasi-evolution operators and Lemma 2.4. The
formal term by term differentiation is clear and so we shall consider the justifica-
tion of the "differentiation under the integral" procedure. Consider

T

g(t)=(i ll*(s, t) W(s)all(s, t)x ds, yI (forx, yA)

dg(t)

=Itr(W(s)Vlloo(s,t)x, //o(s, t)y)ds,
-(W(t)x, y)+ (W(s)allo(s, t)x, alloo(s, t)y) ds,

dt

and assuming for the moment that we can differentiate under the integral sign,

fT
-(W(t)x, y)-Jt(W(s)oo(s, t)((t)-B(t)R-’(t)B*(t)Q(t))x, v//o(s, t)y) ds

(W(s)alloo(s, t)x, oo(S, t)

(M(t)-B(t)R-l(t)B*(t)O(t))y) ds a.e.,
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and using property (1.5) and Theorem 1.2,

=-(W(t)x, y)-<(sg(t)-B(t)R-l(t)B*(t)O(t))x,
i all*oo(s, t)W(s)-lloo(s, t)y ds)

T

Taking /(t) outside the integral is valid since it is closed.
The differentiation under the integrand is justified since

f(s, t)= (W(s)Ro(s, t)x, oo(s, t)y)

satisfies the conditions of Lemma 2.3, i.e.,
T

(l(lloo(s, t)i2(t)x, W(s)alloo(s, t)y)l

+l(W(s)lloo(s, t)x, lloo(s, t)42(t)y)[) dr,

where M2(t) ,9g(t)-B(t)R-l(t)B*(t)O(t), and the integral is finite since Ro(t, s)
is a quasi-evolution operator with generator 12(t) satisfying (1.5) and by Lemma
2.4, f(s, t) is absolutely continuous in t.

COROLLARY 2.1. Consider (2.6) where R(t, s) is. the quasi-perturbed evolu-
tion operator generated byl +D(t) whereD 3oo( T; 5(H)) andM is the infinitesi-
mal generator of a strongly continuous semigroup. Then (2.6) has a unique strongly
continuous solution which also satisfies the differentiated Riccati equation (2.8).

Remark 1. It is possible to obtain another form for the differentiated version
of the Riccati equation, using only the assumption that R(t, s) is a mild evolution
operator. First we observe"

T

.R*oo(t, s)O(t)llo(t, s)x R(T, s)Gallo(T, s)x + J, R*oo(r, s)

[W(r)+ O(r)B(r)R-l(r)B*(r)O(r)]llo(r, s)x dr

=O(s)x- (r,s),[W(r)+O(r)B(r)R-(r)B*(r)O(r)](r,s)xdr,

Now the RHS is a well-defined Bochner integral. Hence
0__. (og(t s)O(t)oRoo(t s)x)--- -ll*(t, s)
Ot

W(t) + O(t)B(t)R-l(t)B*(t)O(t)]Roo(t, s)x

t>s.

Remark 2. There are several other sets of sufficient conditions to allow for
the differentiation of (2.6), which were set up either for the partial differential
equation in [2], [5], [8], [13], [16] orfor the delay case in [7], [9]. The advantage of
Theorem 2.4 is that it is directly applicable to both the delay case and the partial
differential equation case as we shall prove in 4. It is also directly applicable to
the dual Riccati equation for the partial differential equation case, which has also
been studied in [ 1 ] and [3].

The question of uniqueness of solutions of (2.8) is not really important for
control applications, since we have given a means of constructing a solution to the

aoeo
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integral Riccati equation, and we know that any other solution to the differential
Riccati equation will result in a larger value for the cost. Nevertheless, we feel it is
worth including a proof of uniqueness; however it requires much stronger
conditions on the evolution operator.

THEOREM 2.5. Let R(t, s) be a strong evolution operator with generator sg(t)
such that (R(t, r)s(r)x, y) is integrable with respect to r on (s, t) for all y H and
x A. Then if A H, (2.8) has a unique solution in the class of self-adjoint
weakly continuous operators P( ), such that (x, P(. )y) is absolutely continuousfor
all x, y A.

Proof.
(a) Let P1, P2 be solutions of (2.8) and write Q(t)= P(t)- P:(t). Then it is

readily verified that

(2.9)

and

(2.10)

where

Let

d
dt
--(O(Ox, y)= -(((t)-c(t)P,(t))x,

-(Q(t)x, (5l(t)-c(t)P,(t))y)

-(Q(t)C(t)Q(t)x, y) a.e.

d
-t(Q(t)x, y)= -(((t)-C(t)Pz(t))x, Q(t)y)-(Q(t)x, (g(t)-C(t)Pz(t))y)

+(Q(t)C(t)Q(t)x, y) a.e.,

C(t) B(t)R-(t)B*(t).

T

F(t)x R(s, t)Q(s)C(s)Q(s)alll(s, t)x ds,

where a//l(t, s) is the quasi-perturbed operator generated by g(t)-C(t)P(t).
Then for x, y 6 @a, by Lemmas 2.3, 2.4, we may differentiate to obtain

d
(F(t)x, y)=-(O(t)C(t)Q(t)x, y)-(F(t)x, (,,g(t)-C(t)P,(t))y)

dt

-(g(t)-C(t)P(t)x, F(t)y) a.e.

and subtracting from (2.9), we have

d
d-t ((O(t)-F(t))x, y)= -((O(t)-F(t))x, (l(t)-C(t)P(t))y)

(2.11)
-((aC(t)-C(t)P,(t))x, (O(t)-F(t))x) a.e.,

O T) F(T) O.

Assuming that (2.11) has a unique solution, we have

Q(t)=F(t)
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and

(Q(t)x, x)= Jt (*l(S, t)Q(s)C(s)Q*(S)l(S, t)x, x) ds

Similarly, using (2,10) with P2 perturbations, we find

(Q(t)x, x) <-0 for x H,... O(t) 0.

(b) Consider the linear equation on H:

d
(P()x, y) -(P()x, (()-())y)-((sC(-(t))x, P(t)y)

dt
(2.12)

P(T) -0,
where

for x H.

=(P(t)all(t, s)x, D(t)ll(t, s)y)+(D(t)all(t, s)x, P(t)all(t, s)y) a.e.

and

{*(t, s)P(t)ll(t, s)x, x} {(D*(r)P(r) + P(r)D(r))(r, s)x, (r, s)x) dr

for all x H, since @A H.
Let s t. Then

(P(t)x, x)= ((D*(r)P(r)P(r)D(r))(r, t)x, ll(r, t)x) dr for x e H.

Now P(t) is self-adjoint and so

IIP(t)ll sup I(P(t)x, x)l <-- sup C[IP(r)ll Ilxll dr,

T

.’. IIn(t)ll <- C Jt IIP(r)ll dr.

Then by Gronwall’s inequality, ]ln(t)ll 0 on H, i.e., (2.12) has a unique solution
on H.

D 6 N(T; (H)).

Let O(t)= all*(t, s)P(t)(t, s), where a//(t, s)is a strong evolution operator and so
all(t,s)x is strongly differentiable in for x A. By Lemmas 2.4 and 2.5,
(P(t)ll(t, s)x, (t, s)y) is absolutely continuous and

d
(x, O(t)y)=(P(t)M(t)-tl(t, s)x, (t, s)y)+(P(t)(t, s)x, ,l(t)ol(t, s)y)

dt

-(P(t)all(t, s)x, (M(t)-D(t))tl(t, s)y)

-((M(t)-D(t))all(t, s)x, P(t)?l(t, s)y) a.e.
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COROLLARY 2.2. Let //(t, s) be a quasi-evolution operator and for some
F6 Joo(T; ft?(H)) the perturbed evolution operator llF(t, s) is a strong evolution
operator. Then the conclusions of Theorem 2.5 hold.

Proof.
(a) Assume only that //(t, s) is a quasi-evolution operator.
(b) Consider (2.12) on @A a quasi-evolution operator with generator M(t)

and llF(t, s) a strong evolution operator with generator M(t)+ F(t).
Let Q(t)= ll*F(t, s)P(t)llF(t, s).Then (Q(t)x, y)is absolutely continuous and

d
-(x, Q(t)y) (P(t)(M(t) +.F(t))allF(t, s) x, llF(t, s)y)

+(P(t)llr(t, s)x, (,d(t) + F(t))llF(t, s)y)

--(P(t)OllF(t, S)X, ((t)--D(t))llF(t, s)y)

+(((t)-D(t))llF(t, s)x, P(t)llF(t, s)y) a.e.

(P(t)llF(t, s)x, (D(t)+ F(t))llF(t, s)y)+((D(t)+ F(t))llF(t, S)X,

P(t)llF(t, s)y) a.e.,

but this implies that Q(t)=0 as before, since D+F do(T; (H)). So (2.12)
again has a unique solution on H.

COROLLARY 2.3. If //(t, S) is the quasi-evolution operator generated by
+ D(t), whereD Jo(T; (H)) andl is the infinitesimal generator ofa strongly

continuous semigroup, then (2.8) has a unique solution in the class of strongly
continuous operators on H, such that (x, P(t)y) is absolutely continuous for x, y
().

3. Dual Riccati equation. Just as in finite dimensions there is a duality
between the quadratic cost control problem and the linear filtering problem, this
occurs in infinite dimensions via the dual Riccati equation. This means considering
the existence and uniqueness of solutions for the following Riccati equations:

P(t)x allp(t, to)Poall*p(t, to)X + llp(t, s)[W(s)
(3.1)

+ P(s)C(s)P(s)]llp(t, s)x ds,

where lip(t, s) is a perturbed mild evolution operator corresponding to the
perturbation -P(t)C(t) of the mild evolution operator q/(t, s). P0, C(t) and W(t)
are bounded linear operators on H, self-adjoint and positive and W, Ce
@oo(T; (H)).

d
(x, P(t)y)-(P(t)x, *(t)y)-(*(t)x, P(t)y)

dt
(3.2)

-(W(t)x, y)+(P(t)C(t)P(t)x, y)=0 a.e. on T

for x, y fq t(*(t)), where W, R, C, P0, are shown as above and this time
//(t, s) is a strong evolution operator with generator (t).

THEORE 3.1. Under the stated assumptions for (3.1), (3.1) has a unique
self-adjoint positive operator solution in oo(T; (H)).
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Proof. Let -Alp(t, s)=R*p(T-s, T-t) (that is, Alp(t, s) is the dual to //p(t, s)).
Then @p (t, s) is a mild evolution operator on A(T) and Theorem 2.3 holds.

From Theorem 2.4 on the differentiated Riccati equation we see that in order
to differentiate the inner product version of (3.1), we require p(t, s) to be a
quasi-evolution operator. The following is an easily verifiable sufficient condition
for this to hold.

THEOREM 3.2. Consider (3.1) under the stated assumption. Then the unique
solution of (3.1) satisfies (3.2) if R(t, s) is a strong evolution operator and
II*(t, r),.*(T- r)xll is integrable in r on (r, t) for x A*.

Proof. Under the above assumption, by Theorem 1.3, #(t,s)=
R*(T- s, T- t) is a quasi-evolution operator. By Theorem 1.2, the perturbation
of (t,s) by -C*(T-s)P*(T-s) is also a quasi-evolution operator and is
uniquely defined by

(3.3) p(t, s)x (t, s)x- (t, )C*(T-)P*(T-)(o, s)x da

or equivalently by

(3.4) (t, s)x (t, s)x- (t, )C*(T-oz)P*(T-))J(, s)x d.

By Corollary 1.2, gp(t, s) is defined by

(3.5) p(t, s)x (t, s)x- (t, c)P(a)C(a)//(, s)x da

and it is readily seen that ll’(T-s, T-t)=(t, s), as they both satisfy (3.3),
which has a unique solution.

Now we rewrite (3.1) in the form
T--t

P(T-t)X=p(T-to, T-t)Pop(T-to, T-t)x+ *p(T-s, T-t)
"T--t

[W(T-s)+P(T-s)C(T-s)P(T-s)]p(T-s, T-t)xds

and since p(., is a quasi-evolution operator we may apply Theorem 2.4 to
differentiate (3.1).

COROLLARY 3.1. Consider (3.1) under the stated assumptions. Then the
unique solution of (3.1) satisfies (3.2) if any perturbation llF(t, s) of R(t, s) is a
strong evolution operator and II*(t, r)A*(T-r)xil is integrable in r on (s, t) for
X G )A*.

Proof. By Corollary 1.5, (t,s)=Oll*(T-s, T-t) is a quasi-evolution
operator and the proof of Theorem 3.2 may be used.

In 4 we apply Theorem 3.2 to the dual Riccati equation obtained for
differential-delay equations to obtain an improvement over previous results in [6]
and [7]. However we caution that the differential Riccati equation (3.2) may not
mean much as (q ,7-(/*(t)) is not dense in H in general (see [18]).

The conditions for (3.2) to have a unique solution are even stronger, namely
that (t, s) R*(T- s, T- t) or any perturbation be a strong evolution operator
and this is impossible to formulate naturally in terms of conditions on q/(t, s). So
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we shall restrict ourselves to considering the special case when q/(t, s) is generated
by M + D(t).

THEOREM 3.3. Consider (3.1) when ll(t, s) is generatedby + D(t), whereM
is the infinitesimal generator of a strongly continuous semigroup {if(t); _->0} and
D (T; (H)). Then (3.1) has a unique strongly continuous solution which is
also the unique solution of the differentiated Riccati equation (3.2) in the class of
strongly continuous operators with (P(t)x, y) absolutely continuousfor x, y ().

Pro@ (3.1) may be written in the form (3.6), where p(t, s) is the quasi-
evolution operator with generator M*-C*(T-s)P*(T-s). Now M is the
infinitesimal generator of the strongly continuous semigroup {(t); 0}, so
by Corollary 2.1, (3.1) has a unique strongly continuous solution which satisfies
the differentiated Riccati equation (3.2). By Corollary 2.3, (3.2) has a unique
solution.

This is useful in obtaining a partial uniqueness result for differential delay
equations (see 4).

4. Applications. In this section we illustrate our results by applications to a
variety of different problems. We have already seen (Corollaries 1.3, 2.2 and
eorems 2.3, 2.4, 2.5) that the integral and differential forms of the Riccati
equation have unique solutions when the evolution operator is generated by
M+D(t), with M generating a strongly continuous semigroup, and D
(T; (H)). We also have (eorem 3.3) that the integral and differential forms
of the dual Riccati equation have unique solutions under these conditions.

4.1. Kato-Tanabee evolution operators. In [12] and other papers Kato
and Tanabe consider a class of abstract evolution equations, where the main
requirement is that for each t, M(t) is the infinitesimal generator of an analytic
semigroup. To be more precise, let E be the fixed closed angular domain

E={A largAl/2+0, 0<0</2}.

Assume that for each T, M(t) is a densely defined closed linear operator
such that:

(4.1) The resolvent set p(M(t)) of M(t) contains E, and

II(-(t))-IlIM/IAI for A E, t T,

(4.2) M(t)-1 (H) and is continuously differentiable in on T in the uniform
operator topology.

For any A E, T,

(4.3) (AI-M(t))-1 iAil_o 0No<l,

(4.4) -a)   lt-sl ;

en it is shown in [12], that (t) generates a strong evolution operator
(t, s) on (T), which is strongly continuous and has the properties

0
(4.5) --(t, s)x -(t, s)(s)x for all x e H, > s,

Os
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and

(4.6) __a 0R(t s)x (t)0R(t, s)x for all x H, > s,
Ot

and

In order to apply our results we need one further property of the evolution
operator (t, s)mwe require it to be a quasi-evolution operator, and we will
prove this under the extra assumption

(4.7) suplli(t)xll< Cx < oo for x @A f-] @((t)).
tT tT

First we prove the following lemma.
LEMMA 4.1. If X a, Y H, (all(t, r)J(r)x, y) is integrable on (s, t).
Proof.

((t)-J(s))x d(t)((s)-1-(t)-l)c(s)x for x A"

Thus ((,91(t)-sC(s))x, y)=((M(s)-’-M(t)-l)M(s)x, zd*(t)y)
(sC*(t)). Hence

for x A, Y

I((M(t)-M(s))x, y)l < IIe()-’-.(t)-’ll II(s)xll IIe*(t)yll

<_ Cxll(s)-1 (t)-ll II*(t)yll.

So by (4.2), I((M(t)-M(s))x, y)]- 0 as s for y e @(*(t)). But for each t, (t)
generates a semigroup, and so *(t) is also a closed linear oper.ator with dense
domain. Hence (t)x is weakly continuous for x e @A, SO that ((t, )(. )x, y)
is continuous on [0, t) and hence integrable.

The above lemma together with (4.5) and the classical result corresponding to
Property A.4 of the Appendix establishes that -It(t, s) is a quasi-evolution
operator. Thus the integral and differential forms of the Riccati equation have
unique solutions.

We note that the assumption (4.7) is equivalent to requiring that the
coefficients of the operator (t) are uniformly bounded in on T. In earlier papers
on abstract evolution equations (for example, [11]) Kato imposed a slightly
stronger set of conditions on the operator (t) and then showed that the evolution
operator ?/(t, s) not only satisfied (4.5) and (4.6) but was continuously differenti-
able in both arguments, so that in this case we may deduce that -//(t, s) is a
quasi-evolution operator without any extra assumptions.

When we consider the dual differential Riccati equation, it is easiest to prove
that the dual evolution operator is both quasi and strong. For this we require the
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assumption that

(4.8) sup Ibe*(t)ylt< c <o for y @A..
taT

Then it is easy to show that

(4.9)
c3
(t, s)x 4*(T- t)J(t, s)x for all x H,

Ot

O
(4.10) --(t,s)x=-(t,s)d*(T-s)x for all x H,

Os

t>s,

t>s,

IIIl__x__w 0,
L2(0, T; V’)

with norm

where (t, s)= R*(T-s, T-t). Moreover the integrability condition follows as
in Lemma 4.1, so that R(t, s) is both strong and quasi, so that the integral and
differential forms of the dual Riccati equation have unique solutions.

4.2. Lions type evolution operators. In [13] Lions considers control prob-
lems for systems governed by parabolic partial differential equations. The
operator 4(t) is linked to a bilinear form a(t; q, ,) on a Hilbert space V. Let V, H
be Hilbert spaces such that H is identified with its dual. Then

Vc Hc V’.

Suppose that a family of bilinear forms on V are such that

(4.11) a(t; p, ,) is measurable on T for all q, V;

(4.12) [a(/; -< CIl lldl ’llv;
there exist A, a such that a > 0 and

(4.13) a(t; , forall qe V, t T.

Then for each it is possible to write

a(t; qg, )= -((t)q, )v’v

where (., )v, vdenotes the duality between V’ and V. Lions shows that there is a
unique solution in W(0, T) of

dz
d--7 ,(t)z,

(4.14)
z(0) Zo H,

where the equation is to be interpreted in the sense of distributions, and W(0, T) is
the Hilbert space

W(0, T) x x L2(0, T; V), -- L2(0, T; V’)
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Moreover the solution depends continuously on the initial data, in the sense
that the map x0 x(. from H W(0, T) is continuous. By considering the
equation

dz
d--- M(t)z in (s, t),

z(s):zoH,

it is very easy to see that

(4.15) z(t)=(t,S)Zo,

where a//(t, s) (H), and has the evolution property (1.1). Using the continuous
dependence on the initial data, it is easy to show that 0//(t, s) is strongly continuous
in s and uniformly bounded on A(T). Since all x W(0, T) are with modification
on a set on measure zero, continuous from [0, T]H it follows that //(t, s) is
strongly continuous in t. Then -//(t, s) is certainly a mild evolution operator, and so
the integral form of the Riccati equation has a unique solution.

From the definitions it is easy to show that the solution of (4.1 5) must satisfy

f.t a(p x(p), $) do -(x(t), $)+(x(s), ),

where (. ,. denotes the inner product on H, and V.

Now a(p x(p), )= (M(p)x(p), )v’v

--(x(p),s*(p):)VV’.

But (-,.)vv’ is an extension of the inner product on H, so that if we define
(M*(t)) by

(4.16) (M*(t)) {v V *(t)v H},

then for IA* we have

Thus

a(p;x(p), )= -(x(p),

(0//(p, s)x0, *(p)) dp -(611(t, S)Xo, )+(Xo, .).

Setting p T-T, t= T-s and (t,s)=ll*(T-s, T-t)gives

(t, 7)M*(T-y)$)d7 (Xo, (t, s))-(Xo, ) for A*.

So that M(t, s)= //*(T-s, T-t) is a quasi-evolution operator. In a similar
manner, using the unique solution of the adjoint equation, it is possible to show
that (t, s) is a quasi-evolution operator, where

(4.17) (M(t)) {v V" M(t)v H}.

This enables us to differentiate the integral Riccati equation for both the
control and filtering problems, but we are not able to say whether the solution of
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the differential Riccati equation is unique or not, since we do not know if the
evolution operator is strong.

4.3. Hyperbolic partial ditierential equations. In [21] Vinter considers the
quadratic cost control problem for a class of hyperbolic partial differential
equations, and allows for both boundary and distributed control. Because of the
difficulties of boundary control, his best results are for distributed control, where
he obtains a feedback optimal control, and a differential Riccati equation using
the "Lions" approach. We shall show how these results can be obtained by
applying the general theory of 2. Of course the most important requirements are
existence and uniqueness results.

Consider

Oy= y. A, OY +Ky+Bv,
cgt = Ox

(4.18)
Mylo, 0, y(0) y0

on the spatial domain {x e R’; xl > 0}; 0 =< _-< T, where Ai, K, M are C
matrix-valued functions on Q I and 5; 0, respectively. Denote by
Co)(Q; Rk) the restriction of Co)(m/l; k) to the closure of T 2. Then we
define a strong solution y eL2(Q; n) to (4.18). If given BvL2(Q; ) and
Yoe L(; ), there exists a sequence {y,} with y, e C(%(Q; ) such that

(4.19) [l miOYnY,- Z -Ky,-Bv 0,
i= OXi L2(Q"

IIMII=(;0,

Then under technical assumptions on A, which ensure that the system is
strictly hyperbolic with nonaracteristic boundary and determinate boundary
values, we can assert that [21 for given By Lz(Q; ), Y0 Lz(O; "), (4.18) has
a unique strong solution yLz(Q; "). Furthermore, the map t y(t) from
TLz(; ) is strongly continuous, and we have the estimate

(4.20) Ily(t)ll(.;. cllyoll(.; for all T

and C is independent of t.
Similarly the following adjoint system has a unique strong solution p

Lz(Q; ) with p(t) well-defined and strongly continuous in as an element of
L(O; "):

Op
Ot i=l

(4.21)
M’P[0- =0,
p(T =0.
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Moreover we have a similar estimate to (4.20).
It is easy to show that (4.18) and (4.21) are equivalent to (4.22), (4.23), which

is a more appropriate formulation for our purposes.

2(t) sg(t)z(t)+B(t)u(t),
(4.22)

z(0) z0,

[9( t) -M* t)p( t),
(4.23)

p( T) pl,

where Zo, Pl, z(t), p(t) 6H=L2(f;n) for each t6T, u6L2(T;H), B
J,(T; (H)) and M(t) is a linear operator on H given by

Oh
(4.24) (M(t)h)(x) E A,(t, x)-S-__ + K(t, x)h

i=1 oxi

with domain

/heH’sg(t)hH and/(4.25) (,./(t))
MhIo 0

*(t) is then the H-adjoint of s(t) for each t T. Since the map Zo z(t) is
continuous from H to H, we may write z(t)=(t, s)z(s) for O<-_s<-t <- T. Then
using the estimate (4.20) and the continuity of z(t) in t, we can show in a manner
similar to the previous example (4.2) that ll(t, s) is a mild evolution operator on
A(T)..We can also show it is quasi, as follows.

First we show that the solution of (4.23) is

p(t)=*(T,t)p.

To see this we use a result of 17] where it is shown that

(Z(to), p(to))=(Z(tl), P(/1)) for0----<to----<t -< T.

But Z(tl)= tl(q, to)z(to), hence

(z(to), p(to)-*(tl, to)P(tl)} =0 for all Zoe H.

Hence p(to)= *(q, to)P(tl).
Now let {p’} be an approximating sequence in C(%(0; N") to p. Then it is

known [17] that the strong solution p(" such that pn(t)=p’, belongs to
C(O; N"). Thus for any x L(F; N), we have

Ist ({)"(p)+ s*(O)P"(O), x) do=O,

or

(sg*(o)p"(o), x) do +(pr, x)-(p"(s), x) o.

Now if x @A, we obtain

I’ (p"(o), sg(p)x) tip +(pL x)-(p"(s), x) o.
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Applying the Lebesque dominated convergence theorem and using

P(P) ll*(t, P)Pl, Pl H,
gives

(Pl, 1( t, p)(p)X) dp (Pl, (t, s)x)-(pl, x).

Thus //(t, p) is a quasi-evolution operator. Similarly it can be shown that
ll*(T-p, T-t) is also quasi, so that there are unique solutions to the integral
Riccati equations and hence to the optimal control and filtering problems. The
Riccati equations may be differentiated, but we do not know whether the
differential forms have unique solutions, since we are not able to prove that
(t, p) is a strong evolution operator.

4.4. Differential-delay systems. We now consider the class of linear differen-
tial-delay systems first considered by Delfour and Mitter in [9].

dx(t) {a(t) }Z.d=aoo(t)x(t)+,v
x(t+Oi), t+Oi>-O
h(t+O); t+O<O

f_ {x(t+O" t+O>=O(4.26) + aol(t, 0)
h(t+O); t+0<0jd0’

x(0)= h(0),

where e [0, T] T, X is a real separable Hilbert space, aoo C(T; (X)), a
C((X)), a01 e C(Tx(-b, 0); (X)) and -b < -0rq <" <-00 0.

This may be considered as abstract evolution equation on a Hilbert space
2(-b, 0; X). The quotient space of (-b, 0; X) generated by equivalence
classes under the 2-norm:

o
(lly(0)ll,/ I_ Ily(0)ll, dO) /2.

b

d//2(-b, O; X) is isometrically isomorphic to X L2(-b, O; X). (4.26) is now
equivalent to the abstract evolution equation on ///2.

dz(t)
=M(t)z(t),
dt

(4.27)
z (0) h; h 6 ,

where sO(t) is a closed linear operator on 2 with domain N:
y e 2(-b, O; X), such that y is absolutely continuous]
and f_ II__dY().. 2 dO < oo

J-b dO IIx
and

(4.28) (sg(t)h)(O)=
aoo(t)h(O)+ Z ai(t)h(Oi)+ aol(/, O)h(O) dO;

i=1 b

dh(O)
; 0#0.
dO
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It is shown in [9] that M(t) generates a strong evolution operator //(t, s) on
A(T). Since the coefficients a0o, ai, and a01 are continuous, it is readily seen that
sup,ll(t)hll< c for h and Lemma 1.1 may be applied to show that //(t, s)
is also a quasi-evolution operator. Hence the integral and differential forms of the
Riccati equation both have unique solutions.

For the dual Riccati equation, Theorem 3.1 ensures that we have a unique
solution of the integral version, but the differential version proves more difficult.

LEMMA 4.2. The differential version of the dual Riccati equation holds. It has
a unique solution in the special case where ai(t) in (4.11) are time-invariant.

Proof. By Theorem 3.2, the differential version is valid if II0U*(/, r)sg*(T-
r)xll is integrable and since //*(t, r) is uniformly bounded in norm on A(T), we
need only verify that sup,llt*(/)hll< for h 6 (*(t)). From [19] we have
that

N
h J/12: h(O) z(O) + E a(t)h(O)xi(O,);.. 0 5 0

i=1
(5g*(t))

where z and z’ L2(-b, 0; X) with z(-b)= 0

xi(O) is the characteristic function of the interval [0i, 0) and * denotes the
X-adjoint operation.

Then for h (*(t)), we have

a*oo(t)h(O)+ . a* (t)h(O)+ z’(O) dO, 0 =0,
i=1 b

(/* (/) h)(0) . dz
ao(t, O)h(O)

dO’
050.

Again since aoo, ao and a are continuous functions, we have that
sup,llC*(t)hll < C for each h fi(C*(t)). So the differential version of the dual
Riccati equation holds.

Consider now the time-invariant linear operator defined by

(h)(O)

N

aih(Oi), 0 =0,
i=1

.dh(O)
050.

dO

is the infinitesimal generator of a strongly continuous semigroup. Consider
D (T; (2)) defined by

(D(t)h)(O)
aoo(t)h(O)+

b
aol(t, O)h(O) dO,

O,

Then + D(t) is just the special case of (4.28), where the a are time-invariant,
and by Theorem 3.3, the differential version of the dual Riccati equation has a
unique solution. This agrees with the results in [7] and [14].
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Appendix. Bochner integration. Let H, K be Hilbert spaces and T [0, T],
a real time interval. We consider Bochner integrals of H-valued functions of and
recall the definitions of strong measurability.

DEFINITION A. 1. x TH is strongly measurable if there exists a sequence
of finitely-valued functions {x,(t)} such that

][x,(t)-x(t)[[--,O as n--,o0 a.e. on T.

The following are standard results on Bochner integration which are relevant
to our interests (see 10]).

PRO’RaW A. 1. If x T H is the limit almost everywhere of a sequence of
strongly measurable functions, then x(. is strongly measurable on T.

PROr’FRT A.2. A function x T H is Bochner integrable if and only if x is
strongly measurable and

fz llx(t)l dt <

We remark that for operator-valued functions there arise two kinds of
measurability, depending on whether one refers to the uniform or the strong
topology. One usually says that D(. ): T(H, K) is strongly measurable if
D(. )x is strongly measurable for all x 6 H.

In order to make sense of some of the integrals we have used in 1, 2, we need
the following lemma.

LEMMA A.1. /f D(-): T-(H, K) is strongly measurable on T and
ess sup,rllD(t)ll< oo, we write D e Noo(T; (H, K)) and can easily show that if
f LI(T; H), then D(- )f(. ) LI(T; K).

An immediate corollary is that

C(T; e(H, K)) = o(T; (H, K))

and if D(. )6 (H, K) is strongly continuous on T, then D 6 N(T; (K, H)).
Other useful properties are as follows.

PROPER A.3. If D(t)6(H, K) and D(t)x is weakly continuous on T,
then D e (T; (H, K)).

PROPER A.4 (Vinter 18]). Suppose that [ [0, T] H is weakly continu-
ous, and the weak right derivative O+[(t) exists for every [0, T]. Suppose
0+[( )e L(T; H). Then

f(t)=f(O)+ O+f(s) ds foreachte[0, T].

Many of the measurability difficulties we have encountered disappear when
the Hilbert space H is separable. The reason for this is that strong measurability
and weak measurability coincide in this case. That is a function x" TH is
strongly measurable if (y, x(t)) is measurable for all y e H.

Aeknowledent. The authors would like to thank Dr. R. Vinter for several
useful discussions and Professor J. L. Lions for informing them of a related paper
by L. Tartar, Sur l’tude directe d’dquations non linaires intervenant en thdorie
du contrOle optimal, which is to appear in the Journal of Functional Analysis.
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STABLE SETS AND STABLE POINTS OF SET-VALUED
DYNAMIC SYSTEMS WITH APPLICATIONS

TO GAME THEORY*

MICHAEL MASCHLER AND BEZALEL PELEG]"

Abstract. Let X be a metric space. A dynamic system on X is a set-valued function q9 from X to X
which satisfies (x)# Q5 for x 6 X. It generates -sequences:

X
(t+l) 0(X(t)), =0, 1, 2,..., x() e X.

We study the stability properties of such dynamic systems. Necessary and sufficient criteria for
stability of sets and points are given. The main result is, essentially, that a subset of X is stable iff it is an
inverse image of a Pareto minimal point of a vector-valued function which decreases along q-
sequences.

As a corollary we obtain a characterization of all stable sets and points of Stearns’ transfer
schemes as generalized nucleoli. In particular, the "lexicographic kernel", is always a stable set of the
bargaining sets which may not include the nucleolus. All nonempty s-cores are also stable sets of the
bargaining sets.

1. Introduction. This paper is a contribution to the stability theory of
dynamic systems with applications to game theory. Generally speaking, it has two
novelties:

(i) It introduces vectorial Lyapunov functions. We exhibit in this paper that
sometimes vectorial Lyapunov functions are more natural and perhaps easier to
find than a single Lyapunov function; therefore, they are highly useful both for
deducing general results and for treating particular systems.

(ii) We study stability properties of (discrete) set-valued dynamic systems.
Such a system is defined by a set-valued function 0" X 2x, from a metric space X
into the space of its nonempty subsets. A dynamic process, or a trajectory, starting
at xX is a sequence x, xl, having the property that xi+ q(xi), i=
0,1,....

In the classical physical sciences, usually a process was completely deter-
mined by the initial conditions. For such sciences a theory for set-valued dynamic
systems was quite superfluous. This is no longer the case for mathematical models
for situations which involve human decisions. If the decision making person has
more than one option, one cannot, in general, predict the "state of the world" at
time 1 from the knowledge of the "state of the world" x at time 0. All one
can say is that the state at t-- 1 will belong to a set of states qg(x). The theory of
set-valued dynamic systems should have applications to the social sciences, to
control theory (see, e.g., Hermes (1970)) and to operations research (see, e.g.,
Zangwill (1969), who essentially calls such systems "autonomous algorithms").
Justman (1973) employs such systems to describe "iterative negotiations."

In this paper we address ourselves to the following basic problems:
1. Provide conditions that guarantee the existence of an "endpoint" (i.e., a

point x satisfying q(x)= {x}).

* Received by the editors June 16, 1975.
5" Institute of Mathematics, The Hebrew University, Jerusalem, Israel.
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2. Provide conditions that guarantee that each dynamic process converges.
3. Provide conditions that guarantee that the limit of a dynamic process is an

endpoint.
4. Characterize closed stable sets of the system.
5. Characterize stable points of the system.
6. Under what conditions can one claim that a closed stable set consists of, or

at least contains, stable points?
Problems 1-3 were already treated in Justman (1973), and the present paper

is mainly concerned with problems 4-6 and applications.
A prime role in this investigation is played by the nucleolus of a vectorial

Lyapunov function g, which is the inverse image of a Pareto minimal point of g.
This concept is a somewhat sophisticated generalization of Schmeidler’s nucleolus
of a set with respect to a given game (1969).

A particular case of a dynamic system satisfying all our requirements is
Stearns’ transfer sequences which converge to the appropriate bargaining set of a
given game (Stearns (1968); see also Billera (1972)). Stearns (1968) already
observed that an endpoint of such a system may not be stable. Kalai, Maschler and
Owen (1973) started a systematic investigation of asymptotically stable points in
the various bargaining sets. They succeeded in showing that Schmeidler’s nuc-
leolus is a stable point for each system (and the only asymptotically stable point, in
case it is isolated).

In this paper we characterize all the stable points and stable closed sets with
respect to Stearns’ systems which belong to the appropriate bargaining sets. They
are nucleoli of appropriate Lyapunov functions. In particular, a new solution
concept due to Gill Kalai, called the lexicographic kernel is shown to be a stable
subset of the kernel. An example is provided of a game whose lexicographic
kernel does not even contain the nucleolus of the same game. We also show that
all nonempty e-cores are stable sets for each bargaining set.

2. Dynamic systems. LetXbe a metric space. A (set-valued) dynamic system
on X is a set-valued function q from X to X (i.e., a function from X to 2x) which
satisfies q(x)# for all x X.

Let q be dynamic system on X. A q-sequence (starting at x) is a sequence
(x’), such that x X and x t/l q(x’), 0, 1, 2,. .. A q-sequence is sometimes
called a trajectory or a dynamic process. A point x Xis called an endpoint of q (or
a critical-point, or a rest-point of q) if

(2.1) q(x) {x}.

The set of all endpoints of p will be denoted by Eq.
In this section we shall state conditions that guarantee the existence of

endpoints, conditions that insure that each q-sequence converges and conditions
that guarantee that the limit points of converging q-sequences are endpoints.
Most results of this section, were obtained, or could be deduced from Justman
(1973). We list them here in a way that is convenient for this paper both for the
sake of completeness and in order to prepare the necessary tools for studying the
stability properties of q.
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If d(.,. is the distance function of X, it is convenient to introduce the
(generalized) real-valued function f: X- R/ LJ {oo} defined by

(2.2) f(x) sup 2 d(x/, x)l(x) is a q-sequence, x x
t=0

This function is the supremum of the lengths of all the trajectories that start at x.
Obviously, it may take the value +oo and it is equal to 0 itt x is an endpoint.

LEMMA 2.1. I q is 1.S.C. (lower semicontinuous) then f is 1.s.c.
Remark 2.2. Note that the lemma uses the term 1.s.c. in two different

meanings.
Proof of Lemma 2.1. Let x e X and let f(x)>-M. Suppose that y X,

k 1, 2, , and x lim_,oo y. We have to show that lim inf_,oo f(y) >M. Let
e > 0. There exist points x= x, x (x), , x r e q(x r-) such that

T--1

(2.3) Z d(x t+l, x’) >M- e.
t=0

Since q is 1.s.c., there exist T+ 1 sequences (yi,k), 0, 1, , T, where yO,k y,
yl, q(yO,),..., y r, q(yT-a,), k 1, 2,’’’, such that

(2.4) lim yr’ x t=0, 1,-.., T.

It follows now from (2.3) and (2.4) that

T-1

lim inff(yk)=> lim o d(yt+l’’ Y"k)=>M-e"
k-oo k-oo t=

Since e was an arbitrary positive number, the proof of the lemma is complete.
Remark 2.3. The function f monotonically decreases on trajectories. More

precisely,

(2.5) y (x)=)f(x)>-f(y)+d(x, y).

THEOREM 2.4. Assume thatX is not empty and compact. If q is 1.s.c. and for
some x X, f(x) < oo, then Eq9 .

Proof. Let A {y XIf(y _-</(x)}. By Lemma 2.1, A is compact; hence, again
by Lemma 2.1, there exists z in A such that f(z) _-< f(y) for all y in A. By Remark
2.3, z is an endpoint of q.

Remark 2.5. If q is 1.s.c., then Eq is a closed set.

Proof. Eq ={x XIf(x)<-O}. In view of Lemma 2.1, this is a closed set.
Obviously, if X is complete and f(x) < oo for some x in X, then each q-sequence
that starts at x must converge.

LEMMA 2.6. If a bounded function : X-R exists, which satisfies
(2.6) y (x) :::), @(x) @(y) d(x, y),

then f(x) < oo for all x X.

1A real-valued function f(x) is 1.s.c. at x ’if x" x::liminf,,_,oof(x’*)>=f(x). A set-valued
function p(x) is 1.s.c. at x if x x and yO p(xO) :ffthere exist y" 6 q(xn), n 1, 2,. , such that

0y y.
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Proof. Let M be a bound for q and let (x n) be a to-sequence, x= x. Clearly,
for each positive integer T,

T T

(2.7) d(x t+l, xt) <= Z [q(xt)-q(x’+)] <=2M.
t=0 t=0

Consequently, f(x)
The function q can be regarded as a Lyapunov function whose existence

guarantees convergence.
For x e X we shall now define the function

(2.8) p(x) sup {d(y, x)ly e t0(x)}.

p(x) is the supremum of the lengths of single transition starting from x. The
transition from x to y will be called a-maximal if d(y, x) >- up(x). A to-sequence
will be called maximal if there exists a >0, such that the sequence contains
infinitely many a-maximal transitions. Under quite general conditions, a converg-
ing maximal to-sequence must converge to an endpoint.

THEOREM 2.7. Let to be 1.s.c. If (x t) is a converging maximal to-sequence,
ox X, then its limit z is an endpoint.

Proof. Since to is 1.s.c., it follows that p(x) is 1.s.c. If zC:F_,to, then p(z)>0;
hence p(x t) >1/2p(z) for large enough t’s. Consequently, d(x
0 infinitely often and the sequence cannot converge.

Remark 2.8. It follows from Theorem 2.7 that Theorem 2.4 remains true if
one replaces the requirement that X is compact by the requirement that it is
complete.

3. Generalized nuleoli and stable sets. Let to be a set-valued dynamic system
defined on a metric space X.

DEvirqIrrIor 3.1. Let O be a nonempty subset of X. O is called stable w.r.t.
(with respect to) to if for every neighborhood U of O there exists a neighborhood
V of O such that if x V and (x’) is a to-sequence with x= x, then x’ U,
t=0, 1,2,....

DEFIrqI3:ION 3.2. A point x X is stable if {x} is stable.
Remark 3.3. If x X is stable, then x Eto. If O is closed and stable, then

to(O) Q; i.e., O is an invariant set.
Dzvirqi3:iorq 3.4. Let g(x)--(Gl(x),"’, G,,(x)) be a vector of m real

functions defined on X. A point a in R is called Pareto-minimal w.r.t, g if:

(3.1) there exists x Xsuch that g(x) a;

(3.2) if y X and Gi(y) <- ai for all i, 1,.. , m, then g(y) a.

DErqI3"ION 3.5. Let g: XR" and let a be a Pareto-minimal point w.r.t.g.
The set

Nu(g, a) {x Xlg(x) a}

is called the (generalized) nucleolus2 of g w.r.t.a.

Our definition generalizes that of Justman (1.973). As we shall see in 4, it also generalizes the
nucleoli known in game theory.
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DEFINITION 3.6. Let g(x) (Ga(x), ", G,(x)) be defined on X. g is called
q-monotone if

(3.3) x e X and y e q(x):ff G(x) >- G(y), 1,..., m.

g is called strictly q-monotone if it is q-monotone and satisfies, in addition,

(3.4)
x e X, y q(x) and y x ::> G(x) > G(y)

for some k, 1 _-< k _-< m, k=- k(x, y).

q-monotone vectorial functions will serve as Lyapunov functions.
Remark 3.7. If g is strictly q-monotone, then every nucleolus Nu(g, a) is a

subset of Eq.
Our first result establishes, essentially, the stability of generalized nucleoli of

q-monotone l.s.c, vector functions.
THEOREM 3.8. Let g(x) (Ga(x), ", G,,(x)) be defined on a compact metric

space X. Let Nu(g, a) be a generalized nucleolus. If the following conditions are

satisfied:
(3.5) g is q-monotone

(3.6) Gi is 1.s.c. on Xfor 1,. , m;

(3.7) Gi is continuous on Nu(g, a), i= 1,..., m;

then Nu(g, a) is stable w.r.t, q.
Remark 3.9. As Nu(g, a)= {x X[Gi(x)<_-ai, i= 1,. , m}, it follows from

(3.6) that Nu(g, a) is closed.
Proofof Theorem 3.8. Denote O Nu(g, a). Let U Q be an open subset of

X. S-X-U is compact. If y e $, then there exist 1 <-k <_-m and a natural
number r such that Gk(y) > ak + (1/r). Hence y e Ug, where

U, {x XlG(x) > a +{}.
As Gk is 1.s.c., U,r is open. As S is compact, there exists a finite collection
Ul,r,, , Ukq,rq such that S c U q= Uk,,n. For 1 <_-- <-- q, let

As Gk, is continuous on Q, V,,r, is a neighborhood of O. Denote V fq = Vkt,r,;
then V is a neighborhood of O which is contained in U. Now if x e V and (x l) is a
q-sequence with x= x, then by (3.5) Gg,(x ) < agt +(lift), O, 1, 2,. , 1 <- <-

q. Hence x e Vc U, 0, 1, 2,. . This proves that O is stable.
Remark 3.10. We can omit the requirement that X is compact if we know

that, for some k0, r0,

f%,o =- x e XlGo(X) <- ao+

is compact. Indeed, instead of S, we can then cover 17’ko,ro- Uby a finite number of
U,r’s and then V f’) tq=o V,nwould be the required invariant neighborhood of O
which is contained in U.
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The converse statement also holds"
THEOREM 3.11. Let Q be a nonempty closed subset of X. If Q is stable, then

there exists a (scalar)3 function t3, continuous on Q and to-monotone, such that
Q Su(t3, 0).

Proof. For x X, define

d(x) =-d(x, Q)=-inf {d(x, y)[y Q},

and

(3.8) (x) t(x, Q) sup {d(x ’)lwhere (x’) is a to-sequence
withx=x,t=O, 1, 2,... }.

By (3.8) (x) is to-monotone. Furthermore, since Q is invariant, (see Remark 3.3)
(x) 0 iff x Q. Thus Q Nu(, 0). To show that is continuous on Q, let x Q
and e >0. Let U={z XId(z)<e}. Then U is open and UDQ. As Q is stable,
there exists an open set V, VD Q, such that if y V and (y’) is a to-sequence with
y0 Y, then y’ U, 0, 1, 2,. . Thus (y) _-< e for y V. As x Q, (x) 0,
and is continuous at x.

Remark 3.12. I" to is 1.s.c., then (x) (see (3.8)) is 1.s.c. The proof of Remark
3.12 is similar to that of Lemma 2.1; hence it will be omitted.

Remark 3.13. IfX is compact, Q is a nonempty closed invariant subset o] X
and (x) (see (3.8)) is continuous on Q, then Q is stable. (Notice that need not be
1.s.c. on X.) The proof of Remark 3.13 is straightforward and will be omitted.

DEFINITION 3.14. Let g(x) (GI(X), G,(x)) be defined on X. g is called
strongly to-monotone if it is to-monotone and satisfies, in addition,

x6X and y6to(x)=),Gk(X)-Gk(y)>--_d(x, y)
(3.9)

for some k, 1 <- k <-_ m, k k(x, y).

Remark 3.15. If g is strongly to-monotone, then it is strictly to-monotone.
THEOREM 3.16. Let g(x) (Gl(x), ", G,(x)) be strongly to-monotone, and

let Nu(g, a) be a generalized nucleolus. I[g satisfies also (3.6) and (3.7), then each
point in Nu(g, a) is a stable point o[ to.

Proofi Let : Nu(g, a). Define g*(x) (G*l (X) *,..., G,,/(x)) by G*(x)=
Gi(x), i= 1,..., m, and

(3.10) G*,,+l(X) Z G,(x)+ d(x, ).
i=1

By (3.9) and (3.10), g* is to-monotone. Furthermore, G*(x) is 1.s.c. on X for
1, m + 1. Let a* Rm+ be defined by a*. ai, 1, , m, and a*,,/l

’-i=1 ai. Then a* is Pareto minimum for g* and {:}= Nu(g* a*). By (3.7) G*i(x)
is continuous at sc for 1, ., m + 1; consequently, by Theorem 3.8, : is stable.

Remark 3.17. The function g* defined in the proof of Theorem 3.16 is
actually strongly to-monotone.

Under fairly general conditions a converse statement also holds; namely,
every stable point of to is a generalized nucleolus of a strongly to-monotone

We regard 6 as a one-component vectorial function.



SET-VALUED DYNAMIC SYSTEMS 991

function which satisfies (3.6) and (3.7). We shall establish such a characterization
in Corollary 3.23. In order to do so, let us proceed with the following definition.

DEVXNITXON 3.18. A function q X--> R is called a valuation of q if:

(3.11) q is continuous;

(3.12) xX and yq(x)q,(x)-(y)>=d(x, y).

Remark 3.19. IfXis compactand q has a valuation , thenf(x) is bounded on
X. The proof is an immediate consequence of Lemma 2.6.

Remark 3.20. Lower semicontinuity of q (or of f) is not implied by the
existence of a valuation q for p. To see this let X [0, 1], and

0<=x<1/2,
qg(x)-

[{x, x-1/2}

Then (x)= x is a valuation for 0, while q is not 1.s.c.
Remark 3.21. IfX is compact and q9 has a valuation d/, then Eq
Proof. Let y X satisfy q(y) -<_ O(x) for all x X. By (3.12) y
THEOREM 3.22. Let x Eq. Iff (see (2.2)) is continuous at x, then x is stable.

If x is stable and q has a valuation d/, then f is continuous at x.
Proof. Assume that f is continuous at x. Let e > 0 be given. Choose 0< 6 <

e/2 such that if y X and d(x, y)< 6, then f(y)< e/2. Thus if y
and (y’) is a q-sequenee with yO_ Y, then d(y, y)<-f(y)<e/2. Hence d(y , x)-<_
d(y t, y) + d(y, x) < e, 0, 1, 2, Thus x is stable. To prove the second part of
the theorem let q be a valuation of q and assume that x is stable. Let e > 0 be
given. There exists a 61 > 0 such that if y X and d(y, x) < 61, then Iq’(Y) q(x)l <
e/2. As x is stable, there exists a 6 > 0 such that if y X, d(y, x) < 6 and (y) is a
q-sequence with yo= Y, then d(y t, x) < 61, 0, 1, 2,. .. Now if y X, d(y, x) <
6 and (y) is a -sequence with yo= Y, then for T=> 0,

T T
y,. d(y,+l, y,) =< y.. {(y,)_ $(yt+l)}
t=O t=O

(y)_(y(T+))< (X) +--
Thus f(y) <-- e. Since f(x) 0 (as x e Eq, see Remark 3.3) this proves the continuity
of f at x.

COROLLARY 3.23. LetXbe compact and let q have a valuation. If is a stable
point of q, then there exists a (scalar) function g, continuous at and strongly
q-monotone, such that {} Nu(g, 0). If, in addition, p is 1.s.c., then g is 1.s.c.

Proof. Choose g(x) 2f(x) + d(x, ) for x e X.
We close this section with the following, somewhat surprising, result.
THEOREM 3.24. LetXbe compact. Assume that q9 has a valuation

is lower semicontinuous. If Q is closed and stable, then Q contains a stable point.
Proof. As Q is stable, Q # (see Definition 3.1). As Q is a closed subset ofX

it is compact; hence takes its minimum on Q, say at sc e Q. Form the function

g(x) (6(x), q(x) + d(x, )) (see (3.8)).
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Let a (0, q(sc)). Then (}= Nu(g, a). By Theorem 3.11, 3 is continuous on Q,
and, in particular, at :. By Remark 3.12, 6 is 1.s.c. on X. O(x)+d(x, ,) is
continuous and t0-monotone (see (3.12)). Hence by Theorem 3.8, is stable.

4. Applications to the stability theory of the bargaining sets. We consider a
game (N; v) described by a set of players N= {1,..., n}, and a characteristic
function v: 2N R1. We assume that v is 0-1 normalized, i.e., v({i}) 0, N,
and v(N)= 1.
Denote:

(4.1) X(N)= lxlxRn, xi _->0,/Nand xi 1.
I. iN

For x X(N) and a coalition S (namely, a subset of N) we define the excess e(S, x)
of S w.r.t, x to be

(4.2) e(S, x)= v(S)- , xi.
iS

For each ordered pair i, ] N, ], and for each x X(N), we define the maximum
surplus sij(x) of against ] w.r.t, x to be

(4.3) @(x) max {e(S, x)li s, y S).

For x X(N) and i, ] N, ], we denote

(4.4) ki(x) max (0, min (x, 1/2(@(x)- si(x)))).
By a demandfunctionD {dij}, we mean a collection of functions di "X(N) R 1,
one for each pair i, ] N, ], which satisfy

(4.5) 0 <- d,(x) <- kq(x);

(4.6) di(x) is 1.s.c. on X(N) (when, e.g., X(N) is considered as a subset of l).

Remark 4.1. All the following results of this section could be obtained for a
compact subset X of 12o, instead of X(N). However, in order to keep the
presentation as simple as possible, we restrict ourselves to X(N).

Let D be a demand function. Following Stearns (1968), we define the
bargaining set MD by

(4.7) MD {x X(N)ldq(x 0 for all i, j N, j}.

The kernel is equal to K Mo., where D*=
Let D {di} be a demand function and i, j N, # j. Let x X(N) and c _-> 0.

We say that y results from x by a D-bounded transfer (of size c from j to i) if:

(4.8) yi xi + c;

(4.9) yj xj-c;

(4.10) Yl Xl, i, j;

(4.11) o<=d(x).
As c _-< d(x) <- k(x) <= x, it follows that y X(N). Also every D-bounded

transfer is a D*-bounded transfer.
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For each demand function D, we define the dynamic system (0o on X(N) by:

(4.12) tOo(x) {YIY results from x by a D-bounded transfer}.

Remark 4.2. qo is 1.s.c. Mo E(#o. Also tOo(x) c qD*(X) for all x X(N). The
proof of Remark 4.2 is straightforward; hence, it will be omitted.

For x X(N), let O(x) be the vector in R 2" whose components are the
numbers e(S, x), S N, arranged in nonincreasing order.

DEFINITION 4.3. The nucleolus point of a game (N; v) is a point x in X(N) for
which O(x) is lexicographically minimum, i.e., the point x in X(N) such that
O(X)L <---- 0(y) for all y in X(N). Here L----< is the lexicographic order in R2".

The nucleolus point was introduced in Schmeidler (1969), who proved that
there .exists exactly one such point.

We now introduce two strongly qo.-monotone functions. The first one is
related to the nucleolus point.

Example 4.4. For x X(N) let O(x) be, as before, the vector in R 2" whose
components are the numbers e(S, x), S N, arranged in nonincreasing order.
Define g(x)=(Gl(x),..’, G2-(x))by

k

(4.13) Gk(X) Y 2k-tO,(x), k 1,..., 2".
t=l

Claim 4.5. If a is the lexicographic minimum of g(x) on X(N), then Nu(g, a)
consists exactly of the nucleolus point.

Proof. Let u e Nu(g, a). Then g(v) _-< g(x) for all x X(N). Hence it follows
from (4.13) that 0(,)L ----< O(X) for all x e X(N). Hence by definition, , is the
nucleolus point of (N; v).

Claim 4.6. g(x) (see (4.13)) is strongly qo.-monotone.
Proof. Let x X(N) and let y qgo*(x). There exist i, j e N, # j, such that y

results from x by a D*-bounded transfer from j to i. If the size of the transfer is 0,
then, clearly, Gk(X)- Gk(y) IIx yll 0, k 1,..., 2. Assume that it is posi-
tive. For z e R n, denote Ilzll- maxl__<,=<n [z, I. Let S be a coalition such that/e S,j S
and sij(x) e(S, x). Clearly, e(S, x)-e(S, y)=llx-yll and for each R, R G N,
e(R, x)- e(R, y) =>-IIx yll.

We can enumerate all coalitions in such a way that 0(y)--
(e(R, y),..., e(R,,, y)) and if S Rq, then either q- 1 or e(Rt, y)> e(S, y)
whenever < q.

By (4.4) and (4.5), sij(y)= e(S, y) >=sj(y); therefore, all coalitions R, l< q,
either contain {i, j} or are disjoint from {i, j}; consequently,

(4.14) e (Rt, y) e (Rt, x) whenever < q.

Let 1 < k < 2n" then
k

(4.15) a(x) >- . 2-’e(St, x),

where (e(Sa, x). e(Sk, x)) is any permutation of the first k components of O(x).
(See (4.13) and Hardy, Littlewood and Polya (1933, p. 261).) Consequently,

k

(4.16) Gk(X) >---- Y’. 2k-’e(R,, x),
t=l
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because (R1, R2, Rk) is obtained from a certain permutation (S1, $2, Sk)
by replacing some coalitions by coalitions of lower excesses at x.

Thus
k

(4.17) Gk(x)--Gk(y) >- 2k-t(e(Rt, x)-e(Rt, y)).
t=l

It follows from (4.14) that Gk(X)--Gk(y)--O for k <q and if k ->q, then

k

(4.18) G(x)-G(y)>=2-qllx-yl] E 2-’llx-yll-llx-yll.
t=q+l

In particular, G2,(x)-Gz,(y)>--IIx- yll and g is strongly 0o,-monotone.
COROLLARY 4.7. G2"(x) is a valuation function for each oo.
Proof. If x X(N) and y qo(x), then, by (4.5), y oo.(x). Hence

Gz,(x) Gz,(y) >= IIx yll. Clearly, G2-(x) is a continuous function.
COROLLARY 4.8 (Kalai, Maschler and Owen (1973)). The nucleolus is a

stable point of every bargaining set Mo.
Proof. Let D be a demand function. By Claim 4.6, g (see (4.13)) is 0o*-

monotone. Hence because oo(x)c oo.(x) for all x X(N), g is qo-monotone.
Clearly, g is continuous on X. By Claim 4.5, the nucleolus is a generalized
nucleolus of g. Hence by Theorem 3.8, the nucleolus is a stable point w.r.t.
i.e., a stable point of Mo.

Example 4.9. For x X(N) let O*(x) be the vector in R n(n-1) whose compo-
nents are the numbers s(x), i, ] N, ], arranged in nonincreasing order. The
lexicographic kernel of (N; v), LK(N; v), is defined by

(4.19) LK(N; v) {x X(N)IO*(x) <- 0*(y) for all y 6 X(N)},

where -< denotes here the lexicographic order of R n(n-1). Itwas first suggested by
Gill Kalai.4 As for the nucleolus, we define g*(x) (G*(x), G,(,_l)(X))* by"

k

(4.20) G(x) E 2k-t0*(X), k 1,’-’, n(n- 1).
t=l

The following claims hold:
Claim 4.10. Let a* be the lexicographic minimum of g*(x) on X(N). Then

LK(N; v)= Nu(g,*, a*).
Claim 4.11. g*(x) is strongly 0D.-monotone.
Claim 4.12. *Gn(,-)(x) is a valuation function for each OD.
Claim 4.13. Each point of LK(N; v) is a stable point of every bargaining set

MD.
The proofs of Claims 4.10-4.13 are similar to those of Claims 4.5 and 4.6 and

Corollaries 4.7 and 4.8, respectively; hence they will be omitted.
We now present an example of a game for which the nucleolus point does not

belong to the lexicographic kernel.
Example 4.14. Let N= {1, 2, 3, 4, 5, 6, 7, 8}. Let v(N)= 1, v({1, 2, 3, 4})=

v({5, 6, 7, 8}) v({1, 2, 5, 6}) v({3, 4, 7, 8}) 100, v({1, 2, 3, 4, 5, 6}) 10,
v(S) 1 if S is a two-player coalition, and v(S) 0 otherwise. Then the nucleolus

4 Written communication.
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point of (N; v), Nu(N; v)= (0, 0, , 1/4, 41-, , 0, 0), while LK(N; v)=

We close this section with the observation that every nonempty strong e-core
is a stable set w.r.t, qD.; hence, every nonempty strong e-core is a stable set of
every bargaining set MD.

DEFINITION 4.15. Let (N; v) be a game and e be a real number. The strong
e-core C of (N; v) is defined by5

(4.21) C={xX(N)le(S,x)<=e forallScN, S#f,N}.

THEOREM 4.16. Every nonempty strong e-core is stable w.r.t. (gD,.

Proof. Let C # . Define, for x X(N), the (scalar) function

g(x) max [max {e(S, x)-elS N, S , N}, 0].

Then g,(x) is continuous and qgD.-monotone. Indeed, max {e(S, x)-elS c N, S, N} max {sij(x)[i, ] N, -]}- e (see (4.3)). By Claim 4.11, it is nonincreasing
along trajectories. The same property certainly is shared by the constant function
0; therefore (x) is qD.-monotone.

Furthermore, C Nu(,(x), 0); hence by Theorem 3.8, C is stable w.r.t.

REFERENCES

L. J. BILLERA (1972), Global stability in n-person games, Trans. Amer. Math. Soc., 172, pp. 45-56.
G. H. HARDY, J. E. LITTLEWOOD AND G. POLYA (1933), Inequalities, Cambridge University Press,

London.
H. HERMES (1970), The generalized differential equation eR(t,x), Advances in Math., 4, pp.

149-169.
M. JUSTMAN (1973), Regulative frameworks for iterative negotiations, Institute of Mathematics, The

Hebrew University, Jerusalem; Internat. J. Game Theory, to appear.
G. KALAI, M. MASCHLER AND G. OWEN (1973), Asymptotic stability and other properties of

trajectories and transfer sequences leading to bargaining sets, Rep. Department of Operations
Research, Stanford University; Internat. J. Game Theory, to appear.

O. SCHMEIDLER (1969), The nucleolus of a characteristic function game, SIAM J. Appl. Math., 17,
pp. 1163-1170.

R. E. STEARNS (1968), Convergent transfer schemes for n-person games, Trans. Amer. Math. Soc.,
134, pp. 449-459.

W. I. ZANGWILL (1969), Non-linear Programming, Prentice-Hall, Englewood Cliffs, N.J.

The customary definition requires in (4.16) x(N) v(N) instead of x X(N). With the custom-
ary definition, Theorem 4.16 still holds if one replaces "strong e-core" by "the intersection of the
strong e-core with X(N)".



SIAM J. CONTROL AND OPTIMIZATION
Vol. 14, No. 6, November 1976

INVARIANTS AND CANONICAL FORMS UNDER
DYNAMIC COMPENSATION*

W. A. WOLOVICH AND P. L. FALB?

Abstract. This paper is concerned with the development of a complete abstract invariant as well as
a set of canonical forms under dynamic compensation for linear systems characterized by proper,
rational transfer matrices. More specifically, it is shown that one can always associate with any proper
rational transfer matrix, T(s), a special lower left triangular matrix, :7-(s), called the interactor. This
matrix is then shown to represent an abstract invariant under dynamic compensation which, together
with the rank of T(s), represents a complete abstract invariant. A set of canonical forms under dynamic
compensation is also developed along with appropriate dynamic compensation.

1. Introduction, The primary purpose of this paper will be to exhibit
invariants and a set of canonical forms for linear dynamical systems which are
equivalent under dynamic compensation. Critical to this purpose will be the
introduction of a special lower triangular matrix T(S) associated with any T(s) in
S and called the "interactor" of T. The role of the interactor in resolving the
closely allied questions of exact model matching and inverse systems is also
displayed.

Section 2 contains a precise description of equivalence under dynamic
compensation as well as some elementary properties of this notion. The interactor
T(S) is introduced in 3 and is shown to be an abstract invariant under dynamic
compensation in 4. The main results on invariants and canonical forms are also
established in 4 and some final observations are made in 5.

2. Dynamic compensation. We begin with some definitions.
DZVINITION 2.1. Let S be the set of all proper (p m) transfer matrices of full

rank r( min {p, m}) with first r rows, T(s), of rank r. Let S/, S_ be the subsets of
S given by

S+={T(s)SIT(s) ispm withm-p_->0},
S_={T(s)SIT(s) ispm withm-p<0and Tm(s)ofrankm},

respectively.
We observe that S+ f3 S_ and that S/ U S_ S.
DZFINITION 2.2. Let T(s) be a given p rn element of S. Then, any m k

transfer matrix T(s) in S is called a dynamic compensator of T(s).
The operation of T(s) can be represented in "open loop" form by the block

diagram of Fig. 1, where y(s) T(s) u(s) represents the (Laplace transform of the)
zero state dynamical behavior of the given system and u(s) T(s) v(s) that of the
compensator.

Since T(s)T (s) is again a proper transfer matrix, it is readily shown that T (s)
can be represented in terms of input dynamics and state feedback [1], [2]. More

* Received by the editors September 5, 1974, and in revised form August 20, 1975.

" Division of Applied Mathematics, Brown University, Providence, Rhode Island 02912. This
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FIG.

precisely, if T(s)= R (s)P-l(s) with R (s) and P(s) relatively right prime polyno-
mial matrices [3], then there are polynomial matrices F(s), G(s) and L(s) such
that Tc(s)=P(s)P-l(s)L(s) is proper with Pc(s)=G(s)P(s)-F(s). Thus, the
operation of Tc (s) can be represented in "closed loop" form by the block diagram
of Fig. 2, with z(s) the (Laplace transform of the) partial state of the given system,
F(s)z(s) the state feedback "part", and G(s)-IL(s) the input dynamic "part" of

FI6.2

Tc (s) (see [ 1], [2]). Knowledge of the portions of a dynamical system which remain
unaltered (or invariant) under a particular form of compensation is ultimately tied
to a number of important questions of control system analysis and synthesis such
as model matching and decoupling.

DEFINITION 2.3. If TI(s) and T2(s) are elements of S, then Tl(s) and T2(s) are
equivalent under dynamic compensation if

T(s) Tc(S) T(s),
(2.4)

T(s) Tc(s) T(s)

for some Tic(S) and T2c(S) in S.
If T(s) and T2(s) are equivalent under dynamic compensation, we write

Tl(S)EdT2(s). It is clear that Ea defines an equivalence relation on S. The main
purpose of this paper is the characterization of the orbits of this equivalence
relation by the determination of invariants and a set of canonical forms.

The following elementary observations are required because we deal with
proper transfer matrices of different dimensions.

OBSERVATION 2.5. If TI(S)EdT2(s), then Ta(s) and T2(s) have the same rank.
OBSERVATION 2.6. S/ and S_ are stable under dynamic compensation (i.e., if

T(s) S/, say, and Ta(s)EuTz(s), then T2(s) S+).
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OBSERVATION 2.7. If Tl(S) is a p m element of S_ and Tl(s)EaTE(S), then
T(s) is also a p m element of S_, and both TiC(s) and TE(S) are nonsingular.

3. The interactorsCr(s). Let T(s) be an element of S. We shall, in this section,
determine a unique nonsingular, lower left triangular polynomial matrix
associated with T(s) and called the interactor of T(s). The constructive procedure
which will be outlined is similar to that given by Silverman [4] in the case of state
space representations, although unlike Silverman’s algorithm, it does yield a
unique seT(s) for transfer matrix representations.

LEMMA 3.1. Let T(s) be an m m element of S. Then there is a unique,
nonsingular (m m), lower left triangular polynomial matrix 7.(s) of the form
(3.2)

where

(3.3) Hr(s)

(s) HT-(s) diag [srl, srm],

-1 0

h21(s) 1

_hml(S) hm2(S)

and hii(s) is divisible by s (or is zero) such that

(3.4) lim seT-(s) T(s) KT
oO

with K nonsingular.
Proof. We first prove the existence of such a set(s). It is well-known [2] that

T(s) can always be factored as the product R(s)p-l(s) with R(s), P(s) relatively
right prime polynomial matrices and P(s) column proper. Let Oi(P)= di,
1,. , m, denote the column degrees of P(s) and let Y.--1 d n. Now, det R(s) is
a nonzero polynomial of degree q (since T(s) is nonsingular) with q <- n (since T(s)
is proper). There are unique integers/zi, 1,. ., m, such that

(3.5) lim s"T(s)= z, i= 1,..., m,

where T(s) is the ith row of T(s) and - is both finite and nonzero. We define the
first row T(S)I Of T(S) by

(3.6) T(S)I.= (Sgl, 0,’’’, 0)

so that

(3.7) lim sca,(S)lT(S)= 1 Zl.

If z2 is linearly independent of :a, then we set

(3.8) seT-(s)2 (0, s’2, 0, , 0)

so that

(3.9) lim (s)2T(s)= 2 7"2"
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On the other hand, if ’2 and :1 are linearly dependent so that r2 a:l with
a 0, then we let

(3.10) (s)2 s"l[(0, s", 0, , 0)-c l:T(S)d,
Where/z is the unique integer for which lim_,o (s)aT(s) is both finite and
nonzero. If is linearly independent of :, then we set

(3.11) :T(S)2 (S)2
and note that

(3.12) lim r(s)2T(s)=

is linearly independent of :1. If not, then aSCl and we let

(3.13) g(s)2 s "[(s)2-
where/z is the unique integer for which lim_,o (s)2T(s) is both finite and
nonzero. If and SOl are linearly independent, then we set :r(s)2 (s)2 and if
not, we repeat the procedure until either linear independence is obtained or
t+tz=n-q. In case/Xl+/.2=n-q, set ]’3=0, ,f, =0 and the corres-
ponding h 0. The remaining rows of :r(s) are defined recursively in an entirely
analogous manner. In other words, we obtain either (i) a matrix r(s) of the form
(3.2) such that (3.4) is satisfied or (ii) :r(s), :r(s), r _<-m, such that lim_,oo
r(s)iT(s) - with s, ., : linearly independent and 1 ]} n q. In case (ii),
we set[+ 0,. ., f, 0 and the corresponding h 0 to obtain :r(s). If r m,
then

(3.14) lim r(s)T(s)= Kr
oo

is nonsingular since the :i are linearly independent. If r < m, then tr(s)T(s)=
r(s)R(s)P-l(s) is a proper transfer matrix as each step produces a proper
transfer matrix. But then

(3.15)

so that

However,

(3.16)

O, (TR d <= di O (P)

i=1 i=1

degree (det sCrR) degree (det :r) degree (det R)

=n-q+q,

Note/zl +tz cannot exceed n-q as :1, are finite and nonzero.
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which implies Y’-i=l Oi(TR)--i=l i >=n. It follows that a =di and hence, that
r(s)R(s) is column proper with the same column degrees as P(s). Thus,

(3.17) lim (s)R(s)p-l(s)= gr

is nonsingular [2].
We now.prove uniqueness. Let seT-(s) Hr(s) diag [sI’, sI’] and r(.s)

/-]rr(s) diag [s’, ., s."] satisfy (3.4). Then, :rR and rR are column proper with
Oi(rR) Oi(P) O(rR). It follows [2] that

[:R][rR]-1 Hr(s) diag [s1-1, sr’-L"]/-ffAl(s),
[rR][s%R]-1= r(s) diag [s1-, s’-’"]/-ffl(s)

are both proper. Since H(s) and /rr(s) are of the form (3.3),)] =1 for i=
1,..., m. Now, both Hr(s) and /-]rr(s) are unimodular, lower left triangular
matrices with diagonal entries 1. Moreover, Hr(s)I (s)= U(s) is unimodular,
proper and satisfies lims_oo U(s)= L with L nonsingular. Since each hj(s) is
divisible by s (or is zero) and each fij(s) is divisible by s (or is zero), U(s)= I and
Hr(s) r(s). The proof of the lemma is now complete.

LEMMA 3.18. Let T(s) be a p x m element of S/ with p < m. Then there is a
unique p p matrix (s) of the form

(3.19)

where

(3.20) Hr(s)

r(s) Hr(s) diag [s’, .., s;-],

1 0 0

21(S) 1

Lhv(s) hpE(S)

and hii(s) is divisible by s (or is zero) such that

(3.21) lim (s)T(s)= Kr
---oO

with Kr of rank p.
Proof. Let T(s) R (s)e-l(s) with R (s), P(s) relatively right prime and P(s)

column proper. Then the p m matrix R (s) is of rank p and there are row vectors

rp/l," , r,, (with polynomial entries) such that

(3.22) Re(s)

R

Lr,,, J

is nonsingular and Te (s) Re (s)P-(s) is proper (i.e., is an element of S). By virtue
of Lemma 3.1, there is a e(s) of the form (3.2) such that lim_oo re(s)Te(s) Ke
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is nonsingular. Let

Xm-p m--p
(3 23) Te(S) l__--pp

where T(S) is a p X p matrix and X,j is an x/" matrix. Then T(S) is necessarily of
the form (3.19) and

(3.24) lim &(s)R(s)P-l(s)= KT
oO

with Kr of rank p. The uniqueness of SCTe (S) implies that T(S) is unique.
LEMMA 3.25. Let T(s) be a p x m e&ment of S, and let T (s) denote the

nonsingular matrix consisting of the first m rows of T(s). en there is a uniquep x p
matrix &(s) of the form

(3.26) T(S)=[’T-(S) 0 ]
where 7(s), T(s) are relatively left prime and 7e(s) is a nonsingular lower left
triangular matrix in Hermite normalform [3] with monic diagonal entries such that

(3.27) lim T(S) T(s) KT
s

with KT a constant matrix of rank m whose final p m rows are zero.
Proof. Let T(s)= R(s)P-(s) with R(s), P(s) relatively right prime. Then

(3.28) R(sl=
LRp_(s)j

so that T,,(s)= R(s).P-(s). Since T(s) is nonsingular, R(s) is nonsingular. It
follows that there is a (unique) pair of polynomial matrices (s), yz(s) such that

(3.29) Rp-(s)Ra(s) y](S)yl(S),
where yl(S), y(s) are relatively left prime polynomial matrices and y2(s) is a
nonsingular lower left triangular matrix in Hermite normal form with monic
diagonal entries. However, (3.29) implies that

(3.30) e(s)R._m(S)-r(s)R(s) O.

Since (s) is unique by Lemma 3.1 and y(s)y(s) represents a unique
factorization (since the Hermite normal form of y2(s) is unique) of
Rp_(s)R(s), the matrix T(S) exists and is unique.

DEFINITION 3.31. If T(s) is an element of S, then T(S) iS called the interactor
of T(s).

We note that the interactor is defined for all proper transfer matrices in S.
We illustrate the construction of T(S) in the following two examples.

T(s)

Example 3.32. Let
1 1 1
+1 s+2 s+
0 1 1

s+3
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Then fl 1, f2=0 and :r(S)l=(S 0) so that lims_,o T(S)IT(S)=I
(1 1 1) Zl. Now, 2 (0 0 1) is linearly independent of 1 and so, r(s)2
(0 1). Thus,

s(s) o ,_oo o =K-

with Kr a constant matrix of rank 2.
Example 3.33. Let

1

T(s)= 14-11+3
1

Thenfl=l,f2=land’rl=(1 1),’2=(1 1).Sor(s)l=(S 0)and-2islinearly
dependent on :1 with 2 1. s. Thus, (s)2 s[(O s)-(s 0)] (-s s 2) and
lim_,oo -(s)2T(s)--1= (-2 -2)=-2. Sl. Since depends linearly on sex, we
continue by setting (s)2 s[(-s s 2) + 2(s 0)] (-s 3 +2s s3). Then 22
(6 8) is not linearly dependent on :1 and so,

Is 0]T(S)=
--S3+2s2

S
3

s-,oolim r(s)T(s) [ 16 81] =Kr
with Kr a constant matrix of rank 2.

4. Invariants and canonical forms. We begin with some lemmas.
LEMMA 4.1. Let T(s) be a p m element ofS/. Then there is a (not necessarily

proper) m p transfer matrix Or(s) such that (i) T(s)Or(s) Ip and (ii) Or(s)l(s)
is proper.

Proof. If p m, then let Or(s)= T-l(s). Since lims_oo r(s)T(s) Kr is non-
singular, lim_,o T-l(s)rl(s)=Kr is nonsingular. It therefore follows that
T-l(s)scl(s) is proper.

If p < m, we append m-p row vectors from the standard basis to T(s) to
obtain a proper nonsingular m m transfer matrix

T(s)](4.2) Te(s)=
E

Then

0_](4.3) sere (s) r(s)
Om--p,p I ’m--p

Let Or(s) be the m xp transfer matrix consisting of the first p columns of T-el(s).
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Then T(S)OT(S)= Ip. Since Te-e l(s):Fel(S) is proper and

(4.4)
Te-el(S) lOT(S) *-m,m-p],

--1 [1(S) Op,m--p]r" (S)
Im-p ]’Om-p,p

it follows that OT(S)-I(s) is proper.
THEOREM 4.5. Let Tl(S) be a p x m element of S/ and let T.(s) be a p x q

element of S+. Then there is an element T(s) of S such that

(4.6) Tl(s)T(s) Tz(s)

if and only if rl(s):l(s) is proper.
erooL If :r(s):)l(s is proper, then scrl (s) T2(s) [:r(s):(s)][r,_(s T2(s)] is

proper. Hence, T(s)=Or(s)T2(s)=[Or(s)r(s)][r(s)T2(s)] is proper. But
Tl(s)T(s) [Tl(S)OTl(S)]T:z(s) IpT2(s) T2(s).

On the other hand, if there is an element T(s) of S such that Tl(s)T(s)
-1T2(s), then T(S)T(s)=[Tl(S)Tl(s)]T(s) is proper. But T(S)T2(S)=

T(S)Iprl(s)=T(S)[T(S)OT2(S)]rl(s)=[T,(S)T(s)][OT2(S)rl(s)] is then a
proper transfer matrix.

It is of interest to note that Theorem 4.5 represents a direct resolution to the
question of existence of solutions to the well-known model matching problem,
which has recently been expanded somewhat and termed the "minimal design
problem".

COROLLARY 4.7. SeT(S) is an abstract invariant for Ed on S+.
Proof. Suppose that Tl(s)EaTz(s) with Tl(S) S+ (hence, by Observation 2.6,

-1TE(S) 6 S+). Then Theorem 4.5 implies that both TI(S)r(S) and :T.(S):T (S) are
proper p p transfer matrices. In view of the uniqueness part of the proof of
Lemma 3.1, it follows that s%(s)=

LEMMA 4.8. The invariant T(S) is complete on S+.
Proof. Let Tl(S) and TE(S) be elements of S+ such that SCTI(S) SCT(S). If G is a

constant m p matrix such that SCTG is nonsingular, then T(S)TI(s)G is a p xp
element of S with lims_,oo TI(s)TI(s)G TG nonsingular. Thus,
[T(s)TI(s)G]-1 is in S and so is

(4.9) Tic(S) G[75(s)TI(s)G]-1T2(S)T2(s).
Since T(S)= T(S), Tic(s)= G[TI(s)G]-ITg.(s) and

(4.10) TI(S) Tlc(S) [TI(s)G][TI(s)G]-IT2(s) Z2(s).

Similarly, there is a Tec (s) is S with T(s)T2 (s) Tl(S) and so, TI(s)EdT2(s).
We note that Theorem 4.5 has a number of interesting consequences, such as

Corollary 4.7, as well as the following corollaries.
COROLLARY 4.11. Let T(s) be an element of S/. Then T(s) has a proper right

inverse Tri (S if and only if T(S L
Proof. T(s)Tri(S)--I if and only if :T(S)sC)-(S) is proper. But i(s)=Ip and

seT(s) is proper if and only if SeT(S)= I.
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COROLLARY 4.12. Let T(s) be an element of S_. Then T(s) has a proper left
inverse if and only if w’ (S) I (where T’(s) is the transpose of T(s)).

We return now to our study of invariants and canonical forms.
DEFINITION 4.13. If T(s) S, let pr denote the rank of T(s), and let S_, q

{T(s)S_lPw--q}.
LEMMA 4.14. T(S is an abstract invariant ]:or Ed on S_.

Proof. Suppose that Tl(S)EdT2(s) with T(s), T2(s) in S_. Then, clearly,
T(s)EdT(s) and so, by Corollary 4.7, T,(S)=T,(S).

By virtue of Observation 2.7, since [-72(s),722(s)]T(s)Tl(S)=
[-7(s), 72(s)]T2(s) O, we have

(4.15) -721(s)R1 (s) + 722(s)Rlp- (s) 0.

But then 7](s)72(s)= 7(S)7l(S) are both relatively left prime factorizations
of the same transfer matrix with both 22(s) and 72(s) lower left triangular
matrices in (unique) Hermite normal form with monic diagonal entries. Thus,
Y22(S) Yl2(S) and Tx(S)= T2(S).

LEMMA 4.16. T(S) is complete on S_, q.
Proof. Let Tl(S) and Tz(s) be elements of S_, q such that T(S) T(S). en

T,(S) T, (S) and
-1T,(s)=[T,(s)Ta(s)] [T,(s)Tg(S)]

(4.17)
(s)r2q(s)

is an element of S. But

T,(S)TI(s)T,c(s)= [T.(S)Tlq(S)]0
(s)Tq(s)

[’T;(S)] T2o(S

(4. 8) (s)T(s)= &, (s)T(s)

and so, Tl(S)Tl(S)= Tz(s). Similarly, there is a T(s) in S with T2(s)Tz(s)=
Tl(S) and so, T(s)EaT2(s). We now state the main result of this paper.

THZORM 4.19. Let be the function on S given by

(4.20) (T(s)) (o, &(S)).

en is a complete abstract invariantfor equivalence under dynamic compensa-
tion.

Proof. By virtue of Observation 2.5, Corollary 4.7 and Lemma 4.14, is an
invariant.

As for the completeness of , it will be sufficient in view of Lemmas 4.8 and
4.16 to show that if (Ta(s))= (Tz(s)), then either Ta(s) and Tz(s) are in S+ or
Tl(S) and Tz(s) are in S_. Suppose that O(Tl(S))= (Tz(s)) and that (say) Tl(S) isa
pl x ma element of S+ and Te(s) is a P2 x m2 element of S_. enPT Pl ma and

PT m2 <P2. But Pl mz <pz and so the pax pa matrix T(S) could not equal the
pz x p2 matrix T(S). Thus, the theorem is proved.
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It is important to note that this theorem establishes the fact that any two
dynamical systems (with transfer matrices in $) are equivalent under dynamic
compensation if and only if their transfer matrices have equal rank and their
interactors are equal.

DEFINITION 4.21. A subset C of S is called a setofcanonicalformsforS under
Ea if, for each T(s) in S, there is a unique CT(s) in C with T(s)EdCT(s).

Let C/ {rl(s)lr(s) S+} and

r(s)C_=
7"-m<S7";,(S).S- 17"ssS-.

We then have the following theorem.
TH.OXZM 4.22. If C C+ (.J C_, then C is a set of canonicalforms [or S under

E.
Proof. If T(s) S+, we set

To(s) G[r(s)T(s)G]-1,

where G is any mp constant matrix such that :TG is nonsingular. Then
T(s)T(s)=r(s) and T(s)=r(s)T(s)- so that T(s)Ear(s)-.

If T(s S_, we set

Tc(s) T(s)rm(S)
so that T(s)Tc(s)= CT(S) and T(s)= Cr(s)Tc(s)- (i.e. T(s)EaCT(S)).

Example 4.23. Let T(s) be the element of S given by

1
s+2

2
s+3

T(s)
1

(s +:Z)(s +3)

2s+7
(s+2)(s +3)

and let T.(s) be the element of S given by

1
s+l

s2+6s+7
(s + )(s + 3)

T2(s)
s+4

(s + 1)(s + 3)

3s+10
(s + 1)(s + 3)

s+l
s+3

1
s+3

1
s+3

1
s+l

1
s+l
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Are Tl(S) and T2(s) equivalent under dynamic compensation? Since both Tl(S)
and T2(s) are of rank 2, we need only examine :TI(S) and SCT2(S). Since

and

1 0

-,oo 0 2 s+l 0
+3 s

1
0

s-,oo 0 1 s2+6s+7 1

we have :rl,.(s) T2,.(S). To determine the remaining rows of r(s) and scr(s),
we note that

Tl(S)=[Rll(s)]
[R12(s)j

P-I(s)’

[-R22(s
Pa(s),

where

1 s+l’
R12(s)--

2 -1 s+3

and

s+3
R21(S)

S
2 +6s + 7 s+l 3s+10 1

P2(s) [(s + 1)(s0 + 3)

respectively. Thus,

Rz(s)R-(s

1 1
s+l s+
2s+l 1
s+l s+

(8)11(8),

R2z(s)R(s)

1 1
s+l s+
2s+1 1
s+l s+

"y-g(S)’Y21(S),
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where

T12(S)= T22(s)= [s + l ]
[-11]T(s)= Ta(s)=

2 0

and

(s) (s)

In other words, TI(S)EaTa(s).

s 0 0 0

1 0

-1 s+l

0 -1

The uniquea dynamic compensator, Tic (s), which equates the two systems is
now given by (4.17), i.e.,

Tic(S)-- Tl(S) Taq(s)
s+2

0
+1
+3 s+3
+1 s

and Crl(s)= Cr2(s), the canonical form for both Tl(s) and Ta(s) is given by

c,(s)= C(s)=
-1
S2+S
2s+l
$2+3S

s+l

1
s+l

5. Concluding remarks. We have now exhibited a complete abstract
invariant, O(T(s))=(pr, set(s)) for transfer matrix equivalence under dynamic
compensation; i.e. we have shown that for systems characterized by full rank,
proper transfer matrices, the rank and the interactor determine equivalence under
dynamic compensation.

The relevance of this observation with respect to the question of exact model
matching and proper right inverses was also shown.

In establishing completeness, explicit expressions are obtained for the requis-
ite dynamic compensators. We further determined a set of canonical forms for the

2 One can readily establish that the dynamic compensators which equate two equivalent systems
in $_ are unique.
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class of systems considered and developed the explicit compensators which
produce the canonical forms.

Subsequent investigations will build on the results presented here, and will
employ the interactor to resolve numerous related questions; e.g. the develop-
ment of complete abstract invariants for system equivalence under state feedback
compensation, the derivation of new and direct procedures for (dynamically and
triangularly) decoupling systems via both dynamic and state feedback compensa-
tion, and more efficient resolutions to model matching via both stable and minimal
order compensation (the minimal design problem).
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CRITERIA FOR FUNCTION SPACE CONTROLLABILITY
OF LINEAR NEUTRAL SYSTEMS*

MARC Q. JACOBS? AND C. E. LANGENHOP

Abstract. Necessary and sufficient conditions for the exact state controllability of the linear
autonomous differential difference equation of neutral type, 2(t)=A_aZ(t-h)+Aox(t)+
A x(t h) +Bu(t), are given for the Sobolev state space W(zI)([ h, 0], Rn). In particular when B is an
n 1 matrix, it is shown that the controllability of the above n-dimensional system on the interval
[0, z], z > nh, is equivalent to rank [B, A_IB, , A"__-aB] n and that a certain two point boundary
value problem for a related homogeneous ordinary differential equation have only the trivial solution.
Practical criteria based thereon entail only elementary computations involving the coefficient matrices
[A-a, Ao, A a, B] but these computations can be tedious when n > 3. The condition that the two point
boundary value problem have only the trivial solution is often equivalent to a much simpler condition:
K(A)#0 for all complex A, where S,=[1, e-h, ,e-(n-1)Xh]T, and K(A) is an n Xn matric
polynomial of degree n which is constructed from the matrix [A-a, Ao, A a, B]. This equivalence
for the general case is still an open question. It is shown that the collection of controllable neutral
systems form an open, dense subset of the collection of all neutral systems of the type considered. This
is in marked contrast with the situation for retarded systems. It is also proved (for general B) that when
the matrix, [B,A_aB,... ,A"__-IB], has rank n, the solution operator, u-->x,(., 0, u), for quite
general neutral systems has closed range and finite deficiency. This often turns out to be an adequate
substitute for a controllability assumption.

1. Introduction. In this paper we examine two fundamental questions
,regarding the attainable set (see (2.3) below) 1(-)c Wt21([-h, 0],R ") of a
controlled linear system of autonomous neutral functional differential equations.
The first is that of characterizing the controllable systems (i.e., those systems for
which (’) coincides with the Sobolev state space W21([ h, 0], Rn)). The second
question is the related one of establishing conditions which assure that (-) is
closed in W21([ h, 0], Rn). Answers to both these questions are important in the
solution of so-called optimal settling problems for hereditary systems [2], [7],
[19], [21]. Often the property that (-) is closed is exactly what is needed to
establish that the given variational problem is normal [2], [4], [21], [22].

The question of controllability is examined only for neutral differential-
difference equations of the form

(1.1) 2(t) A-lZ(t h) +Aox(t) +Ax(t h) + Bu(t),

where h is a positive constant, the Ai, + 1, 0, are n n constant real matrices,
and B is an n m constant real matrix. For this restricted class of neutral systems
we can obtain very explicit and computationally effective criteria for checking the
controllability. In 2 we establish a preliminary necessary condition for (1.1) to be
controllable on [0, -], - > h (see 2 for the terminology). This condition takes the

* Received by the editors June 16, 1975, and in revised form January 14, 1976. This work was
supported by the National Science Foundation under Grants GP-33882, NSF MPS72 04695 A03 and
NSF GF-37298.

]" Department of Mathematics, University of Missouri, Columbia, Missouri 65201.
t Department of Mathematics, Southern Illinois University, Carbondale, Illinois 62901.
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foI’m

(1.2) rank [B, A_IB, , AP_-IB] n

(p is defined in (2.9) below), and rank G(’-h)=n where G(z-h) is the
controllability Gramian defined in (2.7). These two conditions are independent
for general - > h, but when " > nh, (1.2) implies that rank G(" h) n.

It is known from [4] that the controllability of (1.1) on [0, ’] depends on r if- <= nh while it is independent of ’, if - > nh. In 4 we give necessary and sufficient
conditions for (1.1) to be controllable on [0, -], - > nh. In this section we restrict
ourselves to scalar controllers u (i.e., B is n x 1). The machinery needed for the
general analysis is available in [4], but the simplicity of the results tends to get
obscured when the general n x rn matrix B is treated. Moreover, in view of (1.2)
and Theorem 6, p. 86 of [24] there is only a small loss of generality. A number of
examples illustrating the use of the controllability conditions are given in 6. The
result for 2-dimensional systems which is given in Example 6.1 was reported
earlier in [20]. Some of the tools used in 4 were developed in [4], and are
extensions of Minjuk’s work [27] on the operational calculus (see also [32]). We
also show that controllability of (1.1) on [0, -], - > nh, is a generic property of such
systems (B is n x 1); i.e., the set of controllable systems (1.1) on [0, r], r > nh, is an
open and dense subset of all systems (1.1).

In 5 it is noted that the controllable systems (1.1) (B is n x 1) are linearly
equivalent to a certain canonical system where A_I is a companion matrix and
B [0, 0, , 0, 1]*. The equivalence is constructive and these canonical systems
are considerably simpler to work with computationally. In this section we discuss
another useful necessary condition for the controllability of canonical systems. In
addition, we give a Leverrier type of algorithm for recursively generating the
operator K(D) used in deciding whether a system is controllable.

As a by-product of our study of the basic system (1.1) (where B is n x m,
rn -> 1) we obtain some results on the question of whether g(-) is closed. These
results apply to very general systems.

Let t--x(t, O, u) denote the solution of (1.1) on [0, r] (u EL2([0, 7"], Rm))
satisfying x(t)=0, -h-<t-<0. In 3 it is proved that (1.2) is a necessary and
sufficient condition that the solution operator, u x(., 0, u), for the difference
equation (1.1) with A A0 0 to have closed range and finite deficiency in
W(21)([-h, 0], R"). This property is shown to persist for quite general nettral
systems

(1.3) (x,) L(xt) + Bu(t),

where is a Hale-type difference operator [10], [17] which is a sufficiently small
or sufficiently smooth perturbation of the operator 0 & ek(O)-A-lqb(-h) and
L is any continuous linear operator with range R and domain the space of
continuous functions on I-h, 0] into R with the norm of uniform convergence.

It is noted that for retarded systems (1.3) with (&)= &(0) a necessary and
sufficient condition for controllability is rank B n. Thus the controllability
theory for neutral systems is markedly different (the uncontrollable neutral
systems are meagre) from the retarded systems. This might be anticipated from
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the analogy between hyperbolic partial differential equations with boundary
control and controlled neutral differential equations (see [7] and the references
therein). Russell [34] and others have developed a rather complete controllability
theory for hyperbolic systems with boundary control in contrast to parabolic
systems (analogous to retarded systems) where one usually obtains density results.
There is a good survey of earlier work on controllability of retarded systems in 1]
and [13]. Gabasov and Kirillova [13] also give some results for the Euclidean
controllability of neutral systems. We establish a related result, our Corollary 4.1,
below. Minjuk and Stepanjuk [28] and Olbrot [29] have resolved the problem of
null controllability for retarded systems. In [20] the authors have used the
operational techniques in 4 to give simple necessary and sufficient conditions for
two-dimensional retarded systems to be null controllable.

2. Preliminary necessary conditions for controllability. For a Hilbert space
H we denote the inner product by (x, y) or by (x, Y)n where confusion may
otherwise arise. The norm on H is, of course, [Ixll-<x, x> x H. Statements
concerning measures, integrals, etc., will refer to Lebesgue measure on R unless
explicitly stated to the contrary. For E c R, E measurable, L2(E, Rp) denotes all
measurable functions u "E - Rp such that $]lu (t)ll dt < c, two such functions u, v
being considered the same if they are equal almost everywhere (a.e.) on E. With
the inner product (u,/))L2 E(u (t), v (t))n, dt the set L2(E, Rp) is a Hilbert space.

If X:[o,]Rp is absolutely continuous, we define (Dx)(t)=(t)=
(dx(t)/dt) a.e. on Ice,/3]. Higher powers of the operator D are defined inductively
by Dk/I=DDk with domain equal to all x:[a,]-Rp such that Dkx is abso-
lutely continuous on [a,/3]. By DO we understand the identity, (Dx)(t)= x(t),

[a,/3]. The Sobolev spaces W(z)([a, /3 ], RP), p-" 1, 2," , are defined as the
collection of all functions x :[a,/3]- Rp such that D"-lx is absolutely continuous
on [ce,/3] and D"x L2([a,/3], Rp) with inner product given by

(2.1) (x, y)wv, Z (D’x(), Diy(c))Rp+(Dx, Dy)L2.
i=0

With the inner product as in (2.1) there is an isometry between W(z")([a, /3 ], Rp)
and (RP) Lz([Ce,/], Rp) given by

x ---(x(a), Dx(a),..., D"-’x(a), D’x), x riP).

If A’HH2 is a linear mapping between two Hilbert spaces, then A*
denotes the adjoint linear mapping and we define Ker A {x HaIAx 0} and
ImA ={AxlxH1}. If H is a Hilbert space and McH, then M-=
{h Hl’qm M, (h, m)= 0}. For a matrix A we use A* for the conjugate trans-
pose.

We remind the reader of the customary notation for the "states" of systems
governed by a functional differential equation, viz., if x" [’0-h, ’1] R n, h >0,
then for [’0, 1] the symbol xt denotes the function on [-h, 0] defined by
x,(0) x(t + 0), 0 [- h, 0].

Let Ai, + 1, 0, be constant real n n matrices and B a constant real n m
matrix. We consider the differential-difference equation of neutral type given by
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(h > 0)

(2.2) Yc(t) A-a:(t- h) +Aox(t) +Aax(t- h) +Bu(t).

Aside from the control variable u this system is autonomous so no generality is
lost by taking the initial time as 0. Let 5 [0, r] be a given interval with r > h. As
in [4] we say that (2.2) is controllable on if for each b,
there is a uL2(,R’) such that x(. ,4,u)=q. Here t-+x(t, cb, u) is the
solution of (2.2) for >-0 using control u and initial data x0 b. Similarly, (2.2) is
Euclidean controllable on 5 (r > h is not required for this) if for each
wzl)([ h, 0], R n) and each : R there is a u L2(5, R") such that x(r, 4, u). The attainable set of states for (2.2) at time r starting from b 0 is

(2.3) sg(r) {0 x,( O, u)lu L([0, r], R’)}.

Clearly (r)
_

wzl)([ h, 0], R") with equality if and only if (2.2) is controllable
on 5 [0, r]. It will be convenient later to use the following notations:

(i) X= W2)([ h, 0], Rn), the state space for (2.2),
(2.4) (ii) U= L2(, Rm), the admissible controls, 5 [0, r],

(iii) (t)=4(t-r),t[r-h, r],if cbX,
(iv) X= W2a)([r h, r], R n) {4lb X}.

From the variation of constants formula for (2.2) we have

I0(2.5) x(t, ck, u)=x(t, ck, O)+ (t-s)Bu(s)ds, t,

where (t) is the n n transition matrix. That is,

fOt IOt-h(2.6) ’I(t)=In +O#(t-h)A_l+ OP(r)Aodr+ ’I)(r)Al dr, t>0,

(In is the n + n identity matrix) and ,I,(t) 0 for t < 0 (cf. [8], [ 17]). The Euclidean
controllability Gramian for (2.2) is defined for 0 by

(2.7) G(t) (t-s)BB**(t-s) ds (s)BB**(s) ds.

The proof of the following propositions is easy and will be omitted.
Poeoso 2.1. In order that (2.2) be Euclidean controllable on [0, ] it is

necessary and sucient that G() have rank n.
For any n x n matrix A and n x m matrix B we define the n x em matrix

(2.8) C[A, B] [B, AB, ., A-aB]
for integers v _>- 1. For any => 0 we let

(2.9) p(t) =It/h]

where [. denotes the greatest integer function. We may now prove a necessary
condition for controllability of (2.2).

PROPOSITION 2.2 Let 5 [0, r] and p p(r). If (2.2) is controllable on ,
then r > h, rank G(r- h) n and rank Cp[A_I, B] n.

Proof. It is obvious that if (2.2) is controllable on 5, then r > h and that (2.2)
is Euclidean controllable on [0, t] for each t [r- h, r]. Hence rank G(t) n for
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It- h, r] by Proposition 2.1. (Since rank G(t) is a nondecreasing integer valued
function on t, it is clear, in any case, that rank G(’-h)= n implies rank G(t) n
for [r- h, r].) Now let Cp Cp[A_I, B] and suppose rank Cp < n. Then there is
a y 6 R n, y : 0, such that

y*C =0.

Since ph <-_ " < (p + 1)h, the interval [-- h, phi has positive length. Let X.
Since we are assuming (2.2) is controllable on o there is a u U such that
x(’, 0, u)= q. Hence from (2.2) we have

(2.11) O(t)-Ao@(t)=A_l(t-h)+Alx(t-h)+Bu(t) a.e. on[r-h, r],

where x(t)= x(t, O, u). But also from (2.2),

(t-kh)=A_(t-(k + 1)h)+Aox(t-kh)(2.12)
+Ax(t-(k + 1)h)+Bu(t-kh)

for k 1,. ., p- 1, t 6 [’- h, ’] a.e. Using the fact that x(t) 0 for t-<0, we may
combine (2.11) and (2.12) to get

u(t)

u(t-h)
p-1

(t)-AoO(t) Aix(t-ih)/Cp
i=1

u(t-(p-1)h)

a.e. on [--h, phi, where

(2.14) Ax=AI+A-1Ao, Ai+=A 1Ai, i= 1 2

Now multiply both sides of (2.13) by y* and use (2.10) to get

p-1

(2.15) y*[(t)-Ao(t)]= 2 y*Aix(t-ih) a.e. on[r-h, ph].
i=1

For any f L2([’- h,, ’], R") the equation (t)-A0(t) =/(t) has a solutionq eJ. Hence by appropriate choice of 0, the left side of (2.15) can be taken to be
any function in L2([-- h, ph ], R) since y 0. The assumption that rank Cp < n
has thus led to the conclusion that an arbitrary element of L2([--h, ph], R) is
equal a.e. on [-- h, phi to a continuous function (the right side of (2.15)). This is a
contradiction so rank Cp n.

When -> nh the condition rank Cp n in Proposition 2.2 is equivalent to
rank C, n. This follows in the usual way from the Cayley-Hamilton theorem. It
would appear that whether (2.2) is controllable on , =[0, ’] depends on the
length of the interval and not just on the coefficient matrices Ai, + 1, 0 and B.
This is, indeed, the case but this does not persist when - > nh. (See Corollary 5.1 of
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[4] where it is shown that 4(z) is constant for - > nh.) Accordingly, we confine our
search for necessary and sufficient conditions for controllability of (2.2) on 5 to
the situation z > nh. It will, of course, also be necessary then to assume that
rank C,, n. For future reference we state the following corollary to Proposition
2.2.

COROLLARY 2.1. If (2.2) is controllable on [0, z], and if " > nh, then
rank G(z-h)=n and rank C[A_I,B]=n.

Remark 2.1. It is natural to conjecture that the two conditions in the
conclusion to Corollary 2.1 are also sufficient for controllability on 5 when z > nh.
However, the system (n 2)

(2.16)
1(t)]=[

0
2(t) ]/--1

+[0

0 1 Xl(t)]11] [21(t h) +
6_ Y0[2(t h)] [ 6o][X2(t)J
1 x2(t h

where yi, 6i, :i: 1, 0 are real numbers, satisfies both these conditions. In fact
rank C2[Ao, B]= 2 and this implies that rank G(z-h)= 2 if z> 2h (see Remark
3.3 in [2]). The system (2.16) is not controllable on [0, z], " > 2h (see [20]). This is
easily shown using the results developed later in this paper (cf. the examples in
6).

We recall that (2.2) is Euclidean controllable on [0, z] for each z 0 if and
only if rank C,[Ao, B]=n (cf. Lemma 3.3 of [4] and Remark 3.3 of [2]).
Consequently rank G(z-h) t/and rank Cp[A_,B]= n (p =p(z)) are, in gen-
eral, independent conditions. However, we shall see below (Corollary 4.1) that if
z > nh, then rank Cn[A-1, B] n implies rank G(z- h) n. In 3 we develop
some additional important consequences of the condition rank Cp[A_, B] n.

Remark 2.2. The proof of Proposition 2.2 contains a result which is worth
emphasizing. If a function g X is also in (z) and - > h, then there is a u U and
an x W>([0, z], R) such that x- g so

(2.17) q(t)

(t)

Aob(t)+ , Aix(t-ih)+Cp+[A_B]
i=1

(t -ph
a.e. on [ph, z],

p--1

Ao(t)+ E Ax(t-ih)+Cp[A_l,B]
i=1

(t-(p-1)h
a.e. on [- h, ph ],

where the A are given by (2.14). From this we see that there is an intimate
connection between neutral systems (2.2) and retarded systems with delayed
control action (see also [3], [6], [26]).

3. A semi-Fredhoim property of the solution operator x(., 0, u). Let H1
and H2 be Hilbert spaces and 3: H1 H2 a bounded linear operator. According
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to Kato [23, p. 230] the operator - is semi-Fredholm if Im - is closed and
either the nullity of - null - dim ker -) or the deficiency of - =def -dim H2/Im -) is finite. It follows from results in [23] (the proof of Theorem 5.26,
p. 238, and Theorem 5.13, p. 234) that if - has closed range and finite deficiency
and :HI-H2 is a compact linear operator, then + has closed range and
finite deficiency. This is also given explicitly in [35, p. 129] and [33, p. 316].
Moreover, if -has finite deficiency, then 9- must have closed range [23, p. 230].

Since we need be concerned only with solutions of (2.2) specified by zero
initial data (i.e. x(t)=0, 6J-h, 0]), it is convenient to extend these to all of
(-, 0] and to extend u as well so that x(t) 0, u(t) 0, t<-0. Accordingly, we
define Wa,o(z, R),/x a positive integer and v a nonnegative integer, to be the
collection of all x (-c, r]-R such that x(t)=0 for t-<0 and the restriction
Xlto, is in W(2([0, r], R’). Here we adopt the convention W(zm([0, z], R’)
L2([0, 7"], R"). For f W2,oUr, R define the shift operator S by

(3.1) (Sf)(t) f(t- h), <-_ r.

We define SO to be the identity operator on Wf,o(r, R") and inductively using
(3.1), we take Sk+I=SSk, k=0,1,2,.... For any integer q=>l define

t u) )qOq" W(f,)o(r, R )- W(z,o(r, (R’ by

slf ](3.2) 6eqf= f Wf,o(r, R-).
Sq-f3

We will also write 6e =[IS, I.S,..., I.Sq-]* where I, is the/x /z identity
matrix.

Consider now the special case of (2.2) in which Ao A 0, i.e. for _-> 0

(3.3) 2(t) A_x2(t- h)+ Bu(t).

If -d denotes the solution operator for (3.3), i.e.dU X,(’, 0, U), then-d U
X is a bounded linear operator. With x x(., 0, u) and u interpreted as the

and W2,o(r, R"), respec-corresponding extensions to functions in W2,0(r, R" o)

tively, the relation (3.3) holds a.e. on (-oo, r].
PROPOSITIOr 3.1. The solution operator - corresponding to (3.3) has closed

range and finite deficiency if and only if rank C,[A_, B]= n where p =p(r)=

Proof. Let p =p(r)=[r/h] and Ck C[A_,B]. By Remark 2.2 we have
that if $ M(r) and u is such that x(., 0, u) , then

(3.4) (t) lCp+Ip+u(t)’
(CpPu(t),

a.e. e [ph, r],

a.e. t[r-h, ph].

If rank Cp < n, then def -a +. This follows at once from (3.4) and the fact that
It-h, phi has positive length. Conversely, suppose rank Cp n. For arbitrary
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0) m)4’ X we define u e W(,0(r, R by

SfP+au(t) Cp++l(t),
(3.5) SfPu(t)= C(t),

u(t) 0,

a.e. [ph, -],

a.e. t6[r-h, ph],

t-<O,

where C- denotes the generalized inverse of Ck, k p, p + 1 (cf. [25, p. 163]).
Both Cp and Cp/l have rank n so C-= C(CkC)-, k =p, p+ 1. The relations

u) (r m)(3.5) define u(t) a.e. on (-oo, z]. Now let x denote the solution in :,o R on
(-oo, -] to (3.3) or the controller u defined by (3.5). From the analysis leading to
(2.17) it follows that

a.e. t[ph, -],
(3.6) (t)=

lCpfpu(t)’ a.e.t[z-h, ph].
But rank C, n so CkC I,, k p, p + 1, and (3.5) and (3.6) imply

(3.7) (t) (t), a.e. [’- h, z].

Hence x, + c for some constant function c X. This proves that

(3.8) X M(z) +97 Im3"a +,

where M(-) is given by (2.3) (A0 A1-0) and

(3.9) o {c e XIDc 0 a.e. on [- h, 0]}.

But dim n so 3a has finite deficiency which in turn implies that Ima M(-)
is closed in X.

Only in exceptional circumstances will rank Cp[A_x,B]=n imply the
stronger conclusion that 3a (U)= X. In fact, (3.3) requires

x(t)=A_lx(t-h)+B u(s) ds,

o) .,) ) (z ").for u W(,o(Z, R and x 6 W(2,o R In particular, if 3-au 0, then we must
have

(3.10)
4,(O)-A-4,(-h)=B u(s) ds.

Clearly (3.10) is possible for arbitrary 0 Xonly if rank B n. On the other hand,
it is obvious that Im a=X if rank B n. Hence we have

PRoposrro 3.2. The solution operator -e corresponding to (3.3) satisfies
Im 3"d X if and only if rank B n.

This result is analogous to the controllability condition for linear retarded
systems given in [ 19, Lem. 3.1 and [4, Thm. 3.1].

Remark 3.1. It is of interest to note what functions 4’ X could be missing
from Im 3"a. Now it was shown in 14, Corollary 5.1] that for any system (2.2) the
attainable sets from zero initial data satisfy

,(T1) .52(T2) if 7"2 7"1 0
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with equality holding if ’1 > nh. Thus to get some idea of the functions missing
from Im -a for the special case (3.3) we assume r (n + 1)h and rank Cn/l n,

(0)C,,+1 C+I[A_I,B]. Define the controller u W2,0((n + 1)h,R by u(t) 0,
__-< 0, and

(3.11) 5"+lu(t)=C+,+l(t), a.e.t[nh,(n+l)h].

We may then write

(3.12) +lu(t- h) Jn+u(t), t<=(n+l)h,

where J is the (n + l)m (n + 1)m nilpotent matrix given by

(3.13)

It follows that for 0, 1, 2,. , n,

(3.14)

0 0 I,,

0 0 0

"+u(t ih)= +JC,,+(t), a.e. [nh, (n + 1)h].

Now, as in the proof of Proposition 2.2, we get for this u that the solution
x w z,o + 1)h, R") of (3.3) satisfies

(t) Ckku(t), a.e. [(k 1)h, kh], k 1,. ., n + 1,

where Ck C[A_a, B]. Since u(t)=0 for _<-0 this may be written

(t) C,+n+au(t), a.e. [(k 1)h, kh].

Integrating this from 0 to [nh, (n + 1)hi, we have (x(0)= 0)

fOt f(n+l-i)h inx(t) (s) ds Cn+ltn+l u(s) ds + C,+a5"+au(s) ds
a(n-i)h h

E Cn+In+lu(s ih) ds + C,+x +

i=1 h

Using (3.14) and (3.11), we get

+
i=1

since rank Cn+ n and thus

(3.16)

Inasmuch as J in (3.13) is nilpotent (j,+l= O) we have

(3.17) Z J’=
i=0
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in which I is the (n + 1)m (n + 1)m identity. Here - (n + 1)h so (nh) ( h)
and q((n + 1)h)= q(0). Hence q x M(z)if

+Cn+lJ Cn+l((O)-(-h))-(-h)=O.
i=1

Using (3.17), we get

(3.18) C,,+l[I- J]-l C++l(g(O) g(- h)) g,(O)

as a sufficient condition for to belong to Im
We consider now a perturbation of (3.3)"

(3.19) (t)=A_(t-h)+L(x,)+Bu(t),

where L is a continuous linear mapping into R" with domain C([- h, 0], R"), the
space of continuous functions on [-h, 0] into R" with the norm of uniform
convergence. If - is the solution operator corresponding to (3.19) (initial data
b 0), then both -a and- are bounded linear mappings from U to X (el. 17]).
Let a(t) and (t) be the transition matrices for the homogeneous systems (u 0)
corresponding to (3.3) and (.3.19) respectively. Thus a is calculated from (2.6)
with Ao=A1 =0 and for there is a parallel theory explained in [17]. In
particular, if Y(t) x(t, O, u) for (3.19) and xa(t) x(t, O, u) for (3.3), u U, then

(3.20) Y(t) (t-s)Bu(s) ds,

IO(3.21) xa(t) a(t-s)Bu(s) ds.

From (2.6) one readily obtains

k-1
(3.22) a(t) Z A -1, (k-1)h<=t<kh, k=l,2,...,

i=0

whose discontinuities are at worst simple jumps at integer multiples of h. The
same applies to . We may now establish

THEOREM 3.1. Ifz > hand rank Cp[A_I, B] n wherep, p(z) [z/h], then
the solution operator -" U-X corresponding to (3.19) (3-u =(., 0, u)) has
closed range and finite deficiency.

Proof. This follows from Proposition 3.1 and the comments on semi-
Fredholm operators at the beginning of this section if we show that c --a is
compact. To this end let u 6 U L2([0, z], R’) and suppose u - u weakly (in
U) as v -*. The solutions of (3.19) and (3.3) corresponding to u will be denoted
by and xt. They are obtained from (3.20) and (3.21), respectively, by replacing
u by u . It follows from these formulas that (t) - (t) and Xd(t) - Xd(t) for each

[0, z]. Moreover, since the sequence {u} converges weakly in U, there is a
MI >0 such that [[u[[L2<--Ma, v= 1, 2,... (cf. [11]). It then follows from (3.20)
and (3.21) with u replaced by u that [[[[L2_--<M2 and [[Xa[[L<--M2 for some
M2>0. Thus ,x and u are uniformly bounded in L2-norm (Lz
Lz([0, z],R ’) where/x =n or m). Using (t)=xd(t)=O, t_<0, and (3.19) and

for 0 _-< _-< " we have
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(3.3), respectively, one may then show that there is M3.> 0 such that Ilx IlL2-<M3
and 11251]L2 --< M3. This is accomplished by working along [0, -] by a finite sequence
of subintervals [(k- 1)h, kh], k 1, 2,.... It follows that both sequences {}
and {x} are uniformly bounded and equicontinuous on [0, r] so by the Arzela-
Ascoli theorem each has a subsequence which is uniformly convergent on [0, ’].
But these sequences converge pointwise on [0, -] so this convergence must then
also be uniform on [0,’]. It follows that L(:)L(;t) for t<_- since L is
continuous on C([-h, 0], R n) endowed with the uniform norm. Applying the
same principle used in obtaining (2.17), we get

(3.23) .(t)=

p

Z Ai-l[L(2tih)+Bu(t-ih)], a.e. t[ph, ’],
i=0

p-1

Z A-l[L(2t-ih)+Bu(t-ih)], a.e. t[’-h, ph].
i=0

Similarly (or apply (3.6)),

(3.24)

p. AlBU(t-ih), a.e. te[ph, r],
35(t) i=0

p--1

A-lBu(t-ih), a.e. t6[’-h, ph].
i=0

From (3.23) and (3.24) it follows that the sequence Du(t)=(t)-2](t)
converges pointwise on [-- h, z] to a continuous function since 2t is a continuous
function of on <_-r. Moreover, the boundedness of L and the fact that the
sequence {} is uniformly bounded on [0, r] imply for someM4 that IlOu (t)l[-<_
M4 for all v and all t Jr-h, -]. An application of the Lebesgue dominated
convergence theorem then shows that Dqg(u) converges in L2([r-h, r], Rn).
Since qg(u)(’-h)=2(r-h)-xa(r-h) converges in R", it follows that cg is
compact and the theorem is proved. (The argument used in this proof is the same
type as that of Reid in I-31].)

COROLLARY 3.1. Let sg(’) be the attainable set of (2.2) as defined in (2.3)
and suppose r > nh. Then s(rl) s(r2) if r, r2 >- r and if rank C,,[A_I, B] n,
then s(r) is closed in X with dim s(-)-c finite.

Proof. The first part was mentioned earlier (Corollary 5.1 of [4]). The last
part follows from Theorem 3.1 by taking L(b)= Aock(O)+Alrk(-h) in (3.19).

Let C C([- h, 0], R") with the uniform norm as before and let B(C,
denote the collection of all bounded linear operators on C to R". Of particular
interest is the subset B0 of all B(C, R") such that

(0)- d(O)(O)
h

where 0-->/x(0) is an n x n matrix-valued function of bounded variation on
[-h, 0] which is continuous at 0 0 and satisfies/z(0) 0. We now consider a
fixed N @o+ N1 where N Bo and

ob b(0)-A_b(- h), bC.
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Let denote the solution operator (cf. [17]) u--x(., 0, u) for the system

d(xt)=L(xt)+Bu(t).(3.25)
dt

Then ff ff +A where A" U X is a bounded linear operator such that for
some r > 0,

(3.26) []mu]l <- rl]ll] Ilull, u u,
and ff is the solution operator in Theorem 2.1.

COROLLARY 3.2. I[ rank Cp[A_, B] n, p p(r), then there is a 6 > 0 such
that if

then the solution operator - has closed range and finite deficiency in X.
Proof. This is an immediate consequence of Theorem 3.1, inequality (3.26),

and a result of Kato [23, Thm. 5.22, p. 236].
COROLLARY 3.3. Let @l(4) )(O) h dA (0)b (0), where A W(22([ h, 0], M,)

(M, the space of n n matrices over the reals) and let o+ . Then - has
closed range and finite deficiency.

Proof. Note that -(u)= x(., 0, u), u U, is the solution operator for the
equation (A ’(0) dA (O)/dO)

i(t)=A-i(t-h)+ 1’(O)i(t+O)dO+L(x,)+Bu(t)
h

A_i(t- h)+ 1’(O)x (t)-I’(- h)x(t- h)

A"(O)x(t + O) dO + L(xt) + Bu(t).
h

Thus, under the given hypotheses, (3.25) can be written in a form to which
Theorem 2.1 applies.

COROLLARY 3.4. Let Bo, and suppose the solution operator u--
x( O, u), u U, for the difference equation

d
@x, Bu (t), a.e. [0, -],

has closed range and finite deficiency. If L B(C, R"), then the solution operator
u --x,(’, O, u), u Ufor

-x, L(xt) + Bu(t), a.e. [0, -],

also has closed range and finite deficiency.
The proof of this is essentially the same as the proof of Theorem 3.1 and is

omitted.
Remark 3.2. We note that if (2.2) is the n-dimensional first order equation

corresponding to the n th order scalar neutral equation, then the condition
rank C,, IA-1, B] n is not satisfied. For this system u x(., 0, u) has closed
range but the deficiency is not finite (cf. Example 3.1 of [2]).
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4. Necessary and sulticient conditions for controllability. In 2 and 3 we
defined the ditterentiation operator D, the shift operator S, and the function
spaces Wz,o(r, R’) for integers v => 0,/z => 1. For v -> 1 we may take W2,o(r, R’) as
a common domain for the operators S and D. In this setting S andD commute and
each commutes with multiplication by a scalar (element in R). Note that a R, as
an operator on functions in Wz,0(r, R’) so that Dc cD, must be distinguished
from the constant function with value a for which, of course, (D)(t)= 0. The
operators D, S and multiplication by a scalar all commute with the coordinate
projections; that is, if x Wz.)o(r, R) and (x)j xj denotes the ]th coordinate of x,
] 1," ",/x, then (Sx) Sx and (Dx) Dx, j 1,. ., Ix.

Now let .(S,D) be the ring of all /x x/x matric polynomials in two
indeterminates S and D. By treating S and D as scalars the elements of . (S, D)
are identified in the standard way with the/x x/z matrices over the polynomials in
S and D with real coefficients. We denote by Co)(r,R) the class of all
x 6 Wa,0(r, R) such that Dx exists for integers k => 0 and we let N. (S, D) denote
the algebra of operators obtained from the elements of . (S, D) by respectively
identifying the indeterminates S and D with the operator of shift and differentia-
tion on Co)(r, R"). If Q(D, S) (S, D) has degree k in D, then Q(D, S) is also

dka bounded linear operator from w2,0 tr, R’*) into W2ro(r,R’), k,r=
0, 1, 2,- . Since Co(r, R’) is dense in each Wf,)o(r, R’) it ollows that any
polynomial identities in ,(S,D) are operator identities in 9d,(S,D) if the

,,)domain, Wz,o(r, R’), of the operators is chosen so that they are all bounded. In
particular, because S and D commute as operators with the coordinate projec-
tions, the elements in 92, (S, D) may be identified with corresponding matrices of
operators as was done for the elements of (S, D).

With these remarks in mind it is clear that the solution x(., 0, u) of (2.2) is
the restriction to [-h, r] of the solution x e w 2,u, R") of the equation

(InD -A-ISD -Ao-A1S)x Bu

wherein u denotes the extension to w2,o, R of the specified control function
(that is, we extend the control function u by the condition u(t) 0, t < 0). We now
define O(D, S) by the equation

(4.1) Q(D, S) I,D-A_ISD-Ao-AS

and let

(4.2) P(D, S)= adj O(D, S)

in which "adj" denotes the transposed matrix of cofactors. We have the following
basic relation between these two operators:

O(D, S)P(D, S) P(D, S)O(D, S) I,, det O(D, S).

nl n--1
(4.3) P(D,S) P(D)S= Y (s)D

j=o j=o

where the n x n matri polynomials P.(D), P.(S) are at most of degree n 1 in
their arguments. We have used these relations in [4] to study the attainable sets

Moreover,
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M(r) for equation (2.2). From here on in this and in the remaining sections we

confine our attention to the case where B is n x I (that is, the control u is a scalar
function.) In this case our results have an appealing simplicity. Although the same
ideas work for B being n m with m > 1, the theorems tend to become untidy in
these cases.

Using the polynomials P(D) in (4.3), we define

(4.4) K(D) [Po(D)B, PI(D)B, ", Pn-(D)B].

Here the multiplications P(D)B are understood in the operator context and not
with B as a constant function on which P.(D) acts. Let Jg denote the /z x/z
nilpotent matrix

(4.5) &

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

and let

(4.6) J, [0, I,-1]

denote the (/z 1) /z matrix obtained from J, by deleting the last row. We may
then state Theorem 5.2 in [4] in the following form:

TheOReM 4.1. Let B be n 1 and > nh. If 0 X, then there is u Uo
0) .(1) [Tl,o(’r, R) such that the corresponding solution x W,o R") of

(4.7) O(D, S)x Bu (a.e. on (-oo, "r])

satisfies
(4.8) x-=0

if and only if there is a function o W(")([’r h, ’], R") such that

(4.9) g(D)o O on [z-h, z]

and

(4.10) ],Doo(r)=J,J*,Dioo(r-h), i=0, 1,..., n-l

(We note that ],J,* [I,-1, 0].)
Theorem 4.1 is an extension of a result in [27]. In [32, Chap. 5] there is a

similar algebraic approach to solving periodic boundary value problems for
retarded functional differential equations.

Now let the operator K(D) in (4.4) be written in polynomial form as

n--1

(4.11) K(D)= Z KDn-i-’
i=0

where the K, 0, 1, ., n 1 are n x n real matrices (constants). We then have
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LEMMA 4.1. The matrix Ko in (4.11) and the matrix Cn[A-1, B are column
equivalent, hence, have the same rank.

Proof. There is a well-known algorithm for computing adj (AIn-A), A
complex and A an n x n matrix over the complex numbers. This may be found in
[12], [14] or [36] and we restate it as follows:

(a) adj (AIn-A)=
i=1

(4.12)
(b) F In, 0 tr A,

(c) Fi+ AFi + Oiln,

0i (1/i) tr (AF/), i= 1,..., n 1.

Now the coefficient Ko in (4.11) is determined completely by the polynomial
Pn-(S) in (4.3). Since Pn-(S) is of degree at most n 1 we may write

(4.13) n-l(S) Z Misi
i=0

for some constant n x n matrices M, 0, 1, ., n 1. From the definitions of
Pn-I(S) and Ko in (4.3) and (4.11), respectively, it follows that

(4.14) K0 [MOB, M1B, Mn-IB].

From (4.1) and (4.2) we see that/3n_l(S) adj (In -A_IS). Thus taking h 1 and
A A_IS in (4.12) we may calculate the matrices Mi. Hence

(4.15) adj (In-A_lS)= Y, F
i=1

and

(4.16) F+I S(A_IF-In(1/i) tr (A_IF/))

for 1,..., n- 1, with F1 In. It follows that

(4.17) F/= Mi_ISi-1, 1,. ., n,

and for some real constants a 1," an-l,

i--1

(4.18) F (Ai ,...,S" oti_kAk-l)si-l, 1, n.
k=l

Combining equations (4.14), (4.17) and (4.18), we get
n--1

Ko=[B,A_,B-aaB, .,A-’B- Z an-kaiB]
k=l

from which it is obvious that Ko is column equivalent to Cn[A-1, B].
Our goal in this section is to develop necessary and sufficient conditions for

controllability of (2.2) on [0, z], - > nh, so in view of Proposition 2.2 we may
assume rank Cn[A_, B] n in our subsequent analysis. By Lemma 4.1 then Koin
(4.11) is invertible so (4.9) can be written

(4.19) Dn-ato + g-lKiDn-1-i09 KI.
i---1
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This may be converted to an equivalent first order linear system. First, let
6 n (n 1) and let f be the 1 vector given by

(4.20) lq

n--20)

Now let G denote the 6 6 matrix given in

(4.21) G

where

(4.22) /i -K-IKi, i= 1,..., n 1.

Finally let

(4.23) -- KI, tEX,

and let B be the 6 n matrix given by

(4.24) / [0, , 0, In]*.

Using the notation given in (4.20) through (4.24), we may write (4.9) (or (4.19)) in
the form

(4.25) ((t) Gf(t) +(t) on [r- h, ’].

To formulate the boundary conditions equivalent to (4.10) we introduce the 6 6
matrix

(4.26) =diag[L,’’’ ,J]

and the (n-1) 6 matrix

(4.27) ff=diag[L,’’’ ,.],

where Jn is given in (4.6) with/x n and J,,, as in (4.5), is the ni.lpotent matrix from
which Jn is obtained. We now partition the matrices andas

071

(4.28)

-1
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where the i and i, 1,. , n 1, are n x 6 and (n 1) x 6 matrices, respec-
tively. The boundary conditions (4.10) may now be written in terms of as

(4.29a) f(z) ff*O(- h),

(4.29b) n-ll)(z) =,,n-l*l)(z h).

Recalling that (2.2) is controllable on [0, z] if and only if s(z)=X, we may
combine Theorem 4.1, Proposition 2.2 and Lemma 4.1 to get the following:

LEMMA 4.2. Let B be n xl and z>nh. The system (2.2) (i.e.,
O(D, S)x =Bu) is controllable on =[0, z] and only if rank C,[A_I,B]= n
and [or every X the two point boundary value problem (4.25), (4.29) has a
solution 12.

The homogeneous equation corresponding to (4.25) is

(4.30) fi(t) Gf(t)

and the controllability criteria can be given in another familiar way in terms of this
equation. The precise statement is this:

TIaEOREM 4.2. Let B be nl and z>nh. In order that (2.2) (i.e.,
O(D, S)x =Bu) be controllable on [0, z] it is necessary and sufficient that
rank C[A_I, B] n and the homogeneous problem (4.30), (4.29) have only the
trivial solution (f(t) 0).

Proof. Suppose first that (2.2) is controllable on [0, z]. Then
rank C,[A_I, B]= n and (4.25), (4.29) must have a solution for every p 6X.
For a given 0 X, the boundary conditions (4.29) may be written, using (4.25), in
the form

(4.31a)

(4.31b)

n(-) -fl*f(z h) 0,

n-1(a[(’r)-*G-(T h)) n-1(o*/6(r h) -/6(’)).

Now define 6 x 6 matrices M, N by

(4.32) M
Pn-IG

and a 6 1 matrix F(ff) by

(4.33)
0

F(,) [-l(*/(r- h)-/(z))]"
With these the boundary conditions (4.31) become

(4.34) Ml2(z) Nf(r h) F(O).

Let 11 fl(r- h) 6 R and write the solution of (4.25) as

(4.35) f(t) eO(t-z+h)0 q- e (s) ds.
-h

The boundary condition (4.34) thus requires that 0 satisfy the linear equation

(4.36) (Me oh -N)f= F(O)-M eO-s(s) ds.
-h
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Our aim now is to show that the right-hand side of (4.36) can be any vector in R
by appropriate choice of X. Let us define

3’(0) ,-(*/6(r h)-/(r)).

One can readily show that

(4.37) /(0) ]nJ*K10(- h) ]nK (0).

If we define the mapping L" L([z h, z], R ") R by

(4.38) Lv e(’-S)v(s) ds,
-h

then (4.36) may be written

(4.39) (Meh -N)a r()-M

Now consider the set X(y) { eX](-h) (0) y} where y e R". For each y
this is dense in L2([-h, 0], R"). Both F and L are linear transformations so the
image of X under the mapping T defined by T F()-ML() is a subspace of
R and hence is closed. On the other hand given v L2([r-h, r], R") and any
y e R" there exists a sequence e X(y) such that converges to v in L2-norm.
Since L is continuous it follows (cf. (4.39) and (4.37)) that Im Tlx contains the set

(],J*-L)y-,_IGL(v) yeR", veL2([z-h, z],R")

From (4.21) and (4.24) one sees that rank C,_I[G,B]=8 which implies that
ImL=R. Since ff is (n-1)2x6 with rank (n-l)2 and ],J*-], is (n-1)xn
with rank n 1 it follows that

(4.40) Im fix
But (4.36) requires

(4.41) Im (Meah N) Im Tlx.
We conclude from (4.40) and (4.41) that

(4.42) rank (Me

Now the homogeneous problem (4.30), (4.29) has a nontrivial solution if and only
if there is ano 0, o R such that

(4.43) (Meah N)O O.

This is clearly incompatible with (4.42) so controllability of O(D, S)x =Bu
implies that (4.30), (4.29) have only the trivial solution. On the other hand,
suppose rank C,[A_, B] n and that the homogeneous problem (4.30), (4.29)
has only the trivial solution. From (4.35) and (4.36) with 0 it is then evident
that (4.43) can have only the trivial solution o= 0. This implies (4.42) so (4.36)
can be solved foreR for every X; that is, Q(D, S)x Bu is controllable
on [0, z], z > nh. The theorem.is proved.
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Remark 4.1. Theorem 4.2 can be recast in an equivalent form in terms of
the homogeneous boundary value problem corresponding to (4.9) and (4.10).
Thus let B be n 1 and > nh. In order that O(D, S)x Bu be controllable on
[0, z] it is necessary and sufficient that rank Cn[A-1, B] n and the homogeneous
problem

(4.44) K(D)oo(t) O, [’- h, ’],

and (4.10) have only the trivial solution o(t)=0.
COROLLARY 4.1. If B is n 1 and rank Cn[A_I,B]= n, then the system

Q(D, S)x Bu is Euclidean controllable on 5 [0, r] provided " > (n 1)h.
Proof. By assumption - + h > nh so the calculations in the proof of Theorem

4.2 can be used with - there replaced by -+ h. If y, z R" and we define
X(y, z)= {p Xlb(-h)= y, (0)= z}, then X(y, z) is dense in L2([- h, 0], Rn).
Consequently, by reasoning similar to that given in the proof of Theorem 4.2, it
follows that

{LIq X(y, z)} {LIO L2([- h, 0], R"},

where L is ,_defined in (4.38). Hence for any 0, 01 R there is a X(q, q1)
such that Lq 0. From the definition of F(O) in (4.33) one may show that for any
qo e R there is a 0 e Rn such that F(0) 0 for all p X(q, q 1). In particular,
F() 0. Hence fo can be taken to be zero in (4.36), and then 4S, 0= 0 is a
solution to (4.39). We have proved that for every 0 e R" there is a 4S eX with
4S(- h) 0 for which there is a solution of the boundary value problem (4.25) and
(4.29) with 0 replaced by q and " replaced by r+ h. Hence sO(r+ h) and
O(D, S)x Bu is Euclidean controllable on [0, r].

The proof of Theorem 4.2 has also established the following.
COROI.IAR’ 4.2. LetB be n x 1 and " > nh. In order that O(D, S)x Bu be

controllable on [0, -] it is necessary and sufficient that rank Cn[A-1, B] n and

(4.45) det [Me oh N] 0

where G, M, N are given in (4.21) and (4.32).
A property of the points of a topological space (E,) will be said to be generic

if the set of points of E having the property is a dense open subset of E. Let
denote the set of quadruples of real matrices of the form L (A-l, A0, A1, B)
where the Ai, +/- 1, 0 are n n and B is n 1. With each L e we associate the
corresponding control system

(4.46)

where

O(D, S)x Bu, L (A-l, Ao, A 1, B) ,
OL (D, S) (In -A_S)D -Ao-AS.

Define

(4.47) IlL I1 IIA-II + IlA0]l + Ilm ll + IIBII,
where the norms on the right are any convenient matrix norms. With addition of
quadruples in and multiplication by real scalars defined in the obvious natural
way is then a normed linear space of dimension 3n2+ n.
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COROLLARY 4.3. The controllability ofQ(D, S)x Bu on [0, 7"], 7" > nh, is a
generic property of the space .

Proof. Let " denote the collection of all L 6 _..w, L (A_1, Ao, A 1, B) such
that rank C[A-1, B] n. Then" is a dense open subset of. This result is given
in [24, p. 100]. Since" is open and dense in 5f it suffices to prove that the set 5c
of all L 6 _wn such that Q(D, S)x Bu is controllable on [0, ], > nh, is an open
dense subset of ". From the proof of Lemma 4.1 we find that Ko C,[A_a, B]
(I + a) where a is an upper triangular n n matrix with diagonal elements zero
and elements above the diagonal depending continuously on A-1. Hence at points
L 6 ." the mappings L-M, L -N/, L G/ are continuous. Here G is
defined in (4.21) and M and N in (4.32). Consequently, L-d(L), L ", is
continuous where we define d(L) by

d(L) =det (M eGh--NL).

Hence {L 6" id (L) 0} is open in ". But by Corollary 4.2 this is precisely the
set c so c is open in n. The density of c in n is somewhat more involved.
Suppose c is not dense in n. Then there is L en and e >0 such that
S {L IIIL L[[e <_- e } n and d (L) 0 for all L S by Corollary 4.2. If we
define L(z) L0 + z (L L0) with z e R, L S, then d(L(z)) 0 for 1 _<- z =< 1.
From the construction of G, M, N we see that d(L(z)) is a meromorphic
function of z which is zero on the real interval [- 1, 1]. Hence we must in fact have
d(L(z))=O, zR, LS. Now define H=(Jn, Jn, 0, e,,) where en=
[0," "’, 0, 1]*R and J, is defined in (4.5). One may readily verify that
C,[Jn, en] has rank n so H,.n. Moreover, in 6 we show that the system
On(D, S) enU is controllable on [0, z], z > nh. Hence d(H) 0. But if we take
 -IIH-LII , then 6>0 and L=L+(e/)(H-L)eS. Consequently,
d(L+z(e/6)(H-L)) 0 for all z R. Taking z 8/e we get d(H) O, a
contradiction. Thus c is dense in n and the corollary is proved.

Remark 4.2. It is clear that having closed range and finite deficiency of the
solution operator (for system (2.2)), ux,(., O, u), u U, is also a generic
property of 6f even without the assumption that B is n x 1; that is, B can be n x m,
m_->l.

We can obtain some equivalent criteria for controllability of a system
O(D, S)x Bu which in some cases may be more readily applied than (4.45). For
one of these it is convenient to use the commutator notation

(4.48) [F, H] FH-HF

for n x n matrices F, H. Also we use ej to denote the jth column of In, /=
1, 2, ., n. Now introduce the nx n 2 matrix (,

(4.49)

where ffrll is 6 x 6, ffbr12 is x n, Y21 is n x 6 and Y22 is n x n and these are given by
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(i) Y{11 eh -*,

(4.50) (ii)

(iii)

(iv)

el 0 0 0

0 e 0 0

0 0 el 0
j..],...,

,t(22--" [/n_lel, In_2el,’’" ,/1el, -eli.

We then have the following corollary to Theorem 4.2.
COROLLARY 4.4. LetB be n I and " > nh. Then O(D, S)x Bu is controll-

able on [0, ’] if and only if rank Cn[A-a, B] n and rank Y[= n 2.
Proof. By Remark 4.1 the system O(D, S)x Bu is controllable on [0, z] if

and only if rank Cn[A-I, B] n and (4.44) has only the trivial solution satisfying
boundary conditions (4.10); that is,

(4.51) Y.D’o()=Yj*.D’o(-h), i=0, 1,. -, n- 1.

Now the null space of ] is spanned by el so (4.51) holds if and only if

(4.52) Doo(;)=J*Doo(z-h)+lei, i=0, 1,..., n-l,

for some scalars/xi. Using (4.44) and the representation (4.11) for K(D) we may
write (el. (4.22))

D"-la(t) IiDn-l-io(t).
i=1

Using this in (4.52) for n 1 and the rest of (4.52), we can then write the set of
boundary conditions in the equivalent form

(4.53)
(i)

(ii)

Dio(’r) J*Diw(’r h) + txiel, O, 1,. ", n 2,

n-11 [ii, J,njDn_l_ico(7.__ h) Id’n-l-igiel-k’l.l"n-lel
i=1 i=1

Now with f as in (4.20) we have GO so that

(’r) e ah a(,r h ).

With this (4.53(i)) becomes (cf. (4.50(i)))

(4.54)

where
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Moreover, (4.53(ii)) becomes

Y{2al(r h

Equations (4.54), (4.55) are now equivalent to

(4.56) Y{[("- h)] 0.

If rank { n z, then we must have 12(r h) 0 and thus only the trivial solution to
the homogeneous boundary value problem. Conversely, if we have only the
trivial solution to the boundary value problem, then we must have tz 0 from
(4.52) so that only 12(r h) 0,/z 0 satisfies (4.56) and hence rank Y{ n 2.

The criterion in Corollary 4.4 is not easily applied if n is larger than 2 or 3. It
leads, however, to an easily applied criterion in case h > 0 is small.

THEOREM 4.3. Let B be n 1 and rank C,[A_a,B]=n and define r=
el +e2+" "+e, =[1, 1,..., 1]*. If
(4.57) det [K,_ao-, Kn_2O" ", Ko’, Kor] # 0,

then the system Q(D, S)x Bu is controllable on [0, r] for all h >0 sufficiently
small.

Proof. Let Y{aa(h)= eah -* and use Y{(h) to indicate the explicit depen-
dence of Y{ in (4.49) on h. Define E Y/11(0) 18 -* and note thatE is invertible
since (o*)"= 0. Now

det Y{(0) det
ff{.21E_

0 ] ’{(0)) det (’{22 + ff{’21E- 1’{’12).

It is easy to verify that

e, 0 0 0-
0 e 0 0

0 0 e, 0

and since E-l= ’--(o*)k-1 we find

E-lff{’12

Thus from (4.50(iii)) we have

0 0

ff’ff218-1..’12 [[Rn-1, Jng]O’, ", JR1, Jng]o-, 0].

k=l, 2,...,n
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But

[Ii, J*, ]r IiJ*, r J*,Ir Ke + (I J*)r
since J,*o-= o’-el. Thus from (4.50(iv))

Y{2z +Y{2E-’{2 (I-J)[g,-a, g,-2,""", Ra, -]
(I * -x-J,)Ko [K,_, K,_z,. ., KI, Ko].

It follows that

det Y{(0) (- 1)" (detK) det [K,_, ., K, K0]

so Y/(0) is nonsingular if (4.57) holds. Thus rank Y/(h) n 2 for all sufficiently small
h > 0 if (4.57) holds.

COROLLARY 4.5. Let B be nl, rank Cn[A_,B]=n and r=
[1, 1," ", 1]*. If (4.57) holds, then the system O(D, S)x Bu is controllable on
[0, -] for all h > 0 such that nh < " except possibly for a finite number of such h.

Proof. Condition (4.57) assures that det Y((0)# 0. But det Y/(h) is an entire
function of h and since it is not identically zero it can vanish at only a finite number
of points in the interval 0 < h < ’/n.

In 6 we give an example of a system which is not controllable for any h > 0.
Remark 4.3. In the proof of Corolla.ry 4.4 the columns of et were used, in

effect, as a basis for the solution f of 12 GI2. In checking controllability for
concrete examples it is often possible to obtain a more convenient basis and apply
Remark 4.1 directly. In this connection we note that the system of differential
equations (4.44) is autonomous so we may shift the independent variable by the
amount --h and express the boundary value problem on the interval [0, hi as

(4.58) K(D)ro(t) O, [0, hi,

(4.59) Y.Dro(h)-LJ*.Doo(O) O, O, 1,..., n 1.

Now suppose B is n 1,
form a basis for the solutions of (4.58). Then every solution ro of (4.58) can be
written in the form

(4.60) to(t) Y. cioq)(t)
j=l

for some scalars cj,/" 1,. -, 6. The boundary conditions (4.59) now give a linear
homogeneous system of 6 equations in the coefficients ci and the system
O(D, S)x Bu is controllable on [0, r] if and only if the determinant of the
coefficient matrix W is nonzero. From (4.59) and (4.60) it is seen that,the ]th
column of the 6 6 matrix/ff is formed from the elements Drok/a(h)-Dro)(O);
k= 1,...,n-l; i=0, 1,...,n-1.

COROLLARY 4.6. Let B be n 1, r > nh and rank C,[A_a, B] n. If
O(D, S)x Bu is controllable on [0,

(4.61)
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where is defined by

1

e

e-(n-1)x

Proof. If K(A)oW 0 for some complex A, then o(t)= eXtS is a nontrivial
solution of the homogeneous boundary value problem (4.10), (4.44) (or (4.58),
(4.59)). This implies, by Remark 4.1 (or Remark 4.3), that O(D, S)x Bu is not
controllable on [0, ’].

COROLLARY 4.7. Let A(D)=det K(D). The following two statements are
equivalent:

(i) Ifp is a scalar solution of A(D)p(t) 0 for <--_ " such that K(D),.fnp(t) O,
<- -, then p(t) =- O, <- ’. (5"p is defined in (3.2).)

(ii) K(A)Se 0 for every complex A.
Proof. If K(A) 0 for some A, then A(A)= 0 and p(t)= eAt satisfies the

conditions in statement (i) but is not identically zero. Thus (i) implies (ii). To
establish the converse we first suppose that p is a scalar solution of A(D)p(t) O,
t <-- -. Let A 1, ", hr be the distinct roots of A(h) 0 and let the multiplicity of hi
be mi, 1,. ., r. Then there are scalars/xq, i= 1, ., r; j=0, 1, ., mi-1
such that

mi--1
(4.62) p(t) E E txqt e"".

i=1 j=0

Note that =1 mi $. Let Dx 0/0h. We suppose now that also K(D)"p(t) 0,
t-< ’. Interpreting D O/Ot and noting that Dx and D commute, we then get

(4.63)
i-1

K(D)5np(t) Y. Y. txq[Dix(etK(A))]=x, 0
i=1 j=l

for <= z. Using Leibniz’s rule for differentiating a product, we see that (4.63) can
be written

(4.64) Y /xq e
=1 j=0 k=0

Interchanging the order of summation of j and k in (4.64), we obtain

(4.65)
i=1 k=0

for =< -. Since the functions tke a’t appearing in (4.65) are linearly independent, it
follows that

(4.66) "’ ixq( J )[D-kK(h )f’]x =x, =0
i=k k
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for 1,. , r and k 0, 1,. , mi- 1. If one examines the equations (4.66) in
the order k mi- 1, m- 2, etc., one finds that when (ii) holds then all IZik --O.
That is, p(t)=--0 for t--<_ " so (ii) implies (i) and the corollary is proved.

Remark 4.4. In analyzing numerous examples of systems O(D, S)x Bu
with B being n 1 and satisfying rank Cn[A-1, B] n all the cases of systems
found to be not controllable on [0, -], - > nh, also satisfied K(,)6e 0 for some ,.
This suggests the possibility that (4.61) and rank Cn[A_I, B] n are sufficient for
controllability of an n-dimensional system Q(D, S)x Bu on [0, ’], - > nh. In
case n 2 these conditions are sufficient as was shown in [20]. The proof for
2-dimensional systems depends heavily on the fact that 3 n(n- 1)= n when
n 2. For n _->3 it is an open question (cf. Example 6.9). We have obtained a
partial converse to the necessity of condition (4.61). Suppose the operator K(D) is
such that there exists a nontrivial scalar differential operator q(D) with constant
coefficients and order u _-< n so that for any solution to of

(4.67) K(D)to(t) O, r- h <-_ <- ’,

and

(4.68) D toj+l(’) =Dtoj(’-h), 0, 1, ", n 1, j 1, ., n 1

it follows that

(4.69) q(D)to(t) O, <= -, 1,. ., n.

Now a solution of (4.67) on It-h, -] must have the form

mi--1
(4.70) to(t) Y E cit ex’‘

= ]=1

for some constant n-vectors cii. (The A and mi are as in the proof of Corollary 4.7.)
Then to as in (4.70) must satisfy K(D)to(t)= 0 for all t_-<r. Hence IA(D)to(t)=
[adj K(D)]K(D)to(t) 0 and, in particular, A(D)to(t) 0 for all t -< r. But (4.69)
implies

(4.71) q(D)[toj+l(t)-toi(t-h)]=O, t<=r, j= l, .,n-1.

Since the order of q(D) is at most n, the conditions (4.68) along with (4.71) imply

toi+a(t)-to(t-h)=O, t<-", j= 1,...,n-1.

Hence to(t) 0"tol(t), -< -. Thus the hypothesis of (i) of Corollary 4.7 is satisfied
by p=to. Now if rank C,[A_a,B]=n and (4.61) holds, then tol(t)-=0 by
Corollary 4.7. It follows that to(t) 0 so Q(D, S)x Bu (B is n 1) is controllable
on [0, -], - > nh. An application of this approach is given in 6 (cf. Examples 6.4,
6.7). Note that when n 2 we can take q(D)= A(D) in the above discussion.

In verifying (4.61) it is useful to bear in mind that if h >0 is an algebraic
number and A 0 is algebraic, then Lindemann’s theorem [15] implies that 1,
-.h e -(n-1)xh are linearly independent over the field of algebraic numbers. Ife ,"

h >0 is algebraic and the entries in B and in the matrices A, +1, 0, are
algebraic, then the distinct roots A 1, ", )t of A()t) det K(A) 0 are algebraic.
If rank C,[A_,B]= n and A 0, then one has K(A)O, 0 by Lindemann’s
theorem providing K(A) 0. In any case (4.61) need only be checked for those A
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such that A(A) 0 since K(A) is nonsingular otherwise. In particular if A(0) 0, if
h and the entries of B and the Ai, +1, 0, are all algebraic, then (4.61) will be.
fulfilled (provided K(A) 0 for any root .of A(A) 0).

Remark 4.5. It is also interesting to note that according to Theorem 4.1, if
t->p(t), R, is,any real valued analytic function, then (z), z > nh, when the
corresponding t is given by

K(D)p(t) (t), z- h <-_ <- z.

In view of the computations given in the proof of Corollary 4.7, (r) for r > nh
contains all the functions 0 x,(0), 0 [- h, 0], A C, , 0, 1, 2,. ., for which
the associated x, has the form

a,(t) D eXtg(A )v,, 7"- h <- <- 7".

(Strictly speaking, (7") for 7. > nh contains the real and imaginary parts of these
tPx,.) Moreover, the set {x,lA C; u 0, 1, 2,... } is linearly independent (cf.
the proof that the/xij are all zero in (4.63)). Using Theorem 3.1, we see that

s4(7.) cl span {qx,[h C; v 0, 1, }.

See Remark 5.1 later for some related comments.

5. Canonical systems. In this section we assume that the system Q(D, S)x
Bu has coefficient matrices A, B of a special form. Specifically we assume that
n-vector B e, [0,..., 0, 1]* and the n n real matrices A are given by

(5.1) A=[a fli] i=+1,0
Ti i

where a is (n 1) X (n 1), +/- 1, 0 with a-1 J-x as in (4.5) and fl-1 e-l.
We call such systems canonical systems. This is no loss of generality for systems
which satisfy rank C,[A_, B] n since they can be put in this canonical form by a
change of variables x Py where P is a constant nonsingular n n matrix [24]. In
fact, if

n--1
(5.2) det(A_l-AIn)=(-1)n[An- aiAi]

i=o

and

(5.3) a-1

0 1 0 0

0 0 0 1

go al a2 an_

then with P=FH-1 where F= C[A_I,B], H=C[G_I, e,], the equivalent
system in y will have G-1 in place of A-1 and e, in place of B. Thus in this section
we assume the systems considered are already in the canonical form specified
above.
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PROPOSITION 5.1. Let Q(D, S)x Bu be a canonicalsystem andforA Clet

-(n-1)Ahe

The following conditions are equivalent:

(5.4)

(5.5) rank [c(,), 3(A)] n 1,

where

(5.6) a(A A (In_ --O_1e-xh) --(O0 + O le-Xh),
(5.7) fl(A)=[3o+e-Xh(A[3-1 -+-31)"

Proof. We have

Q(D, S)= [In-lD-a-iDS-ao-axS
y-IDS-yo-T1S

fl-lDS flo- fllS ]D -6-1DS-6o-61S

As a polynomial in D and S we get, since B en,

(5.8)
n-1

Z Pj(D)BSj =adj Q(D, S) e. [g(D, S),..., g(D, S)]*,
j=0

where gi(D, S) is the cofactor of the ith entry in the last row of Q(D, S). We note
that these do not depend on the yi or 6, + 1, 0. Now (cf. (4.4))

n-1

K(A )Se’ E Pi(A )Be -i’h

1=0

so from (5.8) it is evident that

K(A)9

gl(A, e-xh)

gn (A, e -xh)
Thus K(A)S=0 if and only if gi(A,e-Xh)--O for i= 1,.. ",n. Since the
gi(A, e -’h) are (except possibly for sign) the n determinants of size (n 1) (n 1)
from the rows of [a (A ), fl (A )], we see that K(A)S=0 if and only if
rank [a (A),/3 (A)] < n 1.

From our observation above relative to (5.8) it is clear that for a canonical
system the operator K(D) [Po(D)B, ", P,-I(D)B] does not depend on yi or
6, + 1, 0. Hence in any computation concerning controllability of a canonical
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system we may assume that yi and 6i, +/- 1, 0, are all zeros. When this is done we
get a quite simple algorithm for constructing K(D). The authors have working
computer programs based on this algorithm which analyze the controllability of a
canonical system.

We recall from (4.3) that

n--1 n--1

(5.9) P(D,S)= Y P.(D)S= Y .(S)D.
=o =o

Taking the last rows of the As, +/- 1, 0, to be zero, we define

(5.10) A(S)=(In-A-1S)-I(Ao+AIS).
Now A-1 J,, is nilpotent and we get

(5.11) A(S)=Ao+ Ai-11[A_lAo+AI]Ss.
i=1

Using (5.10), we have Q(D, S) (I -A_IS)(InD -A (S)) so

(5.12) P(D, S) adj O(D, S) adj (InD A (S)) adj (In A-1S).

The conputation in (5.12) can be done iteratively using the Leverrier algorithm
(4.12). First we have

(5.13) adj (InD-A(S))= on-iFi(S),
i=1

where

(5.14) FI(S) In,

F+I(S) A (S)F(S)-In tr (A (S)F(S))/i,

1, 2,. , n- 1. Secondly, we find that

n--1

(5 15) adj (In -A s) (In -A-iS)-1 Z A ’ S"
k=0

Combining (5.13) and (5.15) in (5.11), we get
n--1 n--1

P(D, S)= Z Z Fn-s(S)AIDiS’.
i=0 k=0

A comparison of this with (5.9) yields

(5.16) .(S)= E Fn-j(S)A-ISk,
k=0

Moreover, for ] 0, 1,. , n 1,

/’=0, 1,. .,n-1.

1 0
4 1

(5.17) P. D -fi. -P D, 0 -. o
Po)(0)Di

The coefficient matrices Ks, 0, 1, , n 1, in (4.11) can now be calculated; in
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fact, the (j + 1)th column of Ki is given by

1E FO/ff(O)AB,
=o (/’-v)!

i=O, 1,... ,n-1.

That is,

(5.18)

Ki [F+(O)B,
1 (1-

=o (1- v):
Fi+I’)(O)A-1B’

=o (n 1- v)!
Fi+I-’)(O)A-B]’

where the F(S) are given recursively by (5.14) and A (S) there is given in (5.11).
"+)-t0) just note thatTo recursively compute the ti+t we

(5.19) A(0) Ao, A (k)(O) k!A_-(A_IAo+AI)
for k 1, 2,. , n, and

(5.20)
i+1(0) [A

k--O k
(*(O)FI-*(O)

-I,, tr (A(’)(O)F’-)(O))/i],
=1, 2, , n 1, u 0, 1, , n 1. The authors have implemented (5.18),

(5.19) and (5.20) in a computer program which will compute the operators K(D)
and analyze the controllability of neutral systems. The program has been used
without discernible error in numerous examples where the coefficient matrices
were randomly chosen from the ring of integers.

It is useful to note that for any canonical system

(5.21) Ko=[en, en-1, el],

where e is the ith column of the n n identity matrix, 1, ., n. (This follows
readily from (5.18) since Fx(s) I,, B e, and A_a Jn.) Consequently, Ko is an
involution, i.e., K I,,. Thus for canonical systems the matrix G in (4.21) can be
readily constructed with no round-off error or additional work due to inverting
K0.

Remark 5.1. The proof of Proposition 5.1 and Remark 4.5 have another
aspect of some interest. Let A be the infinitesimal generator of the strongly
continuous semigroup T(t), t>=O, defined by T(t)ck=xt(.,ck, O),
W2a)([- h, 0], R") (see [17], [18]). Then r(A), the spectrum of A, consists only of
eigenvalues and they are the roots of

(5.22) det O(z, e-z) O.

If either of the equivalent conditions (5.4) and (5.5) is satisfied for a canonical
system O(D, S)x Bu and if z satisfies (5.22), then the vector K(z)9’ is the
associated eigenvector. Indeed, K(z)9’ # 0 and

(5.23) K(z)9’ adj O(z, e-Zh)B,



1038 MARC O. JACOBS AND C. E. LANGENHOP

so by (5.22),

O(z, e-Zh)K(z)6’ O.

Moreover, since rank O(z, e -zh) --n- 1 by (5.5), the null space of O(z, e -zh) is
spanned by the single vector K(z)’. In light of these comments and Remark 4.5
it is evident that rank C,,[A_I, B] n, K(A)# O, C, and z > nh do imply, at
least, a weaker kind of controllability mentioned by Banks and Manitius [8,
Remark 5.4]. That is, if M denotes the generalized eigenspace corresponding to
h o’(A), then b, cl span {Mx [h 6 o’(A)} implies that there is a u L2[0, "r]
such that x(., 4, u)= ft.

6. Examples. Here we illustrate some of the results in 4 and 5.
Example 6.1. Let n 2, B [bl, b2]*. (bl and b2 are real.) As mentioned in

Remark 4.4, when n 2 the conditions

(6.1) rank [B, A_IB]-- 2

and

(6.2) K(A)Sex2#0, all complex h, 6x2=[ _lxh ]e

are sufficient as well as necessary that Q(D, S)x Bu be controllable on [0, z],
z > 2h. To compute K(A) we note that for n 2 the mappingA adj A is a linear
operator on the collection of all 2 2 matrices. (This is not the case for n n
matrices if n _-> 3.) Thus we get that P(D, S) adj Q(D, S)
adj (I2D-A_DS-Ao-AS) is given by

(6.3)

where

(6.4)

Let

P(D, S) Po(D +P1(D)S,

Po(D adj (I2D Ao),

Pa(D) adj (-A1-A-1D).

(6.5) Ai=[oi /3i] i= +1,0,

and

(6.6) K(A) [Po(A)B, P(A)B]
(A

Using (6.4), we find the 1 x 2 matrices Ki(A) are given by

(6.7)
KI(/) [(A o)bl +/ob2, -(1 + -IA)bl +(31 +3-1A)b2],

2(A) [’Yobl +(A ao)b2, (’Yl +’Y-1A)bl- (al + a-lA)b2].

Let A 1, .2 be the roots of the quadratic equation A(A) det K(A) 0. Then
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O(D, S)x Bu is controllable on [0, z], - > 2h, if and only if (6.1) holds and

(6.8) [(Ai-)bl-l-flb2-be-Xh[-(lW-lAi)bl+(fllW-lAi)b2]][O0]3toba +(Ai-ao)bz+e-Xh[(’y1 +’y-1Ai)bl- (gel +a-lAi)b2] J

for 1, 2. If the system is in canonical form, then a-x 0,/3-1 1, bl 0 and
b2 1. From (6.8) in this case we deduce that a canonical system Q(D, S)x Bu is
controllable on [0, z], z > 2h, if and only if either

(6.9) /30=0 and ao+l+aletlhO
or

(6.10) /3o 0 and )ti +1 +0 ex’h 0, 1, 2,

where h 1, ,2 are the roots of

(6.11) A 2 + (/31 ao)A + a1/3o a0/31 0.

(This was reported earlier in [20].)
Example 6.2. In Corollary 4.3 we proved that the controllable systems

Q(D, S)x Bu correspond to a dense open subset of the space of quadrupoles
(A-l, Ao, A1, B). We note here that the system corresponding to the point
L =(A_I, Ao, AI, B) is controllable if and only if the system corresponding to
(A-a, Ao, A1, sB), s O, is controllable. A control function u for the second
induces the control function su for the first. With that in mind consider the systems
corresponding to points in of the form

(6.12) L(s) (A-l, A0, A1, Sen)

where en is the n th column of the n n identity matrix and

(6.13) rank [aO+al,/30+/31] < n 1,

where ai, /3, i=0, 1 are determined from Ai as given in (5.1). The system
corresponding to L(0) in (6.12) is obviously not controllable, whereas the
controllability of L(s) for s 0 is the same as that of L(1). But because of (6.13)
the canonical system Q(D, S)x Bu associated with L (1) is not controllable. This
follows from Proposition 5.1 and Corollary 4.6 when one notes that (el. (5.6) and
(5.7))

[O (0), (0)] [--(O0--O1), 0"["1];

that is, (6.13) implies K(0)Sgg 0. In particular, the canonical system O(D, S)x
Bu corresponding to (A-I, A0,-A0, sen) is not controllable on [0, -], -> nh.
Thus we have an (n2+ 1)-dimensional linear variety in 5 (cf. Corollary 4.3)
correspond to canonical neutral systems Q(D, S)x Bu that are not controllable.

Example 6.3. Consider the point H (Jn, Jn, 0, en) in 5 which was used in
the proof of Corollary 4.3. It was claimed that the system O(D, S)x =Bu
corresponding to this point is controllable on [0, z], - > nh, for every h > 0. For
this example n _-> 2 is fixed and we let J Jn and I In for notational convenience.
We have

(6.14) O(D, S) ID-(DS + 1)J, B en.
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One can readily establish that

P(D, S)= adj O(D, S)= JD
=o

and consequently the P.(D) in (4.3) are given by

(6.15) P(D) JD"-+i-i O, 1 n 1
i=1

Note that Je,, e,_, 0, 1,. , n 1, so that

(6.16) P._(D)B Y eD+i-z, ] 1 n.
i= ]-1

Since the matrix operator K(D) is given by

K(D) [Po(D)B, Px(D)B, P,,_(D)B]

we see from (6.16) that the homogeneous equation K(D)oo 0 can be written out
as the following system of differential equations in the components

(6.17) n.
i= ]-1 D+-Zoi 0, 1,2,...,

We wish to establish that the only solution w of (6.17) which satisfies the boundary
conditions

(6.18)
D (.O]+1 (T) D wi(r- h),

i--O, 1,...,n-1, ]=1,2,...,n-1,

is trivial (i.e. w(t)=0). We note that the system (6.17) when written in reverse
order of has the following triangular structure:

Dn-lo91 -’0,

Dn-2o91 + Dn-lw2 O,

(6.19)

o + (n 1)Dw2 +" + Dn-1.o2 O.

This structure together with the boundary conditions enables one to show
inductively that

(6.20) D"-%o O, j 1,..., k,

for 1 -< k <_-n. Indeed (6.20) for k 1 is the first equation of (6.19). Now suppose
(6.20) holds for some k satisfying 1 _-< k _-< n 1. Using this in (6.17) with n k,
we get

(6.21) Dn-k-lo01 + Dn-look+l
Differentiating this, we obtain D"o+ 0 by (6.20). Thus D"-o+I is a constant
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and (6.18) and (6.20) imply this constant is zero. Repetition of this argument leads
to the conclusion that D 02k+1=0. This with (6.20) gives D oi=ci, a
constant, j 1, ., k + 1. But since D"-102+1 0 we see from (6.2 1) that c 0.
Using the boundary conditions (6.18) with n -k 1, we conclude successively
that c 0 also for j 2, ., k + 1. Thus (6.20) holds with k replaced by k + 1. It
follows by induction that (6.20) holds for k n; that is, 02(t)0, j 1,..., n.
Thus the system determined by H= (J,,, J, 0, e,) is controllable on [0, r],
r > nh, as claimed. Note that in this example A(A) det K(A)

Example 6.4. Let n 3, B [0, 0, 1]* and

(6.22) [A-l, Ao, A1]

Then we find

0 1 0 -1 0 -1 0 0 0

0 0 1 0 0 -1 0 -1 0

0 0 0 -1 -1 -1 -1 -1 -1

0 0 1 -1 -1 0 0 -1 0

(6.23) [K0, K1, K2]-- 0 1 0 1 1 0 1 0 0

1 0 0 1 1 0 0 1. 0

Let cr [ 1, 1, 1 ]*, the matrix in Theorem 4.3. Then the determinant of the matrix
[Koo’, KlO’, K2cr] is 4. Hence by Corollary 4.5 the canonical system determined
from (6.22) is controllable for all but a finite number of values of h, 0 < h < r/3.
The roots of A(A)=det K(a)= 0 are -1, -1, i, -i, 0, 0. One can check that
K(i) 0 if and only if h (4v + 1)rr/2, v 0, 1,. (h > 0). Thus the system is
not controllable if h (4v + 1)rr/2, v 0, 1, . However, the system is controll-
able on [0, r], r > 3h, if h : (4v + 1)rr/2. To show this we note that the operator
K(D) determined from (6.23) is given by

-D

(6.24) K(D)= -(D + I)

D(D+ 1)

-(D+I) D2

D+ID(D+I)
If we premultiply this by the matrix operator (with constant determinant)

1 0 1

0 -1 D

10 0

we conclude that the equation K(D)02 0 is equivalent to the system

D2021 4- D2023 0,

(6.25) (D2 + 1)(D + 1)o21 0,

D(D+ 1)021 +(D+ 1)022 =0.

From the last two equations in (6.25) it follows that

(6.26) 4(D)021 4(D)022 0,
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where

(6.27) (D) (D2 + 1)(D + 1).

The boundary conditions (4.68) together with (6.26) imply (as in Remark 4.4) that

(6.28) to2(/) (-Ol(t h), all t.

From the form of (D) in (6.26) as given in (6.27) we see that

Wl(t) :/J,1 eit + 12 e-it "+" Ida3 e-t,
(6.29) ei(t-h) -i(t-h) -(t-h)tOz(t) =/Z +/-/,2 e + 0,3 e

for some constants/z 1,/x2,/x3. Substituting these into the last equation of (6.25) we
obtain

/Zl(1 + i)(i + e -ih) e i’ +/z2(1 i)(- + e ih) e -it -0.

Hence if e ih i, then x =/xz 0 so (D + 1)w (D + 1)o2 0. This with the first
equation of (6.25) implies

q (D)(.o 0, 1, 2, 3

where q(D)= DZ(D + 1). Since q(D) is of degree 3 and

K(Ai)0 ifAi=0, -1, +i and ehi
we may apply Remark 4.4. It follows that the canonical system Q(D, S)x Bu
associated with (6.22) is controllable on [0, -], - > 3h, if and only if

(6.30) h (4u + 1)7r/2, , 0, 1, 2,. ..
Example 6.5. Here again n 3 and B [0, 0, 1]*. For

0 1 0 -2 -2 -2 0 0 -1

(6.31) [A_a, Ao, Aa] 0 0 1 -1 -1 -2 0 -2 0

0 0 0 0 0 0 0 0 0

we find

0 0 1 -2 -5 0 2 -5 -2

(6.32) [K0, Ka, K2]= 0 1 0 -2 2 0 -2 1 0

1 0 0 3 3 0 0 4 0

We compute

(6.33) A(A) det K(A) -(A +1)(12-2)(13+412+91 +8).

The equation A(A)= 0 has six distinct roots, -1, x/, -x/ and the roots of the
cubic A 3 + 4A 2 + 91 + 8 0, which can be expressed exactly in terms of certain
radicals. The canonical system Q(D,S)x =Bu corresponding to (6.31) is not
controllable on [0, ’], r > 3h, if h In 2, since in this case K(-1)03 =0. For
tr =[1, 1, 1]* we find det [K0o’, Kltr, K2o’] 11. Corollary 4.5 then gives that the
canonical system determined from (6.31) is controllable for all but a finite number
of values of h, 0 < h < -/3. Further analysis enables one to say that the system can
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fail to be controllable only if h > 0 is transcendental. Let Ai, 1, 2, 3, be the zeros
of the cubic factor, A 3 + 4A 2 + 9,t + 8, in A(A) and let/4
For/" 1,. ., 6 let u(,j) 0 be a 3 1 column matrix such that K(,j)u(i) O.
Then too(t) eXJtu(Ai),/" 1,. ., 6, form a basis for the solutions of K(D)to(t)
0 in this example. One may choose u(,t4)=[1, 2, 4]*, u(,5) u(,6)= [0, 0, 1]*.
Forj 1, 2, 3 the components of u (t) are determined as quotients of polynomials
in ,i with integral coefficients so they may be taken to be algebraic numbers. We
may now write the coefficient matrix 7t/" referred to in Remark 4.3. The structure
of W is simple enough so that one may show

det 7g/’= 2x/(2e-h- 1)g(e lh, e2h, ex3h)
where g(sC, r/, st) is a nontrivial polynomial in the variables so, r/, sr with algebraic
coefficients. Now it is not difficult to show that , 1, ,2, ,3 are linearly independent
over the rational integers so the same is true of , lh, ,t 2h, A3h when h 0. Hence
we may apply an extended version of the Weierstrass-Lindemann theorem (cf.
[37, p. 20]) to conclude that g(exlh, ex2h, ex3h) 0 when h > 0 is algebraic. Since
h In 2 is transcendental it follows that det 74/" 0 when h is algebraic. By
Remark 4.3 the canonical system O(D,S)x =Bu corresponding to (6.31) is
controllable for all h, 0<h <r/3, except In 2 and a finite number of other
transcendental numbers.

Example 6.6. Let n 3, B’= [0, 0, 1]* and

0 1 0 -1 -1 0 -1 -1 0

(6.34) [A-1, Ao, A1]= 0 0 1 0 0 -1 -1 0 -1

0 0 0 0 0 0 0 0 0

The operator K(D) is defined by

0 0 1 0 -2 -2 1 2 1

(6.35) [K0, K1, K2]= 0 1 0 -1 0 1 -1 -2 -1

1 0 0 1 1 1 0 -1 -1

If o-= 1, 1, 1]*, then

(6.36) det [K0o-, Klo’, K2o-] 32.

it follows that the canonical system O(D, S)x Bu corresponding to (6.34) is
controllable for all but a finite number of h > 0 satisfying - > 3h. We calculate

(6.37) A(A) det K(A) -A 5(A 1).

The necessary condition (4.61) is satisfied since

(6.38) K(0)ff’g 0 and K(1)6 0.

One can, in fact, prove the system is controllable on [0, -], - > 3h, for all h > 0.
Since the roots of A(A) 0 are quite simple one can calculate e Gt analytically. One
may then determine the matrix coefficients Rk, k 1, ., 6, in the relation

(6.39) MeGh N ehR h
1+ -[R+2.k--0
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By judicious use of elementary row and column operations one finds that

(6.40) det (MeTh-N)= 32e h.
Example 6.7. Here we consider canonical systems of dimension n => 2 with

A 0 and

(6.41) Ao= [Co 0]Yo o
where the (n 1) x (n 1) matrix ao =diag (aa, a2,’ ", an-l). In this case all
elements of K(D) are zero except for the (i, ]) elements with i+] n + 1. The
system K(D)w 0 has the form

(6.42) qj(D)oj O, j 1,. ., n,

where

(6.43)
qj(D) Di-I(D al)’" .(D a,_),
q,(D)=D"-.

We can show that equations (6.42) and the boundary conditions (4.68) imply that

]=1,...,n-l,

(6.44) o ,.n.o

Indeed, we note that for j 1," ", n 1,

so from (6.42) we have

(6.45)

Dqi(D) qI+I(D)(D a,,_j),

Dq(D)w Dqi(D)ooi+a O, ]=1,...,n-1.

Since Dqj(D) is of degree n in D, equations (6.45) along with the boundary
conditions (4.68) imply that

(6.46) wi+l Swi, ] 1,..., n 1.

It follows that o Si-lwa, ] 1,. ., n; that is, equation (6.44) is valid. Since

(6.47)
A(A) (- 1)"ql(h)qz(h).. "qn (A)

(- 1)"A n(n-1)/2( a 1)n-l(x a2)n-2’’ "(A a,_)

it is clear from (6.42) and (6.43) that A(D)Ol 0. As explained in Remark 4.4, it
follows that in this example condition (4.61) is necessary and sufficient for
controllability of the canonical system with A 0 and Ao as specified above. We
readily find that

-qn (A) e -(n-1)xh

(6.48) K()’
-Ahqz(A e

_q(A)
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We observe from (6.43) that

q(O) O, ]=2,...,n,

ql(O) (- 1)"-ala2 an-1

Hence if ag 0 for some k 1,. ., n 1 we have K(0)6eg 0, and the system is
not controllable. On the other hand, if

(6.49) ak O, k 1, ", n 1,

then ql(0) # 0 and

q,,(ak) a-1 0, k=l,...,n-1.

From (6.48) and (6.47) we see that if (6.49) holds, then K(A)6e # 0 for any root of
A(/) 0. Thus the system considered here is controllable on [0, z], - > nh, if and
only if (6.49) is satisfied.

Example 6.8. Consider the canonical system of dimension 3 for which

(6.50) A [a fl] i=0, 1,
Ti i

where

In this case

so

K(X)=

0 bE(A-a) A2-4b:

0 A2-b2 0

A(A -a) -3A 0

A(A) A (A a)(A 2 b2)(A 2 4b2).
By computing K(Ai), and using (4.61) we find that for the system to be
controllable it is necessary that

=vbh(6.51) b#0 and a#+b-3e

A detailed analysis applying the method in Remark 4.3 shows that condition
(6.51) is also sufficient that the system be controllable on [0, z], z > 3h.

Example 6.9. As a final example consider the second order homogeneous
differential equation

(6.52) K(D)to =0,

where

(6.53) K(D) D2 + 1/4 0
D 1 0 0
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This has all of the immediately apparent features of a K(D) operator associated
with a canonical neutral system O(D, S)x Bu with n 3 (cf. (5.21) for the form
of K0 in such cases). We have A(A) -(A 2 + 1)(A 2 + 1/4)(A 2 + 1/9). For any zero
A of ZX(A) one sees from (6.53) that the null space of K(A 1) has dimension one and
any vector in this null space has two of its components equal to zero. Since none of
the components of 6ca3 is ever zero it follows that condition (4.61) is satisfied; that
is, K(A)x3 0 for any A C. Now if we construct the matrices M and N in (4.32)
associated with K(D) as in (6.53) we find that

(6.54) det (M N) 0.

The matrix G in (4.21) has the eigenvalues +i, +i/2, +i/3 so e Gh is a periodic
function of h with period 127r. From (6.54) it follows that det (MeGh-N)=O
when h 12kr for any integer k. Thus if K(D) were associated with a canonical
neutral system O(D, S)x Bu that system would not be controllable on [0, r] for
’> 3h if h 127r. This example would then demonstrate that (4.61) is not a
sufficient condition for controllability of neutral systems O(D, S)x Bu (cf.
Remark 4.4). However, the K(D) given in (6.53) does not provide a counter-
example to the conjecture that if rank C[A-1, B] n, B is n X 1 and - > nh, then
(4.61) implies that O(D, S)x Bu is controllable on [0, ’]. Indeed, the operators
K(D) which come from canonical neutral systems O(D, S)x Bu are determined
by the Ai, 0, 1, in a rather intricate way. One can in fact show that if such a
K(D) has the form

(6.55) K(D) p:z(D)
pl(D) 0

where pi(D), 1, 2, 3, are monic polynomials of degree two, then the first two
rows of the coefficient matrices A0 and A must have the respective forms

[o 0] [0 s _w(6.56)
d e 0’ 0 -d

where b(w + e) 0 and d(a + s) O. In all these cases at least two of the polyno-
mials p(D) have a common factor so K(D) in (6.53) cannot arise from a canonical
system O(D, S)x Bu with n 3. Moreover, one can check that in all cases (6.55)
which do arise from such systems, the conjecture mentioned above (regarding the
sufficiency of (4.61) for controllability) is valid.
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LOCAL CONTROLLABILITY AND SUFFICIENT
CONDITIONS IN SINGULAR PROBLEMS. II*

HENRY HERMES,"

Abstract. Let X, y2,..., ym be analytic vector fields on an analytic n-manifold and @ denote
+the control system (t)=X(x) i=2u(t)yi(x), x(O)=p. Our major goal is to give high order,

computable, sufficient conditions to assure that the reference solution of corresponding to u 0 has
value at time on the boundary of the set of all points attainable at time for small values > O. This
provides high order sufficient conditions for time optimality when the reference solution is singular.
These conditions are phased in terms of elements of the Lie algebra generated by X, y2,..., gm. We
also show that quite general nonlinear systems can be approximated by systems of the above form and
this approximation retains more information than the standard linearization about the reference
solution.

Introduction. Let X, y2,..., y,, be analytic vector fields on an n-
dimensional analytic manifold M; I be a real interval of the form [0, tl], tx > 0 and
m be real m-dimensional space. We denote by the control system

=X(x)+ E ui(t)yi(x),
(1) i=2

x(O) p M, ( dx/dt)

where, unless stated otherwise, an admissible control is a Lebesgue measurable
function u =(u2,’’’, Um):I">ff with lu(t)[_<-1 for s L i= 2,..., rn. (Note
that replacing yi with W ai yi, a >= O, shows this formulation includes control
bounds of the form lu(t)l-<-a,.) Let TX( )p denote the solution of (1) correspond-
ing to all ui(t)=O and si(t, p,) be the set of points attainable at time t by
solutions of corresponding to all admissible controls. Our major goal is to
obtain computable conditions to determine whether TX(t)p belongs to the
interior of M(t, p, )) for all t>0, or to the boundary, denoted c3sC(t, p, ), for
sufficiently small t > 0.

Control is often introduced into a physical system to assure that a predeter-
mined reference trajectory can be followed, even in the event of small perturba-
tions or a somewhat inaccurate mathematical model. If we assume the control
system modeled by (1), and TX( )p the reference trajectory, then TX(t)ps
int. sO(t, p, ) for all > 0 implies the ability to make minor "corrections" at p, i.e.,
local controllability at p. If, on the other hand, the control is to be used to make the
system perform a desired task optimally (e.g., time optimally), one finds a
necessary condition for TX( )p to be optimal is that TX(t)p OsC(t, p, ). Our
results have immediate applications to such problems, when the control system is
of the form . In 4 we show how very general systems can be approximated by
systems of the form ; the approximation given retains more information than a
standard linearization.

Consider the real linear space, V(M), of analytic vector fields on M as a real
Lie algebra, with Lie product IX, Y]. For any collection of vector fields c V(M)
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let L(C) denote the subalgebra generated by ; C(p)={X(p):X c}, while for
notational convenience (ad X, Y)=IX, Y] and inductively (ad X, Y)=
[(X, (ad -aX, Y)]. Define

(2) 6 {(adiX, Y) :/" _-> 0, 2, , m}.

A necessary and sufficient condition that int.g(t,p,)#/t>O is
dim L(a)(p)=n while a (first order) sufficient condition that TX(t)p
int. M(t, p, ) /t >0 is rank 6Ca(p) n (see [1, Prop. 1.6], [2, Thm. 3.2] and
[3, Prop. 3]). A (first order) necessary condition that TX(t)p O(t, p, @) for t I
is given by the Pontryagin maximum principle. Our interest is in deriving higher
order conditions. It should be remarked that our results, to be of interest, really
depend on the nonlinearity of the system . Indeed, in the case of a linear system,, on ", i.e., : Ax +Bu with A an n n matrix and B an n rn matrix, we see
dim L(l)(p) rank 5Ca(p) rank [B, AB,. , A-aB]; hence the necessary
and sufficient condition (dim L(Sel)(p) n) that int. (t, p, ) # ’qt > 0 is equi-
valent to the sufficient condition (rank owl(p) n) that TX(t)p
int. (t, p, )’t > 0. The interesting case, for @, will always be when dim L(Se)
(p) n but rank 5e(p)< 1. For the linear system , it readily follows from the
above that the property TX(t)p int. (t, p, ,) is "insensitive" to control bounds,
i.e., if true for lug(t)]-51 it is true for [u(t)[ _-< a, a > 0. This is not the case, when
dealing with the nonlinear system .

In 1, we review known results both for the case of bounded control
(i.e., lu,(t)l_< 1) and unbounded control. Specifically, if we let o denote the
system (1) with u admissible requiring only that each control component u belong
to the Lebesgue space (I), Lemma 6.4, [4], or Lemma 3.4, [5], yields.

PROPOSITION 1.1. Dim L{y2, ym}(p)= n is a sufficient condition to
assure that TX(t)p int. el. (t, p,) /t> 0.

This result does not hold if we have finite control bounds since, as shown by
Example 1.1, the contribution due to Lie products of the Y may, or may not,
"override" the influence of X. In this example TX( )p is a singular arc (i.e.,
rank 6l(TX()p) < n for z I; see [1, Prop. 2.6] for verification that this is
equivalent to the usual definition of singular arc) which is time optimal, i.e.,
TX(t)p6Osg(t,p,) if lu(t)l_-< 1, but TX(t)p int. (t, p, ) Vt>0 (i.e., is not
time optimal) if. the control bounds are removed.

In 2, we assume dim L{ y2, ..., ym}(q) k < n for q in a neighborhood of
p. Then L{y2,..., y} defines an involutive distribution of dimension k. With a
further assumption that the vector field X is transverse to the integral manifolds
(leaves) of this distribution, we obtain our main result, a high order sufficient
condition that TX(t)pOC(t,p,) for small t>0, in Theorem 2.1. This is an
extension (and simplification) of results in [1, 4]. It is of interest to note (as
shown in Corollary 2.1) that the assumptions of 2 make the results of Theorem
2.1 independent of the bounds on the control components.

The most difficult case occurs when no restriction is placed on
dim L{y2,..., ym}(q) for q in a neighborhood of p. In 3, we obtain some
results for this case under the assumption that the algebra L(61) is nilpotent. (The
case L(6) solvable is similar, but calculations of the exponentials of matrices
becomes more difficult.)
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1. Known results. If X(x)=-O in (1) and dimL{y2, Y’}(p)=n it fol-
lows from a theorem of Chow (see [6, satz B], or [7, Thm. 1] or [8, Thin. 1]) that
TX(t)p=-p int. (t,p, )Vt>0. In essence, the proof of Proposition 1.1 (as
stated in the Introduction) shows that with ui 1(I) we can "override" the
influence of the vector field X. Furthermore, one may slightly generalize Proposi-
tion 1.1 obtaining

COROLLARY 1.1. If ]:or every e >0 there exists a -[0, e) such that
dim L{y2, Y"*}(TX(r)p) n, then TX(t)p s int. cl. M(t, p,) Vt>0.

The next example shows these results are not true with finite bounds on the
control values. Here, and in other examples, vector functions will be written as
row vectors for notational ease.

Example 1.1. Let M= a3, X(x) (1 -(x-[- x), 0, 0), rE(x) (X, 1, 0),
ya(x) (0, 0, 1) and p 0. Then TX(t)p (t, 0, 0) and since :l(t) --< 1 which
implies Xl(t) < t we see M(t, p, ) lies on one side of the hyperplane x t; hence
TX(t)p O(t, p, ) Vt <-_0.

Computation shows (ad X, YE)(x) (-2x2, 0, 0), (ad YX, Y2)(x) 0 if
j_>-2, (adx, ya)(x)=(-2x3,0,0), (adx, ya(x)=0 if j_->2 so 91=
{ y2, y3, (ad X, y2), (ad X, y3)} and rank l(p) 2. Next, -[ y3, [ y2, y3]]
(2,0,0); hence dimL{Y2, Ya}(p)=3 (which shows dimL(9)(p)=3 and
int. M(t, p, ) # Vt>0). If we consider ui (I), Proposition 1.1 would give
TX(t)p int. cl. M (t, p,)Vt > 0.

Returning to the system (1), if u is a fixed admissible control and one attempts
to express a solution in the form TX(t)o y(t; u), then (see [9, 3, 4]) y must
satisfy

oo

(3) ))(t) ui(t) (-t)/v!(adX, Yi)(y), y(0)-p.
=2 =0

Conversely, if we let y(t; u)(p) denote the solution of (3), at time t, corresponding
to admissible control u, then TX(t) y(t u)(p) is a solution of (1). Letting (t, p)
be the attainable set at time t-> 0 for (3) we then have

(t, p, )= TX(t)3(t, p).

Let I(L(6el), p) denote the integral manifold of L(S’1) through p. The above
equality immediately yields a part of Theorem 3.9 of [2], which we state as

PROPOSITION 1.2. (t, p, ) Tx(t)I(L(6x), p) Vt > O.
For unbounded control, conditions which insure (t, p, )=

Tx(t)I(L(ST), p) are given in [5].
If m n and y2,..., y,, are involutive and linearly independent at p, the

"behavior" of the vector field X on the (n- 1)-dimensional integral manifold
I(L{Y, Y}, TX(t)p) is fundamental. For example, suppose X(p)=0 so
TX(t)p =-p andX is tangent to ("points to one side" of) I(L{ y2,.. ", y}, p) at all
points in a neighborhood of p on this (n- 1)-dimensional manifold. Geometri-
cally one then expects that, respectively, (t, p,)I(L{Y, , Y}, p)
(M(t, p, ) lies on one side of I(L{ y2,.. ", y}, p)) for sufficiently small t > 0. Let
Z be any one form such that Z(p) O, (Z(p), Y(p))= O, i= 2,..., n, and let
q(s, p) TY(s) TY(s)p. Then the behaviorofXonI(L{y2, ., Y}, p)
can be determined by the sign of (Z(q(s, p)), X(q(s, p))) for s in a neighborhood of
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0 n--1. Notationally, let

/ (/2, b’n) with vi a nonnegative integer,

2

a(u) {Z(p), (adY", (... (ad Y, X)... )(p)),

qr(s)= Y’. (1/u!)(-s2)2... (-s,)"a(u).

Then, properly restated, we show in [ 10],
PROPOSITION 1.3 [10, Thm. 2]. AssumeX(p)=0, y2, ..., y, are involutive

and linearly independent at p. A necessary and sufficient condition that
int. (t, p, ) ’dr > 0 is that them exist an integer r >= 1 such that or(s) # O. If
this occurs, a necessary and sufficient condition that p int. (t, p, ) ’’t > 0 is
that ,r= p,(S) change sign in every (sufficiently small) neighborhood of 0 ,-1.

In general, one cannot compute =1 tp(s). However, if r* is the smallest
integer such that 0.(s)# 0 and the form 0.(s) is definite (changes sign in every
neighborhood of 0"-1), then p eOC(t,p,) for sufficiently small t>0
(p int. (t, p, ) ’t >0). Thus 0(s) for r > r* need only be considered if 0,.(s)
is semi-definite.

The case X(p)0, y2,..., y, involutive and X(p), y2(p),..., y,(p)
linearly independent is studied in [ 1]. Here there exists a unique one form Z such
that (Z(x),X(x))=- 1, (Z(x), yi(x))=-O for 2,. ., n and x in a neighborhood
of p. For each integer ] => 0 we now let

(4)
a(u,])=(Z(p), (ad iX, (ad 2Y2( (ad "Yn, X) )(p)),

q.(s)-- . (1/u!)(-s2)’’" (-s,)"a(u,]).

A slight restatement of the main result in [1] is
PROPOSIa’ON 1.4 [1, Thm. 1]. Assume Y,..., Y" are involutive and

X(p), yZ(p),..., y,(p) are linearly independent. A necessary and sufficient
condition that (t, p, ) have nonempty interior for all t > 0 is that some r-form
o,j(s) O. If r* is the smallest integer such that or.i(s) 0 for some >= 0 and* the
smallest ]’or which this occurs, a sufficient condition that TX(t)p int. (t, p, )
/t>0 is that 0.i.(s) assumes both positive and negative values in every
neighborhood of 0 n-1. Ifj* O, a sufficient condition that TX(t)p Osg(t, p, )
]’or small t > 0 is that p,..(s) be definite in some neighborhood of 0 ,-1. A more
general sufficient condition that TX(t)p int. (t, p, ) ’t > 0 is that]or any e > 0
a such that 2iZ0.  - cha.ges sig. a tunctio, i.

every neighborhood o]’ 0
In the next section we obtain somewhat similar results to Proposition 1.4 with

some of the restrictions on the vector fields y2,..., ym weakened.
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2. The case when L{Y2, ym} defines an involutive distribution o|

dimk<n. If dimL(Y2,...,Y"}(p)=k<-n, Nagano’s theorem [8, Thm. 1]
yields the existence of a k-dimensional integral manifold for L{y2, Y’,
through p. We denote this manifold N(p). Furthermore, dim{y2, Y’
(q)= k for q N(p). If-, we assume K<n and X is transverse to N(p),
dim N(TX(z)p) can change with z, creating technical difficulties. To keep matters
reasonable, we make the following assumptions throughout this section:

(a-l) dim L{ Y2, ..., Y’}(q) k < n for all q in a neighborhood of p. (Then
L(y2, ", ym} defines an involutive distribution of dim k.)

(a-2) X(p) L{Y,..., Ym}(p).
For example, these assumptions are satisfied if m 2, n _-> 2 and X(p), Y(p) are
linearly independent; or if m _-< n, X(p), y2(p), ", ym (p) are linearly indepen-
dent and y2, ..., y, are involutive.

PROPOSITION 2.1. Let V2, ..., V+L{Y:, ..., Y’} be such that
X(p), V2(p), V+(p) are linearly independent. There exist V+2, V"
V(M) such that V2, V are involutive and X(p), V2(p), V’(p) are
linearly independent.

Proof. Choose any vector fields wk+2, W V(M) such that
X(p), V(p), vk+l(p), wk+(p), W(p) are linearly independent.
Define

r(tr,..., trn, z, p)= TV2(o’)o...o TV’+’(O-k+l)o Twk+2 (trk)o

TW’(tr,,)o TX(.)p.

Then the vector fields Or/doi, 2, ..., n, commute. Since V2, Vk+l were
involutive, for 2=<i -<k + 1 and x r(tr, -, p), Or(x)/Oo’ .Y.+ c(x)W(x), while
Or(p)/Oo’ V(p). Thus the matrix co(x) is the identity at p hence smoothly

,k+linvertible in a neighborhood of p, i.e., V (x)= zj=2 eij(x)Or/tgo’], 2," , k + 1,
with eij smooth in a neighborhood of p. Define VJ(x) Or/Otrj for/" k + 2,. , n.
It follows that V2, V are as required. D

With any choice of V2, V as in Proposition 2.1 we associate the
"extended" system

x(x) + u,(t) v’(x), x(0) p,
i=2

with U measurable and ]ui(t)l_-< 1 for 2,..., n. Note that since y2,... yn
need not be in the collection V2, Vk+l it is not necessarily true that the
attainable set M(t, p, F) contains M(t, p, ) for each t > 0.

The following geometric motivation to the main result was conveyed to me by
Professor H. J. Sussmann. For each value t_->0, let Lt denote the (n- 1)-
dimensional integral manifold (leaf) of V2, , V through TX(t)p. For each x in
a neighborhood of p define f(x) to be the value t such that x Lt. Since TX(t)p is
transverse to tt for small t _-> O, f is well-defined, analytic, constant on a fixed leaf
tt, and [(TX(t)p) =- t. Let be any solution of system or system V. Then

(5) (d/dt)f((t)) (X[)((t))
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since yif__ 0 and VJf =-O, 2, , m j 2, , n. Introduce new coordinates
for a neighborhood of p via the map

(6) (s2, s,, ’) q(s, z, p)= TV"(s,)o TW(s2)o TX(z)p.
PROPOSITION 2.2. A sufficient condition that TX(t)pO(t,p,) and

TX(t)pOl(t,p, F) for small t>0 is that there exist an e >0 such that
(Xf)(q(s, z, p)) >- 1 (or <- 1) for 0 <- z < e and s in some neighborhood of 0 "-.

Proof. Suppose (Xf)(q(s, ’, p)) _>- 1 for 0 _-< - < e and s in a neighborhood of
0 n--1. Then for sufficiently small tl > 0, (Xf)(C(t)) > 1 for 0 <-- < ta and (5)
yields

t <= (Xf)(d/(t)) dt =f(b(tl)).

Thus (t, p, ) and (t, p, F) lie on "one side" of the leaf Lt and TX(h)p, which
is on this leaf, belongs to the boundaries of (t, p, ) and (t, p, F). The case
X]’-< 1 is similar.

Our main theorem, which we next state, is obtained from Proposition 2.2 by
deriving a Taylor series expansion of (Xf)(q(s, , p)) to determine the sign of

Xf-1. Assume a Riemannian metric on M and let (V, W) denote the inner
product of two tangent vectors as determined by this metric. Let W(p) be the
unique tangent vector such that

(7) (W(p),X(p))= 1, (W(p), V’(p))=O,
Actually, W(p) grad f(p). Again, let:

, (u2, , u,) with ,i a nonnegative integer,

2

a(u,])=(W(p), (ad iX, (adV2, (... (ad "V", X) .)(p)),

i=2, ...,n.

q,(s) Z (1/u!)(-s2) (-s,,)"a(u,).

THEOREM 2.1. Let be as in (1); let assumptions (a-l), (a-2) hold, and
V2, , V be chosen as in Proposition 2.1. If qr (s) =- 0 for all r >-_ 1, ] >- O, then
1(t, p, ) and (t, p, U) are contained in the (n 1)-dimensional leaf Lt ]’or each
> O. Assume qr(s) 0 forsome r >- 1, ] >- 0; let r* be the smallest integer r such that

or.i(s) 0 for some andf* the smallest value offfor which this occurs. Iff* 0 or if
q,j(s) 0 when r > r*, 0 <-] <j*, a sufficient condition that TX(t)p 6 0C(t, p, )
and TX(t)p O(t, p, l/’) for small > 0 is that q.j.(s) be definite (i.e., q**i.(s) > 0
or <0 for s in a deleted neighborhood of 0 -1).

Proof. We proceed to the expansion of (Xf)(q(s, ’, p)) which will be used with
Proposition 2.2 for the result.

For fixed small Isl, I-I, q(s, -,. maps a neighborhood of p in M onto M
diffeomorphically. The induced tangent space isomorphism will be denoted
q.(s, r, p). Letting DTX(-) denote the differential of the map p- TX(r)p and
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using the identity DTx(7)X(p) X(Tx(7)p) one easily shows

(8) (O/O7)q(s, 7, p)= q,(s, 7, p)X(p).

Introduce the map

k(s)(p)= TV"(s,) TV2(sz)p.
Then q(s, 7, p)= k(s)o TX(7)p. Also, since V2, V" are involutive, for fixed
s, 7, k(s)(. ):LL; hence the induced tangent space isomorphism, denoted
k.(s), maps tangent vectors of L into tangent vectors of L.

LEMMA 2.1. (Xf)(q(s, 7, p))= ((grad f)(TX(7)p), k-(s)X(k(s) TX(7)p)).
Proof. Since f =- 7 on the leaf L we have f(q(s, 7, p)) 7 so

1 (O/Oz)f(q(s, z, p)) ((grad f)(q(s,
(9)

((grad f)(q(s, 7, p)), q,(s, 7, p)X(p)).

Now suppose (Xf)(q(s, 7, p)) ((grad f)(q(s, 7, p)), X(q(s, 7, p))) y. From (9) we
see

X(q(s, -, p))= ,q,(s, -, p)X(p)+ c,V(q(s, -, p))
i=2

yk.(s)X(TX(7)p)+ cV (q(s, 7, p)).
i=2

Applying kl(s) to both sides and using the fact that this map takes tangent
vectors ofL into tangent vectors ofL while VZ(TX(7)p),. , V (TX(7)p) span
the tangent space of L at TX(7)p, we obtain

k,l(s)X(k(s)- TX(7)p)= /X(TX(7)p)+ ci’ l/’r (TX(7)p).
i=2

Then ((grad f)( TX(7)p), k-(s)X(k(s) TX(7)p))=y since ((gradf)(TX(7)p),
V(Tx(r)p)) 0, i= 2,..., n. The argument is reversible.

LEUA 2.2. (Xf)(q(s, ’, p))= 1 + I1/u!)(-s2)" (-s")"((grad f)
(TX(7)p), (ad"V, (... (ad"V",X) ;,(7)p)).

Proof. Use Lemma 2.1 and the identity k-(s)X(k(s)oTX(-)p)
E,,=o (1/u!)(-sz)" (-s,,)" (adV2, (..-(ad ""V",X) )(TX(7)p) which
follows by repeated use of the Campbell-Hausdorff formula. Apply grad f; note
that for u -O, ((grad f)(TX(7)p), X(TX(7)p))= 1, and the result follows.

Our goal is to obtain an expansion about p rather than about TX(7)p. Let
7>0 and V be any vector field. It is not in general true that ((gradf)(TX(7)p),
V(TX(7)p))=((gradf)(p), DTX(-7)V(TX(7)p)). We shall show that this does
hold precisely in the case of interest to us. Let

9a() ={(adX, V)’i =2, ...,n ;]-_>0}.

The standard first order test, i.e., rank6el(F)(p)=n, implies TX(t)p
int. (t, p, V) /t >0; hence we shall be interested in the case rank 6el(V)(p) <
n. This first order condition, together with the definition of oi(s), yield

LEMMA 2.3. rank 6el(//’)(p) n :>qj(s) 0 ]’or some j >-- 0= TX(t)p
int. C(t, p, 7/) Vt>0.
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Remark 2.1. For odd r, rj(S)= --qrj(--S) for all j. Thus (01j(S)0 implies
ql(s) is not definite, and the case r* 1 in Theorem 2.1 is taken care of. Indeed, if
qr*i*(s) is to be definite, we must have r* even.

LEMMA 2.4. li(S) 0 for all ] 0 implies

((grad [)((z)p), V((z)p)) ((grad [)(p), D(-z)V((z)p))

for any V V(M) and t O.
eroofi
l(S)m0 V](W), (ad X, V’)(p))=O

( ((-z)’(ad,X Vi(p))=OW(p), X k ] /

(W(p),DTX(-r)V’(TX(r)p))=O, i=2, ,n,

Now X(TX(r)p), Va(TX(z)p), ..., V(TX(z)p) span the tangent space toM at
Tx(r)p for small z O; hence we may write

V(TX(z)P) "yX(TX(z)P) + E c,V’(TX(z)P)
i=2

Then ((grad f)(TX(z)p), V(TX(z)p)) /= (W(p), "yX(p))= ((grad f)(p), qcDTx

(-z)X(TX(z)p))= ((grad f)(p), DTX(-z) v(TX(r)p)). [3
LMMA 2.5. -(S) 0 for all j >= 0 implies

(10) (Xf)(q(s, z, p))= 1+ X E ((-z)/j!)q,(s).
r=2 j-O

Proof. Apply Lemma 2.4 to each term in the expansion of Xf given in
Lemma 2.2.

To complete the proof of Theorem 2.1, we first note that if qr(s)-- 0 for all
r -> 1, ] _-> 0, then (Xf)(q(s, z, p)) 1 and if $ is any comparison solution of F (or of
), it follows from (5) that f(q(tl)) t, i.e., tp(t) Lt, for any t > 0. On the other
hand, if r*, * are chosen as stated and qr*-.(s) is definite, say qr.i.(s) > 0 if s # 0,
with* 0, then from (10) we see (Xf)(q(s,z.)) _-> 1 for z in some interval [0, e),
e >0 and s in some neighborhood of 0 R This also holds if prj(s)- 0 when
r > r* and 0 _-<j <j*. Proposition 2.2 now yields the desired result. 13

Remark 2.2. For the relation between pl(s) 0 / => 0 and TX( )p being
a singular arc, see [1, Props. 2.6 and 2.7].

Let be as in (1); assumptions (a-l), (a-2) hold; V2, V" chosen as in
Proposition 2.1, and pr.i.(s), defined relative to this choice, as in Theorem 2.1.
Assume r*j*(S) is definite so TX(t)p
denotes a system X(x)+i=2 u, I7" (x), with [u,(t)l _<- 1 and L{ 17"2, ITa}(q)
L{y2,..., ym}(q) for q in a neighborhood of p, then TX(t)p O4(t, p, ) for
0_-< t _-< e. This follows since V2, , V" is a choice for which satisfies Proposi-
tion 2.1 and 0r(s) depends only on V2, ., V". In particular, if I7"i aiYi, ai >0;
then with [u,(t)[<-] is equivalent to with [u,(t)[<-a,. Clearly
L{y2,..., ym}(q)= L{o2 y2,..., otm ym}(q) for all q; hence we have
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COROLLARY 2.1. The sufficient condition in Theorem 2.1 is independent of
the value ai > 0 in the bounds [ui(t)[ <-_ ai on control components in .

Example 2.1. (For notational ease, we continue to write all vectors as row
vectors.) Let X(x)= (1, 0, x3, 0), yE(x)- (x3, 0, 1, 1), Ya(x)= (0, xa, 0, 0) be vec-
tor fields on M4 R4. We consider the control system "X(x) += ui(t) Y (x),
x(O) p O, [ui(t)l--< 1. Computation shows [ y2, ya](x) (0, 1, 0, 0); higher
order products of the yi vanish and dim L{ y2, Ya}(x) 2 for all x in a neighbor-
hood of p. Here yE(p), ya(p) are linearly dependent while yE(p), [ y2, ya](p) do
span L{y2, ya}(p), and X(p) L{y2, ya}(p). Thus (a- 1) and (a-2) hold. We
choose V2- y2, V3__ lyE, y3] and I/4= (0, 0, 0, 1)so X(p), VE(p) va(p), V4(p)
are linearly independent while [V4, V2] -0, [V4, V3] 0 and V, V, I/4 are
involutive. By inspection, W(p)= (1, O, O, 0).

Computation shows (ad X, V2)(x) ((- 1)x3, 0, 1, 0); (ad X, va)(x) 0;
(ad iX, V4)(x)= 0 for j_>-1; hence a(1, 0, 0,j) a(0, 1, 0,j)= a(0, 0, 1,j) 0 for
all j>_-0 or tpi(s)0 ’j_->0. The linear test fails to show whether or not
TX(t)p (t, O, O, O) belongs to the interior of 4(t, p, ) or (t, p, ) for t >0.

Next, for r 2, (ad 2 V4, X)(x) 0; (ad V3, (ad I/4, X))(x) 0;
(ad V2, (ad V4, X))(x) 0, (ad 2 V3, X)(x)= 0; (ad Va, (ad V3, X))(x) 0;
(ad 2 V2, X)(x) (- 2, 0, 0, 0). This shows a (0, 0, 2, 0) 0, a (0, 1, 1, 0) 0,
a(1, 0, 1, 0)- 0, a(0, 2, 0, 0)- 0, a(1, 1, 0, 0)= 0, a(2, 0, 0, 0)= -2 and r* 2,
j*=0 while tpr*.(s) --SE

a which is only semi-definite; hence Theorem 2.1, as
stated, does not apply. On the other hand, we may compute that p2(s) 0 if j _-> 1
while tpri(S)=--O if r_-->3, j-->0. Thus from (10), (Xf)(q(s,-,p))=l-s<-_l and
Proposition 2.2 shows TX(t)p O4(t, p, ) and TX(t)p O(t, p, t/’) for suffi-
ciently small > 0.

3. The case L(ff’) niipotent. We shall be very brief; the ideas involved go
back to Sophus Lie and an exposition can be found in [9]. We consider the
auxiliary system (3), with ui measurable, [ui(t)[<=l and again denoting the
attainable set of this system as (t, p), recall that g(t, p, ) TX(t)J(t, p). Thus
TX(t)p int. ,(t, p, ) if and only if p s int. 3(t, p).

The assumption L(51) nilpotent, and say of dimension k, implies this algebra
admits a base W1, , Wk such that if L{Wi+l, wk}, then we have the
ideal decomposition

(11) L(oql) (0 :D (1 " = k-1 (k {0},
where[i, ]c +1, 0<-i <=j <-k.

Furthermore ad wi’i- has a nilpotent matrix, M, as its representation
relative to this basis.

Returning to (3), each term (ad X, yi) is a linear combination (with real
coefficients) of the W1, ..., Wk. Using this we can rewrite (3) as

(12) fl(t)=fll(t; u)Wl(y)+ "+flk(t;u)Wk(y), y(0) =p.

Now let Fl(t;u)=tof11(-;u)dt where u is admissible and fixed; let
exp(Fl(t;u)Wl)(p) denote the solution of =fl(t;u)W(x), x(0)=p and
we find (as in obtaining (3) from (1)) that a solution of (12) admits the repre-
sentation y(t u) exp (Fl(t u)W1) v(t; u) where v satisfies fi(t)
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exp (-Fl(t;u) ad W1){/12(t, u)WZ(v)+ "+flk(t;u)Wk(v)} with v(0)=p. Let
M1 be the matrix representation of ad W1" 1 c1. Then, in components, we let

f22(t;U) f12(t;U)

f23(t;U)
--FI(I’u)M1--e

fzg(t;u)/ flk(t’,u)/
hence v satisfies 3(t) =f22(t ;u) WZ(v) +... +f2k (t ;U)Wk (v), v(O) p. Continu-
ing, inductively, with F2(t ;u) f22(’, u) dt, etc., the solution of (12) is responsi-
ble as

(13) y(t;u)=(expFl(t;u)W) "o(eXpFk(t;u)Wk)(p).
As we show next, the F/(t ;u) are computable and the representation (13) reduces
the original problem to a new problem, which may be solvable. A similar
representation to (13) can be obtained if L(a) is solvable;however, computation
of the exponentials is more difficult since the M need no longer be nilpotent.

Example 3.1. Let M= 3, X(x) (1 -x2, 0, 0), y2(x) Y(x) (0, 1, Xl),
p =0. Then [X, Y](x)= (-1, 0, x2-1), (adX, Y)(x)=Oifj>-_2,[Y,[X, Y]](x)
(0, 0, -2), while higher order products vanish. We see rank 5el(p) 2; hence the
linear test fails; dim L(Sc’l)(p) 3 showing int. 4(t, p, ) # /t > 0. If W Y,
WE IX, Y] and W3 -[Y, IX, Y]], then {W1, WE, W3} is an ordered basis for
L(ff’1) such that the ideal decomposition holds. Relative to this basis

ad W’ has matrix representation M 1 0

ad W has matrix representation M (0).

The equation (3), for example, is 3(t) u(t) Y(y)- tu(t)[X, Y](y), y(0) p or,
with the right side in terms of the W,
(14) fg(t)=f11(t;u)W1(y)-bf12(t;u)W2(y)-bf13(t, u)W3(y), y(0) =p,

where fl(t u) u(t), fiE(t u) tu(t), fla(t u) O. Let Fl(t u)
t0fl(-;u) dt =o u(z) dt; attempt a solution of (14) of the form y(t;u)
exp (Fl(t, u)W1) v(t ;u); compute

e-Fx(t;u)M1(f12(t U

\f13(t U tu(t) U(Z) d \f22(t u

2 3so v satisfies 3(t)=-tu(t)W (v)/(tu(t)o u(z)dz)W (v), v(0)=p. Continuing,
dr; Fa(t u) o zu(z)(o u(tr) dtr) dr, whde thewe find that FE(t u) -o ru(r)

solution of (14) can be written as

(15) y(t u) exp (Fl(t u) WX) exp (F2(t u) W2) exp (F3(t u) W3)(p).
Now W(p), W2(p) and W3(p) are linearly independent. Thus to check whether,
for any tx>0, the points y(ta; u) cover a neighborhood of p as u varies,
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equation (15) shows we should consider the map uF(tl, u)
(Fl(tl, u), F2(tl, u), F3(tl, U))3, If this map covers a neighborhood of 063,
{y (tl U) U admissible} covers a neighborhood of p. The "reduced controllability
problem" becomes

(16) /61(t) u(t), t02(0 -tu(t), /63(t)= tF(t)u(t)

with F(0) F2(0) F3(0) 0. (In general, for nilpotent L(51) of dimension k, we
will have a nonautonomous system of k equations, such as (16), with k n.) For
the particular system, above, we may calculate that for any t >0, F3(tl)

7"Fl(’r)[l(’r) dr tlF(ll)/2- (F(r)/2) dr. It is clear, therefore, that we
cannot have F(tl u) (0, a, a3) with a3 F3(tl u) > 0; hence the map u -F(tl ;u) does not cover a neighborhood of 0 3.

Example 3.2. Let the system be that of Example 3.1; we shall show TX(t)p
OM(t, p, ) for small > 0 by the methods of 2.

dim L{ Y2}(x)- 1 for all x in a neighborhood of p. Choose V= y2 and
Va(x)=( 1, 0,- 1-xa). Then X(p), VE(p), V3(p) are linearly independent;
assumptions (a-l), (a-2) are satisfied and our choice of V3 satisfies Proposition
2.1. Here W(p) (0, 1, 1). Computing (ad X, V2)(p) 1, 0, 1),
(ad X, vE)(p) 0 if ] -> 2, (ad ix, V3) 0 if ] _>- 1; hence rank
{(adX, V)(p):j>-_O,i= l, 2}=2 and a(1,0,j)=a(0,1,])=O V] so 0l(S)=
0 Vj and the "linear test" fails. Next, a (2, 0, 0) 2, a (1, 1, 0) 0, a (0, 2, 0)
0 so r* 2, ]* 0, 0..(s) -s/2 which is only semi-definite. Further computa-
tion, however, shows 02(s)=0 if ]->_1 and 0,(s)=0 if r_>-3. Thus
(Xf)(q(s, ’,p))= 1-s/2 and Proposition 2.2 shows TX(t)pOM(t,p,) for
small > 0.

Further results related to the decomposition technique of this section can be
found in papers of Brocket [11] and Krener [ 12].

4. Systems of the form (1) as semi-linearizations of nonlinear
systems. Many physical systems can be modeled by mathematical systems of the
form (1). Examples in which the reference solution is "singular" (i.e.,
rank 5l(TX(z)p)<n) include the problem of maximum height for a variable
thrust rocket through the atmosphere; maximum range of a reentry vehicle with
lift capability; minimum heating reentry trajectories and minimum fuel transfer
between coplanar, elliptic, orbits (the Lawden spiral). Our goal, here, will be to
show the use of system (1) as a semi-linearization of a nonlinear system.

Let Uc" have nonempty interior relative to Rm; 0 int. U, and for each
v U assume f(., v) is an analytic vector field on the analytic n-manifold M. We
consider the control system

(17) (t)=f(x(t), u(t)), x(0) =p,

where u is an admissible control implies u is Lebesgue measurable and u(t)
U Vt. Let u(t)=O generate the reference solution of (17), denoted p(. ); fx, fu
denote matrices of partial derivatives with respect to local coordinates, and (t, p)
denote the set of points attainable at time t by solutions initiating fromp at time 0.

It is classically known that if the linear (variational) equation

(18) =fx(q(t), O)y +fu(q(t), O)v(t), y(O) O,
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is controllable on [0, tl] for all tl > 0 (see [13, 19]), then go(t) int. (t, p)
0. In addition to (18), we introduce the "semi-linearized" system

Vt>

(19) =f(x, 0)+fu(X, O)v(t), x(0) =p,

where we require the values of v to be in an origin centered disc, D(r), of radius
r>0 in m. Geometrically, (19) "linearizes" the contingent cone F(x)=
{f(x, o-) TMx :o- e U}, where TMx denotes the tangent space to M at x, by
replacing it by G(x, r) {f(x, O) +[,(x, 0)tr tr D(r)}. System (19) has the form of
system (1); we denote its attainable set at time t by g(t, p, r). The reference
solution, r#, of (17) is also a solution of (19) obtained for v --0. Our goal is to be
able to obtain information about the attainable set (t, p) by studying (t, p, r)
via the theory developed in the previous sections.

THEOREM 4.1. Let ta > 0 be given and m n, so we have n 1 components of
control. Assume the vectorsf(p, 0), f,_(p, 0),. ., fu. (p, O) are linearly independent.
Then given any e > 0 there exists r > 0 such that l(ta, p, r) LJ I,l<,(tx -!-% p).

Proof. For notational ease, let f,, (x, 0)= yi (x), i= 2,..., n. The map o-
f(x, o-) defines (locally) a smooth (n- 1)-manifold with tangent space at f(x, O)
spanned b.rv y2(x), , Y"(x). For x in a sufficiently small neighborhood of p,
f(x, 0), Y’(x),..., Y"(x) are linearly independent; hence for small r >0 and
Iol<-_r, the line {air(x, 0)+Y.i=2 viyi(x)]’a sl} is transverse to F(x). By the
implicit function theorem, there exists a smooth scalar valued function, a(x, v),
such that a(x, v)[f(x, 0) +i--2 vi Yi (x)] s F(x); a(x, 0) 1, while if given 6 > 0 and
a fixed (compact) neighborhood of p, we may choose r > 0 such that ]a (x, v)- 11<
6 if ]vl-<r and x is in this neighborhood of p.

Now let be a solution of (19) corresponding to admissible v with Iv(t)] _<-r.
Then (t) /(t, p, r). Rescale time by letting " ro (t)
[o c(k(o-), v(o-)) do’] so r’(t) is near one implying the inverse function t(z) is
well-defined. Let (z) (t(z)). Then tp’(z) ’(t(z))t’(z)
[f(b(t(z)), 0)+.i=z vi(t(z))yi(t(’))]a((t(z), o(t(z)))F(rp(z)) showing t# is a
solution of (17), i.e., tp(zv(tl))s(zv(ta),p). Now given any e >0, by choosing
r >0 sufficiently small we can assure a remains near enough to one for all
admissible v with ]v(t)l-< r so that Ita ro (ta)l < e. This means #(tl) rp(zo (h)) s
U ivl<,r(tl + % p). !

For applications, the main use of Theorem 4.1 would seemingly be as follows.
Suppose q(., q), tp(0, q) q, is the (desired reference) solution, corresponding to
control u 0, of the n-dimensional nonlinear system

(20) -[(x, u),

where u(t) Uc"- and 0 int. U. Let F {tp(t, q) t->0} denote the orbit of t#
and (t, p) be the attainable set, at time t, of the system (20) with time reversed,
i.e.,

(21) =f(x,u), x(0) =p.

At time to > 0 we desire the system to be in the state p r# (to, q). For some small
e > 0 we may measure the state at time to-e obtaining a value/ which, due to
perturbations or inaccuracies in the model, is near but not equal to r#(- e, p); i.e.,
q(e,/) p. If/ (e, p) we would expect to be able to "correct the error" in the
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sense that there would be an admissible control u such that the corresponding
solution u(.,/3) of (21) satisfies u(0,/3)=/3 and ff"(e,/3) =p. Thus o(-e, p)
int. F(e, p) implies arbitrary small errors could be corrected in this manner.

Let (t, p, r) be the attainable set at time t, of the semi-linearized system (19)
associated with (21). Theorem 4.1 shows if we can establish that o(-e,p)
int. M(e, p, r), then if/3 is sufficiently near o(-e, p), there will be an admissible
control v such that the corresponding solution (.,/) of (20) satisfies (0,/3)
/3 and fly (e + y,/3) p where is small (but need not be zero). This means we can
return to the orbit of the reference solution tp. Proposition 1.4 provides a
computable sufficient condition to determine if 0(- e, p) int. M(e, p, r).

Example 4.1. For the nonlinear system (17), we consider

(22)

il 4+ x2 sin u= +sin (X3U3)

==X2+U2+3U+U3,

with x(O)=p=(O, 0,0). The associated semi-linearized system is ()’:=
X(x)+Yi= vi(t)Y(x), x(0)=p, where X(x)=f(x, 0)=(4, x=,0), Y=(x)=
f2(x, 0)= (x=, 1, 1), y3(x)=f3(x, 0)= (x3, 1, 0). Then X(p), Y=(p), y3(p) are
linearly independent and Theorem 4.1 applies.

We first consider the "linearized system (18)" associated with (22) and the
reference solution TX(t)p (4t, 0, 0). This has the form 3) Ay +By where

A= 1. B=
0

Clearly rank [B, AB, A=B] 2; hence the variational system is not controllable
and we cannot conclude, on this basis, that TX(t)p is in the interior of F(t, p), the
attainable set of (22).

We next consider the semi-linearized system (), as above. Computing, we
get [ I/"2, Y3](x) 0; hence dim L{ y2, y3}(qi 2 for all q in a neighborhood of p;
i.e., y2, y3 are involutive. Also (as expected from the lack of controllability of the
variational equation) (ad iX, Y2)(x) ((- 1)ix2, 1, 0); (ad iX, Y3)(x) (0, 1, 0) for
j --> 1 so rank l(p) 2 < 3. Thus, with Z(p) (1/4, 0, 0) so (Z(x), X(x)) =- 1,
(Z(x), yi(x))=-O, i= 2, 3, we have a(1, 0,]) a(0, 1,])=0 ]_->0 and qai(s)--
0. We next compute higher order terms, specifically, (ad 2 y2, X)(x)= (-2, 0, 0)
so a(2, 0, 0)= -1/2; (ad y3, (ad y2, X))(x)-- (-1, 0, 0) so a(1, 1, 0)= -1/4 while
(ad = y3X)(x) 0 and a(0, 2, 0) 0. Then r* 2, j* 0, (r*i*(S) (S2--SES3l2

which changes sign in every neighborhood of 0 2. Proposition 1.4 shows that
this is sufficient that TX(t)p int. g(t, p, ) /t >0, and this holds if [v(t)l-<r
with r>0. Thus Theorem 4.1 yields that for any e>0, h>0, TX(h)p
int. U il__<(tl + 3’, p).

Acknowledgment. I would like to express my thanks to professor H. J.
Sussmann for pointing out needed corrections and geometrical motivations for
several results in the first version of this manuscript.
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A MORE DIRECT SOLUTION OF THE NEARLY
SINGULAR LINEAR REGULATOR PROBLEM*

R. E. O’MALLEY, JR."

Abstract. The asymptotic solution to the linear state regulator problem with cheap control is
obtained for the situation where the limiting solution is a singular arc of first order and the initial
impulse is that of a delta function. The presentation simplifies previous studies and all.ows generaliza-
tion to further cases.

1. Introduction. Let us consider the linear regulator problem

(1) 2 =Ax +Bu, 0 -<_ t -< T< oo, x (0) prescribed,

with the scalar quadratic performance index

1 Ior 2u(2) J(e) =- (x’Ox + e ’Ru) dt

to be minimized for symmetric matrices O _>-0 and R > 0. When e > 0, we have a
classical control problem with a unique easily computed solution (Kalman [16]),
while we have a totally singular control problem when e 0 (cf. Jacobson [12],
Gabasov and Kirillova [7] and Bell [2]). Recently, singular perturbation methods
have enabled us to obtain the asymptotic solution of the nearly singular problem
when the small positive parameter e tends to zero (O’Malley and Jameson [31],
Jameson and O’Malley [15] and O’Malley [29], [30]). These asymptotic studies
not only allow us to investigate the impulsive nature of singular controls, but the
results are of independent interest in several important control contexts (cf., e.g.,
Friedland [6], Jacobson, Gershwin, and Lele [13], Jacobson and Speyer [14],
Kwakernaak and Sivan [19], Lions [21], Moylan and Anderson [24], Moylan [23],
Wonham [38] and Womble [37]).

Just as the singular arc problem has been treated by various methods, several
analogous techniques have been used for the nearly singular problem in the
frequent situation that B’OB > 0. Preliminary changes of variables were used in
O’Malley and Jameson [31] and O’Malley [291, while a singularly perturbed
Riccati equation was integrated in O’Malley [30]. Case 1, where B’OB > O, is the
first of a sequence of interesting cases featuring successively more impulsive
limiting controls and lower dimensional singular arcs. The cases correspond to
generalized Legendre-Clebsch conditions of increasing order in singular control
theory (cf. Goh [8-1 and Robbins [32]). This more direct approach in Case 1 allows
simpler generalization to further cases and simpler determination of the asympto-
tic solution. The complicated generalizations possible are evident in the singular
arc literature (cf., e.g., Moore [22]). A relatively straightforward generalization
will be reported as a sequel to O’Malley and Jameson [31].

* Received by the editors July 22, 1975.
5" Department of Mathematics, University of Arizona, Tucson, Arizona 85721. This work was

supported by the Office of Naval Research under Contract No. N00014-67A-0209-0022.
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For each e > 0, classical results (cf., e.g., Anderson and Moore [ 1]) imply that
the optimal control is given by

1 _lB,p(3) u R

where the costate vector p satisfies

(4) / -Qx-A’p, p(T) 0.

Eliminating the control from the state equation (1) results in the singularly
perturbed two-point boundary value problem

(5)
2

e x e2Ax-BR-1B’p, x (0) prescribed,

{ -Qx A ’p, p(T) O,

which, together with (3), is equivalent to the original control problem (1)-(2).
2ABecause e is nearly singular, this problem is beyond the scope of the most

familiar singular perturbation techniques for two-point problems (cf. Harris [10],
O’Malley [27], and Vasil’eva and Esipova [34]). We shall solve the problem by
projecting into appropriate subspaces, noting that the technique has potentially
wider applicability in other singular perturbation problems.

Having assumed that B’QB > 0 throughout 0 -< t =< T, we will find the asymp-
totic solution of (5) in the form

(6)
x(t, e)=X(t, e)+m(r, e)+en(tr, e),

p(t, e)=P(t, e)+er(z, e)+eZs(r, e),

where

(7) r=- and tr=(T-t)/e

and m and r 0 as z while n and s 0 as o- oo. (Although we shall find p, we
note that only B’p is needed in the solution of the control problem.) Within (0, T),
the solution will be asymptotically determined by the outer solution (X, P) since -and tr are asymptotically infinite there. Near t 0, the initial boundary layer
correction (m, er) becomes significant, while the terminal boundary layer correc-
tion (en, e2s) becomes important near t= T. The nonuniform endpoint con-
vergence as e 0 exhibited by the suggested representation (6) is, of course,
typical of singular perturbation phenomena and of the transient endpoint
behavior observed in singular arc problems. (The reader should note that previous
applications of singular perturbation techniques in optimal control theory are
surveyed by Kokotovi6, O’Malley, and Sannuti [18].) As usual, we shall separately
obtain the outer solution and the boundary layer corrections as asymptotic series
in e. Then we shall determine all unspecified boundary values for the separate
expansions and interpret the composite result asymptotically in its control con-
text.

We observe that computation of these asymptotic expansions will require
infinite differentiability of the coefficients A, B, Q and R in (1) and (2). Less
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differentiability would require termination with the appropriate asymptotic
approximations.

2. The outer solution. Since the solution (x, p) of (5) is asymptotic to (X, P)
within (0, T), it follows that the outer solution (X(t, e), P(t, e)) must satisfy the
linear system (5) there. We shall solve (5) by seeking a solution in the feedback
form

(8) P(t, K(t, e )X(t, e)

(cf., e.g., Anderson and Moore). It follows, then, thatthe gain K(t, e) must satisfy
the matrix Riccati equation

(9) e2(/ +KA +A’K+ O) KBR-B’K
for a symmetric matrix K _>-0, while X will satisfy the linear equation

2., 2A -B(10) e =(e -BR ’K)X.

We note that boundary values for K and X are not yet obvious, though the
representation (6) suggests that

(11) K(T, 0) 0

since P(T, 0) 0 and we cannot expect X(T, 0) 0. Our development of the outer
solution closely follows O’Malley [30]. It is included here because it is basic to the
remainder of this paper and further work.

We shall first seek an asymptotic (regular perturbation) solution

(12) K(t, e)--- K.(t)e
]=0

to (9) and (11). When e =0, (9) implies the familiar singular arc condition

(13) B’Ko= 0

(cf. Bryson and Ho [4]). This further implies that BR-1B’Ko is singular, so the
usual singular perturbation theory (cf. O’Malley [27]) does not immediately apply
to the initial value problem for (10) or the terminal value problem for (9). In
particular, setting e 0 in (9) fails to determine Ko unless B is nonsingular. (This
special (but important) circumstance will be considered highly unusual in the
presentation which follows.)

Postmultiplying (9) by B and, then, premultiplying by B’ implies the two
equations

e2[(KB)" + KBI +A’KB + OB] KBR-B’KB

and

eZ[B’(KB)’+B’KB1 +B’A’KB +B’OB] B’KBR-1B’KB,
where

Ba =AB-B.
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Lowest order terms in the second equation imply

(B’K1B)R -I(B,KIB B’OB > O.

Thus there is a unique solution

B’KB eB’K1B ev/R/2(B’QB)R 1/2> 0.

Knowing that B’KB is nonsingular allows us to solve the first equation for KB and
the second for (B’KB)-1. Thus,

(14) KB eE[KB1 / QB + (KB)" /A’KB](B’KB)-IR.
We can thereby find the K.B’s successively, e.g.,

K1B (KoBI + QB)(B’KIB)-IR.
Substituting back into (9) implies the regularly perturbed nonlinear equation

I+KA +A K+ Q =[KB1 + QB + KB +A KB

(15) [B’QB +B’(KB)’+B’KB1 +B’A’KB]-1

[B’IK+B’O+(B’K)’+B’KA].
Differential equations for each term of the expansion (12) now follow by equating
coefficients successively in (15). In particular, when e 0, we have the parameter-
free Riccati equation

Io+KoA /AK0+ O1 goSlKo,(16)

where

and

A1 =A -BI(B’QB)-IB’Q,
Q=Q-QB(B’QB)-IB’Q,

SI BI(B’QB)-IB1.
We note that startdard results (cf., e.g., Anderson and Moore) imply the existence
of a unique solution Ko--> 0 to (16) satisfying Ko(T)= 0 since

Q1 (I-B(B’QB)-IB’Q)’Q(I-B(B’QB)-IB’Q) >- 0

and $1 => 0 because B’OB > 0. Indeed, any solution of the terminal value pro.blem
for Ko automatically satisfies B’Ko 0 throughout 0 -< =< T since AB B and
OB 0. Knowing Ko, we note thatKB follows from (14). Higher order terms in
(15) imply that, for ]-> 1, K. will satisfy a linear equation of the form

(17) Ii. +Kj(AI-SIKo)+(Aa-S1Ko)’K =aj,

where aj is determined by the Ki’s with </’. Thus, the Fredholm alternative for
the linearized version of (16) implies the existence of a unique solution to the
terminal value problem for (17).

One might suspect that our solution K is overdetermined since the vector
B’K follows termwise from both (14) and (17). That this is not so is clarified by
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introducing the projection

(18) E I-B(B’K1B)-IB’K1.
We note that

(19) B’KIE O, EB 0 and E2= E.

Moreover, for dim x ->dim u, B and B’K have rank equal to dim u, so that the
rank of E is dim x -dim u (cf. Friedland [6] and Kwatny [20]). Since B’Ko 0, we
have

Ko Ko KoE E’Ko.
For higher order termsK in (12), KB follows from equating coefficients termwise
in (14). Then (18) implies that

Kj KjE +K’B(B’KIB)-IB’K1, j -> l

will be uniquely determined termwise through a linear terminal value problem of
the form

(KjE)" +KiE(A 1-- SKo) + (A SKo)’E’K. ,
(20)

K. T)E T) specified.

Thus the determination of K is not overspecified and it will be uniquely deter-
mined by the terminal value K(T, e)E(T). (That this Riccati equation can be
reduced from dim x to rank E is also shown by Kwatny.) Instead of using the
projection E, one might instead use a pseudoinverse of B. We merely note that
KB(B’KIB)-1 and OB(B’OB)-1 are both generalized right inverses of B. We
recall that (B’KIB)-IB’K (B’OB)-(B’O+B’IKo) is the generalized inverse
used by Friedland.

To complete the outer solution, we must still solve the singularly perturbed
linear state equation

(21) eR= eAX-1BR-aB’KX.
Again standard techniques do not apply because BR-aB’Ka is generally singular.
We shall proceed by separately calculating B’KIX and EX termwise, thereby
obtaining

X B(B’KB)-B’KX+EX.
Multiplying (21) by B’K and rearranging, we have

(22) B’K1X= e R(B’KB)-’B’K(AX-2)---7(K-eKO

Likewise, multiplying (21) by E and using EB 0 implies

(23) (EX)" (/ +EA)[EX+B(B’KaB)-IB’KX].
Let us now take

(24) X(t,e) Y X.(t)ej.
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Setting e 0 in (22) then implies the singular arc condition

(25) B’KIXo O

(cf. Moylan and Moore [25]). Likewise setting e 0 in (23) implies that EXo will
follow from

(26) (EXo) ( +EA)(EXo)

once the initial value E(0)X0(0) is specified. (This confirms Ho’s [11] observation
that the singular arc behavior in (0, T) is determined by a dynamical system of
order dim x -dim u when B’QB > 0.) Higher order coefficients in (22) and (23)
show that B’KIX is determined successively and that EX satisfies a
nonhomogeneous version of the linear equation of (26). Thus, the X are all
determined in terms of K and the unspecified initial value E(O)X(O, e).

Since the limiting state X0 within (0, T) satisfies the restriction B’KXo O,
the singular arc is restricted to a lower dimensional trajectory. Such lowering of
dimensionality is, of course, the characteristic feature of singular perturbation
problems. Generally, the constructed outer solution cannot be uniformly valid
throughout 0 =< =< T because it will not satisfy the boundary conditions of (5). At
t 0, the condition B’(O)KI(O)Xo(O) 0 may be incompatible with the prescribed
initial value x (0). Thus, an initial boundary layer correction is needed to drive the
limiting state into the null space of B’K1. Higher order terms in the expansion
X(O,e) may likewise be nonzero. At the terminal time, B’(T)P(T,e)=
B’(T)K(T, e)X(T, e)’-e2B’(T)[KI(T)XI(T) + K2(T)Xo(T)] will generally be
nonzero and thereby inconsistent with the terminal condition p(T, 0) 0. Thus, a
terminal boundary layer correction is also needed.

We note that the nonuniform convergence at terminal time is not directly
influenced by selection of the terminal value for KE. Thus, we might anticipate
our later result that K(T, e)E(T) 0 in the belief that the asymptotic solution will
be as simple as possible.

3. The initial boundary layer correction. The linearity of the equations (5)
and the representation (6) imply that the initial boundary layer correction (m, er)
must satisfy the linear system

(27)

dm eArn-BR-1B’r
dr

dr
-Qm eA’r

dr

and tend to zero as the stretched variable - tends to infinity. Setting

(28) r(’, e)=lK(er, e)m(r, e)

will satisfy the differential equation for r since

dr =--dK K( 1 Kt m -Qm A’Km
d" dt

m+ eA BR-B
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follows from the differential equation (9) for K. (The unmotivated Ansatz (28) is
not as arbitrary as it may seem. It would result naturally if a Riccati solution of the
full system (5) were attempted as in O’Malley [30]. Wilde and Kokotovi6 [36] use
the analogous procedure for another singularly perturbed regulator problem,
observing that Ko(0) satisfies an algebraic Riccati equation so that the limiting
boundary layer problem can be interpreted as an "initial layer regulator" on the
semi-infinite interval.) Using (28), there remains the differential equation

(29) din= eArn-1BR-1B’Km.
dr e

We now write

m E(O)m +B(O)(B’(O)K,(O)B(O))-IB’(O)K(O)m,
and proceed to find E(O)m and B’(O)KI(O)m. Multiplying (29) by E(0) and using
E(0)B (0) 0, we obtain

d
(E(O)m)= eE(O)[A--1-2(B-B(O))R-B’K]m.(30) d-- e

(The right side is O(e) since B’K=O(e).) Likewise, multiplying (29) by
B’(0)K(0) and rearranging, we obtain

d
(B’(O)K,(O)m) + (B’(O)K(O)B(0))R-(0)B’(0)K(0)m

dr
(31)

eB’(O)K(O)[A --BR-IB’K eB(O)R-I(O)B’(O)K(O))]m
where the right side is again O(e). Together, (30) and (31)will allow the termwise
determination of the decaying vector re(r, e),up to selection of the initial value
B’(O)Kx(O)m(O, e). Thus, we set

(32) re(r, e)’--" mj(r)e
j=0

and proceed.
Setting e 0 implies that

E(0)m0(r)) 0

and

-d-d (B’(O)Kl(O)mo(z)) +B’(O)K(O)B(O)R -1(O)B’(O)KI(O)mo(’r) O.
dr

Since mo- 0 as r oo, we must have

E(O)mo(r)=O
(33) and

B’(O)gl(O)mo(r) R 1/(0) e-C)R-1/2(O)B’(O)Kl(O)mo(O),
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where

Co(O) R-/2(O)B’(O)K(O)B(O)R-1/2(O) > O.

We note that the initial values for Xo and mo are now determined since the
representation (6) implies that

x(O) Xo(O) + mo(O).

Since E(0)mo(0) 0, however,

(34) E(0)X0(0) E(0)x (0)

and this completely determines X0 EXo(cf. (26)). Further,

B’(O)Kl(O)mo(O) B’(O)K(O)(x(O)-Xo(O)) B’(O)KI(O)x(O)

by (25). Thus,

moO’) B(O)(B’(O)KI(O)B(O))-IR 1/2(0) e-c()

(35)
R-1/2(O)B’(O)KI(O)x(O)

is completely specified. We note that this initial state transfer occurs in the range
of B(0). Moreover, since K0(0)B(0)= 0, (28) implies that

r(z, O)= g(O)mo(z)

is also determined and r O(1) in spite of its representation (28).
Higher order coefficients mj in the expansion (32) follow in succession. Thus,

further terms in (30) imply that

(36) E(O)mj(r) (s) ds,

where/ is known in terms of the rat’s with <] as an exponentially decaying
vector. This also determines X since we now have the previously unspecified
initial value

(37) E(0)Xj (0) -E(0)m(0).

Integrating (31), we find

B’(O)K1(0)m (z) -R 1/2(0)[ e -c()’B’(0)K1(O)Xj (0)(38)
+ e-C()(’-s’rj(s) ds

where B’(0)KI(0)X.(0) and 3, (z) are already known. From (36) and (38), then, we
have the exponentially decaying vector

mj(,r’) E(O)mj +B(O)(B’(O)KI(O)B(O))-IB’(O)KI(O)mj.
Thus, the initial boundary layer correction has been constructed.

4. The terminal boundary layer correction. Linearity implies that the
terminal boundary layer correction (en(o’, e), e2s(o", e)) must satisfy the linear
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system

(39)

dn
-eAn +BR-1B S

Qn-eA’s
do"

and tend to zero as o" - oo. This boundary layer correction should be determined in
an analogous manner to the initial boundary layer correction. (This would be
completely obvious had we considered the fixed endpoint problem.) As for (28),
let us seek a solution to (39) in the form

(40) s (o", e) 1L(T- eo", e)n (o", e),
E

where

(41)

Then, there remains

E2( "-LA +A’L + O) LBR-1B’L.

1 _IBdn
-eAn +-BR ’Ln.(42)

do" e

We recall that K is a symmetric, positive semidefinite solution of (41)
satisfying K(T, e) 0. Taking L K will not, however, allow a nontrivial decay-
ing solution to (42), as is generally needed. We instead select a symmetric negative
semidefinite solution

(43) L(t, e)-- Y L](t)e
]=0

of (41). It can be found termwise in a manner similar to K, with the terminal value
L(T, e)E(T) yet to be determined. We note, in particular, that

Lo(T) 0, B’Lo 0, B’LIB -B’KB
and (14) and (15) hold for L as well as K. (One could alternatively specify -L as
the positive semidefinite solution of the appropriate Riccati equation (cf. Wilde
and Kokotovi6 [36]).

Continuing, we multiply (42) by E(T) to get

(44) d
do"
(E(T)n)= e[-E(T)An + I-E(T)(B-B(T))R-1B’Ln]

since E(T)B(T)= 0. Upon setting e 0 and integrating, we have

(45)

Likewise, for ] => 1,

(46)

E(T)no(o") O.

E(T)n](o") 6](s) ds
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for successively known, exponentially decaying Sj’s. Since

nj E T)n +B T)(B’(T)K T)B T))-B’(T)K T)n,
we must also find B’(T)KI(T)n.i successively. Multiplying (42) by B’(T)K(T),
however, yields

[B’(T)K(T)n]+B’(T)K T)B T)R- T)[B’(T)K, T)n
d
dtr

(47)

eB’(T)KI(T)[-A +I-(BR-’B’L + eB(T)R-’(T)B’(T)K,(T))]n,
where B’L -eB’(T)KI(T)+ O(e 2). Integrating when e 0 implies the decaying
solution

(48) B’(T)KI T)no(o) R /2(T) e-cr)"R-I/2(T)B’(T)K T)no(O),

where

Co(T) R-/2(T)B’(T)KI(T)B(T)R -,/2(T) > O.

From higher order terms, we obtain

B’(T)KI(T)nj(tr) R /2(T)[e-CT)’R-1/2(T)B’(T)KI(T)nj(O)(49)
+ e-C(r)(’-).(s) ds

where . is known successively. Thus, B’(T)Ki(T)n(O, e) is still unspecified, but
the terminal boundary layer correction is otherwise completely determined and
exponentially decaying.

We observe that this solution for the terminal boundary layer is much simpler
than that of O’Malley [30] which first obtained a boundary layer correction for a
Riccati gain for the full system (5) and used it to obtain terminal boundary layer
corrections for the optimal state and control vectors.

5. The remaining boundary values. Thus far we have determined the asymp-
totic solution to (1)-(2) up to specifying the boundary values

K(T, e)E(T), L(T, e)E(T), and B’(T)KI(T)n(O, e).

We shall now obtain all these values by imposing the terminal condition p(T, e)
0. Asymptotically

(50)
p(T, e)-’-P(T, e)+e2s(O, e)

=K(T, e)X(T, e)+eL(T, e)n(O, e).

Setting

K(T, e)= K(T, e)E(T)+K(T, e)B(T)(B’(T)Kx(T)B(T))-B’(T)Kx(T),
X(T, e)= E(T)X(T, e +B T)(B’(T)Kx T)B T))-IB’(T)KI T)X(T, e),

and doing likewise for L(T, e) and n (0, e), (50) and the orthogonality properties
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Of E (cf. (19)) imply that

O K(T, e)E(T)X(T, e

+K(T, e )n(T)(B’(T)K,(T)B(T))-’n’(T)K,(T)X(T,
(51)

+ eL(T, e)E2(T)n(O, e)

+eL(T, e)B(T)(’(T)K(T)n(T))-’n’(T)K(T)n(O, ).

Multiplying by E’(T) and proceeding termwise, our knowledge of E(T)X(T, e)
and E(T)n(O, e) imply that we must have

(52) K(T, e)E(T) 0= L(T, e)E(T).

Multiplying (51) by B’(T) then implies that

B’(T)K(T)n(O, e)= -I(B’(T)K(T)B(T))(B’(T)L(T, e)B(T))-(53)
(B’(T)K(T, e)B(T))(B’(T)K(T)B(T))-B’(T)K(T)X(T, e).

Thus, all the needed boundary values are known terrnwise.

6. Conclusion. We have uniquely completely determined the uniform
asymptotic expansions

x(t, e)=X(t, e)+mO’, e)+en(r, e),

p(t, e)= P(t, e)+erO’, e)+ e2s(r, e)

for the state and costate vectors. The control law (3), then, implies that the optimal
control has the expansion

(54) u(t, e) U(t, e)+ 1-- v(r,)+w(,),
E

where

and

U(t, e)= --R-(t)B’(t)P(t, e)= --lR-’(t)B’(t)K(t, e)X(t, e),

v(r, e)= R-l(e’)B’(er)rO", e),

w(r, e)= R-(T- ecr)B’(T- ecr)s(cr, e).

Substituting the expansions for x and u into the performance index (2) implies
that the optimal cost J*(e) will have a power series expansion in e with leading
term determined by the limiting outer solution. Alternatively, usual Riccati gain
considerations (cf. O’Malley [30]) imply that the optimal cost is given by

1 1
(55) J*(e)=-gx’(O)K(O,z )X(0)"’ Y’. (x’(O)KI(O)x(O))8

/=0

since K has the expansion (12). Thus, we have the following
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THEOREM. Consider the state regulator problem

Ax +Bu, x (0) prescribed,

where

1 I.7" 2J(e)= (x’Qx +e u’Ru) dt

is to be minimized.for B’QB > O. For each sufficiently small e > 0 and each integer
N >- 1, the optimal control, corresponding trajectory, and optimal cost are uniquely
determined and satisfy

N

u(t, e) =v(r) + Y, (U.(t)+Vj+l(r)+ wj(tr))e +O(eN+l),
e j=o

x()=Xo()+o()+ (.()+()+())+0(+’)
j=

and
N1 (xt(O)gl(O)x(O))F_,l ..{..o(EN+I)J(E) /=o

uniformly throughout 0<= <= 1. Here, the terms which are functions of r tie (or
tr=(T-t)/e) decay to zero as rm (ortro).

Although the usual singular perturbation theorems don’t apply to the preced-
ing formal expansion technique, they do apply to the transformation approach of
O’Malley and Jameson [31] and O’Malley [29] and to the Riccati method of
O’Malley [30]. Those valid (unique) solutions coincide with our results here, and
thereby justify them as well as.the expansions of Friedland for a corresponding
stochastic problem. We note that our previous transformation

Ul u(s) ds, xl x-BUl

relates to our current use of the projection E and is of independent interest in
control.

7. Final comments. (a) The optimal control obtained will be unbounded at
0 as e 0, but bounded for each fixed > 0. This impulsive behavior comes

from the term (1/e)v0(’) which is a multiple of the matrix

C0(0) -CoO,/e
e

and behaves like a matrix delta function (peaked at 0) in the limit e 0/.
(b) For 0 < < T, we have the limiting control

Uo -R-1B’(KIX1 + K2X0).

Then (22), (26), and the relations (B’K1)/ + (B’KI)’E 0 and X0 EXo imply
the limiting feedback control law

(56) Uo -(B’KIB)-I(B’KIA +(B’K1)’)Xo.
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We note that this result also follows from the limiting outer problem

Pi[o AXo+BUo, B K Xo 0

(see also Moylan and Moore).
(c) We note that the optimal cost is determined by the Riccati gain K(t, e) of

the outer solution, but it is not equal to the cost

(0, e)K(O, e)X(O, e)

of the outer solution. The two costs have the same limit 1/2x’(O)Ko(O)x(O) as e 0
since

X’o(O)Ko(O)Xo(O) Xo(O)(E’(O)Ko(O)E(O))Xo(O)

(E(O)Xo(O))’Ko(O)(E(O)Xo(O))= x’(O)Ko(O)x(O)

by (34). Thus, the cost of the boundary layer corrections tends to zero with e in
spite of the unbounded initial impulse as e 0.

(d) In the special controllable and observable situation when B and O are
invertible (as for a scalar control), the outer solution (U, X), the terminal
correction (w, n), the projection E, and the limiting cost J*(0) will all be
negligible. The initial boundary layer correction then allows transfer from the
given state x(0) to zero in the null space of B’K1. It acts asymptotically like an
infinite interval regulator (on -_>-0) with cost 1/2x’(O)K(O, e)x(O)= O(e).

(e) The semi-infinite interval problem with time invariant coefficients can be
solved in obvious fashion under appropriate stabilizability-detectability hypoth-
eses (cf. Jameson and O’Malley). The formal calculation of the initial boundary
layer correction and the outer solution follow as in the finite interval case (except
that the Riccati differential equation is replaced by an algebraic Riccati equation),
while the outer solution decays to zero as t oo and the terminal boundary layer
correction disappears.

(f) Several generalizations of this work should be pursued. Among them are:
(i) Asymptotic solutions when B’QB > 0 is not satisfied. If B’QB is zero at

isolated points of the interval, our solution technique breaks down and we
encounter a turning point problem (cf. O’Malley [27]). If B’QB is singular, but not
zero, certain transformation techniques can be applied (of. Moylan and Moore
[25] and Hutton [39]). Problems where B’QB =0 and B’xQBI >0 (and further
cases) have been solved by Jameson and O’Malley and will be published
elsewhere.

(ii) Related problems with bounded controls have been considered
elsewhere (cf. Jacobson, Gershwin and Lele [13], Collins [5], Kokotovi6 and
Haddad 17] and Binding [3]). We mention only one example (cf. O’Malley [26]).
The scalar problem

1
i=u,

1 Io’ 2) at, lul k,
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has the limiting solution

1
Xo - kt,

1
U0=-k for0_-<t<

2k

1
X0= U0=0, <t_-<l.

2k

It is interesting to consider the limiting solution as k-. It converges to the
optimal solution of the unconstrained problem u =-1/28(0).

(iii) Previous singular perturbation results (cf. Kokotovi6, O’Malley and
Sannuti) could be combined with the preceding to provide the asymptotic solution
to problems of the form

AllX +A12z +Blu, x(0) given,

l2 Azlx +A22z +B2u, z(0) given,

with performance index

J(e) 1 0r [(X)’z.o(X)z +u’RuJdt,
where R diag (R 1, e2R2, t2R3) and/x, e and 6 simultaneously tend to zero in
appropriately related ratios. Here difficulties implementing an open loop control
would be encountered if A22 had eigenvalues with positive real parts. As Wilde
and Kokotovi6 [36] explained in an analogous situation, a partially-closed loop
stabilizing control would then be preferable. No such problem occurs for the
original problem (1)-(2), since small parameters don’t multiply derivatives in the
state equation (1).

(iv) Nonlinear generalizations could be considered, as was done in other
control contexts by Hadlock [9], O’Malley [28], and Sannuti [33].
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THE MAXIMUM PRINCIPLE UNDER MINIMAL HYPOTHESES*

FRANK H. CLARKE’

Abstract. We consider the optimal control system

(t)=f(t,x(t), u(t)), u(t) U(t) a.e.

with given initial and terminal constraints and a cost functional. We derive necessary conditions for
optimality in a form similar to Pontryagin’s maximum principle under hypotheses which are in a certain
sense minimal in order that the problem be meaningful. In particular we do not assume f(t, s, u)
continuous in u or differentiable in s, nor do we require U(t) or f(t, s, U(t)) to be bounded or closed.
These necessary conditions, which are expressed in terms of certain "generalized Jacobians," reduce
to the usual ones when classical hypotheses are imposed.

1. Introduction. In considering a control problem governed by the equation

(1) c(t)=f(t, x(t), u(t)) a.e., u(t)6 U(t) a.e.,

we may ask for the minimal hypotheses on f so that the problem "makes sense."
The measurable control function u having been chosen, the possible solutions x to
the differential equation (1) are considered. Consequently, to begin with, we
would want to be sure that the function -f(t, s, u(t)) is Lebesgue measurable for
each s. Next, to avoid ambiguity, we would like to be sure that at most one solution
x exists for a given initial condition. The purpose of this paper is to obtain
necessary conditions for an optimal control under essentially the hypotheses that
assure these properties. This amounts to a weak measurability hypothesis on
f(t, s, u) with respect to (t, u) and a Lipschitz condition in s. In particular we
assume neither the continuity off in u, nor the closedness or boundedness of U(t).
The results are in the form of Pontryagin’s maximum principle, but do not require
the existence of derivatives.

As one might expect from the above, the paper employs methods quite
different from any previous work on the subject. We use a theorem of I. Ekeland
[6] to obtain slightly perturbed problems that admit solutions, these perturbations
involving discontinuous cost functionals. We then show that certain of the
author’s previous results [4] apply to these nonstandard problems, and make use
of a limiting process.

The plan of the paper is as follows: 2 presents and discusses the results, 3
consists of preliminary lemmas, while the proofs of the main results appear in 4.

2. Main results. We shall be dealingwith a function f: [0, 1] R x R -Rand a multifunction U: [0, 1]R (i.e., U(t) is a subset of R for each t in [0, 1]).
The choice of the time interval [0, 1] is a normalization for notational conveni-
ence; "a.e." will mean "for almost all in [0, 1]" (Lebesgue measure).
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A Lebesgue measurable function u: [0, 1]R satisfying u(t) U(t) a.e.
will be called a control. Let X be a given closed subset of R n. An admissible
trajectory x corresponding to a control u is an absolutely continuous function x"

[0, liar satisfying (1) and also x(t)X for all t. We do not assume that every
control yields an admissible trajectory, or indeed any trajectory at all. We call x
interior if in addition x(t) belongs to the interior of X for each t.

We let L be the collection of Lebesgue measurable subsets of [0, 1] and Bk

the Borel subsets of R k. We denote by xBk the tr-algebra of subsets of
[0, 1] x R k generated by products of sets in L and Bk. The usual Euclidean norm is
denoted Is I, where s belongs to some R k.

The following are the hypotheses that will be made:

For each s in a neighborhood of X, the function
(t, u) f(t, s, u is L x B"-measurable.

(H) There is a function k in L1(0, 1) such that for in [0, 1],
u in U(t), and s, s2 in a neighborhood of X,

If(t, sa, u)-f(t, s, u)l <= k(t)lsl- sz[.

(H3) The graph of U (i.e., the set {(t, u) 6 [0, 1] R" u U(t)})
is L Bin-measurable.

Remark 1. (Ha) is the least measurability hypothesis assuring that t
f(t, s, u(t)) is L-measurable for every L-measurable u(t), and is satisfied if f is
L-measurable in and continuous in u [8, Prop. 3]. (Ha) is also satisfied if every
coordinate function fi of is (upper or lower) semicontinuous in (t, u).

If U is closed-valued, (H3) is equivalent (see Proposition 1, 3) to the
following: For every closed set S, the set {t: U(t) f) S b} is L-measurable. (H3) is
satisfied in particular if U(t) is for every a given Borel set U0.

DEFINITION 1. Let g:R ->R k be locally Lipschitz. We define the
generalized Jacobian Og(s) of g at s as follows:

Og(s) co{lim Dg(si)},

where we consider all sequences {si} converging to s such that the usual Jacobian
matrix Dg(si) exists, as well as the limit of the sequence {Dg(s)} (co denotes
convex hull).

When k 1, we obtain the "generalized gradient" as defined in [1]; it follows
as in that case that Definition 1 yields a nonempty convex compact set of k n
matrices. Note that if g is C1, Og(s) {Dg(s)} (or more generally if g is "strongly
differentiable" at s). We also defined in [1] an extension of the generalized
gradient to functions g:R" (-az, ] that are lower semicontinuous; this con-
cept enters into Corollary 1 below. Finally we mention the concept of the normal
cone N(s) to an arbitrary closed set C at s in C, also defined in [1]. We limit
ourselves here to recalling that Nc(s) reduces to the usual normal space if C is a C
manifold, and to the normal cone in the sense of convex analysis if C is a convex
set. The statement that a vector " is normal to C at s means, of course, that sr

belongs to Nc(s).
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For a given closed set C in R n, we define A(C), the attainable set starting
from C, as the collection of all points x(1) where x is an admissible trajectory such
that x(0) C. The basic result is the following:

THEOREM 1. We posit (Ha)-(H3). If the control generates an interior
admissible trajectory z with z(O) in Csuch that z(1) lies on the boundary ofA(C),
then there exists a nonvanishing absolutely continuous functton p [0, 1] -R such
that:

(3)

(4)

-lk(t) p(t)Osf(t, z(t), v(t)) a.e.,

p(t) f(t, z(t), v(t))= sup{p(t), f(t, z(t), u)" u U(t)} a.e.,

p(O) is normal to C at z(O).

(The notation 0f refers of course to the generalized Jacobian of the function
s -f(t, s, v(t)), and pOf is matrix multiplication.)

Remark 2. The hypothesis that z is an interior trajectory serves to eliminate
state constraints, which are not considered here.

We may use Theorem 1 (and a variant, Theorem 1’ in 4) to derive necessary
conditions for optimality. We shall prove

COROLLARY 1. We posit (H1)-(H3), and we suppose given a lower semicon-
tinuous function l" R"x R -->(-, ]. If the interior admissible trajectory z
corresponding to the control , minimizes (x (0), x (1)) over all admissible trajectories
x, then there exist an absolutely continuous function p" [0, 1]- R" and a number A
equal to 0 or 1 such that Ip(t)l / IAlis nonvanishing, p satisfies (2) and (3), and

(5) (p(0), -p(1), A) is normal to epi latthepoint (z(0), z(1), l(z(O), z(1))).

Remark 3. epi is the set {(So, Sl, r) R" R" R" l(so, Sl) _-< r}. Relation (5)
is a "transversality condition" of a very general nature. If A 1 (the conditions
are then said to be "normal") (5) is equivalent to (p(0), -p(1)) 60l(z(O), z (1)), the
generalized gradient of I. Note that constaints such as x(1) C1 are implicitly
accounted for by letting be + when x(1) C1. Corollary 1, for example,
implies the following:

COROLLARY 2. Let the control t, and corresponding interior admissible trajec-
tory z minimize

o
f(t, x(t), u(t)) dt

over the admissible trajectories x and corresponding control u such that x(O) Co,
x(1) Ca and the integral above is defined, where Co and C1 are closed, ff (H1)-(H3)
are satisfied for ] replaced by = (fo, f), then there exist an absolutely continuous
]:unction p’[0, 1]-->R" and a number A equal to 0 or -1 such that Ip(t)l+lAI is
nonvanishing,

(6) -(t)p(t)Of(t, z(t), ,(t))+AOsf(t, z(t), ,(t)) a.e.,

p(t) f(t, z(t), u(t)) + A]’(t, z(t), u(t))
(7)

sup{p(t) f(t, z(t), u) + A)c(t, z(t), u)" u U(t)} a.e.,
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(8)
p(0) is normal to Co at z(0),

-p(1) is normal to C at z(1).

Remark 4. As will be shown in the proof, the set X may be allowed to
depend on t, as long as for some positive e, the e-neighborhood of z(t) is contained
in X(t) for each t. (H2) may also be weakened as follows: If U(t) is the set

{u U(t) iu v(t)[ <=j, If(t, z(t), u)-f(t, z(t), v(t))l <=j}

j 1, 2,’’., then there exists for each j some k in L(0, 1) such that (H2) is
satisfied for u in U.(t).

One may show by counterexample that (H3) cannot be dispensed with; a
counterexample exists with f(t, s, u) u.

None of the well-known general theories of necessary conditions seem
capable of treating the optimal control problem in the above generality. However,
J. Warga [9]-[11] has recently derived necessary conditions without differentia-
bility, stated in terms of "derivative containers" conceptually related to the
generalized Jacobian. He requiresf to be continuous in u and U compact-valued,
but treats state constraints.

3. Preliminary iemms. Let K be a multifunction from a measure space T to
R (t will for the moment denote a point of T). We sayK is measurable if for every
closed set C the following set is measurable in T:

{t T K(t) fq C# QS}.

We shall say K is G-measurable if its graph (see (H3)) is measurable in TR
with respect to the product or-algebra of Twith the Borel sets in R n. The following
is an extension by Rockafellar [7, Thm. 2] of a result of Debreu.

PROPOSITION 1. If K is closed-valued and measurable, then K is G-
measurable. If K is G-measurable and T is complete and r-finite, then K is
measurable.

We now show that we may.(and henceforth do) suppose that for u U(t),
f(t, s, u)= 0 (say). The function [ so redefined continues to satisfy (Ha): if 0 V,
for a closed set V, then

s, )(v)= s, )(v),
while if 0 belongs to V we have

f-(., s,. )(V)= {f-( s,. )( V) graph(U)} U {graph( U)},
and this lies in L B" by (H). Consequently neither the hypotheses nor the
conclusions of the theorem are affected.

LEMMA 1. Letf satisfy (H) and (H2), and let Xo(t) be a continuous function
taking values in X. Then the mapping (t, u) f(t, Xo(t), u) is L x B’-measurable.

Proof. It is easy to verify the above when Xo is a step function. Now let

x0 lim xi where each xi is a step function and the limit is uniform. Then for any
closed set V in R ", letting V. be the closed 1/ neighborhood of V, we have

hl(v) n o hT’(V.),
i>=j
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where hi is the map (t, u)f(t, xi(t), u), =0, 1,-... This completes the proof.
(Note that the result is generally false if x0 is merely L-measurable, because
L B is not complete.) Q.E.D.

LEMMA 2. Under (H3) and the hypotheses of Lemma 1, the multi]unction
t cl ]’(t, Xo(t), U(t)) is measurable.

Proof. By [7, Cor. 1.2] it suffices to prove that the multifunction K’t-
f(t, Xo(t), U(t)) is measurable. Consider the sets $1 and $2 defined by

Sa {(t, u, f(t, Xo(t), u))’t [0, 1], u 6 R’},

S2 {(t, u, s) [0, 1], u U(t), s R"}.

$1 is L x B" B"-measurable by Lemma 1 and Proposition 1, while Sz is
L B B"-measurable by (H3). It follows that the following set is L x B"+"-
measurable"

S ("] S2 {(t, u, f(t, Xo(t), u))’t [0, 1], u 6 U(t)}.

Invoking Proposition 1 once again, we derive the measurability of t-
{(u, f(t, Xo(t), u))’u U(t)}. But K, as the projection on R" of this multifunction,
is then measurable (this is easily seen directly from the definition of
measurability). Q.E.D.

Suppose now the theorem to be true under the following added hypothesis:

(H4) f(t, z(t), U(t))isboundedbya(t),forsomea inLa(0, 1).

For every positive integer j let us define

U.(t) {u U(t) lf(t, z(t), u)-f(t, z(t), u(t)) <-]}.
The graph of U/is seen to be the intersection of graph (U) with the set

S {(t, u) [0, 1] Rm:lf(t, z(t), u)-f(t, z(t), u (t)) -<- ]}.
Since (t, u)-. If(t, z(t), u)-f(t, z(t), u(t))l is L B -measurable by Lemma 1, S is
L Bin-measurable and it follows that graph(U.) is L B -measurable. We now
note that all the hypotheses of the theorem remain in force if U. replaces U, and of
course U- satisfies (Ha). We could then apply the theorem to deduce the existence
of an absolutely continuous pj satisfying (2)-(4). We may suppose Ip (0)l 1. It
follows from [1, Prop. 1.11] that Os(p" D=pof, and this fact combined with
[1, 1.4] and [7, Thm. 3] can be used to show that the multifunction t
Off(t, z(t), u(t)) is measurable. We have Off(t, z(t), u(t)) bounded by k(t), by (H2).
These facts enable us to apply [4, Lemma 8] to conclude that a subsequence of {pj}
converges uniformly to an absolutely continuous p satisfying (2). It follows that p
is nonvanishing, satisfies (4), and satisfies (3) for U. We have just proved"

PROPOSITION 2. Without loss of generality we may posit (H4).
Suppose now the theorem proved under the following added hypothesis:

(Hs) U(t) is bounded for each t.

We now define U/as follows"

U.(t) {u U(t) ]u u(t)l _-<j}.



THE MAXIMUM PRINCIPLE 1083

Once again the graph of U is L xB -measurable, and the same argument as
above yields:

PROPOSITION 3. Without loss of generality we may posit (H5).
The two preceding results explain the assertion in Remark 4. The following

lemma makes use of some recent work of Dauer and Van Vleck [5].
LEMMA 3. Let v(t) be L-measurable, and suppose

v(t) cl f(t, Xo(t), U(t)) a.e.

Then, under the hypotheses ofLemma 2 and under (Hs), for any positive 6 them is a
control Uo such that

Iv(t)-f(t, Xo(t), Uo(t))] <-_ 6 a.e.

Proof. Let F(t)= {(u, f(t, Xo(t), u)):u U(t)}. We showed in Lemma 2 that
$17) $2, the graph of F, is L x B’/"-measurable. Hence F is measurable (Proposi-
tion 1) and consequently so is cl F (by [7, Cor. 1.2]). By Proposition 1, cl F is
G-measurable. Now let

K(t) {(u, v(/)) u R", (u, v(t)) cl F(/)}.

Then K is closed-valued and nonempty (because U is bounded). Since graph(K) is
the intersection of graph(clF) and the set {(t, u, v(t)):t[O, 1], u R’}, we
deduce that K is G-measurable and hence measurable. By [7, Cor. 1.1] K has a
measurable selector (u(t), v(t)). Thus

(u(t), v(t)) cl F(t) a.e.

We now apply [5, Thm. 2] to deduce the existence of a measurable selector
(Uo(t), f(t, Xo(t), Uo(t))) for F such that

I(Uo(t)-u(t), f(t, Xo(t), Uo(t))-v(t))l<-6 a.e. Q.E.D.

LEMMA 4. Let the interior admissible trajectory z minimize g(x) over the
admissible trajectories x satisfying x(O) C, where g is continuous in the sup norm
and where (H1)-(H5) hoM. Then z minimizes g(x) over the absolutely continuous

functions x :[0, 1]R satisfying x(t) int X, x(O) C, and

it(t) E(t, x(t)) a.e.,

where E(t, s) cl f(t, s, U(t)).
Proof. Note that z is certainly feasible for the new problem. Suppose for

some Xo as described we had g(xo) < g(z). We set K=exp ( k(t) dt) and choose
e > 0 so that the e-neighborhood of Xo(t) lies in X for each t. Now let 6 be any
positive number less than elK. We let Uo be as in Lemma 3, for v o. Then

IO Io(t)--f(t, Xo(t), Uo(t))ldt <= 8,

and by [2, Prop. 2] there is an absolutely continuous solution x to the equation

(t) f(t, x(t), Uo(t)) a.e., x(O) xo(O),

such that the sup norm of x- x0 is no greater than K6. But then for 6 sufficiently
small we obtain an admissible trajectory x with x(0) in C and g(x)< g(z), a
contradiction. Q.E.D.
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LEMMA 5. Let a multifunction F:[0, 1]x R"o R" have nonempty convex
compact values, where F(t, s) is G-measurable, and upper semicontinuous in s.
Suppose them exist a subset S ofR" and a in L 1(0, 1) such that]or all s in S, ]’or all v
in F(t, s), Iv[ _-< a(t). Let {xj} be a sequence ofabsolutely continuousfunctions andAj
a sequence ofL-measurable subsets of [0, 1] such that

(i) i(t)e F(t, xi(t)) for tin A
(ii) L-measure (Ai) - 1,
(iii) xi(t) S ]:or all t,
(iv) Ii(t)[<=a(t) a.e.
(v) {xj(0)} is bounded.

Then them is a subsequence of {xj} that converges uniformly to an absolutely
continuous .function x satisfying (t) F(t, x(t)) a.e.

Proof. This is a standard result when each Ai [0, 1] (el. [4, Lemma 8]). We
sketch what remains essentially a standard proof. We first apply the theorem of
Arzel?a-Ascoli to get a uniformly convergent subsequence, converging to x, say,
and then we invoke the Dunford-Pettis criterion to extract a subsequence of {Ai}
converging weakly to v (say) in L1(0, 1) (we do not bother relabeling subse-
quences). From x(t) x(0) +) we deduce x(t) x(O) + to v and hence x is
absolutely continuous and v a.e. Now let h(t, s, p) be the support function of
F(t, s); i.e., h(t, s, p) max{p sr :r F(t, s)}. Fix p in R" and any L-measurable
set V in [0, 1]. We can prove the integrability of t h(t, xi(t), p) with the help of
[7, Thm. 3]. Then, letting Xj be the characteristic function of Ai,

0=<lim sup Iv (h(t, xi, p)-p ) dt
CIAj

sup xih (t, xj, p) dt + lim sup | p. i) dt
av

x, p) dt + lim sup I (-p" ) dt + lim sup
Jv
f P" ih(t, dt

V f’la

(h(t, x, p)-p ) dt.

Since V is arbitrary, it follows that h(t, x(t), p)>-p. (t) a.e., and we arrive at
(t) F(t, x(t)) a.e. by obtaining this for a dense set of vectors p. Q.E.D.

LEMMA 6. Let U be an abstract set, So a point in R" and g R"x UoR a
.function such that g(s, U) is bounded for all s near So. We suppose that for some
constant K, ]:or all u in U, and for all Sl, S2 near So, we have Ig(Sl, u)--g(s2, U)[ -<
KIsa-s2[. We serf(s)= sup {g(s, u) u U}, and we let S be a given subset ofR" of
L-measure O. Then f is Lipschitz near So, and O[(So)c F(so), where

F(s) co {lim Vsg(si, ui)}

where we consider all such limits such that lim si s, si S, ui U, Vsg(si, ui) exists,
and g(s, ui)f(s) (i.e., {ui} is a maximizing sequence ]:or g(s, )).

Proof. That is Lipschitz is easily verified (see [1, Thin. 2.1]), as well as the
fact that F assumes nonempty convex compact values and is upper semicontinu-
ous. By the way in which Of is defined, it therefore suffices to show that F(s)
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contains Vf(s) whenever the latter exists (which is a.e.). We first prove the
following: for any vector a in R",
(9) lim sup {g(s + h +Aa, u) g(s + h, u)}/A -< max a F(s),

where the lim sup is taken as h0 in R", A decreases to 0 and g(s, u)-f(s) with
u U. We may suppose a different from 0. Let e be any positive number, and set
rn max a F(s). Then for some positive 6, whenever Is s’l < 6, s’ S, u U, and
Ig(s, u)-f(s)l < 6, then

t Vg(s’, u) <- m + e

(if the derivative exists).
Fix any such u and let N be the set of measure 0 where g(., u) fails to be

differentiable. For almost all h, the ray s + h +Aa meets N in a set of 0 (one-
dimensional) measure. Thus if we take any such h with Ihl < 6/2 and any positive
x < we have

g(s+h+At,u)-g(s+h,u)= Vg(s+h+tt,u)dt

<-A(m+e).

Since g(., u) is continuous, this must in fact be true for all h with Ihl < 6/2 and
x < /(21cl). Thus we obtain (9).

Now suppose Vf(s) exists, and let Ai decrease to 0. We have

a" Vf(s)= lim {f(s + Aia)-f(s)}/A

=<lim sup {g(s +A/a, ui) g(s, Ui)}/Ai
(where U in U satisfies g(s + A/a, Ui)>[(S dr" Aia)-- A/2)

_-<max c F(s)

by (9), since g(s, ui)f(s). Since a is arbitrary, we deduce V]’(s)6 F(s) by [1, Cor.
1.10]. Q.E.D.

The following result is distilled from [4, Thm. 1] (compare [4, Cor. 2]). A
trajectory for a multifunction E(t, s) is an absolutely continuous function
x "[0, 1] R" satisfying (t)E(t, x(t))a.e.

LEMMA 7. LetE be compact-valued, integrably bounded, measurable in and
Lipschitz in s (in the Hausdorffmetric) on an open region containing the trajectory z,
and suppose z minimizes (locally) go(x(O))+gl(x(1)) over the trajectories x for E
satisfying x(O) C (we suppose z(O) lies in C) where C is closed. If go and gl are
locally Lipschitz, there is an absolutely continuousfunctionpfrom [0, 1] toR and a
vector v such that

(10) (-p(t),2(t))6OH(t,z(t),p(t)) a.e.,

(11) p(O)-v is normal to C at z(O), and v Ogo(z(O)),

(12) -p(1) G Ogl(z(1)),

where H(t, s, p) max p E t, s) and the generalized gradient in (1 O) is taken with
respect to (s, p).
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4. Proof of the theorem. We remind the reader that we have shown
(Propositions 2 and 3) that we lose nothing in assuming (H4) and (Hs). The
following definitions and the next two lemmas will set the stage for applying the
main theorem of I. Ekeland’s elegant paper [6, Thm. 1.1].

Let V be the set of pairs (u, s) such that s lies in C and u is a control yielding
an admissible trajectory Xu, such that x,(0)= s. (Ha) guarantees the uniqueness
of x,. For controls u and u2 we set

t(Ul, /12) L-measure {t e [0, 1]: Ul(t) : u2(t)}.

For points (Ul, s) and (u2, s2) in V we define

A((u, s), (u, s))= (u, u)+ls-sl.

It is easily verified that A is a metric on V. We now show completeness (of.
[6, Lemma 7.2]).

LEMMA 8. Let {(ui, si)} be a Cauchy sequence in V (relative to A). Then them is
an element (Uo, So) in Vsuch that (ui, s) converges to (Uo, So).

Proof. Since the sequence is Cauchy, it suffices to show that a subsequence
converges to some (Uo, So) in V. We may extract a subsequence (we do not relabel)
so that

6(ui, Ui+l)+lsi -Si+l] <2-i.

It follows as in [6, Lemma 7.2] that a control Uo exists such that 6(u, Uo)--> O. The
completeness of C in the Euclidean norm allows us to suppose that s converges to
some So in C. It remains to prove that (Uo, So) lies in V. We let xi be the admissible
trajectory Xu,, ,, and we set

Ai {t [0, 1]:ui(t) Uo(t)}.

Then L-measure (Ai)--> 1, and

ii(t) -f(t, xi(t), Uo(t)), t ai.
If we let F(t, s)=f(t, s, Uo(t)), S X, then (HI)-(H4) allow us to apply Lemma 5
and obtain a’subsequence of {x} converging uniformly to an absolutely continu-
ous Xo such that Xo(0)= So and o(t)= f(t, Xo(t), Uo(t)) a.e. Necessarily Xo(t) lies in
X, since X is closed; thus Xo is an admissible trajectory. Q.E.D.

We retain the notation of the previous lemma.
LEMMA 9. If (Ui, Si) converges to (Uo, So) in V, then xi converges uniformly to

XO.
Proof. We have i(t)-f(t, xi(t), Uo(t))=0 on Ai, and off A we have

Ii(t)-f(t, x(t), Uo(t)) bounded by an integrable function (independent of i) by
(H4). Since L-measure(A)--> 1, it follows that for any positive 6, for sufficiently
large,

I01 [)i(t) f(t, xi(t), Uo(t))ldt < 6.

We apply [2, Prop. 2] as in Lemma 4 to deduce that an absolutely continuous Yi
exists satisfying yi(O)=xi(O), Ixi(t)-yi(t)l<=K6 for each t, and
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f(t, yi(t), Uo(t)) a.e. From

12o(t)- )i (t)[ If(t, Xo(t), Uo(t))-f(t, yi (t), Uo(t))l
<= k(t)lxo(t)- y (t)[,

we derive, for each t,

[Xo(t)- yi (t)[ -< gllxo(0)- yi (0)1 gllso-

Then, for large, for each t,

]Xo(t)- xi(t)l <- [Xo(t)- y (t)[ + [yi (t)- xi(t)[
<- Kl[So- Si[ + K6. Q.E.D.

Now for a positive integer ] we choose .A(C) such that [srj- z(1)[ < 1/]
(this is possible since z(1) lies on the boundary ofA (C)) and we define Fon Vby

F(u,s)=lxu,(1)-.[.
Then F is continuous by Lemma 9, and clearly (,, z(0)) in V satisfies

F(u, z(0)) <=inf F+ 1/.
v

We now apply [6, Thm. 1.1] (with A ]-1/2) to deduce the existence of an element
(uj, si) in V satisfying (we set ei =/’-a/)

(13) A((ui, si), (u, z (0))) _<- ej,

(14) F(u,s)+eiA((u,s), (ui, si))>-F(ui, si)

for all (u, s) in V.
Let us now establish a notational convention" g will denote a point of R "+1,

where we have added a zeroth coordinate to s. Thus g (s, s). Similarly a
trajectory (x, x), etc. We define J= R X, (2 {0} C. If xj x,j,sj, we let j
equal (0, xj).

Define a" R R .. R by

10 if u #v,
a(u, v)=

if u v,

and define f" [0, 1]x R"+1 x Rn+lR"+1 by

f(t, g, u)= (eia(u, ui(t)), f(t, s, u)).

We note that (t, u) a(u,_ui(t)) is L x B"-measurable, so that all the hypotheses
on f remain in force for f. We may interpret relation (14) as follows: for every
control u and point g of C, if is an absolutely continuous solution to $(t) X,

(t) f(t, :(t), u(t)) a.e., (0) g,

then

Ix(a)- srj[ +eils si[ + x(1) >_-[xi(1)- .1.
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Thus 2 is optimal for a certain control problem. In view of (13) and Lemma 9, forj
sufficiently large 2 is interior to X. We apply Lemma 4 to deduce that 2 minimizes
(locally) go(2(0))+ga(2(1)) over the trajectories for E(t, ) satisfying 2(0) C,
where

go( ) s;!,
gl(g)-ls-.l/s,

E(t, )= cl f(t, 5, U(t)).

E is compact-valued by (H4), measurable by Lemma 2 and Lipschitz in by (H2).
We may thus apply Lemma 7 to obtain an absolutely continuous/ (p,
satisfying (10)-(12)for some 3i. Relation (11)yields

(16) p(O)-v is normal to C at x(0).
Note that xi(1) since gA(C); thus (12) yields

(17) Ip (1)l- 1,

(18) p(1) -1.

The function H(t, , ) is in this case

sup {peia(u, ui(t))+p f(t, s, u)" u e U(t)},

which is independent of s. Thus, from (10), /i(t)=0 a.e., and hence p is
identically 1.

Let us define h" [0, 1 ] x R" x R" xR --> R by

(19) h(t, s, p, q)= sup {qa(u, u(t))+p f(t, s, u)" u e U(t)}.

Note that H(t, , ) h(t, s, p, ep) whenever t is such that u(t)= u(t). Relation
(10), which may be written

(-13i, O, i, O) e OH(t, Xi, O, Pi, 1),

is thus seen to imply

(20) (-/ii, i, O) e Oh(t, xi, Pi, ei) when ui(t) u(t).

We set A {t e [0, 1]" ui(t u(t)} and we note (by (13)) that L-measure (Ai) 1.
Relation (10) yields

I)i(t)l <-_ k t)i(pi(t), ei

and this along with (17) implies that P1 is uniformly bounded (independently of j).
It then follows that the set in (20) is integrably bounded (see [4, Lemma 7 and
Remark]). We apply Lemma 5 to obtain a subsequence of {(xi, Pi, -ei)} converg-
ing uniformly to (z, p, 0) (in view of (13), Lemma 9 and the fact that e --> 0) where p
is absolutely continuous, Ip(1)l 1, and

(21) (-/(t), g(t), 0) e Oh(t, z(t), p(t), 0) a.e.

In light of (15) and (16), p(0) is normal to C at z(0).
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Fix a value of such that (21) holds; we now interpret (21) by means of
Lemma 6. We let S be the subset of Xwhere f(t,., v(t)) fails to be differentiable.
We obtain that (-,6(t), (t), 0) is a convex combination of points of the form (see
(19))

(22) lim (pDff(t, &, u), f(t, s, u), a(u, v(t)))

where si_S, si- z(t), Pi - p(t), qi-0 and

(23) p. f(t, z(t), ui)- h(t, z(t), p(t), 0).

Since the last coordinates of these points must be 0, we see that u v(t) for all
sufficiently large. Now (22) is seen to yield a point of the form

(p(t), f(t, z(t), v(t)), O)

where sr belongs to Oaf(t, z(t), v(t)). Since Osf is convex, we obtain (2). We already
have (4), and (23) yields (3). Any p satisfying (2) and vanishing once is identically
0, hence p is never 0. Q.E.D.

A variant of Theorem 1. Let a locally Lipschitz function g:R"-.R k be
given, and let us define

Ag(C) {g(s) s A (C)}.

Let an interior admissible trajectory z be such that z(0) lies in C and g(z(1)) lies
on the boundary of Ag(C). We may proceed exactly as in the proof of Theorem 1,
the term in the definition of F becoming Relation (12),
which had given (17), would now yield instead

-p(1) wiOg(x(1))

for some unit vector w=(g(x(1))-)/Ig(x(1))-l in R k. After converging
subsequences are taken, we obtain

(24) -p(1) wOg(z(1)).

We summarize:
THEOREM 1’. Let the hypotheses of Theorem 1 stand, with A (C) replaced by

Ag C) for g" R -R k locally Lipschitz. Then there exist an absolutely continuous p
and a unit vector w in R k such that (2)-(4) hold, and also (24).

Remark 5. Theorem I is the case g(s) s of the above; in the more general
setting of Theorem 1’, we cannot assert that p is nonzero, since (24) might allow
p(1)- 0.

Proof of Corollary 1. We shall denote by g points (s 1, s 2, s 3) in R" x R x R.
We define C-epi (a closed set),/r(t, , u) (f(t, s , u), 0, 0), g(g)=(s3, sE-s)
R xR ", (t) (z (t), z(1), l(z(O), z(1))). We claim (1) lies on the boundary of the
attainable set Ag(C) corresponding to/r and .,=XxRxR. If not, there is a
control u and a corresponding admissible trajectory with ](0) C, x2(0)
x2(1) x(1) and

l(x’(O), x 1(1))= l(xa(O), xZ(O)) --<_ x3(0)= x3(1)< l(z(O), z(1)).

But then x is an admissible trajectory (for f and u) better than z, a contradiction.
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We apply Theorem 1’ to obtain/ satisfying (2)-(4) for ) and (24). We deduce-- (plOsf(t, z, v), O, 0),

/3. ](t,. , u) sup. f’(t, , u)’u U(t)},

-/(1) (- w2, w 2,, wl),

where ](w i, w2)] 1,

(25)
/(0) (pl(0), W2, W 1) is normal to C

at (0)= (z(0), z(1), l(z(O), z(1))).

--W
2Wededuce w >- 0 (from (25)) and p (1)= -p2(1) Thus (25) implies (setting

P =P)

(p(0), -p(1), w 1) is normal to epi
(26)

at (z(0), z(1), l(z(O), z(1))).

If w 0, then w2 (and hence p) is nonvanishing. If w > 0, we replace p by p/w
and obtain (2), (3) and (5) with A 1. Q.E.D.

Proofof Corollary 2. We denote as in the proof of Theorem 1 points (s, s) of
R x R by g. We define

f(t, g, u)= (f(t, s, u), f(t, s, u)),

/s if s=0, SoECo, sIEC1,
(go, gl) ")

+ otherwise.

We apply Corollary 1 to this problem with (t) equal to
(to f(z, z(z), u(z)) dz, z(t)), and a straightforward translation of terms yields the
result. Q.E.D.
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OPTIMAL CONTROL OF AUTONOMOUS LINEAR PROCESSES
WITH SINGULAR MATRICES IN THE QUADRATIC

COST FUNCTIONAL*
STEPHEN L. CAMPBELL,"

Abstract. The optimal control of the autonomous linear process : Ax +Bu with quadratic cost
functional is studied. The initial and terminal times and positions are fixed. The matrices in the cost
functional are allowed to be singular. An assumption, weaker than invertibility, is placed on the
coefficient matrices. Under this assumption, necessary and sufficient conditions are given for the
existence of an optimal control in terms of the initial and final position of the process. A closed form for
the optimal control is given.

1. Introduction. Closed forms for all solutions of the linear system

(1) C. +Ex f
were derived in [5] for the case when (IC+E)- existed for some scalar
Neither C nor E were required to be invertible. This paper will show how the
results of [5] can be used to analyze the optimal control of certain autonomous
linear processes with singular matrices in the quadratic cost functional. A particu-
lar problem will be presented and handled in detail. Additional problems that may
be analyzed by the same techniques are described.

Optimal control problems with singular matrices in the quadratic cost
functional have received much attention. They occur naturally as a first order
approximation to more general optimal control problems. Reference [11] surveys
the known results on one such problem with singular matrices in the cost.

Our work has the advantage that it leads to explicit solutions for the problem
studied, as well as a procedure for solution. These explicit, closed form solutions,
also simplify the proof and development of the mathematical theory for the
problem studied.

2. The control problem. The following notation and terminology is fixed
throughout this paper.

Let A, B be n n and n m matrices, respectively. We allow all matrices and
scalars to be complex though, of course, in many applications they are real. An
asterisk denotes the conjugate transpose. The usual inner product for complex (or
real) vectors is denoted (., ). Let O, H be positive semi-definite rn rn and n n
matrices. Finally, let x, u denote vector-valued functions of the real variable t. x is
n 1 while u is m 1.

Now consider the autonomous control process

(2) : Ax +Bu
on the time interval [to, tl] with quadratic cost functional

(3) J[x, u]= (Hx, x)+(Ou, u) dt.
o
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If one has a fixed pair of vectors Xo, xl such that there exists controls u so that
the process x is at Xo at time to and xl at time tl, then one can ask for a control that
minimizes the cost (3) subject to the restraint that X(to) Xo, x(h) x.

Using the theory of Lagrange multipliers one gets the system of equations

(4)

A +A*A +Hx =0,

Ax Bu O,

B*A + Qu O,

as necessary conditions for optimization [1].
If Q is invertible, then u can be eliminated from the second equation and the

resulting system formed by the first two equations solved directly. We shall be
most interested then in the case when Q is not invertible, though our results will
include the case when Q is invertible.

The system (4) can be rewritten as

(5)
0 0 Q u

Note that (5) is in the form of (1) with C, and possibly E, not invertible.
Our results differ in certain key respects from most of the existing literature

on this problem. We do not assume the pair (A, B) is controllable. Rather we
assume that the matrix Q Q B*(/x +A*)-H(/z A)-IB is invertible for
large I/xl. This amounts to being able to formally solve (4) uniquely by Laplace
transform methods. The matrix Qz has appeared before in connection with this
control problem. In [20] it is used to describe when (3) on the time interval [to,
is bounded below. In 16] it is used to establish existence conditions for solutions
of the algebraic Riccati equation. These solutions may then be utilized to rewrite
the process (2) so that the eigenvalues of the new A lie either in the right or left
half-planes. That is, x satisfies a stability type of condition. Controllability is
assumed in both [16] and [20]. The matrix in the cost functionai of [16] which
corresponds to our O is invertible. Thus [16] is developed under the assumption
that Q, is invertible for large (see Proposition 4).

Our results proceed as follows. We first establish that (4) provides both
necessary and sufficient conditions for optimization. Needed results from [5] are
then summarized. Using the results of [5], we find all solutions of (4) under the
assumption that Q is invertible for large I/zl. Solution of (4) consists of two parts.
One is determining for which Xo, x an optimal control exists. This is given by
Theorem 4. For such x0, x, Theorem 3 gives the control u in terms of x, A. An
explicit formula for the constant feedback matrix is given in (27). Both x and A are
explicitly given in terms of x0, A0 in (26). How to calculate Ao from x0, xl is given
by the discussion immediately preceding Theorem 4. An example is worked. The
assumption that Q, is invertible is then discussed. It is shown to be equivalent to
the uniqueness of optimal controls for those Xo, x which admit an optimal control.
It is also shown to be equivalent to the nonexistence of "free" trips with nonzero
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controls. In the last section,, several additional control problems which can be
handled by our techniques are given.

We assume throughout that controls are continuous. All statements concern-
ing optimality are made with respect to the control problem of this section.

3. Optimality of solutions. We shall first show that if (4) has a solution
satisfying the boundary conditions, then u must be an optimal control.

THEOREM 1. Suppose that x, u, A is a solution of (4) and X(to) Xo, X(tl) Xl.
Then u is an optimal control.

Proof. To show that J[,]>-J[x,u] for all ,t satisfying (2) and the
boundary conditions, it is clearly equivalent to show that

4(s)=J[sx +(1-s)Y, su +(1-s)]

has a minimum at s I for all , . A direct calculation gives that 4 has a minimum
at s 1 if and only if

It tx

i
tl

(Hx, -x) dt= (Qu, u-) dt.

Using the fact that 2, fi satisfy (2) and x, u, A satisfy (4), we get

(Hx, x)= (- -A’h, x)= -(, x)-(h, A) +(Ou, u)

and

(Hx, )= (- -A’A, )= -(, )-(h, )+(Qu,
Thus

(6)

It(Hx, 2-x) dt (, x)+(h, 2) +(Ou, u)-(, 2)-(h, )-(Ou, ) dt

(h, x) -(h, )
to

ft tl

(OH, u-) dt

tl It tl

+ (OH, u)-(Ou, ) dt
to

as desired. 13

It is interesting to note that Theorem 1 says that solutions of (4) satisfying the
boundary conditions provide optimal controls even if the differential equation (4)
has nonunique solutions for consistent initial conditions. Of course, in that case
the optimal controls may not be unique.

It would be of interest to have a general form for all solutions of (4) in the case
of nonunique solutions.

Note that from (6) one immediately gets that

(7) J[x, u] -1/2(A, x)

4. Summary of needed results. To solve (5) we shall need some results from
[5] and a few basic facts about the Drazin inverse [8] of a square matrix.
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DEFINITION 1. If F is an r x r matrix with index k (k is the smallest _-> 0 such
that rank (A+I)=rank (A)), then the Drazin inverse of F, denoted F, is the
unique matrix G such that

(i) GFG G,
(ii) GF FG,
(iii) GFk/ Fk.
The Drazin inverse is not an equation solving or (1)-inverse. It has recently

been shown to have important applications [5], [14]. Basic properties are
developed in [3], [4], [9], [10], [14] and [15]. That there is a connection between
the Drazin inverse and control theory was realized independently by Dickinson
[7]. Our results are quite different from his.

If there oxists a scalar/z such that (/.,C+E)-1 exists, then (IzC/E)-IC
and I, (C+E)-E commute [5]. Thus if such a/x exists, (1) can be written as

(8) d2 +/x 1 where d/ =/.

For any matrix F, denote its null space by aV’(F). Then (8) is consistent and a
particular solution is

k-1

o n=0

Here k is the index of . Every solution to the homogeneous equation t2 //x
0 is of the form

(10) e-CDEtdOdxo, XO an arbitrary vector [5].

Note that if there exists such a/z, then all but a finite number of scalars can be
used for/x. For convenience, we shall say a property holds almost always if it holds
except for a finite number of scalars. The existence of such a/z is necessary in
order to apply the results of [5]. We shall discuss later how this assumption is
related to other types of assumptions. Finally we note that

I ( F Fk-atk-](11) eFt dt=FeFt +(I-FF) I+-t+. .+ ki +G,

where F is square, k Index (F) and G is an arbitrary square matrix [5].
5. Solution ot the system. Rewrite (5) as

(12) s2 + 90z 0,

where

= 0 0’ B3 B4
Here I is 2n x 2n,

[A* /-/] B2=[ 0] B3=[B, 0] andB4=Q.(13) BI= 0 -A -B

Clearly (/z +Bx)-a exists except for a finite number of/z. Define

(14) O, B4-B3(/z +B1)-lB2
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PROPOSITION 1. p+ is invertible almost always if and only if Q. is
invertible almost always.

Proof.

and

o
I B3 B4

[B3(/z +B1)-1I
is invertible. [3

We now need the following easily verified result whose proof we omit.

[/z +BPROPOSITION 2 If [ B3
B2|] is invertible, then the inverse is
B4

--1 --1

(15) (/z+B1)- +(/x+B1)-IB2QIB3(g+B1)-1 -(/z+B2) B2Q, ]
QB3(/z +Ul)-1 O J

almost always.
Assume that/,, , N are such that/+ N, O,,/z +B1 are invertible. Then

(16) (/d,,5 + )-16 [(/d, q" B1)-1 q-($/, d- B1)-IB2(IB3(I.I, .+ B1)-1 0]-1O B3(//, "4- B1)- 0

Define N, and M, by

(/./,, + )_15 INg O]M,, 0

Also note that

(17)

(tz +B)-IB1 + (Ia, +B1)-1B2Q1B3(tz +B1)-1B1
-1--(/g, +B1)-IB1+O B3

-1O B3(/z +B1)-IB1 + QIB3

(/Z 4- B1)-1B2
+ (tz +B1)-IB2QIB3(tz +B1)-lB2

( +B1)-I -1B2Qz B4

-1O B3(/z +B1)-1B2 + QIB4
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Let Zg and W. denote the (1, 1) and (2, 1) entries of (/zs4 + )-l.
From (14) we have

(B4- B3(/x +B)-IB2)O O1(B4 B3( +B1)-1B2) I.

us (17) becomes

(18) (+)_ [Z. ]w.
In order to use (9), we need to be able to calculate the Drazin inverse of (16).

TZORM 2 (Meyer and Rose [15]). Suppose that R, T are square matrices
with indices k, l, and S an arbitrary matrix o[ the appropriate size. en

o o ’where

X= RD(s +RDST+RDST +" +RD’-ST-)( )
+(I-RRD)(s+RS+R2S +" "+R-S*-’) --RDS.

Let (#4 + ;)-1 (/.,.Q + )--1. From Theorem 2 and (16), (18),
we get that

(19)
N 0 N 0 FNN 0

-MND 0 M 0 =LM,N 0’

while

To evaluate e-Dt note that

,o} r 0

[M.N.Z. 0]D2

F NZ 0’ [ [NZ] 0
(20) D2 D D 0LM.N. Z 0 LM.N. Z.[NZ.]’-’
for integers r N 1. From (20) and the power series expansion of the exponential we
see that

(21) e-Nt [ e-[NZ]t ]D _-[NffZAtU.N.{ }

Of course, the quantities Ng, Z., M., W. are closely related.
PROPOSITION 3. If Ng, Zg, Mg, Wg are defined by (16) and (17), then

(22) Z. 1

(23) W. -/xM.,
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and

(24) N, (/.t + B1)-1 (g + B1)-IB2Mtt.
Proof. All the equations follow from the definitions of Ng, Zg, Wg and Mg.

For example,

Zg [(/x +B)- + (g +B1)-1B2Qg B3(N +B1)-1]B1-( +B1)-IB2QB3
N.B-{N, -( +B)-lI(g +B1)

NgB,-Ng(g +B1) +I I-gNg.
Thus (22) follows. The proof of (23) and (24) are similar.

We can now substitute into (10). Using (10) we see that the general solution
of (12) is

e-[NZ.]t D

--[NDZ It rD
I e v.v. 0

lVllVle -tM.N. 0

e N.lV. 0
(25) D -[NDZ It J
Referring back to the original equation we see that

(26) e-tlv2z’yt-t where Ao A (to),
X0

and

Thus we have shown
THEOREM 3. If Q, is invertible, then the optimal control u is given in terms of

x, A by (27) if an optimal control exists.

6. Initial conditions. While (9)gives IxA] explicitly, (27)does not give u

directly in terms of x. We now turn to this problem.
Let

--[NDZ ](t-to)MDN "El(t) E2(t)]E(t) e "’" " -E3(/) E4(t)J’

where the E(t), 1, 2, 3, 4, are all n x n matrices.

[A(t)] E(t)[Ax:] NoteSuppose that (4) has a solution. Let A (to) Ao. Then [x(t)J

that this is possible if and only if rlAo/" is in the range of N,N,, denoted R (N,N,).
X0J
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Now h(tl)] =E(tl) or
(tl)-I Xo

(28) Xl E3(tl)AO + E4(tl)xo.

If E3(tl) is invertible, then ho is determined by Xo and X uniquely. Once ho, Xo
are known, x, u follow from (26) and (27). On the other hand if (28) is viewed as
defining Xl, then from (26) x will go from Xo to Xl. Thus we have established the
following result.

THEOREM 4. Suppose that Q, is invertible almost always. For a given Xo, X
there is an optimal control that takes xfrom Xo to Xl in the time interval [to, tl] ifand

[] oonly if the equation (28) has a solution Ao such that Ao R(N.N.).
Xo

7. An example. It is possible, under our assumptions, for x to be able to go
o IAo] [AoJ,AOxofrom Xo to X but not have an optimal control existing if NN,[xoJ

satisfying (29), is inconsistent in Ao. We shall give a simple example that illustrates
this. It shall also serve to illustrate our method.

1 0] be two by two matrices. The process isLetH=LB=LA=O,Q=
0 0

then simply

(29) A u,

where x, u are 2-vectors; x=
4}2’

u=
4’2’

i& 14112 + =/ I,ll2 dt. The system (5) becomes

and the cost is

(30) I + 0 0 -I x
0 I 0 Q u

Since N is invertible, we may take/z 0 in (/x + )-1. Now

(31)
0 O -I

Multiplying (30) by (31) gives

(32)
0
I
0

Q
0

By Theorem 2 and the fact that

D2 0 2)D Q[i o] :[o ;]=[o
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it is straightforward to get that

-I [0
0

-o3 -o 0

Thus using (10) the solutions to (32) are given by

(33) =e- -o 0 Q Xo
-Q 0 uo

It is clear from (29) that for any Xo, X1 there exists a control u sending Xo to Xl; i.e.,
(29) is completely controllable. But the x in (33) only takes on values of the form

[] for scalar c. Thus in order for an optimal control to exist, Xo, Xl must be of the

form [], [1]. A look at the power series for the exponential in (33) shows that

[i] [cosh (t-to)Q+(I-Q)
/ -sinh (t to)O
L -cosh (t- to)O + O

0 Q Xo
-Q 0 Uo

cosh (t to)O
-sinh (t to)O

-cosh (t- to)O + Q

-sinh (t to)Q 0-]
cosh (t- to)Q + (I- O)

-sinh (t to)Q

cosh (t to)Q Xo
-sinh (t to)Q Uo

If Xo= [] and Xl= [1], we see that t=to gives u =-QAo. Since

Xo R Q

Uo 0

lo and then Uo Letting tl giveswe must have Ao= 0

(34) Cl -sinh (tl- to)lo +cosh (tl- to)Co.

Solving (34) for lo we get

cosh (t- to){cl-cosh (tl- to)Co}/sinh (tl- to)
u=

0
-sinh (t- to)Col

as the optimal control, x can also be easily solved for if desired.
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In working a given problem, it is sometimes simpler to solve (5) directly using
the techniques used in deriving the formulas (26) and (27) as done in this example,
rather than try to use the formulas directly.

8. The assumption that O, is invertible. Let us now examine in more detail
our basic assumption that O is invertible. From (13) and (14) we have

Q B4 B3(/.t + B1)-1B2

=O-[B* 0][/z+a* H ]-[?B]0 Iz-A

O+[B* 0][ (/z +A*)-I -(/z-bA*)-IH(-A)-I][B0]0 ( -A)-1

(35) O-B*(Ix +A*)-IH(tz-A)-IB.
PROPOSITION 4. If Q is invertible, then Og is almost always invertible.
Proof. Suppose O is invertible. By Proposition 1 it suffices to show tzsg + is

invertible almost always. But

[ I ] [I,t+B1-B2B-IB3 B2](36) [/4+] _B1B3 0 54

Thus/z4 +3 is invertible almost always since the right side of (36) is invertible
almost always. [-1

We note without proof
PROPOSITION 5. If F, G are positive semi-definite r x r matrices, then F+ G is

invertible if and only if
3(F) I"13;(G) {0}.

Of course, O is invertible almost always for real/x if and only if it is almost
always invertible for complex/. Let/x ito where to is real. Then (35) becomes

(37)
Qg O B*(ito +A*)-1H(ito A)-IB.

1"Q + B*(-ito +A)- H(-ito +A)-IB.

From Proposition 5 we have that Q, is invertible almost always if and only if

{0} Jr(Q) f) (B*(-ito +A)-*H(-ito +A)-B
(Q) fq JC(H/2(-ito + A)-IB)
(Q) AC(H(-ito +A)-IB) for almost all to.

Thus we have proven
THEOREM 5. Qg is invertible for almost all tx if and only if

(38) #/" 0 f’l 2f H to +A B {0}

for almost every real to.
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If H is invertible (positive definite), then Q, is invertible for almost all Ix if
and only if

(39) At(Q) f-) C(B) {0}.

We note the following necessary, but not sufficient, condition for the invertibility
of O..

PROPOSITION 6. O, is invertible for almost all Ix if
(40) At(Q) f) (HArB)={O} forr=O, 1,..., Index (A).

Proof. For large to,

H(-ito +A)-IB iH (-iA)nBto-n-1.
n=0

Thus a vector v 6AC(H(-ito +A)-IB) for almost all to if and only if

(41) $(to) iH (-iA)"Bto-"-v
n=O

is zero for large to. But since (41) is a Laurent series, this happens if and only if
HA"Bv 0 for all n _-> 0. Equation (41) now follows. [-1

The invertibility of Qz has two intuitive interpretations. Before developing
them we need a result on analytic (1)-inverses.

THEOREM 6. Suppose thatA (.) is an rn x n matrix-valuedfunction such that
Aij(z) is a fraction of polynomials for all and j. Suppose also that AC(A (z)) is
nontrivial for all z in the domain ofA (.). Then for any real number to > O, there
exists an n x n matrix-valued function B(. such that:

(i) Bq(z) is a fraction ofpolynomials,
(ii) R(B(z))=AC(A(z)) for almost all z,

(iii) the poles ofB are integral multiples of toi, to > O, are simple, and
(iv) IIB(z)ll- O(1/Izl3) as
Proof. Suppose that A(. is an m n matrix-valued function such that Ao(z)

is a fraction of polynomials for all and j. Suppose also that AC(A (z)) is nontrivial
for all z in the domain of A (.). LetXbe an n x rn matrix of unknowns xo. Then

(42) AXA A

is a consistent linear system of at most rnn equations in mn unknowns. Denote this
new system by

(43) EX=A.

Since the coefficients of (43) are fractions of polynomials, there exists a real
numberK such that all minors of E are identically zero, or identically nonzero, for
Izl->_K. Thus (43) can be solved by row operations (nonuniquely) to give a F(.
such that F satisfies (42) for Izl-> K, the entries of F(z) are fractions of polyno-
mials in z, rank F(z) is constant, and rank F(z) is the maximum possible
(dim AF(A(z))). Note that (FA)ij is a fraction of polynomials for all and . Let
zl, , zq be the poles of FA. Let rl, , rq denote their multiplicities. Let r0 be
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such that IIFAII Olzl*o) as Iz[*oo. Set a=ro+r, +...+rq +3. Define

q

B(z)= [I (z-zi)’ I-[ (z-iPw)-I(I-F(z)A(z))
j=l p=l

Then B clearly satisfies (i), (iii) and (iv). Since (ii) holds for [z[ _-> K, it holds for
almost all z by analytic continuation.

We can now give a "physical" interpretation of the invertibility of O,.
TrmORZM 7. The following are equivalent:
(a) There exists an x0, x for which optimal controls exist, but are not unique.
(b) There is a trajectory from zero to zero of zero cost with nonzero control.
(c) O, is not invertible for all Ix.
Proof. Clearly (b) => (a) since J[0, 0] 0. To see that (a) =), (b), let (x, u), (, t)

be two optimal solutions from x0 to x. Then there exists A, so that (A, x, u) and
(, 2, t) satisfy (4). Thus (A , x , u t) satisfies (4) and hence is optimal. But
(x 2)(t0) (x 2)(h) 0 and u a is not identically zero. That J[x -, u
0 follows from (7).

Suppose now that (b) holds so that there exists x, u such that J[x, u]= 0,
X(to) 0, x(h)= 0, and u is nonzero. Since J[x, u]= 0 it is clear from (2) that
Hx 0 and Ou 0. Extend x,/z periodically to I-co, 0o] and replace t by t- to.
Call the new functions 2, . Thus H2 0, Ot 0, and A2 +Bt, n (t to),
n =0, +1, +2,.... Since t is bounded and sectionally continuous on finite
intervals, 2 is continuous, and 2 is of exponential order, we can take Laplace
transforms to get H[2] 0, O[/] 0 and [] (s A)-IB[t]. Thus
[a](s)W(O)fflW(N(s-A)-B) for all s in some right half plane. By (39), we
have O, is not invertible for all

Conversely, suppose that O, is not invertible for all/z. Note that W’(O)
(H(tx-A)-B)_A;(O,) for almost all/z. However,

(44) W(O CI .M(H(Iz A)- B W(O.

for/z it, t real. Thus W(Q)(’IW(H(Iz-A)-IB)=W(Qg) for almost all/z. Now
applying Theorem 6 to Qg with ca 2zr/(tl-to) yields a Bg such that Q,Bz -O,
and Bz satisfies (iii), (iv). But (44) then gives us that

(45) OB, 0, and H(tz A)-IBB, O.

Let be vector such that B. is not identically zero. Denote B. by (/z). Let
(s)=(s-A)-IB(s). Then we have from (45) that

(46) H(s) 0, O(s) 0 and (s) (s A)-IB(s).

Let be the inverse Laplace transform of 2, t the inverse Laplace transform of .
From (46) and (iv) we have H2 0, Og 0, 2 A2 +B& 2(0)= 0, and t(0)= 0
[6, p. 184]. Furthermore, t is nonzero. Finally, since the poles of (s) were simple
and multiples of 27ri/(h- to) we get that 2, tJ are periodic with period (h- to) [6,
p. 188]. Replace 2, a by x 2(t + to), u (t(t + to). Then X(to) x(tl) O,J[x, u]=
0, and 2 Ax +Bu. Thus (c)
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It is possible to have Q, invertible almost always and still have nonzero
optimal trajectories of zero cost. Of course, the control u must then be zero.

Example. Let Q L A L B 0, H 0 in (2) and (3). Then Q, is invertible
for large/x since Q is. Clearly x exp (A (t- to))Xo is a trajectory of zero cost from
Xo to x=exp(A(t-to))Xo. But u=0 and J[x,u]=O. Note also if x0=0, then

Our Theorem 6 is quite possibly contained in the literature on generalized
inverses of meromorphic operator-valued functions. However, it is easier to prove
what we need directly, than have the reader sort through several pages of
notation. Also, we needed to have polynomial growth at infinity, a point not
considered in papers such as [2]. The interested reader is referred to [2] both for
the state of the art and for a bibliography.

It should be noted that the invertibility of Q is logically independent of the
controllability of (2) since for any choice of A, B, setting Q= I makes Q,
invertible almost always, while setting Q H 0 makes Q, --0.

Note also that in the example of 7, the pair (A, B) was completely
controllable and Q, was invertible. However, optimal controls only existed for
certain pairs Xo, X l. Thus the assumption of controllability does not seem to
simplify matters if Q, H are allowed to be singular.

9. Conclusion. We have arrived then at the following procedure for solving
the original problem. Given Xo, Xl determine whether it is possible to go from Xo to

X with an optimal control by solving (if possible)(28)for ;to such that "lA|
L JX0

R (NN). If A0 is found, use the bottom half of (26) for x if x is needed. Use (26)
and (27) to get the optimal control u.

It is interesting to note that for many results the assumption that C), is
invertible can be used in place of the assumptions on controllability and invertibil-
ity ofH and O. Note also that we have not assumed the invertibility of either Hor
O nor A or B.

The results of [5] can be applied, of course, to any problem which leads to a
system of the form (1). However, the special form of the given in (12) makes
most of the calculations of this paper possible since it allowed us to use Theorem 2.
The Drazin inverse for a general 2 2 block matrix is very messy. Even if the lower
right block is 1 1, the formulas are complicated [ 19]. Anyproblem which leads to

can be solved much as wasa system of the form s +Nz f with A
A.

(12), provided, of course,.+N is invertible for some . We shall now describe
several such problems. Since the calculation of the solutions parallels those done
earlier, a description of the problem will suffice.

For example, suppose that the cost is given by

fttl(Hx, x)+(Qu, u)+(x, a) dt,
o

where a is a vector. Then the right-hand side of (5) has instead of the zero

vector.
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(47)

Equation (9) can be used to solve this nonhomogeneous system to get

f e- eds + (I-ss)+e-"s
instead of (25). The integral in (47) can be evaluated by using (11). For this
problem, it is important to know whether or not the cost is positive.

Another variation on the same type of problem is process (2) with the cost
functional

J[x, u]= (Hx, x)+ 2(u, Cx)+(Ou, u) dt,
0

C*
to be solved is

I 0 0 "A*
+ 0
_B*

instead of (5). Solution proceeds almost exactly as when C 0, though O, has a
slightly different form.

The analysis developed here can be also applied with little change to the
following control problem.

Given output y, state vector x and process 2 Ax +Bu, find a control u such
that y Cx +Du.

This control problem may be rewritten as

(48) [I 00][:]+[-A-BD][uX]=[]0 C
If y and u are the same size vectors, then (48) is the nonhomogeneous form of
equation (12). It may be solved, under the assumption that O, given in (14) is
invertible, by using (9). Here O, D + C(tz A)-IB.

Generalized inverses have been used in [12] to solve (48). However, the
assumptions of [12] are of a different nature than ours. Techniques for calculating
Drazin inverses may be found in [5], [9], [10], [13], [14], [15], [17], [18] and [19].
The techniques in [13], [14] and [18] are concerned with the index one case. A
sequential algorithm is given in [10]. A method based on the eigenvalues of the
given matrix is developed in [5]. Formulas for finding the Drazin inverse or index
of block triangular matrices are in [15].

It would be desirable to be able to handle (1) when C, E are m x n instead of
square. The results of [5] do not directly apply and the problem of calculating all
solutions explicitly appears to be more difficult. There is a tendency for manipula-
tions to cause solutions to be lost or nonsolutions to be introduced. A characteri-
zation of consistent initial conditions may be found in [21]. It is a hard characteri-
zation to work with, however.

Aeknowleflgment. Finally, we would like to acknowledge the benefits of
several discussions concerning this work with Nicholas J. Rose.
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FREQUENCY DOMAIN STABILITY CRITERIA FOR
STOCHASTIC NONLINEAR FEEDBACK SYSTEMS*

GILMER L. BLANKENSHIP"

Abstract. This research is concerned with the asymptotic properties of feedback systems
containing random parameters and subjected to stochastic perturbations. For the special class of
feedback systems formed by the open loop cascade of a multiplicative white noise, a sector nonlinearity
and a convolution operator, conditions are given to insure the stability in the mean square sense of the
feedback system. These conditions are expressed in terms of the Fourier transform of the convolution
kernel, the sector parameters of the nonlinearity, and the mean and variance parameters of the noise.
Their form is reminiscent of the familiar Nyquist criterion and the circle theorem for deterministic
systems. The approach adopted is functional analytic in flavor and avoids the use of Markov semigroup
techniques and auxiliary Lyapunov functionals.

1. Introduction. Within the past decade a number of papers have appeared
which develop an input-output approach to the stability problem in dynamical
feedback systems. In the original papers of Zames [1] and Sandberg [2] (see also
the books [3], [4]) the stability question is considered in the framework of
functional analysis and the traditional Lyapunov theory is avoided. Considerable
simplification of the definitions and basic criteria for stability is gained by this
alternate approach. In essence, a feedback system is stable in a functional context
if it maybe represented by a bounded operator on a specified function space. Since
the output of a feedback system is defined implicitly in terms of the system input,
stability is equivalent to the existence of a bounded, causal inverse for the system
operator [4]. Stability criteria may then be developed as an application of the
mathematical theory relating to the invertibility of operators. Fundamental
criteria for stability in the input-output theory require the operators in the open
loop system to form a contraction or, when the function space of interest is a
Hilbert space, to be positive (dissipative).

One of the most interesting results of this theory is the circle theorem [ 1], [2].
Consider the deterministic nonlinear integral equation

(1.1) x(t) u(t)- g(t-s)f(s, x(s)) ds

as representing a feedback system composed of a linear convolution with kernel g
and a nonlinear, memoryless feedback gain f. The function u is considered as the
input, and the properties of x are in question. The system represented by (1.1) is
said to be Lo-stable if u Loo(R*) (the set of real-valued measurable functions
essentially bounded on R/ ___a [0, oo)) implies x Loo(R /) and Ilxlk -<- llulk for
some constant /R

/ independent of u. The function I1" is the norm on
L,(R+).

* Received by the editors July 18, 1975, and in revised form February 17, 1976.

" Systems Research Center, Case Western Reserve University, Cleveland, Ohio 44106. This
research was supported in part by the National Science Foundation under Grant ENG75-08613.
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The criterion is as follows:
THEOREM 1.1 (Circle criterion Loo-version [5, Thm. 2]).
Assume that the following are true ]’or (1.1):

(i) u Loo(R +).
(ii) There exist constants a, b R+ such that

0 < a <f(t, y)/y < b
for every R/, y R.

(iii) There exists a positive constant ro such that

Io etlg(t)l dt < o.

(iv) For G(s) a= e-Sg(t) dt and some r (0, ro), the conditions below hold"

(a) (-2(a + b)-a, ]0) U {O(s)},
Re(s)>----r

(b) inf IG-l(-r+ja)+1/2(a +b)l>1/2(b-a).

Then x Loo(R +) and them exists a constant R+ independentofu such
that Ilxlk -<t llulk .

The decisive condition (iv) is equivalent to the statement: For some r s (0, r0)
the r-shifted Nyquist locus Re(s)=-r{G(S)} does not encircle (iv-a) or intersect
(iv-b) the closed disc centered at (-1/2(a-I + b-I), j0) with radius 1/2(a -1- b-). If
Lp-stability for p < o is of interest, then it is not necessary to use shifted Nyquist
loci; however, the Loo-version of the circle is used below and it is stated here for
convenience. Notice that if b a (the feedback gain is a linear constant), then the
circle theorem reduces to the Nyquist criterion (except for the shifts) and becomes
necessary for stability as well.

The purpose of this paper is to consider a generalization of (1.1) obtained by
replacing the deterministic functionfwith a stochastic function and permitting the
disturbance u to be a stochastic process. Specifically, we examine the stability
problem associated with stochastic integral equations of the form

(1.2) x(t) u(t)- g(t-s)f[s, x(s)] dl(s).

Here g and [ are deterministic functions, u is a stochastic process whose
properties are known, and is a Levy process (roughly the sum of a Wiener and a
Poisson process). The functions g and f are deterministic functions of their
arguments. The signal x is a stochastic process and the asymptotic properties of
x (t) as t goes to infinity are at issue. Actually a somewhat more general version of
(1.2) is treated in this paper; however, (1.2) suffices for a discussion of the ideas to
be presented. A precise problem statement and detailed discussion of the stochas-
tic integral in (1.2) are deferred until 2 and 3.
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Equations of this kind arise in the study of physical systems with unknown
parameters and as models of control systems with humans in the feedback path
[6], [7]. Equations similar to (1.2) may be used to model the evolution of round-off
errors in a computational algorithm [8] or the travel of tsunami over an uneven
bottom topography [9]. In each of these applications, stability, with a suitably
relaxed interpretation of the concept, is an important issue. For example, in
feedback systems, convergence to zero of almost all the sample paths of the
process x is usually desired, whereas in the study of round-off errors, estimates of
the magnitude of the moments of the errors are useful.

The present criteria establish bounds on the first and second moments of the
process x in terms of the moments of u and of parameters related to f, g, and I. The
criteria are expressed in terms of the Fourier transform of g, bounds on the gain of
nonlinearity f, and the mean and variance parameters of the noise I. Their form is
reminiscent of the familiar Nyquist criterion and the circle theorem for deter-
ministic feedback systems. When the system is linear and time-invariant and the
noise process is stationary, necessary and sufficient stability conditions are given
which make the differences between the deterministic and stochastic problems
most apparent. This paper may be regarded as a generalization of [10] where only
linear systems with multiplicative Gaussian white noise were considered and
bounds on the first and second moments of x established. Two papers related to
earlier drafts of this paper are [11], [12]. They contain some sharpening of the
results here in overlapping regions. A listing of the results of this paper appeared
in [13].

2. The main results. In this section the main theorems of the paper are
summarized and discussed. Their proofs are in 4. A number of technical
preliminaries needed in the proofs are collected in 3. The next paragraph gives
the minimum of definitions and notations needed to state the results.

2.1. Definitions and notation. Let R+=[0, oo) be the time set; systems
defined in continuous time are being considered here. The triple (12, , P) is a
Borel probability space; i.e., 12 is a topological space, a Borel tr-algebra of
subsets of 12, and P is a probability measure on .

Let C(R /; R) denote the set of continuous functions mappingR
/
into R. Let

D(R /; R) be the set of functions mapping R / into R continuous from the right
and possessing left-hand limits at every point. Elements of D(R/; R) are bounded
on compact intervals, and for any e > 0 have at most a finite number of jumps of
amplitude greater than e on any bounded interval in R / [14].

For (12, , P) a probability space and (X, (X), d) a complete, separable,
Borel measurable metric space, let R V(12;X) denote the set of X-valued
random variables on f (equivalent to the set of measurable functions r; 12 X).
Each element r ofRV(I2 ;X) induces a natural probability measure on (X) via

izr(A P{r-l(A )}, A (X).
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2.2 Problem statement. Let (, , P) be a probability space to be identified
later. Consider the nonlinear stochastic integral equation

x(t, o)= u(t, co)- g(t-sff(s, x(s, o)) dw(s, co)

(2.1)
g(t-s) h(s, x(s, oo), y)v(o, ds, oo _, t_R2.

Here w is an R-valued Wiener process on R/ with parameters m => 0 and 0"2. The
random measure v is defined below as Poisson (on R/xR) with parameter
II(t, dy) dt. The process u is a nonanticipating (with respect to w and v) random
process and may be regarded as the input to a feedback system characterized by
g, [, h, w, and v. Here g is the kernel of a linear deterministic convolution which
represents the "plant". The nonlinear functions [ and h represent nonlinear
feedback elements with stochastic components w and v respectively. Thus, (2.1)
may be used to represent a nonlinear feedback system with two random elements,
one acting continuously (w) and the (v) representing the effect of random "shock
phenomena" in the feedback channel.

The input u is said to be an admissible nonanticipating input if
ot(U)Vot(W)VOt(F) is independent of too(dw)/too(v(ds)). Here /denotes
lattice sum, /Se is the least o,-algebra containing and 6e, and ,t(f) denotes
the least Borel r-algebra over which the random variables f(v), v [s, t] are
measureable.

Problem to be considered. For all admissible, nonanticipating input processes
u with bounded second moments (supt>__oEu2(t)<oo) find conditions on
g, ]’, h, m, cr, II so that the solution x of (2.1) is nonanticipating and satisfies

sup Ex2(t) <=M sup Eu2(t)
t__>O t__>O

for some M independent of u.
Remarks. (a) The kernel g(. in (2.1) need not have a rational Laplace

transform for the results obtained below to apply. Thus, the results obtained
"extend" those available using Lyapunov theory which essentially requires that
the transform of g be rational .(so that a representation of (2.1) in terms of an It6
differential equation is possible).

(b) The restriction of attention to "mean square stability" is perhaps not as
severe as it might seem. If g is rational and [ and h are linear, then the stability
properties of all the moments of the solution may be analyzed (see [15]); however,
the techniques required for that investigation are very different from the present
one. The stability of the higher order moments for the nonlinear equation will be
considered elsewhere. In most engineering applications stability of (almost all) the
solution trajectories, or "almost sure stability," is probably the most reasonable
requirement. However, known criteria1 to guarantee almost sure stability are very

See, for example, the general conditions in [16] and the example based on these conditions in
[17]-[20].
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difficult to evaluate in specific (linear) cases. For nonlinear equations comparably
sharp conditions for almost sure stability are not known. Hence, the results
presented here should be considered as preliminary to the determination of such
conditions. It is known that in some cases mean square stability implies almost
sure stability [21]; however, criteria for the former may be very conservative
guarantees of the latter [20, p. 588].

2.3 Theorems. In this section solutions to the problem posed are given for
various assumptions on the functions g, f, h and the noises w and v. The first
theorem to follow gives sufficient conditions (satisfied in every case by the criteria
below) for the existence of a unique solution in the space RV(O ;D(R/;R)) for
(2.1).

THEOREM 2.1 [22, 3.3]. Assume that the functions u, g, f, h satisfy the
following conditions:

(i) u is an admissible nonanticipating element of RV(I;D(R+;R)) such
that

E{u2(t)} < oo fort [0, T]R+.
(ii) There exists a K< oo such thatfor all t R /,

Ig(t-s)12[f(s, x)-f(s, y)l2 ds + [g(t-s)l2 Ih(s, x, z)

h (s, y, z)12II(s, dz) ds

<-_ K[x y 12, x, y R.

(iii) There exists a K< oo such thatfor all t R /,

Ig(t-s)l Ih(s, x, y)ll-I(s, ay) as <K(1 + Ixl), xR.

Then a solution x ofthe integral equation (1.1) exists in D(R+ R). Moreover, i[
sup0__<t__<T E{uZ(t)}< o0, then 2

supo__<t_<E{x (t)} < oo for any T R+ The solution x
is nonanficipating and unique at all points o[ continuity.

In the sequel the conditions on f, g, h, and II indicated in Theorem 2.1 will be
assumed to be satisfied. In all cases they will be superseded by the conditions given
for other properties to hold.

Before proceeding to the analysis of the nonlinear equation (2.1), consider
the linear case (corresponding to f and h linear and time-invariant):

(2.2) x(t)= u(t)- g(t-s)x(s) dw(s)- g(t-s)x(s) h(y)v(ds, dy),

where

Edw(t)=mdt,

E(dw(t)- m dt)2 tr
2 dt,

Ev(dt, A II(A dt,

E(v(dt, A)- II(A) dt)2 II(A) at.
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Assume that u, w, and v are independent processes.
If Theorem 1.1 holds, then

(2.3)

Io Io’ I_Ex(t)=Eu(t)- g(t-s)Ex(s)mds- g(t-s)Ex(s) h(y)II(dy) dt.

This is a deterministic equation, to which the Nyquist criterion applies.
THEOREM 2.2. Assume that the kernel g e L2(R +) and let G(s) denote the

Laplace transform of g,

T

G(s) 1.i.m. g(t) e -s’ dt, Re(s) 0.
T-->oo

Then suptR IEu(t)l < oo implies sup,  /lEx(t)l < oo i/ and only if

(-(m + ,)-1, ]0) d LJ {G(s)},
Re(s)R

where r J-oo h(y)zr(dy).
Proof. The proofs of this and the following results are contained in 4.
Now consider the problem of bounding the second moment of x. A transfor-

mation of (2.2) gives

(2.4)
x(t) u(t)- g(t- s)x(s)[m + (r] ds

Io’ Io’g(t-s)x(s) dff,(s)- g(t-s)x(s) h(y)(ds, dy),

where dff(s)= dw(s)-mds and (ds, dy)= v(ds, dy)-II(dy) ds.
THEOREM 2.3. Assume that the kernel g L2(R /). Then suptR/EU(t)2 <o

implies sup,R/EX(t)2 < o if and only if

(i) (-(m + -)-, jO) LJ {G(s)}
Re(s)R

(ii) I: 1 +(+ m)G(/’a)

2

da < 2rr(" + 0"2)-1.

(Here zr 3.14- and - is defined in Theorem 2.2.)
Two sufficient conditions were proved in [6] for a special case of (2.2)

(corresponding to v 0); these may be modified to apply in this case, and they
yield conditions more easily checked for a given kernel g than the criterion (ii) of
Theorem 2.3.

COROLLARY 2.4. Assume thatg LI(R /) and denote by , thefunction whose
Fourier transform is G(ja)[1 +(m +-)Ga)]-1. Assume supteR+EU(t)2 < oo.
Then suptR+EX(t)2 <- [3 suptR+EU(t)2 for some fl R + if there exists a R such
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that

(i) (-(m + if)-1, j0) U {O(s)},
Re(s)R

2+ (o)
(ii) <1,m+r+y 2

(iii) and any of the following conditions is satisfied:
(a) (m +-)/T>0, and the Nyquist locus UR{G(jct)} lies inside the circle

centered on the real axis of the complex plane at (1/2y-l, ]0) and passing through the
origil.

(b) -1 <(m +’)/T<0, and the Nyquist locus U,,R{G(jc)} lies inside the
circle centered on the real axis at (1/2y-l, ]0) and passing through the origin.

(c) (m + )/T <-1, and the Nyquist locus [_J ,,g{G(jct)} does not intersect or
encircle the disc centered at (1/2T-1, jO) passing through the origin.2

The next result is a special case of Corollary 2.4 as y- 0.
COROLLARY 2.5. Assume that g LI(R +). Then for (2.4), suptg+Ex(t)2 <--

flsupteg+EU(t)2 for some fl R + if
(i) m + "k > (o"2 + ,)ff(0)/2,
(ii) Re G(ja) >- 0 for all a R.
Returning to the analysis of the nonlinear equation (2.1), assume that

Edw(t) =0,

Edw(t)2 tr2dt,
E(dt, dy)= rI(dy) dr,

E((dt, dy)- II(dy) dt)2= II(dy) dt,

and that there exist constants a, b, c, d such that

O<a<f(t,x)/x<b<c, tR+, xR,

O<c<h(t,x,y)/x<d<, tR+ x, y6R.

Moreover, assume for simplicity that Eu(t)= 0 for all t and that u, w, and u are
independent processes. The next result establishes criteria sufficient to guarantee
a bound on Ex2(t).

THEOREM 2.6. For (2.1) subject to the assumptions of the last paragraph,
sup,eR ExE(t) <= fl supteR Eu2(t) for some fl R + if:

(i) There exists an ro > 0 such that

IoeXp (rot)lg(t)] <.dt

(ii) - n(dy) <.
2 This particular result has been improved by J. L. Willems in a paper [11] related to an earlier

draft of the present paper.
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(iii) ([-?(c + d)/2]-1, j0) [3 {G(s)}.
Re(s)>-ro

(iv) For (s)= G(s)[1 +1/2r(c +d)G(s)]-1r * ( * convolution), then
(see (iii)) and 2

and

2 2 2) 1[([tr (a +b +.(c2+d2111 ]0] U {G2(slI.
Re(s)=>--ro

(v) For some t (0, 1) and r (0, ro),

inf [ (s)-1/2[o’2(a2+b2)+Cr(c2+d2)]l>=[o-2(b2-a2)+Cr(d2-c2)]Re(s)_-->-r

(vi) For some r (0, ro) and

z 8(r +](-o))d(r +fro)H(r Loo (r+j(-o))(r+ffo)
the inequality below holds"

1/2H(r +j)Cr2(d2- c2)
1 1/2[r2(a 2 + b2)+ (c2 + d2)]2(r +):)

2.4. Comments and interpretations. The criteria given in Theorems 2.2
through 2.6 have more or less explicit graphical versions in terms of the frequency
response G(s) of the linear part. Theorem 2.2 is a standard Nyquist condition and
may be easily checked. The condition (ii) in Theorem 2.3 may be evaluated
directly when G(s) has certain forms; for example, if G(s) k/(s +p), then

1 [’ G(j) 2 k2.-,o l+(m+)O(ja) d=2(p+m+)"
Hence, in (2.1) suptR Ex2(t)<--_ sup/R/ Eu2(t) for some/3 eR+ if and only if

k2tr2- 2m +(k2_ 2) < 2p.

See [23, Appendix E] for evaluation of the integrals (1/(2r))jo IH(jo)l do
when H is a rational function of degree less than or equal to ten. See [6] for a
related interpretation in terms of the Hurwitz polynomials associated with
rational G(s). The Corollaries 2.4 and 2.5 give easily verified graphical condi-
tions for condition (ii) of Theorem 2.3 to hold. Corollary 2.4 is reminiscient of the
deterministic circle theorem though the intention here is different. Corollary 2.5 is
a "positivity condition" and immediately suggests a number of modifications
using "multipliers" to shift the phase of G(s); see [4] for the method and details of
this procedure.

The derivation of the main criterion, Theorem 2.6, is based directly on the
deterministic circle criterion of Zames [1] and Sandberg [2], especially the "Loo
version" in [5]. This is more easily seen in the following special case of Theorem
2.6. Assume that f satisfies the sector condition with parameters (a, b) and that
v-0 so that only Gaussian noise (w) feedback is permitted.
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COROLLARY 2.7. Assume the conditions on u and w given in Theorem 2.6
hold, in particular, Eu(t) 0 Edw(t). If Eu2(t) L(R/) and

(i) o erOtg2(t) dt < o for some ro > O,

(ii) ]or H(s)= o e-Stg2(t)dt and ]or some re(O, ro) the exclusion below

holds:

(2tr-2(a 2 + b2)-1, j0) 1 .J {H(s)},
Re(s)_-->-r

2 2

(iii) inf H-(-r+]o)--(a2+b >-(b-a

for some r (0, ro), then suptR EX2(t) <-- fl suptR Eu2(t) for some fl R+.
In geometric terms conditions (ii) and (iii) above are equivalent to the

statement that the r-shifted Nyquist locus of H(ja) (the set (.J Re(s)g-r {H(s)}) does
not encircle (ii) or intersect (iii), the closed disc in the complex plane centered at
(+2tr-2(a -2 + b-2), j0) with radius o--2(b-2- a-2). Compare this with Theorem 2
in [5]. It may be possible to give a similar interpretation to the full Theorem 2.6,
and although no attempt to do so will be given here, the promise of such a
procedure is acknowledged.

In 10] versions of Theorem 2.3 were given for linear equations analogous to
(2.1) with ,-=0 for discrete-time and vector-valued random process
x(k), u(k), w(k) defined in discrete time. A review of the results in [10] indicates
that these situations may be treated easily in the present context, indeed, discrete
processes represent a considerable simplification and multidimensional variables
require only a more sophisticated notation.

Referring to the comparatively simple criterion of Corollary 2.7, it is appar-
ent that the phase information in G(s), the Laplace transform of g(t), is used in a
somewhat complicated manner. In contrast, in the linear case covered by
Theorem 2.3, the phase of G(jto) plays no role whatsoever in the decisive
condition (ii).3 Since Theorem 2.3 is necessary and sufficient, it follows that the
phase information will be useful only in more stringent (sufficient) criteria, i.e.,
Corollary 2.4. This peculiar property of independence of the criteria from the
phase of G(s) appears to arise as a consequence of the properties of the white
noise in the equation, especially the property of orthogonal increments. In a
physical sense the use of white noise as a model for feedback gains is artificial, and
a more realistic model would result if the noise were allowed to be "colored", i.e.,
have correlated increments. Investigations (for example, [15] and references
therein) have shown that the resulting "stability problem" is considerably more
difficult than that considered here. In particular the statistics of the noise seem to
enter in a nonlinear fashion, and other aspects, such as the role of the argument of
G(s), appear to have a subtler influence than that observed in the present case.

Assuming "k 0 m, that is, the disturbances are zero mean. Otherwise replace G by G/[1 +
(+m)G].
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Note further that little use has been made of the properties of Gz(s) in
Theorem 2.6 (or the simpler H(s) in Corollary 2.8) as the Laplace transform of a
nonnegative function g2(. ). As such G2 has some special properties and use of
these should simplify, for example, conditions (v) and (vi) of Theorem 2.6.

The preceding results have been aimed at bounding the second moments of
the solution process. Using an inequality due to Zakai [29], we can obtain similar
bounds for moments of arbitrary order. For simplicity we consider only the linear
case.

THEOREM 2.8. Let w(t) be a standard R-valued Wienerprocess, and g R
R such that Ilgll = < Then x(t) satisfying

x(t) u(t)- g(t-s)x(s) dw(s)

has EIx(t)l < ]’or somep >- 1 and each tin R + if u(t) has Elu(t)l < for each t.
Moreover, for p >-2, if

,R p--’l’

where G(jto) J g(t) exp (-/’tot) dt, then Ilull sup (Elu(t)()/ < implies

[Ilxl/ < 1- sup Ia(jto)

/fp 2, the condition (2.5) is necessary and sufficient ]’or mean square stability.
Remarks. (a) These results complement those of our paper [15] where vector

It6 equations are considered.
(b) By modifying the hypotheses slightly, we can derive asymptotic stability

criteria (for moments of arbitrary order as above) assuming that (Elu(t)lP) lip -0
(or is integrable, etc.).

3. Some properties o| stochastic integrals. Let w denote the standard
real-valued Wiener process on R +, normalized so that w(0)= 0. The Wiener
measure w is a probability measure on (l-l, )= (C(R+;R), 3(C)) satisfying two
properties. For each t, s R + the random variable w(t) w(s) is normally distri-
buted (on R) with mean

and variance

E{w(t)- w(s)} m (t-s),

E([w(t)- w(s)- m(t- s)]a} tr
2

mR,

for any finite collection of elements {ti}7=l c R/ such that tl<--t2<-’-’<-tn, the
random variables w(t2)- w(tl), w(t3)- w(t2), ", w(tn)-- w(tn-1) are indepen-
dent under the normal distribution, i.e., w has independent increments. For any
nonanticipating4 random functional , the It6 stochastic integral versus w is

4 Ot(l)V:Ot(W) independent of ,oo(dw). See [25] for details.
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denoted by

Ist O(r, w) dw(r, og).

See, for instance, [24] for its properties.
For some given measureable space (X,/3 (X)) consider the random measure

on (R +) 3(X) denoted by ([s, t], A), Is, t] R +, A s 3(X), as expressing
the number of events in the set A during the interval Is, t]. Assume that the
random variable u takes on nonnegative integer values independent on disjoint
elements of (R +) 3(X); moreover, for each set Is, t] A 3(R +) (X),
assume that ([s, t], A) is Poisson with parameter

II(r, A dr.

That is,

l(Ist r)" ( I r)P{o" v(w, Is, t], A) n} . II(r, A) d exp II(r, A) d

Here II(t,A) is a (given) probability measure on (X) for each tR+, and a
measurable function mapping R+ into R for each A s 3(X).

It follows that the random process u is a process with independent increments
(on R +); so the stochastic integral

Istlxl(r,x)(dr, dx)

is well-defined as the usual limit of retarded Riemann sums for nonanticipating
(with respect to 9) random functionals on R/x W such that

Ist lx Ell(r, x)]kII(r, dx) dr <oo, k 1, 2.

See [26], [13], and [22] for more details.
For the usual It6 integral,

y(t) x(s) dw(s),

where is a zero-mean, o--variance parameter Wiener process and x is a
nonanticipating (w) random process, it is easily shown [25, p. 24] that if

o x2(t, og) ds < oo t R + 1,

then

(3.1)

Ey(t) Ex(s)Edw(s) O,

Ey2(t) 0
.2 Ex2(s) ds.
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Equally true, but less often used, are similar facts for

y(t) h(s, x)v(ds, dx),

where v is defined above with parameter 7r(s, dx) ds and h is nonanticipating. If
for t R +,

Io’ Io Ehk(s’x)II(s’dx)ds<’ k=l, 2,

then

is a martingale in t, and

y(t) h(s,x)A(ds, dx)

(3.2)

Ey(t) h(s,x)A(ds, dx) =0,

Ey2(t) Eh2(s, x)II(s, dx)ds,

where A (ds, dx) ,(ds, dx)-II(s, dx)ds. Properties (3.1) and (3.2) are used in the
proofs of Theorems 2.2, 2.3, and 2.6.

4. Proofs of Theorems 2.2 through 2.6.
4.1. Proof o| Theorem 2.2. The hypothesis that g L2(R) and the local

existence Theorem 2.1 prove that

Io’ Ex2(s’ o) ds <

for any t R /. Thus, the properties of the stochastic integral (equations (3.1) and
(3.2)) apply. Equation (2.3) is thus valid, and the theorem follows from a result of
Davis [26] and the observation that Ex(t) is piecewise continuous. Q.E.D.

4.2. Proof o| Theorem 2.3. From the assumption g L2(R +) and the condi-
+(r+ m)G(s)] has an inverse (on locallytion (i) it follows that the operator [I

L2(R +) functions) represented by the identity minus a convolution [27]. Let G be
the linear convolution whose kernel gl has Fourier transform

--1Gl(j)=[l+(m-i-’rr)G(jc)]

and denote by the function with corresponding transform 0(j’a) G(/’a)Gl(]a).
Then from (2.4) and the preceding comments,

x(t)=(GlU)(t) (t-s)x(s) aft(s)- (t-s)x(s) h(y)(ds, dy)
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and it follows that

Ex(t) gl(t-s)gl(t-r)E[u(s)u(r)] ds dt

+ 2(t s)Ex2(s)(o"2 + r)ds.

Therefore,

sup Ex2(s) <-_ ( ga(r) d sup+ Eu2(s)
O<=s<=t sR

+ + sup ExZ(s).5

Parseval’s theorem and condition (ii) of Theorem 2.3 guarantee that (0"2-[
< 1. Therefore supo_<_s_<_, Ex2(s)<-- supsR Eu2(s) for/3 independent of

t R / and u. The desired conclusion follows from this independence. Q.E.D.

4.3. Proof of Corollary 2.4. By Theorem 2.3 it suffices to show that

(0"2 + @).__ IG(ja)/[1 + (m + -)G(ja)]l2 da < 1.

Note that for an arbitrary complex function H, if

Inqa)-a/21<a/2

(condition like that stated in (a), (b), (c) of (iii)), then IH(ja)l2 -< 6 Re H(ja). Using
this fact and the restrictions on the graph of G(ja), it follows that

(m + r)G(ja) z
,)-a]-i (m + ,k)G(ja)

_--<[l+y(m+ Re
1 + (m)G(ja) 1 + (m + "?r)G(ja)"

Thus,

+ <=
27"t" o

The last step uses the fact that g 6 LI(R +) and that zero is a Lebesgue point of .
Condition (ii) of the Corollary implies the conclusion through Theorem
2.3. Q.E.D.

As noted in the text, Corollary 2.5 is a limiting case of Corollary 2.4 as 3’ - 0.

4.4. Proof of Theorem 2.6. This result is proved in exactly the same manner
as the deterministic circle criterion. The first few steps below are intended to
transform the system equation (2.1) into a form where the deterministic tech-
niques may be applied.

Note that gl E La(R ;R) from, for example, Hille and Phillips [28, p. 155].
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A transformation of (2.1) gives

x(t) u(t)- g(t-s) f(s, x(s), y)II(dy) ds

-’(c +d)r g(t- s)x(s) ds g(t- s)f(s, x(s)) dw(s)

where (ds, dy)= v(ds, dy)-II(dy) dt and/(s, x, y)= h(s, x, y)-1/2(c +d)x. The
constant is defined in (ii). Let W(s)= [1 +1/2r(c + d)G(s)]. Then by (ii) and (iii)
and from, for example, [26], W- exists on Loo(R /) functions. Hence

x(t) (W-iu)(t) ff,(t-s) ft(s, x(s), y)l-I(dy) ds

ff,(t- s)f(s, x(s)) dw(s)

(t-s) h(s, x(s), y)7(ds, dy).

Here is the inverse Laplace transform of 0(s)= G(s)w-l(s).
Taking into account the assumptions on u, w, and v"

Ex2(t)=E{(W-lu)2(t)}+E (t-s) f(s,x(s), y)II(dy) ds

+ tr
2 2(t- s)E{f2(s, x (s))} ds

+ 2(t-s) E{h2(s, x(s), y)}II(dy) ds.

Adding and subtracting the terms

1 2- 2 2) Iot-tr (a +b ff,2(t-s)Ex2(s)ds,

’(c
2 +d2) 2(t-s)Ex2(s) ds,
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the result is

1 2 2 2) Io’Ex2(t)-[tr (a + b + (c2+ d2)] 2(t- s)Ex2(s) ds

=E{(W-lu)2(t)}+E ,(t-s) (s,x(s), y)n(dy)

+ (t-sl(s, x(sl as

+ 2(t-s) E2(s, x(s), y)H(dy) as,

where (s, x) =[(s, x)-(a +b)x and (s, x, y)= h(s, x, y)-l(c +d)x.
Let K be the convolution operator whose transform is

(s [ [(a + b +(c +a]d(sl]-,
where (s) is defined in the theorem statement (iv). The operator K is well-
defined (Re (s)-r0) by (iv). Let k denote the inverse transform of K.

Then

x(t) K(N{(u)})(t)
+ k(t-s)E’ (,-v) (v, x(v), y)H(ds) dv

+ n(t-s)E(s,x(s)) ds

Io’+ n(t-s) E2(s, x(s), y)H(dy) ds.

Here n is the kernel whose transform is N(s)= 2(s)K(s).
Using the bounds,

(s,x)l(b2-a2)x2 for every s eR+,
l2(S, X, Y)I(d2- C2)X2 for every s e R +, y R,

and condition (v) it is clear that the last two terms in (4.1) are bounded by
supoNx(s). Closer consideration ol the decisive term (T2) second on the

right of (4.1) will yield the desired conclusion. Expanding the square in T2,

g(s -v)g(s-z) E[g(s, x(s), y)g(z, x(z), q)]H(dy)H(dq) & dz

II (S--)(S--Z) II [E2(s’Y)]ll2[E2(z’ q)]l/2(dY)(dq’ ds dz

(-cl (s vl v sup x(z.
ONzs
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Hence

T2 (d2-c2) Ik(t-s)l p,(v) dv sup EX2(Z) dz.
O<z

Thus some standard inequalities and condition (vi) imply that

IT2l-<_(1-a) sup Ex2(s)
O<s<=t

and that the operator composed of T2 and the sum of the last two terms is a
contraction on the Banach space defined by the norm Ilxll-[sup+ Ex=(s)3/.
The conclusion follows now from arguments identical to those used in the last
stages of the proof of Theorem 2.3. Q.E.D.

4.5. Proo| ot Theorem 2.8. Using (Ela + b]P) 1/p (EIalP) lip +(EIbIP)lip for
p --> 1, we have for x(t) satisfying (2.5) and IlxllP (Elxl)1/,

IIx(t)ll --<llu(t)ll + g(t-s)x(s) dw(s) p.
Now from Zakai [29], for p -> 2, T< and any nonanticipating functional F,

Ifo
p (Iot t)

p/2

E F(t) dw(t) <-(p- 1)m (UIF(t)l)/ d

Hence,

IIx (t)ll -< Ilu (/)11 /(p- 1)/(I0‘
So if (2.5) holds, then for any in g t,

g2(t-s)llx(s)llp ds) /.

sup IIx(s)ll _-<[1 a(p)]-1 sup Ilu (s)ll,
s<=t

where a(p)= (p 1)l/Zllgll < 1 is assumed.
The condition a(p) < I is equivalent to (2.5) by Parseval’s theorem. Q.E.D.
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ESTIMATION THEORY FOR ABSTRACT EVOLUTION EQUATIONS
EXCITED BY GENERAL WHITE NOISE PROCESSES*

RUTH F. CURTAIN

Abstract. The filtering smoothing and prediction problems are solved for a general class of linear
infinite-dimensional systems. The dynamical system is modeled as an abstract evolution equation,
which includes linear ordinary differential equations, classes of linear partial differential equations and
linear differential delay equations. The noise process is modeled using a stochastic integral with respect
to a class of Hilbert space-valued stochastic processes, which includes the Wiener process and the
Poisson process as special cases. The observation process is finite-dimensional and is corrupted by
Gaussian-type white noise, which is modeled using the Wiener integral. The theory is illustrated by an
application to an environmental problem.

Introduction. We solve the filtering, smoothing and prediction problem for a
very general class of linear infinite-dimensional systems, where the system
disturbance is a general noise process, which includes Gaussian and Poisson-type
white noise. Earlier papers on infinite-dimensional filtering including [2], [4], [6],
[18], [8], consider the filtering problem for various systems where the disturbance
is white Gaussian noise. Our approach to the filtering problem follows the ideas
first introduced by Falb in [13] and later papers [5], [6], [18] and [8]; that is, the
noise process is modeled using a stochastic integral with respect to a Hilbert
space-valued Wiener process. By introducing the notion of stochastic integration
with respect to a wider class of general Hilbert space-valued stochastic processes
we are able to model more general types of noise disturbances. The infinite-
dimensional system is modeled using the evolution operator approach, which has
proved so successful in solving deterministic control problems in abstractspaces
(see [ 10]) and allows for a very wide class of systems including those described by
partial differential equations and delay equations. Using the ideas of Kailath 14],
an innovations approach is used to solve the prediction and smoothing problems
as was done in [8] for the Gaussian white noise case. It is found that optimal linear
estimators exist under very weak conditions on the system operators, but in order
to obtain differential forms, extra conditions must be imposed. However these
conditions are not unduly restrictive in applications, and this is illustrated by
considering examples. In particular, a river pollution problem is considered where
the noise process is Poisson-like.

1. Preliminaries.
1.1. Evolution operators. We summarize the theory of evolution operators

developed in [9] to model a large class of linear infinite-dimensional systems,
which are appropriate for control theory applications.

DEFINITION 1.1. Mild evolution operator. Let H be a real Hilbert space and
T [0, T’] a real finite time interval and denote A(T) {(s, t) 0 =< s < t =< T}. Then
oR (.,.):A(T)-**(H) is a mild evolution operator if

(a) ll(t, r)ll(r, s)= ql(t, s) for O<=s <=r<=t<= T, ll(t, t)= I.
(b) q/(t, s) is weakly continuous in s on [0, t] and in on [s, T].

* Received by the editors October 22, 1975.
"t" Control Theory Centre, University of Warwick, CoventryCV4 7AL, Warwickshire, England.
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The following theorem allows us to define perturbations of mild evolution
operators.

THEOREM 1.1. Let ql(. ,. be a mild evolution operator and
oo(T;(H)) the space of(H)-valued functions which are strongly measurable
on T with ess sup,llD(t)ll < oo. Then the following integral equation on (H) has
a unique solution qlo(’," in the class of weakly continuous (H)-valued
functions on ZX(T):

(1.1) qlo(t, s)x ll(t, s)x + ll(t, r)D(r)llo(r, s)x dr, x

q/o (" ," is a mild evolution operator and is called the perturbation of q/(t, s)
corresponding to the perturbation D. A stronger concept, closely related to
semigroup concept is

DEFINITION 1.2. Strong evolution operator. A strong evolution operator is a
mild evolution operator //(t, s) with an associated generator 4(t), which for each
t T is a closed, densely-defined linear operator on H such that

(a) /(t, s): ((s))((t)) for t > s,
(b) (O/Ot)all(t, s)x (t)all(t, s)x for x ((s)), t > s.
We remark that if q/(t, s) is a strong evolution operator, then the abstract

evolution equation

a(t) (t)u(t) + g(t),
(1.2)

u(s)=uo((s))
has a unique, strongly continuous solution, given by

(1.3) u(t)= //(t, 0)uo+ li(t, r)g(r) dr

provided g is H61der continuous on T (see [9]). If uo H, g L(T ;H), then (1.3)
is still well-defined and we call it the mild solution of (1.2).

For stochastic differential equations, it happens that a more useful concept is
that of an almost strong evolution operator where (b) is replaced by

(b)’ s(r)(r, s)x dr (t, s)x -x

for x e N,(s)= {x (r, s)x e N(s(r)); s <-r<-t}
which implies that

O--(t, s)x s(t)(t, s)x a.e. for x e N(), t > s.
Ot

The concepts of strong and almost strong evolution operators are obviously
closely related and often coincide, as in the case of analytic semigroups, where
fl,(s) Hand (b) holds for all x ell. Ifwe suppose that s(t)(t, s)x is Bochner
integrable for x e (s(s)), then (b)’ holds for x c (’(s)). However, in general,
fl,(s) (s(s)) and so (b)’ holds for a wider subset of H. This is very important
in applications as is illustrated in [7] and [8].
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1.2. Abstract probability theory. Let (12, ,/Z) be a complete probability
space, H, K real separable Hilbert spaces and T [0, T], a real finite time interval.
Then we shall use the following standard definitions.

DEFINITION 1.3. An H-valued random variable is a map u : H which is
measurable with respect to the /z-measure. If u LI(I, Ill ;H), we define its
expectation by

[ u dill.E{u}

If u L2(f, Ill ;H), we define its covariance operator by

(u-

where u v (H, K) is defined for all u 6 H, v K, by

(u v)h u(v, h) forhK.

We note that u u is a self adjoint nuclear operator, with trace {uo u}= Ilull=.
DEFINITION 1.4. An H-valued stochastic process is a map u (., Tx f H

which is measurable on Tx using the Lebesgue measure on T.
DEFINITION 1.5. H and K-valued random variables u and v are independent

if {to u(to) e A} and {to v(to) B} are independent sets in for any Borel sets A
in H and B in K.

DEFINITION 1.6. An H-valued stochastic process {re(t)} is a martingale
relative to an increasing sigma-field {t} if

(1.4) E{m(t)ls} m(s) with probability one (w.p.1) for t > s.

DEFINITION 1.7. An H-valued random variable h L2(, Ill ;H) is Gaussian
if (h, ei) is a real Gaussian random variable for all i, where {ei} is a complete
orthonormal basis for H.

The following theory of estimation for H-valued random variables is from
Bensoussan [2].

The estimation problem is to estimate a random variable x L2(-, Ill ;H)
from a random variable y L2(,/.6 g). L2 (K, tr H) is isometric to 2(K, tr ;H),
a closed subspace of L2(, Ill ;H), where (K, tr) is the probability space induced by
the random variable y.

DEFINITION 1.8. The best global estimate =E{xly} of x on y is the
projection of x on/z(K, tr H):

always exists and is unique.

The best linear estimate of x based on y is --Xy where X (K, H)
minimizes E{llx Ay =} over all A (K, H).

If x and y are Gaussian, .
We now introduce a class of stochastic processes of particular interest to us in

applications.
DEFINITION 1.9. An H-valued orthogonal increments process {q(t), t T} is

such that

(1.5) q(t) Y’. q(t) e,
i=0
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where qi(t) are "orthogonal increments" processes of the same type, and {ei} is an
orthonormal basis for H. More specifically,

E{qi(t)} H,ip(t),

where p (t) is a monotone nonincreasing real function and Y./xi < 00 and

E{(i(tz)-i(Sz))(fflj(tl)-fflj(Sl))}=O, O<-Sl <tl <Sz<t2 <= r,
E{(Yq(t)-gq(s))(gq(t)-Yq(s))}=hiiq(t)-f(s)), O<-s <t<= T,

where 7qi(t) qi(t)_-Ixip(t), andf is a monotone nonincreasing function, i=0 hi <
0o; hq Ai and A -_-< AiAj.

More simply we can write

E{q(t)}= r(t)= ( tzie,)p(t),
i=0

(1.6) Ft(t) q(t)- r(t),

E{#(t)- #(s) #(t)- #(s)} Aft(t)-/’(s)), 0 <_- s < <_- T,
where A is a nuclear operator with Aei Y.i-0 Ai ei, and trace A Y’.i=0 hi. r(t) is
called the expectation function and A/(t) is called the covariance function of q(t).
We note that

(1.7) E{[lq(t)-t(s)][2)= (f(t)-f(s)) trace A, 0_<-s <_-t_-< T.

If r(t)= 0, q(t) is called a centered orthogonal increments process; a particular
example is

DEFINITION 1.10. An H-valued Wiener process is a centered H-valued
orthogonal increments process on Tx f given by

W(t, tO)-- . fli(t, tO) el,
i=O

where i(t (.0) are real mutually independent Wiener processes, with E{fli(t)2}
tAi, and -i=0 Ai < 0o. So

E{w(t))=O,

E{w(t)- w(s) w(t)- w(s)} W(t- s), O<=s<t<-_T,

where W is a positive nuclear operator with Wei Aiei.
In [2], [3] it is shown that w(t) actually has independent increments and has

continuous sample paths.
Another example of an orthogonal increments process which is useful in

applications is the Poisson process.
DEFINITION 1.1 1. An H-valued Poisson process is defined by

p(t, o9)= Z re(t, o0) ei,
i=o

where {ei} is a complete orthonormal basis for H and ,ri are mutually independent
real Poisson processes with parameter i and i--0/zi < 0o.
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Using the properties of the real Poisson process, we see that p(t, w) is a
well-defined stochastic process with

(1.8) E{p(t)}= E I, e,,
i=0

(1.9) E(llp(t)-p(s)llz} Y/z(t- s)+ Z tz,2(t s).
=0 =0

Defining m(t)=p(t)-E{p(t)}, we see that m(t) is a centered orthogonal
increments process with

(1.10)
E{m(t)}=O,

E{m(t)-m(s)o m(t)-m(s)}=M(t-s),
where Mei Izie.

In [3] a theory for integrals for Hilbert space-valued Wiener processes was
developed and a study of stochastic evolution equations excited by Gaussian white
noise was made. This theory was exploited in [2], [4], [6], [ 11], [ 18] to study the
filtering problem for linear infinite-dimensional systems with Gaussian white
noise disturbance. Recently more general stochastic integration theories have
been developed, the most general by M6tivier [ 16], [17] who uses a martingale
approach. For our purposes the orthogonal increments noise approach in [7] is
more appropriate and, in fact, was developed for application to the filtering
problem for general infinite-dimensional systems. Here we outline the theory of
stochastic integration with respect to a general orthogonal increments process.

DEFINITION 1.12. Let q(t) be a centered orthogonal increments process and
let 2(T; (H, K)), the class of strongly measurable (H, K)-valued func-
tions with TII(S)]Iz dr(s)< oo. For . ;z(T; (H, K)), we define

(s) dq(s)= Y (s)e, dq,(s),
i=0

where {e} is a complete orthonormal basis for H. Note that ’o (s)e dq(s) is a
well-defined stochastic integral since qi is a real orthogonal increments process
(see [12]). ’o (s) dq(s) C(T; z(l; K)) is an H-valued martingale, with the
following properties"

(1.11)

(1.12)

(1.13)
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(1.14) E (I)l(O) dq(a)o 2 (a) dq2(a) O,

where q2(t) is an H2-valued centered orthogonal increments process independent
of q(t), , 2 2(T;(H, K)) and $2(T;(H2,K2)).

In the special case, where q(t)= w(t), the Wiener process, f(t)= t and
’o (s) dw(s) has continued sample paths.

The stochastic integral can be easily extended to a general orthogonal
increments process {q(t)}, by defining

io io(s)dq(s)= (s)d(q(s)-r(s))+ E , (s)e, da(s),
i=O

where r(t) E{q(t))==o ep(t) as in Definition 1.9.
A particular example is the Poisson process, where we have for

2(T;(H, K)),
io i=0

The following stochastic Fubini theorem holds or a general orthogonal incre-
ments process.

TEOREM 1.2. Let ( .,. ):Tx To(H) be strong& measurable on Tx T
ane such that TT [(t, S)[J2 ds df(t) <. en thefollowing integrals existana are
equal w.p.1:

IT (I
T

*(t, s)ds)dq(t)= T (IT *(t, s)dq(t))ds w.p.1.

1.3. Stochastic evolution equations. Here we outline the results of [7] on
stochastic evolution equations excited by orthogonal increments type noise
processes. Using Definition 1.12 for stochastic integration with respect to the
orthogonal increments process q, we consider

du(t) M(t)u(t) dt +alP(t) dq(t)+ g(t) dt,
(1.15)

u(0) Uo,

where (t) is the generator of an evolution operator q/(t, s), cI) 2(T;(K, H)),
gL2(TII;H), uoL2(fl;H) and q(t) is a K-valued orthogonal increments
process.

First we define the mild solution of (1.15) to be

riO IO(1.16) u(t) ll(t, 0)u0+ //(t, s){s) dq(s)+ all(t, s)g(s) ds.

Even when ?/(t, s) is only a mild evolution operator, (1.16) is a well-defined
stochastic process and (h, u(t)) is continuous in the mean-square on T for all
hH.

2(T;.(H,K) is the space of strongly measurable (H,K)-valued functions such that
ITII(s)II= ds <
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We need to impose extra conditions on q/(t, s), , Uo and g in order that
(1.16) be a strong solution of (1.15) in the following sense.

DEFINIa’ION 1.13. Equations (1.15) have a strong solution u if u
(T; L2(II; H)), u(t) 50(M(t)) w.p. 1 and u(t) satisfies (1.15) almost everywhere
on Txf.

We say that u is unique if whenever U and u2 are strong solutions,

/x/0 "sup IlUl(t)- u2(t)ll 0/ 1.
tT

THEOREM 1.3. If M(t) generates an almost strong evolution operator R(t, s),
g L2(fl T ;H), B 32(T;(K, H)), Uo L2(12 ;H), and the following extra
assumptions are satisfied:

R(t, s)B(s) ei ((t)) ]’or almost all > s T

(1.17)

and

(1.18) and

E Ai II(t)o(t, r)B(r)eil]2 dr(r) <
i=O

i=0/-/’i II(t)q/(t, r)n(r)eill dp(r) <,
(t, s)g(s) (M(s)) for almost all > s T

Io’ [[(t)(t, s)g(s)[I ds <c w.p.1,

(1.19) R(t, 0)Uo6(M(t)) w.p.1;

then (1.15) has a unique strong solution given by (1.16).

2. The abstract filtering problem. Motivated by possible applications to
delay equations and partial differential equations excited by Poisson-or Gaussian-
type white noise (see [8], [9]), we consider the following abstract signal and
observation process:

IOu(t, w)= R(t, O)uo + R(t, r)B(r) dq(r)
(2.1)

o(, o)uo+ o(, o-)B.(o-) dr()

+ (t, o’)B(o’) dm(o’),

(2.2) z(t, w)= C(r)u(z) dr + F(r) dw(r),

where R(t, s) is a mild evolution operator on a Hilbert space, H,

B oo(T;(g, n)), Co(T;(n, R k)), F, F-letoo(T;(R k)),
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Uo is an H-valued random variable with zero expectation and covariance operator
P0, w is a k-dimensional Wiener process with incremental covariance matrix W
and q is a K-valued orthogonal increments process, with r(t)=E{q(t)}=
i=o tzieip(t) and re(t)= q(t)-r(t) has the covariance function M]’(t) with Mei
Y’.Aij ei. p (t) andf(t) are both monotone nondecreasing real functions, Y./--o/z < oo,
Y’.=0 Aii < co. Furthermore, we assume that q, w and Uo are mutually independent.

The assumption that the observation process is finite-dimensional is neces-
sary because the incremental covariance operator of the observation noise, W, is
both nuclear and invertible. However as one can only hope to make finite
observations in practice, this is not a serious restriction.

From the properties of integrals with respect to orthogonal increments
processes and of mild evolution operators, we have for hH, (h,u(t))
(T;L2(f)). So (2.1), (2.2) is a well-defined system model.

The state estimation problem is then to find the best unbiased estimate of the
state u(t) at time t, based on the observation z(s), 0 <- s <- to, which has the form

a(tlto) :r(t, s) dz (s, o + v(t, to),

where N(t,. e N(0, to; (R, H)) for each e r and such that E{{h, a(tlto))} is a
minimum for all h ell. a(tlto) u(t)-((t]to) is the error process and for an
unbiased estimate,

v(t, to)= E(u(t)}-E X(t, s) dz(s)

For to < we have the smoothing problem, for to > t the prediction problem and
for to the filtering problem. For the filtering problem we write ((tlt)= (t(t),
a(tlt)= a(t) and v(t, t) v(t). From (1.12) it is easily verified that a(tlto) is a
well-defined stochastic process with E{lla(tlto)ll2}

We now establish a series of lemmas along the lines of those established in [4]
and [8] for the Gaussian white noise case.

LEMMA 2.1. A(t, s) E{(u(t)-E{u(t)}) (u(s)-E{u(s)})} is given by
min(t’s)

A(t, s)x ll(t, O)Poall*(s, O)x + all(t, ’)B(’)MB*(’)?I*(s, t)x d[(’)

]’or each x H.
Proof. Direct substitution from (2.1) using the independence of and Uo, q,

E{uo} 0 and (1.13).
LEMtA 2.2. Orthogonal projections lemma, a(t[to)=toX(t,s)dz (s)+

v(t, to) is a solution to the estimation problem i]’

E{a(tlto z(r)-z(’)}= 0 forallr, rsuchthatO<=’<-r<-_to <- T.

Proof. For fixed h s H, define the Hilbert space

l(u, h)" u L2(I ;H) with inner productX(h)
[(u, h), (v, h)]: E{(u, h)(u, h)} J"
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Note that E{u v}=0 itt [(u, h), (v, h)]=0 for all h 6H. For fixed to, define the
subspace

(y(y, to), h)where y(t, to)= B(t, s)dz(s)]X(h to, t) B(t,. i2(0, to; (Rk, H)) for all t _-< to J"
Then (a(tlto),h) is in the manifold (u(t)-v(t, to),h)+X(h ;to, t). We seek to.
minimize (tlto)= u(t)-f(tlto) in the X(h) norm for all h. By the orthogonal
projections lemma for Hilbert spaces this is equivalent to requiring ((tlto), h)_L
X(h ;to, t) in X(h), i.e., E{(h, a(tlto))(h, y(t, to))}=0 for all (h, g(t, to))
X(h ;to, t). So it remains to establish that

(2.3) E{a(tlto) y(t, to)} 0 if and only if

(2.4) E{a(tlto)oz(r)-zO-)}=O for 0 =< ’<_-r_-< to.

Supposing that (2.4) holds, then it is easily verified that (2.3) holds when
y (t, to) ’ Bo(t, s) dz (s), where Bo(t, s) is a step function in the s variable:
(E{fi(tlto) Bo(z(r)- z (r))} E{fi(tlto) z(r)- z(z)}B*o). For general B(t, ), we
approximate it by a sequence of step functions {B,(t,. )} such that I liB(t, s)-
n2(/, s)ll2ds-,O as n-->oo, and in the usual way extend the result’ to general
B(t,. e 2(0, to; f(R, H), (see [4]).

Converse!y, suppose that (2.3) holds but

E{a(tlto) z(r)- z(z)} 0

Defining

for some r, -.

Bo(t, s)= I’E{V(t]to) (z()-
0

for z-<_s _-<r,
otherwise,

o
IIBo(t, s)ll ds -(o---)llE{a(tlto)O (z(,)-z 0-))}11=

<= (r )E{lla(t[to)llZ}E{llz(r) z ()11=)
(by the Schwarz inequality)

00,

so y(t, to)= Bo(t, s) dz(s) is such that (h, y(t, to))X(h ;t, to). But

(h, E(a(tlto) y(t, to)}h) (h, E{Vt(tlto) z(r)-z(z)}E{a(tlto) z(r)
z(z)}*h)

-IIE{a(tlto)O z(r)- z()} *hll2

# 0 for some h H.
So E{gt(tlto)o y(tlto)} # 0 and the lemma is established.

COROLLARY 2.1. E{a(tlto) (r)} 0 for r < to.
As in infinite-dimensional estimation theory we define the innovations

process by

/(t, o)= z(t,o) C(s)ft(s) ds,
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and we also define the second innovation process

vo(t, o)= z(t, o)- C(s)(a(s)-v(s)) as.

3’o(t, w) is also a k-dimensional stochastic process, and in the following sense
it is equivalent to the observation process.

LEMMA 2.3. For allM V 32(0, t ;.(R k, H)) there exists a unique N V
such that

oN(S) dyo(S, to)= M(s) dz(s, to),

and conversely.
Proof. (This is essentially the proof from [2].) Take N V. Then

N(s) d3,o(S)= N(s) dz(s, o)- N(s)C(s)(a(s)-v(s)) ds

io io i0V(s) dz(s)- N(s)C(s) (s, ) dz() ds

N(s) dz(s)- N(s)C(s)(s, a) ds dz(a),

interchanging the order of integration by Theorem 1.2.
Given M V, consider the integral equation

(2.6) M(t)x=N(a)x- N(s)C(s)r(s,t)xds forxR k,

or equivalently,

N*(a)h M*(t)h + *(s,t)C*(s)N*(s)h ds for h e H.

This is a Volterra integral equation for N*(s)hL2(O,t;Rk), and since
J, ’ IIc*(s, )c*(s)ll= ds d <, it has a unique solution N*(s)h for any given
M*(a)h. So given Me V, there is a unique N V satisfying (2.6) and hence
Ito N(s) d3,o(S)= to M(s) dz(s). The converse is proved similarly.

COROLLARY 2.2. The optimal estimator, if it exists, is also given by

t
a(t[to)= v(t, to)+ G(t, s) d3,0(s, o)

]’or some G(t, 2(0, to; (Rk, H)).
COROLLARY 2.3. t(tlt0) is a solution to the estimation problem if

E{(tlto) 3,o(tr)- 3,o(Z)} 0 for all tr, z such that O <-_ z <-_ tr <- to.
We state the following result proved in [2], [5] and [8].
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LEMMA 2.4. Wiener-Hope equation. Under the assumptions ofourproblem,
the following integral equation has a unique solution Y(t, 2(0, t; ,(R k, H))
forte T:

(2.7) Y{(t, s)C(s)A(s, tr)C*(tr)x ds + g(t, tr)F(tr) WF*(tr)x A(t, tr)C*(tr)x

forx H.
We now consider the filtering problem.
LEMMA 2.5. There is a unique solution to ourfilteringproblem under the stated

assumptions.
Proof. (This is an extension of the proof in [5]. We show that (2.7) has a

solution if and only if there is an optimal filter t(t)= v(t)+jto Y{(t, s)dz(s) and
then Lemma 2.3 guarantees the existence of an optimal filter. Suppose there is a
0(t, 2(0, t; (Rk, H)) such that.

(2.8) t(t) v(t) + :Ko(t, s) dz(s)

is optimal. Let

y(o’) C(s)(u(s)-E{u(s)}) ds

(2.9) z(tr)-z(O)- F(s) dw(s)- C(s)E{u(s)} ds.

Then

E{t(t) y(tr)}= E (u(t)-v(t)- St(t, s) dz(s)) (u(tr)- E{u(tr)})}C*(tr)

(2.10)

a.e. since o- < t

E{(u(t)-v(t))o (u(tr)-E{u(tr)})}C*(tr)

{IO }-E :K(t, s) dz(s)o u(tr)-E{u(tr)} C*(tr)

A(t, t)C*(tr)- 3V(t, s)C(s)A(s, )C*() ds,

substituting for z(s) from (2.2) and using Lemma 2.1 and the independence of Uo,

q and w. But

E{a(t) y(tr)}= E fi(t)o F(s) dw(s) -E a(t)o C(s)E{u(s)} ds

(by Lemma 2.2)

E ffd(t, s) dz(s)o F(s) dw(s)
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substituting for t(t) and using the independence of q, u0 and w and

E{t(t)} 0

Yg(t, s)F(s) WF*(s) ds (by (1.13)).

So

E{t(t) y(o’)} X(t, tr)F(r) WF*(tr)

A(t, tr)C*(tr)- r(t, s)C(s)A(s, tr)C*(tr) ds

from (2.10), and so (t,. is a solution to (2.3).
Sutppose now that (2.7) has a solution (t,. ). We show that t(t)=

v(t)+o3V(t,s)dz(s) satisfies Lemma 2.2. From the linearity we may assume
z=0. Now E{t2(t) z(tr)-z(O)}=E{(t)o y(tr)}+E{(t)OoF(s) dw(s)} since
E{t(t) 0}, where y satisfies (2.9)"

[A(t, a)C*(a)- I (,,s)C(s)A(s,t)C*(tz)ds1 dtz

?l{(t, s)F(s) WF*(s) ds

from (2.10) and expanding t(t) using the independence of u0, p and w and (1.11),
(1.13)"

=0

since X(t,. satisfies (2.7).
We now quote a result from [8] which will enable us to establish recursive

formulas defining the optimal filter.
THEOREM 2.1. Under the stated assumptions the following integral equations

are equivalent and have a unique solution in the class of self-adjoint positive
operatorfunctions in oo(T o’(H))"

(2.11) P(t)x=(t,O)Po*(t,O)x+ (t,s)B(s)MB*(s)ll*(t,s)xds, xeH,

(2.12) p(t)x=(t,O)Po@/*(t,O)x+ (t,s)(B(s)MB*(s)

+P(s)C*(s)(F(s) WF*(s))-1C(s)P(s)))j*(t, s)x as,
where (t, s) is the perturbation of the mild evolution operator ll (t, s) corresponding
to the perturbation -P(t)C*(t)(F(t)WF*(t))-IC(t). Furthermore, ff/’(t,s)

(t, s)P(s)C*(s)(F(s)WF*(s))- is the unique solution o]’ (2.7).
So from Lemma 2.5 we see that there is a unique optimal filter

a(t) v(t) + (t, slP(s)C*(s)(F(s Wf*(s )
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and

/fot }v(t) E{u(t)}-E (t, s) dz(s)

ll(.t, o’)B(o’) dr(o’)-N Y(t, s)C(s)u(s) ds (by (1.11), (2.1))

ll(t, o’)B(tr) dr(tr)

N(t, s)C(s) ll(s, o’)B(o’) dr(o’) ds (by (1.11), (2.1))

I0 [q/(t, tr)-I/ (t,s)P(s)C*(s)

(F(s) WF*(s))-C(s)O(s, ) ds]B(a) dr()
(interchanging the order of integration)

@(t, tr)B(tr) dr(w) (by Theorem 1.1).

Using Lemma 2.3 we may also express the filter in terms of the innovations
process.

LEMMA 2.6. The unique optimal filter is given by

a(t)= (t, o’)B(o’) dr(w)+ (t, s)P(s)C*(s)(F(s) WF*(s))-1 dz(s)

ll(t, tr)B(tr) dr(tr)+ ll(t, s)P(s)C*(s)(F(s) WF*(s))-1 dv(s).

that
Proof. By Lemma 2.3, there exists a unique G(t,. 32(0, t; .(R k, H)) such

(t, s) dz(s)= G(t, s) dTo(S)

where G satisfies

(t, s)x G(t, s)- G(t, tr)C(a)(a, s)x dtr for x RK.

Letting (t, s) (t, s)P(s)C*(s)(F(s) WF*(s))-1 we can verify that G(t, s)
ll(t, s)P(s)C*(s)(F(s) WF*(s))-1 is the solution, since

(t, s)x-(t, s)x + ll(t, tr )P(a)C*(tr)(F(s WF*(s))-lC(a)(ct, s)x dtr 0
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from the definition of @(t, s) as a perturbed mild evolution operator (see Theorem
1.1). So

a(t) @(t, r)B(r) dr(or)+ all(t, s)P(s)C*(s)(.f(s) Wf*(s))-1 d’,/o(S)

@(t, r)B(cr) dr(or)- ll(t, s)P(s)C*(s)

(F(s)WF*(s))-[o(s) as- d/(s)]

all(t, r)B(r) dr(r)+ ll(t, s)P(s)C*(s)(F(s)WF*(s))- dT(s)

again since @(t, s) is a perturbed mild evolution operator.
The unique solution P(t) of the Riccati equation (2.11) is the covariance

operator of the error process.
LEMMA 2.7.

(i) E{a(t) 7(t)} e(t),

/d(t, s)P(s)
(ii) E{a(t) a(s)} e(t, s)= e(t)o,(s, t)

eroo]’.
(i) is proved exactly as in [8].
(ii) Suppose t > s. Then

u(t) all(t, s)u(s) + I,
and by Theorem 2.1,

a(t) old(t, s)a(s) + f

for > s,
[ors > t.

ql(, a)B(a) dq(a)

@(t,

(F(a)WF*(a))-[C(a)u(a) dx-F(a) dw(a)].

But

ql(t, s)x (t, s)x + Is’
So

a(s) u(s)- @(s,

(F(a)WF*(a))-[C(a)u(a) da-F(a) dw(a)].

ad(t, a)P(a)C*(a)(F(a WF*(a))-lc(a)ll (a, s)x da.

E{t(t) t(s)} @(t, s)E{a(s)o t(s)}

and

Hence

a(t) o(t, s)a(s) + I,’ q/(t, a)B(a) dq(a)- F(a) dw(a)
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since q and w have independent increments. Similarly,

e(t, s) e(t)*(s, t) for s > t.

In the Gaussian white noise case with Uo Gaussian and q a Wiener process, it is
proved in [8] that y(t) is a martingale relative tot tr{z (s) ;0-< s -< t} and has the
representation

y(t) f(a) dv(a),

where {vt, t} is a k-dimensional Wiener process with incremental covariance
matrix W. The proof relies crucially on the fact that a(t) E{u(t)[t} or the linear
optimal filter is also the best global filter, a property of Gaussian estimators. Here
we need a different approach.

LEMMA 2.8. The innovations process {,(t)} is a martingale relative to the
observation field t and has the representation

"y(t) F(a) dv(a),

where {v (t), t} is a k-dimensional orthogonal increments process with incremental
covariance matrix W.

Proof. Let v(t)=j’oF-(a)dr(a), which is well-defined expanding / by
(2.5).

(a) v(t) has orthogonal increments and zero mean.
We shall instead prove the equivalent result:

E{T(s)o’),(t)-T(s)}=E T(s)o F(a) dw(a)+ C(a)a(a) da

E /(s) F(a) dw(a)

+E{yo(S) fst c(a)a(a) da}
since E{t(a)} 0

/E 3’(s) F(a) dw(a)

= C()() d,

+ F(a) dw(a)o F(a) dw(a)

0,

since w has independent increments and since w, Uo are independent. Also

E{’]l(s)} E{ Is C(s)l(s) ds} +E{ Iot f(s) dw(s) }

(by Corollary 2.3)

=0
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since E{t(s)} 0, and by (1.11),

(b) E{v(t) v(t)}= dw() dw(cz)

+E{Io’ dw(a)IotF-l(a)C(x)(t()d}
+E F-I()C()() d dw()

+ -(c(a() -(lc(a(d

{t t i0t }Wt-E dw(a) F-l(cz)C(a) ff{(a, #) dz(#) da

F-I()C(x) X(x, ) dz(fl) d dw(a)

F-I()C()E{a() (t(a)}C*(a)F-*(a) d da

by (1.11) and since w is independent of Uo and q,

Wt-E’ dw(B) F-I(a)C(a)X(a, )F(B) da dw(B)

-E F-(a)C(a)X(a, 13)F(#) da dw(#) dw(#)

+ + F-()C()X(, )C*(a)F*-(a) d

since w is independent of u( and interchanging the order of integration,

Wt- lot [ I; F-l()C()X(, fl)F(fl) d) *

+ -(lc((,(a

+ -(c(l (,l(lc*(l-*(l a

+ p()*(, )C*()F-*() ;

by (1.11) and Lemma 2.7,

Wt.

Substituting for N(t, s) from eorem 2.1 and interchanging the order
inteation once more, then v(t) is a centered orthogonal increments process
Definition 1.9 with incremental covariance matrix Wt.
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This is a rigorous proof of a claim made by Kailath in [14] in the finite-
dimensional case that the innovations process was a Gaussian white noise process
of the same type as w(t).

COROLLARY 2.4.

{I
0
M(oi) d(ol)IoN(Ol)dt)(ol)lX, f

min(t,s)

M(a)F(a) WF*(a)N*(a)x da
aO

for x H, M, N Bz(T; ’(R, H)).
Proof. Lemma 2.8 and (1.13) for the orthogonal increments process v.
We can now establish our smoothing result which is analagous to that in [8].
TI-mORnM 2.2. Consider the smoothingproblem ]’or (2.1) and (2.2) under the

stated assumptions and given to > t. Then the best smoothed estimate is given by

(2.13) t (t]t0) (t)+P(t)A(t),

where a (t) is the optionalfilter at time tandP(t) is the unique solution of (2.11) and

(2.14)

(2.15)

for some

and

(2.16)

where

to
h (t) *(s, t)C*(s)(F(s) VF*(s))-1 dT(s).

Proof. By Corollary 2.2,

t
t(tlto) v(t, to)+ G(t, s) dTo(S)

G(t, .(0, to L’(R k, H))

t
a(tlto) a(t, to)+ G(t, s) dT(s),

t
a(t, to)= v(t, to)+ C(s)v(s) ds.

Suppose t =< s _<- to. Then

E{u(t) T(s)} E{u(t) To(s)}-E u(t) C(s)v(s) ds (by (2.5))

N{(t) o(s)}-N u(t) C(s)v(s) ds (by Corollary 2.3)

= G(t,s)d(s)(s) +{a(t, to)(s)}

+E a(tlto)o C(a)v(a) da

-{u(t)} C()v() d (by(2.16))
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Therefore

But

E{I G(t, s)dy(s) y(s)}
G(t, a)F(a)WF*(a) da

(since E((t)} 0, E(y(s)} 0)

(by Corollary 2.4).

O--E{u(t) y(s)} G(t, s)F(s) WF*(s).
Os

E{u(t) /(s)}=E u(t) C(a)fi(a) da + F(a) dw(a)

E u(t) C(a)t(a) da

since q, w and u0 are independent.
Therefore

So

E{u(t) y(s)} E{u(t)o C(s)a(s)}
Os

E{(t)+ t(t) (s)}C*(s)
E{r(t) ((s)}C*(s)

by Corollary 2.1 since to > s > t.

t
a(tlto) v(t, to)+ G(t, s) dyo(S)

v(t, to)+ G(t, s) dyo(s)+ P(t)*(s, t)C*(s)

(F(s) WF*(s))-’ dyo(S)

a(t)+ v(t, to)-v(t)+ P(t)*(s, t)C*(s)(F(s)WF*(s))- dyo(s)

a(t)-E P (t)@*(s, t)C*(s)(F(s) WF*(s))-’ d/o(S)
o

+ P(t)*(s, t)C*(s)(F(s) Wf*(s))- dyo

a(t) + P(t)*(s, t)C*(s)(F(s) WF*(s))-1 dy(s) by (2.5).
o

THEOREM 2.3. Consider the prediction [or (2.1), (2.2) under the stated
assumptions and given to < t. Then the best predictor is given by

(2.17) a(tlto)=E{u(t)}+(t, to)a(to) fort>to.
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Proof. By Corollary 2.2,

v(t, to)+ Io’(2.15) (tlto)

for some

G(t, s) dyo(S)

G(t, J2(O, to (Rk, H)).
Now

E{u(t) T(s)} E{u(t)o To(S)}-E u(t)o C(a)v(a) da

Therefore

But

(by (2.5))

E{a(tlto) yo(s)}-E u(t) C(a)v(a) da (by Corollary 2.3)

=E G(t, s) dy(s, w)o y(s, w) +E{a(t, to)o y(s, w)}

+E{(tlto)O I C(a)v(a) dtz}- u(t) C()v() d (by (2.15))

G(t, a)F(a)WF*(a) da

(by Corollary 2.4 and since E{(t)} 0, E{T(t)} 0).

G(t, s)F(s) WF*(s) sE{U(t) y(s)} for s < to < t.

E{u(t) /(s)} E u(t) C(a)t(a) d + F(a) dw(a)

=E{u(t)oI C(a)t(a) da}
since Uo, q and w are independent. Therefore

But

Hence

E{u(t) 3t(s)) E{u(t) a(s)}C*(s).
OS

u(t) ql(t, s)u(s)+ ll(t, a)B(a) dq(a) for > s.

E{u(t) a(s)} all(t, s)E{u(s)
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since q is independent of Uo and w and has orthogonal increments

G(t, s) all(t, s)P(s)C*(s)(F(s) WF*(s))-1 (for s -< to < t)

(t, s).

Therefore

v(t, to)+ Yg(t, s) d(s)+ N(t, s)C(s)N{u(s)} ds (by (2.5))

As in [8]we can show that the optimal estimate (tlto) is the best linear estimate of
u(t) based on z(s), ONsNto, in the sense of Definition 1.8. However, (tto) is
only the best global filter when q(t) is a Wiener process and uo is Gaussian.

Furthermore, as in [8] we can express (tto) as the strong solution of a
stochastic evolution equation under additional assumptions on (t), B(t) and the
noise processes.

THEOREM 2.4. Consider the estimation problem (2.1), (2.2) under thefollow-
ing additional assumptions"

(i) (t, s) is an almost strong evolution operator with generator M(t),
(ii) (t, r)B(t)ei (M(t)) for > r and

A IlM(t)(t,r)B(r)ei}ladr<;
i=0

(iii) (t, s)B(s) ei (M(s)) for almost all t>s Tandll i"

II(t)(, s)(s) ell do(r) <;
i=0

(iv) (t, 0)Po e s ((t)) or >0 andoll(t)(, 0)o el <.
Wring

here v(t) (t, )B() dr() is deterministic by Lemma 2.6, we have thatx(t)
is the unique solution o the stochastic evolution equation

dx(t) ((t)-P(t)K(t)C(t))x(t) dt+ P(t)g(t) dz(t),
(2.18)

where

x(O)=O,

K(t) C*(t)(F(t) WF*(t))-
and v(t) is the unique solution of the deterministic equation

dr(t) (M(t)-P(t)K(t)C(t))v(t) dt +B(t) dr(t),
(2.19)

v(o)=o.
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For the prediction problem t > to, writing

a (tlto) tT(t) + x(tlto)
where a(t)= E{u(t)} ]’rom Theorem 2.3, we have that x(t]to) is the unique strong
solution o]’ the stochastic evolution equation

dx(tlto) (t)x(tlto) dt,
(2.20)

x(tlto)=X(to),
and a(t) is the unique solution of the deterministic equation

dK(t) (t)K(t) dt + B (t) dr(t),
(2.21)

a(0)=0.

For the smoothingproblem /o> t, writing a(tlto)= v(t)+ y(t[to), we have that y(tlt0)
is the unique strong solution of the stochastic evolution equation

dy(tlto) (si(t)-e(t)K(t)C(t))y(tlto) dt

(2.22) + e(t)K(t)C(t)a(t) dt+ B(t)MB*(t)A (t) dt,

y(tolto)=X(to).

eroo]’.
(i) The stochastic evolution equations (2.18), (2.20) and (2.22) are the

equations one obtains for the optimal estimators in the Gaussian case, where
v(t) 0 a(t). So we refer the reader to [8] for the proof that they have a unique
strong solution. (The proof uses Theorem 1.3.)

(ii) In [8] it is shown that M(t)-P(t)K(t)C(t) generates the almost strong
evolution operator @(t, s), that is

(2.23) (M(r)-P(r)K(r)C(r))(r, s)x dr ((t, s)-I)x

for x es=)<_ (M(s)).

By Theorem 1.1, (t, s) is the unique solution of

(2.24) (t, s)x ll(t, s)x- all(t, o)P(o)g()C(o)(o, s)x do,

and in [8] it is shown that

(2.25) (t,s)P(s):Hfl(M(t)) for t>s

and

ag(t)vll (t, s)P(s)x

is Bochner integrable on (0, t) for x H. From (2.24), (2.25) and assumption (iii),
we deduce that

@(t, s)B(s)ei @(M(s)) for almost all t > s s T, all i,
(2.26)

Y. tz, IIs(t)(t, s)B(s) eill do(r) < oo.
i=0
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Now the mild solution of (2.19) is

v(t) Y Ix, (t, s)B(s) e, dp(s),
i=0

and since M(t)-P(t)K(t)C(t) is closed, from (2.26)we have that v(t) (M(t))
and

((t)-P(t)g(t)C(t))v(t) txi (4(t)-P(t)g(t)C(t))(t, s)B(s) ei do(s).
i=0

Since (t)-P(t)K(t)C(t) generates an almost strong evolution operator, we
have

Io: (M(r)-P(r)K(r)C(r))v(r) dr

(s(r)-P(r)K(r)C(r))(r, s)B(s) e, do(s) dr

, (s(r)-P(r)K(r)C(r))(r, s)B(s) e dr do(s)
i--0

(interchanging the order of integration)

F , ((t, s)-I)B(s) e do(s)

(from (2.23)) since (t, s)B(s) ei e ((s))

v(t)- B (s) dr(s).

So v(t) satisfies (2.19). Similarly it is shown that a(t) Jto ql(t, s)B (s) dp (s) is the
unique solution of (2.21).

Remarks.
1. From Theorem 1.3, conditions (1.17) for the state u(t) to be the strong

solution of the stochastic evolution equation (2.27), du(t)=M(t)u(t)dt+
B(t)dq(t), are stronger than (i), (ii) and (iii) of Theorem 2.5. This is because the
white noise process in (2.27), B(t)dq(t), is infinite-dimensional, whereas the
white noise process in (2.18), P(t)K(t)F(t) dw(t), is finite-dimensional.

2. An alternative assumption to (iii) is the following:

(iii) ql(t,s)B(s)x((t)) forallt>s, xH,

and B(s)x is Htlder continuous on T.
3. From [10], if q/*(T-s, T-t), or any perturbation, is also a strong

evolution operator, then P(t) is the unique solution of the following differential
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equation in the class of weakly continuous operators such that (P(t)x, y) is
absolutely continuous for all x, y fl tT(SC*(t)):

(P(t)x, y)-(P(t)x, s*(t)y)-(sC*(t)x, P(t)y)

(2.27)
+(P(t)C*(t)(F(t) WF*(t))-1C(t)P(t)x, y)= (B(t)MB(t)*x, y)

for x, y f’l tT(C*(t)),

P(O)- Po.
If ’ is the infinitesimal generator of a strongly continuous semigroup, then

P(t) is the unique solution of (.2.23)

3. Alliications. Of course the first possible application is to finite-
dimensional linear systems, and so this includes the work of Kailath [ 14]. In [8] the
same problem was considered for the special case where the noise process in the
system model was assumed to be of the form B(t) dw(t) where w(t) is a K-valued
Wiener process. Several examples were considered where the system was a partial
differential equation and also where the system consisted of delay equations.
Because of the similar nature of the orthogonal increments process {q(t)}, the
same system models can be considered corrupted by this general noise process; we
refer the reader to [8]. To motivate the use of general noise processes we give an
application of the theory to the environmental problem of river pollution. This
application is examined in detail in [9], so only the outline is given here.

The problem was originally considered by Kwakernaak 15] and concerns the
estimation of the concentration of chemical pollution in a river based on measure-
ments at a finite number of points along the river. The time evolution of the
concentration of the chemical at location x at time t is y(t, x) and is assumed to be
given by

(3.1) ov(t, x)= ,_or(t, x)_ vow(t, x) +(, x)
tgX tgX 2 0X

where D is the dispersion coefficient, V is the water velocity and st(t, x) is the rate
of increase of concentration at (t, x) due to the deposits of the chemical wastes. It is
assumed that the number of deposits in a section of the river of infinitesimal length
dx (x being the distance along the river) behaves according to a Poisson process
with rate parameter A (x) dx, where A is a given function; the number of deposits in
nonoverlapping sections are independent processes and the amounts of chemical
deposited at x are independent stochastic variables Hx with E{HEx} < oo. In [9] it is
shown that after a change of variable y(t, x) eaXu(t, x) (a v/2D) a convenient
model for the polluted river is

du(t) du(t) dt + Bdq(t)
(3.2)

u(O) Uo

on H L2(0, l),
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where M is a self-adjoint operator given by

02h
si x2 a2h forh(M),

(3.3)

(M)="{hH"oh o2h +Oh=0 atx =0, /O--’xzn;ah x
and B (H) is given by

(th)(x) e-aXh (x) for h H.

u0 L2(I; H) has zero expectation and covariance operator P0 given by Po ek
ak ek ;Yk--1 ak 0, where {e} is the following orthonormal basis for H:

(3.4) /e (kzrx ) "rrkek(X) -sin +ek tan ek\ al

{ek ;k >-1} are the eigenfunctions of M and M generates an analytic semigroup
{fit} given by

(3.5) (ffth)(x) Y (h, ek) ea-k/l’ek(X), h H.
k=l

q(t) is an H-valued orthogonal increments process, q(t)=Y.k= qk(t)ek, where
qk (t) is a real compound Poisson process for each k and the parameters/Zk, Ak for
qk(t) are given by

IZk A (x)E{Hx} ek(x) dx,

(3.6)
Ak X (x)E{H2I eZ(x) dx.

In order that k=/zk < and k= Ak < o, we need to have (A (x)E{Hx}) and
A (x)E{HX} Lz(O, l) with

(A(x)E{Hx})2= Y flaea(x)
k=l

and

A (x)E{H2x} Y yk e2k(x).
k=l

It is also.shown that (3.2) has the unique strong solution

(3.7) u(t) ’Uo+ -_,B dq(s).

The observation model is taken to be

(3.8) z(t)= Iot Cu(s) ds + w(t),
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where w(t) is a k-dimensional Wiener process with covariance matrix the identity
and C.(H;Rr) is given by

u (x) dx for small s > O.(3.9) (Cu) -e,,_,
This approximates the situation where you continuously measure the concentra-
tion of a chemical at fixed stations x, x2, ",Xk, along the river.

Hence (3.7), (3.8) satisfies all the assumptions of our theory in 2 and so
there exists a unique optimal estimator (tlto), at least in integral form. Since M
generates a strongly continuous semigroup, P(t) is the unique solution of the
differential Riccati equation

(3.10)

(P(t)f h)-(P(t)f,h)-(P(t)h,

+(P(t)C*CP(tff h)

P(0) Po and f, g (M).

(3.10) may be reduced to an infinite system of ordinary differential equations by
expandifig

P(t) Y’. pi(t) ei(t)(e(t), ), pi(t) pi(t),
id=l

2 ood ,n"

d-- pij(t) +__(2 +]2)pij(t + E E pn,(t)pm(t)A,n P,
m,n

(3.11)
p(O) 8ijA,,

where

and

k

Amn amranr
r=l

and

/ 8re (rxr )asr sin sin \ +s (Ce),

Pij E E Akn(Be, e,)(Be, e).
k=l n=l

In [8] it is shown that assumptions (i), (ii) and (iv) of Theorem 2.4 are satisfied,
since is an almost strong evolution operator and (iii) is proved similarly (or use
(iii)), and so t(tlto) are the unique solutions of the appropriate differential
equations (2.18)-(2.22). By expanding t (tlto) in terms of ei, it is possible to obtain
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the coefficients assolutions of a system of ordinary stochastic differential equa-
tions. For example, writing

t(t) v(t) + x(t)

Y Vk(t) ek + Y k(t) ek,
k=l k=l

we obtain the systems

dk(t) 12 k (t) dt + . A. flr(t)pkn (t) dt
n,r

(3.12)
oo k

+ pk(t) anrdzr(t),
n=l r=l

(3.13)

bk(t)
k 2 2

12 Vk(t)+ Y.Y. AnrOr(t)Pkn(t)+ Z tzr(Ber, ek),
n,r=

So we have obtained an infinite system of Kalman-Bucy-type recursive
equations for the filtering problem. These may be solved by truncation, and
similarly one can obtain solutions for the smoothing and prediction problem.

Condusions. The filtering smoothing and prediction problems for a very
general class of linear infinite-dimensional systems has been solved. The types of
infinite-dimensional systems which generate mild evolution operators is wide,
including delay equations, parabolic partial differential equations and hyperbolic
partial differential equations, for example.

The noise process is allowed to be of a fairly general type including
Gaussian-type white noise and Poisson-type noise, for example. However it
should be possible to consider ever more general noise processes using the results
on stochastic integration with respect to H-valued martingales developed by
M6tivier in [16], [17].

It is also important to allow for point observations where the operator C is
unbounded. In [11] Curtain and Pritchard have solved the filtering problem with
Gaussian white noise with point observations. It should be possible to extend
these results to the case of general orthogonal processes introduced in this paper.
This is currently under investigation.
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RELATIONS AMONG THE MULTIPLIERS FOR PROBLEMS
WITH BOUNDED STATE CONSTRAINTS*

I. BERT RUSSAK"

Abstract. In previous articles, the author established certain necessary conditions for control
problems with constraints of the form ’(t, x)_-<0 t 1,..., m. These conditions involve certain
multiplier functions ,, (t) of the derivatives of the above constraints together with multiplier constants
K used in the transversality relation. In this paper, it is shown that these terms satisfy/,(t)<-K
with/,,,(t) K if ,(t)<0.

1. Introduction. We consider the following problem. Let A be the class of
arcs "

(1.1)

(1.2)

(1.3)

(1.4)

where

x (t) u k (t) bo., to <= <-_ 1,
i=1,- ,N k=l," ,K o’=1,. .,r

which have points t, x(t), u(t) in a region R in t-x-u space, b in a region B in b
space and u(t) piecewise continuous, and which satisfy the conditions

.’(t) =f’(t, x(t), u(t)),

O(t,x(t))<--O,

I(e) _--< 0, l<=T<_--p ’, Iv(a0=0, p’<T--<p,

xi(ts)=XiS(b), s=0, 1, l <-_i<-N,

Iv(e)= gv(b)+ Lv(t, x(t), u(t)) dt, T 1,..., p.

It is desired to minimize the functional

(1.5) I0(a0 go(b)+ Lo(t, x(t), u(t)) dt

on the class A.
The functions are assumed to be of class C on R while the functionsf, L,,

g,, Xis are of class C on R or B as the case may be. We shall assume familiarity
with the notation and conventions of [1] through [3]. Furthermore unless other-
wise specified the values i, k, o-, a will have their above indicated ranges.

Assume, next, that the arc

eo: Xo(t) Uo(t) bo, <-_ <-_ 1,
is a solution to our problem and define the functions

(2) b (t, x, u) 7+ bx,f, a 1,..., m.

* Received by the editors December 3, 1975.

" Department of Mathematics, Naval Postgraduate School, Monterey, California 93940. This
work was supported by an NPS Foundation grant.
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For arcs in the class A, these functions act as d/dt along these arcs. We assume
that the matrix

(3) [(h, ,,oOa], a, fl 1,"’, m,

(where ,,a is the Kronecker delta) has rank rn on the set Ro of points (t, Xo(t), u)
satisfying

-<0,

b -> 0 for all a with 0 or b -< 0 for all a with " 0,
(4)

l_-<c _-< m.

Referring to Theorem 3.1 of [1] and to the quantities/x(t), K of that
theorem, we prove the following result:

LEMMA. For each we have

(5) tx(t)<-K withlx(t)-K ifd/(t)<O.
In Theorem 3.2 of [1], the multipliers/ (t) are modified (by the addition of

additive constants) from those of Theorem 3.1 of [ 1]. The results of this paper then
imply associated results to the multipliers of that theorem. Similar remarks hold in
the Theorems of [2].

2. Prool the lemma. It is convenient to prove this result by first transform-
ing the problem. In 4 of [ 1] the problem stated above is shown to be equivalent to
a reformulated problem (with superscript bars used on quantities in the reformu-
lated problem to distinguish them from the original problem so that for example,

replaces ") with functions , 4 formed from the functions @’, , and with
the major distinction from the above problem being that the assumption involving
(3) is replaced by the statement that the matrix

(6) []

has rank m at points in D. Here D is the set of points (t, o(t), u) in Ro with
u o(t) or for arbitrary u with interior to an interval of continuity of tTo(t). Now
k -d@"/dt and so (6) implies in particular that

(7) [,(t)] has rank m.

The argument to in (7) means evaluation at the point t, Xo(t) on the arc ao. We
shall use an analogous convention at other points along ao and for other functions.

The theorem for this latter problem is Theorem 6.1 of 1] and as shown in 7
of [1], the terms/ (t), K" of that theorem and of Theorem 3.1 of [1] for the
original problems are the same. In addition, (t) 0 itt (t) 0 a 1,. , m,
as shown in (36) of [1]. Thus proving our lemma for the reformulated problem will
prove it also for the original problem.

We concentrate on the reformulated problem of 4 of [1].
In order now to prove the first inequality of (5), assume that r/is an index such

that

(8) 6n(t) <0,
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and let h be any N-dimensional vector such that nx,(t)hi O. Now, according to
(7), we can select a vector d such that

(9)
xn’(t) di x"(t)hi’
’(t0) di= O, e "rI.

Next, select a constant 6 > 0 so small that

(10) "(t) <0, t<-_t<-_t+6,
and define the k-dimensional arc w such that

(11.1)

w(t) ,(t) di,

((-ff,(t)di)2/& t <= <- t+ 6/2, ct a, m,

ff’(t)=O t+8/2<-_t<=t 1, a -1, m,

wr(t)=--O, F=m+I,...,K, t<-_t<-_t 1.(11.2)

Then w is in the class W of 13 of [ 1] and by Lemma 13.1 of [ 1], we can find an
admissible variation

(12) ,z" x(t) u(t) 8b <-t<-_t1,
satisfying

(13.1) xJ(t) djs, ]s ip, s 1,..., N- m,

(13.2) b =0,

where ip are the indices of (108) of [1] and also satisfying

g/x,(t)tx (t) (t) w (t), a 1,..., m,
(14)

8r(t)=wr(t), F=m+I,...,K o <t <t

where g"(t), 4r(t) indicate the variations in these quantities due to the variation
die and where 4r are the functions of 8 of [ 1]. According to the above and by the
admissibility of ,z, we have that

(15)
d

ft, (’(t)
ttk (t) -g(t) (t) 6’ [t, t+],

and by (14) and (11.2) also

(16) 4r(t)0, F=m+I,...,K, t<-t<=t.
In addition, by (11.1), (13.1), and (14) evaluated at t, we have- o di(17) ( )[ -x(t)]=0, p,a=l,...,m,

where o are the indices of (108) of [1]. Then by the nonsingularity of the matrix

[, (to)] (see (108) of [1]), we see that 8x r(t) dp 1,..., m, so that together
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with (13.1) we obtain

(18) 6xJ(t) d, j 1,..., N.

Next, by (155.2) and Lemmas 11.1 and 15.1 all of[1], together with (15), (16)
and (18), we get by computing the variation of the functionals introduced in (69)
and (70) of [1] that

o+/2 2
(19) P

j,o
Fp,k’(--7,(/) di)-d dt-p+i+i d’ >-0,

p=0, 1,...,p+N,

where F, sr, dp+v+i are quantities introduced in 8 of [ 1].
Using the relations (76.1) of [1] (between p+l+i and K) and (9), we see that

(19) becomes

t+6/2 2(20) ’0 Fo.k((-,(t)h)-d dt-Kn,(t)h >-0 (rt not summed),

where K’ is that term referred to in our present lemma which is associated with
q’. Furthermore, by the definition of/x (t) in (74) and (76) of [1] then (20) is

<21) <:,<t)hi)[-2d ft+/2 ]at
tz, (t) dt K" >- 0 (rl not summed).

According to the properties of the multipliers/z(t), we can by reducing 6 if
necessary, guarantee that/x, (t) is continuous on [t, o + 6/2]. Then by taking the
limit of the expression in (21), we get that

(22.1) x’(t)h[Izn(t)-Kn]>-O (rl notsummed).

Now we can repeat this same construction with -h replacing h and so get

(22.2) x,(t)(-h)[lz,(t)-K’]>=O (rl not summed).

Thus, (22) implies that for any vector h with ,(t)h # 0, then

(23) "x’(t)hi[lzn(t)-K’]=O (rl notsummed)

which implies that

(24) /zn(t) K".

Since ’ was an arbitrary constraint such that qn(t)<0, then the second
statement of our lemma is proved.

In order to prove the first statement of our lemma, let r/be an index such that

(25) (t) o
and let h be a vector such that

(26) q,(t)h -<_0.

Then as above, pick a vector d such that (9) is true and define the arc w as in (11)
where 6 is selected so that the multiplier/z,(t) is continuous on [t, + 6/2]. The
construction follows identical steps to the above to yield (22.1) which together
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with (26) and the arbitrariness of r/, proves the first statement of our lemma and
hence also the lemma.
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